xref: /kernel/linux/linux-5.10/fs/afs/write.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* handling of writes to regular files and writing back to the server
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/backing-dev.h>
9#include <linux/slab.h>
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include "internal.h"
15
16/*
17 * mark a page as having been made dirty and thus needing writeback
18 */
19int afs_set_page_dirty(struct page *page)
20{
21	_enter("");
22	return __set_page_dirty_nobuffers(page);
23}
24
25/*
26 * partly or wholly fill a page that's under preparation for writing
27 */
28static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29			 loff_t pos, unsigned int len, struct page *page)
30{
31	struct afs_read *req;
32	size_t p;
33	void *data;
34	int ret;
35
36	_enter(",,%llu", (unsigned long long)pos);
37
38	if (pos >= vnode->vfs_inode.i_size) {
39		p = pos & ~PAGE_MASK;
40		ASSERTCMP(p + len, <=, PAGE_SIZE);
41		data = kmap(page);
42		memset(data + p, 0, len);
43		kunmap(page);
44		return 0;
45	}
46
47	req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
48	if (!req)
49		return -ENOMEM;
50
51	refcount_set(&req->usage, 1);
52	req->pos = pos;
53	req->len = len;
54	req->nr_pages = 1;
55	req->pages = req->array;
56	req->pages[0] = page;
57	get_page(page);
58
59	ret = afs_fetch_data(vnode, key, req);
60	afs_put_read(req);
61	if (ret < 0) {
62		if (ret == -ENOENT) {
63			_debug("got NOENT from server"
64			       " - marking file deleted and stale");
65			set_bit(AFS_VNODE_DELETED, &vnode->flags);
66			ret = -ESTALE;
67		}
68	}
69
70	_leave(" = %d", ret);
71	return ret;
72}
73
74/*
75 * prepare to perform part of a write to a page
76 */
77int afs_write_begin(struct file *file, struct address_space *mapping,
78		    loff_t pos, unsigned len, unsigned flags,
79		    struct page **_page, void **fsdata)
80{
81	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
82	struct page *page;
83	struct key *key = afs_file_key(file);
84	unsigned long priv;
85	unsigned f, from = pos & (PAGE_SIZE - 1);
86	unsigned t, to = from + len;
87	pgoff_t index = pos >> PAGE_SHIFT;
88	int ret;
89
90	_enter("{%llx:%llu},{%lx},%u,%u",
91	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
92
93	page = grab_cache_page_write_begin(mapping, index, flags);
94	if (!page)
95		return -ENOMEM;
96
97	if (!PageUptodate(page) && len != PAGE_SIZE) {
98		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
99		if (ret < 0) {
100			unlock_page(page);
101			put_page(page);
102			_leave(" = %d [prep]", ret);
103			return ret;
104		}
105		SetPageUptodate(page);
106	}
107
108try_again:
109	/* See if this page is already partially written in a way that we can
110	 * merge the new write with.
111	 */
112	t = f = 0;
113	if (PagePrivate(page)) {
114		priv = page_private(page);
115		f = afs_page_dirty_from(priv);
116		t = afs_page_dirty_to(priv);
117		ASSERTCMP(f, <=, t);
118	}
119
120	if (f != t) {
121		if (PageWriteback(page)) {
122			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
123					     page->index, priv);
124			goto flush_conflicting_write;
125		}
126		/* If the file is being filled locally, allow inter-write
127		 * spaces to be merged into writes.  If it's not, only write
128		 * back what the user gives us.
129		 */
130		if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
131		    (to < f || from > t))
132			goto flush_conflicting_write;
133	}
134
135	*_page = page;
136	_leave(" = 0");
137	return 0;
138
139	/* The previous write and this write aren't adjacent or overlapping, so
140	 * flush the page out.
141	 */
142flush_conflicting_write:
143	_debug("flush conflict");
144	ret = write_one_page(page);
145	if (ret < 0)
146		goto error;
147
148	ret = lock_page_killable(page);
149	if (ret < 0)
150		goto error;
151	goto try_again;
152
153error:
154	put_page(page);
155	_leave(" = %d", ret);
156	return ret;
157}
158
159/*
160 * finalise part of a write to a page
161 */
162int afs_write_end(struct file *file, struct address_space *mapping,
163		  loff_t pos, unsigned len, unsigned copied,
164		  struct page *page, void *fsdata)
165{
166	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
167	struct key *key = afs_file_key(file);
168	unsigned long priv;
169	unsigned int f, from = pos & (PAGE_SIZE - 1);
170	unsigned int t, to = from + copied;
171	loff_t i_size, maybe_i_size;
172	int ret = 0;
173
174	_enter("{%llx:%llu},{%lx}",
175	       vnode->fid.vid, vnode->fid.vnode, page->index);
176
177	if (copied == 0)
178		goto out;
179
180	maybe_i_size = pos + copied;
181
182	i_size = i_size_read(&vnode->vfs_inode);
183	if (maybe_i_size > i_size) {
184		write_seqlock(&vnode->cb_lock);
185		i_size = i_size_read(&vnode->vfs_inode);
186		if (maybe_i_size > i_size)
187			afs_set_i_size(vnode, maybe_i_size);
188		write_sequnlock(&vnode->cb_lock);
189	}
190
191	if (!PageUptodate(page)) {
192		if (copied < len) {
193			/* Try and load any missing data from the server.  The
194			 * unmarshalling routine will take care of clearing any
195			 * bits that are beyond the EOF.
196			 */
197			ret = afs_fill_page(vnode, key, pos + copied,
198					    len - copied, page);
199			if (ret < 0)
200				goto out;
201		}
202		SetPageUptodate(page);
203	}
204
205	if (PagePrivate(page)) {
206		priv = page_private(page);
207		f = afs_page_dirty_from(priv);
208		t = afs_page_dirty_to(priv);
209		if (from < f)
210			f = from;
211		if (to > t)
212			t = to;
213		priv = afs_page_dirty(f, t);
214		set_page_private(page, priv);
215		trace_afs_page_dirty(vnode, tracepoint_string("dirty+"),
216				     page->index, priv);
217	} else {
218		priv = afs_page_dirty(from, to);
219		attach_page_private(page, (void *)priv);
220		trace_afs_page_dirty(vnode, tracepoint_string("dirty"),
221				     page->index, priv);
222	}
223
224	set_page_dirty(page);
225	if (PageDirty(page))
226		_debug("dirtied");
227	ret = copied;
228
229out:
230	unlock_page(page);
231	put_page(page);
232	return ret;
233}
234
235/*
236 * kill all the pages in the given range
237 */
238static void afs_kill_pages(struct address_space *mapping,
239			   pgoff_t first, pgoff_t last)
240{
241	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
242	struct pagevec pv;
243	unsigned count, loop;
244
245	_enter("{%llx:%llu},%lx-%lx",
246	       vnode->fid.vid, vnode->fid.vnode, first, last);
247
248	pagevec_init(&pv);
249
250	do {
251		_debug("kill %lx-%lx", first, last);
252
253		count = last - first + 1;
254		if (count > PAGEVEC_SIZE)
255			count = PAGEVEC_SIZE;
256		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
257		ASSERTCMP(pv.nr, ==, count);
258
259		for (loop = 0; loop < count; loop++) {
260			struct page *page = pv.pages[loop];
261			ClearPageUptodate(page);
262			SetPageError(page);
263			end_page_writeback(page);
264			if (page->index >= first)
265				first = page->index + 1;
266			lock_page(page);
267			generic_error_remove_page(mapping, page);
268			unlock_page(page);
269		}
270
271		__pagevec_release(&pv);
272	} while (first <= last);
273
274	_leave("");
275}
276
277/*
278 * Redirty all the pages in a given range.
279 */
280static void afs_redirty_pages(struct writeback_control *wbc,
281			      struct address_space *mapping,
282			      pgoff_t first, pgoff_t last)
283{
284	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
285	struct pagevec pv;
286	unsigned count, loop;
287
288	_enter("{%llx:%llu},%lx-%lx",
289	       vnode->fid.vid, vnode->fid.vnode, first, last);
290
291	pagevec_init(&pv);
292
293	do {
294		_debug("redirty %lx-%lx", first, last);
295
296		count = last - first + 1;
297		if (count > PAGEVEC_SIZE)
298			count = PAGEVEC_SIZE;
299		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
300		ASSERTCMP(pv.nr, ==, count);
301
302		for (loop = 0; loop < count; loop++) {
303			struct page *page = pv.pages[loop];
304
305			redirty_page_for_writepage(wbc, page);
306			end_page_writeback(page);
307			if (page->index >= first)
308				first = page->index + 1;
309		}
310
311		__pagevec_release(&pv);
312	} while (first <= last);
313
314	_leave("");
315}
316
317/*
318 * completion of write to server
319 */
320static void afs_pages_written_back(struct afs_vnode *vnode,
321				   pgoff_t first, pgoff_t last)
322{
323	struct pagevec pv;
324	unsigned long priv;
325	unsigned count, loop;
326
327	_enter("{%llx:%llu},{%lx-%lx}",
328	       vnode->fid.vid, vnode->fid.vnode, first, last);
329
330	pagevec_init(&pv);
331
332	do {
333		_debug("done %lx-%lx", first, last);
334
335		count = last - first + 1;
336		if (count > PAGEVEC_SIZE)
337			count = PAGEVEC_SIZE;
338		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
339					      first, count, pv.pages);
340		ASSERTCMP(pv.nr, ==, count);
341
342		for (loop = 0; loop < count; loop++) {
343			priv = (unsigned long)detach_page_private(pv.pages[loop]);
344			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
345					     pv.pages[loop]->index, priv);
346			end_page_writeback(pv.pages[loop]);
347		}
348		first += count;
349		__pagevec_release(&pv);
350	} while (first <= last);
351
352	afs_prune_wb_keys(vnode);
353	_leave("");
354}
355
356/*
357 * Find a key to use for the writeback.  We cached the keys used to author the
358 * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
359 * and we need to start from there if it's set.
360 */
361static int afs_get_writeback_key(struct afs_vnode *vnode,
362				 struct afs_wb_key **_wbk)
363{
364	struct afs_wb_key *wbk = NULL;
365	struct list_head *p;
366	int ret = -ENOKEY, ret2;
367
368	spin_lock(&vnode->wb_lock);
369	if (*_wbk)
370		p = (*_wbk)->vnode_link.next;
371	else
372		p = vnode->wb_keys.next;
373
374	while (p != &vnode->wb_keys) {
375		wbk = list_entry(p, struct afs_wb_key, vnode_link);
376		_debug("wbk %u", key_serial(wbk->key));
377		ret2 = key_validate(wbk->key);
378		if (ret2 == 0) {
379			refcount_inc(&wbk->usage);
380			_debug("USE WB KEY %u", key_serial(wbk->key));
381			break;
382		}
383
384		wbk = NULL;
385		if (ret == -ENOKEY)
386			ret = ret2;
387		p = p->next;
388	}
389
390	spin_unlock(&vnode->wb_lock);
391	if (*_wbk)
392		afs_put_wb_key(*_wbk);
393	*_wbk = wbk;
394	return 0;
395}
396
397static void afs_store_data_success(struct afs_operation *op)
398{
399	struct afs_vnode *vnode = op->file[0].vnode;
400
401	op->ctime = op->file[0].scb.status.mtime_client;
402	afs_vnode_commit_status(op, &op->file[0]);
403	if (op->error == 0) {
404		if (!op->store.laundering)
405			afs_pages_written_back(vnode, op->store.first, op->store.last);
406		afs_stat_v(vnode, n_stores);
407		atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) -
408				(op->store.first * PAGE_SIZE + op->store.first_offset),
409				&afs_v2net(vnode)->n_store_bytes);
410	}
411}
412
413static const struct afs_operation_ops afs_store_data_operation = {
414	.issue_afs_rpc	= afs_fs_store_data,
415	.issue_yfs_rpc	= yfs_fs_store_data,
416	.success	= afs_store_data_success,
417};
418
419/*
420 * write to a file
421 */
422static int afs_store_data(struct address_space *mapping,
423			  pgoff_t first, pgoff_t last,
424			  unsigned offset, unsigned to, bool laundering)
425{
426	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
427	struct afs_operation *op;
428	struct afs_wb_key *wbk = NULL;
429	int ret;
430
431	_enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
432	       vnode->volume->name,
433	       vnode->fid.vid,
434	       vnode->fid.vnode,
435	       vnode->fid.unique,
436	       first, last, offset, to);
437
438	ret = afs_get_writeback_key(vnode, &wbk);
439	if (ret) {
440		_leave(" = %d [no keys]", ret);
441		return ret;
442	}
443
444	op = afs_alloc_operation(wbk->key, vnode->volume);
445	if (IS_ERR(op)) {
446		afs_put_wb_key(wbk);
447		return -ENOMEM;
448	}
449
450	afs_op_set_vnode(op, 0, vnode);
451	op->file[0].dv_delta = 1;
452	op->store.mapping = mapping;
453	op->file[0].modification = true;
454	op->store.first = first;
455	op->store.last = last;
456	op->store.first_offset = offset;
457	op->store.last_to = to;
458	op->store.laundering = laundering;
459	op->mtime = vnode->vfs_inode.i_mtime;
460	op->flags |= AFS_OPERATION_UNINTR;
461	op->ops = &afs_store_data_operation;
462
463try_next_key:
464	afs_begin_vnode_operation(op);
465	afs_wait_for_operation(op);
466
467	switch (op->error) {
468	case -EACCES:
469	case -EPERM:
470	case -ENOKEY:
471	case -EKEYEXPIRED:
472	case -EKEYREJECTED:
473	case -EKEYREVOKED:
474		_debug("next");
475
476		ret = afs_get_writeback_key(vnode, &wbk);
477		if (ret == 0) {
478			key_put(op->key);
479			op->key = key_get(wbk->key);
480			goto try_next_key;
481		}
482		break;
483	}
484
485	afs_put_wb_key(wbk);
486	_leave(" = %d", op->error);
487	return afs_put_operation(op);
488}
489
490/*
491 * Synchronously write back the locked page and any subsequent non-locked dirty
492 * pages.
493 */
494static int afs_write_back_from_locked_page(struct address_space *mapping,
495					   struct writeback_control *wbc,
496					   struct page *primary_page,
497					   pgoff_t final_page)
498{
499	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
500	struct page *pages[8], *page;
501	unsigned long count, priv;
502	unsigned n, offset, to, f, t;
503	pgoff_t start, first, last;
504	loff_t i_size, end;
505	int loop, ret;
506
507	_enter(",%lx", primary_page->index);
508
509	count = 1;
510	if (test_set_page_writeback(primary_page))
511		BUG();
512
513	/* Find all consecutive lockable dirty pages that have contiguous
514	 * written regions, stopping when we find a page that is not
515	 * immediately lockable, is not dirty or is missing, or we reach the
516	 * end of the range.
517	 */
518	start = primary_page->index;
519	priv = page_private(primary_page);
520	offset = afs_page_dirty_from(priv);
521	to = afs_page_dirty_to(priv);
522	trace_afs_page_dirty(vnode, tracepoint_string("store"),
523			     primary_page->index, priv);
524
525	WARN_ON(offset == to);
526	if (offset == to)
527		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
528				     primary_page->index, priv);
529
530	if (start >= final_page ||
531	    (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
532		goto no_more;
533
534	start++;
535	do {
536		_debug("more %lx [%lx]", start, count);
537		n = final_page - start + 1;
538		if (n > ARRAY_SIZE(pages))
539			n = ARRAY_SIZE(pages);
540		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
541		_debug("fgpc %u", n);
542		if (n == 0)
543			goto no_more;
544		if (pages[0]->index != start) {
545			do {
546				put_page(pages[--n]);
547			} while (n > 0);
548			goto no_more;
549		}
550
551		for (loop = 0; loop < n; loop++) {
552			page = pages[loop];
553			if (to != PAGE_SIZE &&
554			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
555				break;
556			if (page->index > final_page)
557				break;
558			if (!trylock_page(page))
559				break;
560			if (!PageDirty(page) || PageWriteback(page)) {
561				unlock_page(page);
562				break;
563			}
564
565			priv = page_private(page);
566			f = afs_page_dirty_from(priv);
567			t = afs_page_dirty_to(priv);
568			if (f != 0 &&
569			    !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
570				unlock_page(page);
571				break;
572			}
573			to = t;
574
575			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
576					     page->index, priv);
577
578			if (!clear_page_dirty_for_io(page))
579				BUG();
580			if (test_set_page_writeback(page))
581				BUG();
582			unlock_page(page);
583			put_page(page);
584		}
585		count += loop;
586		if (loop < n) {
587			for (; loop < n; loop++)
588				put_page(pages[loop]);
589			goto no_more;
590		}
591
592		start += loop;
593	} while (start <= final_page && count < 65536);
594
595no_more:
596	/* We now have a contiguous set of dirty pages, each with writeback
597	 * set; the first page is still locked at this point, but all the rest
598	 * have been unlocked.
599	 */
600	unlock_page(primary_page);
601
602	first = primary_page->index;
603	last = first + count - 1;
604
605	end = (loff_t)last * PAGE_SIZE + to;
606	i_size = i_size_read(&vnode->vfs_inode);
607
608	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
609	if (end > i_size)
610		to = i_size & ~PAGE_MASK;
611
612	ret = afs_store_data(mapping, first, last, offset, to, false);
613	switch (ret) {
614	case 0:
615		ret = count;
616		break;
617
618	default:
619		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
620		fallthrough;
621	case -EACCES:
622	case -EPERM:
623	case -ENOKEY:
624	case -EKEYEXPIRED:
625	case -EKEYREJECTED:
626	case -EKEYREVOKED:
627		afs_redirty_pages(wbc, mapping, first, last);
628		mapping_set_error(mapping, ret);
629		break;
630
631	case -EDQUOT:
632	case -ENOSPC:
633		afs_redirty_pages(wbc, mapping, first, last);
634		mapping_set_error(mapping, -ENOSPC);
635		break;
636
637	case -EROFS:
638	case -EIO:
639	case -EREMOTEIO:
640	case -EFBIG:
641	case -ENOENT:
642	case -ENOMEDIUM:
643	case -ENXIO:
644		trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
645		afs_kill_pages(mapping, first, last);
646		mapping_set_error(mapping, ret);
647		break;
648	}
649
650	_leave(" = %d", ret);
651	return ret;
652}
653
654/*
655 * write a page back to the server
656 * - the caller locked the page for us
657 */
658int afs_writepage(struct page *page, struct writeback_control *wbc)
659{
660	int ret;
661
662	_enter("{%lx},", page->index);
663
664	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
665					      wbc->range_end >> PAGE_SHIFT);
666	if (ret < 0) {
667		_leave(" = %d", ret);
668		return 0;
669	}
670
671	wbc->nr_to_write -= ret;
672
673	_leave(" = 0");
674	return 0;
675}
676
677/*
678 * write a region of pages back to the server
679 */
680static int afs_writepages_region(struct address_space *mapping,
681				 struct writeback_control *wbc,
682				 pgoff_t index, pgoff_t end, pgoff_t *_next)
683{
684	struct page *page;
685	int ret, n;
686
687	_enter(",,%lx,%lx,", index, end);
688
689	do {
690		n = find_get_pages_range_tag(mapping, &index, end,
691					PAGECACHE_TAG_DIRTY, 1, &page);
692		if (!n)
693			break;
694
695		_debug("wback %lx", page->index);
696
697		/*
698		 * at this point we hold neither the i_pages lock nor the
699		 * page lock: the page may be truncated or invalidated
700		 * (changing page->mapping to NULL), or even swizzled
701		 * back from swapper_space to tmpfs file mapping
702		 */
703		ret = lock_page_killable(page);
704		if (ret < 0) {
705			put_page(page);
706			_leave(" = %d", ret);
707			return ret;
708		}
709
710		if (page->mapping != mapping || !PageDirty(page)) {
711			unlock_page(page);
712			put_page(page);
713			continue;
714		}
715
716		if (PageWriteback(page)) {
717			unlock_page(page);
718			if (wbc->sync_mode != WB_SYNC_NONE)
719				wait_on_page_writeback(page);
720			put_page(page);
721			continue;
722		}
723
724		if (!clear_page_dirty_for_io(page))
725			BUG();
726		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
727		put_page(page);
728		if (ret < 0) {
729			_leave(" = %d", ret);
730			return ret;
731		}
732
733		wbc->nr_to_write -= ret;
734
735		cond_resched();
736	} while (index < end && wbc->nr_to_write > 0);
737
738	*_next = index;
739	_leave(" = 0 [%lx]", *_next);
740	return 0;
741}
742
743/*
744 * write some of the pending data back to the server
745 */
746int afs_writepages(struct address_space *mapping,
747		   struct writeback_control *wbc)
748{
749	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
750	pgoff_t start, end, next;
751	int ret;
752
753	_enter("");
754
755	/* We have to be careful as we can end up racing with setattr()
756	 * truncating the pagecache since the caller doesn't take a lock here
757	 * to prevent it.
758	 */
759	if (wbc->sync_mode == WB_SYNC_ALL)
760		down_read(&vnode->validate_lock);
761	else if (!down_read_trylock(&vnode->validate_lock))
762		return 0;
763
764	if (wbc->range_cyclic) {
765		start = mapping->writeback_index;
766		end = -1;
767		ret = afs_writepages_region(mapping, wbc, start, end, &next);
768		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
769			ret = afs_writepages_region(mapping, wbc, 0, start,
770						    &next);
771		mapping->writeback_index = next;
772	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
773		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
774		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
775		if (wbc->nr_to_write > 0)
776			mapping->writeback_index = next;
777	} else {
778		start = wbc->range_start >> PAGE_SHIFT;
779		end = wbc->range_end >> PAGE_SHIFT;
780		ret = afs_writepages_region(mapping, wbc, start, end, &next);
781	}
782
783	up_read(&vnode->validate_lock);
784	_leave(" = %d", ret);
785	return ret;
786}
787
788/*
789 * write to an AFS file
790 */
791ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
792{
793	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
794	ssize_t result;
795	size_t count = iov_iter_count(from);
796
797	_enter("{%llx:%llu},{%zu},",
798	       vnode->fid.vid, vnode->fid.vnode, count);
799
800	if (IS_SWAPFILE(&vnode->vfs_inode)) {
801		printk(KERN_INFO
802		       "AFS: Attempt to write to active swap file!\n");
803		return -EBUSY;
804	}
805
806	if (!count)
807		return 0;
808
809	result = generic_file_write_iter(iocb, from);
810
811	_leave(" = %zd", result);
812	return result;
813}
814
815/*
816 * flush any dirty pages for this process, and check for write errors.
817 * - the return status from this call provides a reliable indication of
818 *   whether any write errors occurred for this process.
819 */
820int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
821{
822	struct inode *inode = file_inode(file);
823	struct afs_vnode *vnode = AFS_FS_I(inode);
824
825	_enter("{%llx:%llu},{n=%pD},%d",
826	       vnode->fid.vid, vnode->fid.vnode, file,
827	       datasync);
828
829	return file_write_and_wait_range(file, start, end);
830}
831
832/*
833 * notification that a previously read-only page is about to become writable
834 * - if it returns an error, the caller will deliver a bus error signal
835 */
836vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
837{
838	struct file *file = vmf->vma->vm_file;
839	struct inode *inode = file_inode(file);
840	struct afs_vnode *vnode = AFS_FS_I(inode);
841	unsigned long priv;
842
843	_enter("{{%llx:%llu}},{%lx}",
844	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
845
846	sb_start_pagefault(inode->i_sb);
847
848	/* Wait for the page to be written to the cache before we allow it to
849	 * be modified.  We then assume the entire page will need writing back.
850	 */
851#ifdef CONFIG_AFS_FSCACHE
852	fscache_wait_on_page_write(vnode->cache, vmf->page);
853#endif
854
855	if (PageWriteback(vmf->page) &&
856	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
857		return VM_FAULT_RETRY;
858
859	if (lock_page_killable(vmf->page) < 0)
860		return VM_FAULT_RETRY;
861
862	/* We mustn't change page->private until writeback is complete as that
863	 * details the portion of the page we need to write back and we might
864	 * need to redirty the page if there's a problem.
865	 */
866	wait_on_page_writeback(vmf->page);
867
868	priv = afs_page_dirty(0, PAGE_SIZE);
869	priv = afs_page_dirty_mmapped(priv);
870	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
871			     vmf->page->index, priv);
872	if (PagePrivate(vmf->page))
873		set_page_private(vmf->page, priv);
874	else
875		attach_page_private(vmf->page, (void *)priv);
876	file_update_time(file);
877
878	sb_end_pagefault(inode->i_sb);
879	return VM_FAULT_LOCKED;
880}
881
882/*
883 * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
884 */
885void afs_prune_wb_keys(struct afs_vnode *vnode)
886{
887	LIST_HEAD(graveyard);
888	struct afs_wb_key *wbk, *tmp;
889
890	/* Discard unused keys */
891	spin_lock(&vnode->wb_lock);
892
893	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
894	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
895		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
896			if (refcount_read(&wbk->usage) == 1)
897				list_move(&wbk->vnode_link, &graveyard);
898		}
899	}
900
901	spin_unlock(&vnode->wb_lock);
902
903	while (!list_empty(&graveyard)) {
904		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
905		list_del(&wbk->vnode_link);
906		afs_put_wb_key(wbk);
907	}
908}
909
910/*
911 * Clean up a page during invalidation.
912 */
913int afs_launder_page(struct page *page)
914{
915	struct address_space *mapping = page->mapping;
916	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
917	unsigned long priv;
918	unsigned int f, t;
919	int ret = 0;
920
921	_enter("{%lx}", page->index);
922
923	priv = page_private(page);
924	if (clear_page_dirty_for_io(page)) {
925		f = 0;
926		t = PAGE_SIZE;
927		if (PagePrivate(page)) {
928			f = afs_page_dirty_from(priv);
929			t = afs_page_dirty_to(priv);
930		}
931
932		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
933				     page->index, priv);
934		ret = afs_store_data(mapping, page->index, page->index, t, f, true);
935	}
936
937	priv = (unsigned long)detach_page_private(page);
938	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
939			     page->index, priv);
940
941#ifdef CONFIG_AFS_FSCACHE
942	if (PageFsCache(page)) {
943		fscache_wait_on_page_write(vnode->cache, page);
944		fscache_uncache_page(vnode->cache, page);
945	}
946#endif
947	return ret;
948}
949