1// SPDX-License-Identifier: GPL-2.0-or-later 2/* Maintain an RxRPC server socket to do AFS communications through 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8#include <linux/slab.h> 9#include <linux/sched/signal.h> 10 11#include <net/sock.h> 12#include <net/af_rxrpc.h> 13#include "internal.h" 14#include "afs_cm.h" 15#include "protocol_yfs.h" 16 17struct workqueue_struct *afs_async_calls; 18 19static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 20static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 21static void afs_process_async_call(struct work_struct *); 22static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 23static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 24static int afs_deliver_cm_op_id(struct afs_call *); 25 26/* asynchronous incoming call initial processing */ 27static const struct afs_call_type afs_RXCMxxxx = { 28 .name = "CB.xxxx", 29 .deliver = afs_deliver_cm_op_id, 30}; 31 32/* 33 * open an RxRPC socket and bind it to be a server for callback notifications 34 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 35 */ 36int afs_open_socket(struct afs_net *net) 37{ 38 struct sockaddr_rxrpc srx; 39 struct socket *socket; 40 int ret; 41 42 _enter(""); 43 44 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 45 if (ret < 0) 46 goto error_1; 47 48 socket->sk->sk_allocation = GFP_NOFS; 49 50 /* bind the callback manager's address to make this a server socket */ 51 memset(&srx, 0, sizeof(srx)); 52 srx.srx_family = AF_RXRPC; 53 srx.srx_service = CM_SERVICE; 54 srx.transport_type = SOCK_DGRAM; 55 srx.transport_len = sizeof(srx.transport.sin6); 56 srx.transport.sin6.sin6_family = AF_INET6; 57 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 58 59 ret = rxrpc_sock_set_min_security_level(socket->sk, 60 RXRPC_SECURITY_ENCRYPT); 61 if (ret < 0) 62 goto error_2; 63 64 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 65 if (ret == -EADDRINUSE) { 66 srx.transport.sin6.sin6_port = 0; 67 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 68 } 69 if (ret < 0) 70 goto error_2; 71 72 srx.srx_service = YFS_CM_SERVICE; 73 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 74 if (ret < 0) 75 goto error_2; 76 77 /* Ideally, we'd turn on service upgrade here, but we can't because 78 * OpenAFS is buggy and leaks the userStatus field from packet to 79 * packet and between FS packets and CB packets - so if we try to do an 80 * upgrade on an FS packet, OpenAFS will leak that into the CB packet 81 * it sends back to us. 82 */ 83 84 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 85 afs_rx_discard_new_call); 86 87 ret = kernel_listen(socket, INT_MAX); 88 if (ret < 0) 89 goto error_2; 90 91 net->socket = socket; 92 afs_charge_preallocation(&net->charge_preallocation_work); 93 _leave(" = 0"); 94 return 0; 95 96error_2: 97 sock_release(socket); 98error_1: 99 _leave(" = %d", ret); 100 return ret; 101} 102 103/* 104 * close the RxRPC socket AFS was using 105 */ 106void afs_close_socket(struct afs_net *net) 107{ 108 _enter(""); 109 110 kernel_listen(net->socket, 0); 111 flush_workqueue(afs_async_calls); 112 113 if (net->spare_incoming_call) { 114 afs_put_call(net->spare_incoming_call); 115 net->spare_incoming_call = NULL; 116 } 117 118 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 119 wait_var_event(&net->nr_outstanding_calls, 120 !atomic_read(&net->nr_outstanding_calls)); 121 _debug("no outstanding calls"); 122 123 kernel_sock_shutdown(net->socket, SHUT_RDWR); 124 flush_workqueue(afs_async_calls); 125 sock_release(net->socket); 126 127 _debug("dework"); 128 _leave(""); 129} 130 131/* 132 * Allocate a call. 133 */ 134static struct afs_call *afs_alloc_call(struct afs_net *net, 135 const struct afs_call_type *type, 136 gfp_t gfp) 137{ 138 struct afs_call *call; 139 int o; 140 141 call = kzalloc(sizeof(*call), gfp); 142 if (!call) 143 return NULL; 144 145 call->type = type; 146 call->net = net; 147 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 148 atomic_set(&call->usage, 1); 149 INIT_WORK(&call->async_work, afs_process_async_call); 150 init_waitqueue_head(&call->waitq); 151 spin_lock_init(&call->state_lock); 152 call->iter = &call->def_iter; 153 154 o = atomic_inc_return(&net->nr_outstanding_calls); 155 trace_afs_call(call, afs_call_trace_alloc, 1, o, 156 __builtin_return_address(0)); 157 return call; 158} 159 160/* 161 * Dispose of a reference on a call. 162 */ 163void afs_put_call(struct afs_call *call) 164{ 165 struct afs_net *net = call->net; 166 int n = atomic_dec_return(&call->usage); 167 int o = atomic_read(&net->nr_outstanding_calls); 168 169 trace_afs_call(call, afs_call_trace_put, n, o, 170 __builtin_return_address(0)); 171 172 ASSERTCMP(n, >=, 0); 173 if (n == 0) { 174 ASSERT(!work_pending(&call->async_work)); 175 ASSERT(call->type->name != NULL); 176 177 if (call->rxcall) { 178 rxrpc_kernel_end_call(net->socket, call->rxcall); 179 call->rxcall = NULL; 180 } 181 if (call->type->destructor) 182 call->type->destructor(call); 183 184 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call); 185 afs_put_addrlist(call->alist); 186 kfree(call->request); 187 188 trace_afs_call(call, afs_call_trace_free, 0, o, 189 __builtin_return_address(0)); 190 kfree(call); 191 192 o = atomic_dec_return(&net->nr_outstanding_calls); 193 if (o == 0) 194 wake_up_var(&net->nr_outstanding_calls); 195 } 196} 197 198static struct afs_call *afs_get_call(struct afs_call *call, 199 enum afs_call_trace why) 200{ 201 int u = atomic_inc_return(&call->usage); 202 203 trace_afs_call(call, why, u, 204 atomic_read(&call->net->nr_outstanding_calls), 205 __builtin_return_address(0)); 206 return call; 207} 208 209/* 210 * Queue the call for actual work. 211 */ 212static void afs_queue_call_work(struct afs_call *call) 213{ 214 if (call->type->work) { 215 INIT_WORK(&call->work, call->type->work); 216 217 afs_get_call(call, afs_call_trace_work); 218 if (!queue_work(afs_wq, &call->work)) 219 afs_put_call(call); 220 } 221} 222 223/* 224 * allocate a call with flat request and reply buffers 225 */ 226struct afs_call *afs_alloc_flat_call(struct afs_net *net, 227 const struct afs_call_type *type, 228 size_t request_size, size_t reply_max) 229{ 230 struct afs_call *call; 231 232 call = afs_alloc_call(net, type, GFP_NOFS); 233 if (!call) 234 goto nomem_call; 235 236 if (request_size) { 237 call->request_size = request_size; 238 call->request = kmalloc(request_size, GFP_NOFS); 239 if (!call->request) 240 goto nomem_free; 241 } 242 243 if (reply_max) { 244 call->reply_max = reply_max; 245 call->buffer = kmalloc(reply_max, GFP_NOFS); 246 if (!call->buffer) 247 goto nomem_free; 248 } 249 250 afs_extract_to_buf(call, call->reply_max); 251 call->operation_ID = type->op; 252 init_waitqueue_head(&call->waitq); 253 return call; 254 255nomem_free: 256 afs_put_call(call); 257nomem_call: 258 return NULL; 259} 260 261/* 262 * clean up a call with flat buffer 263 */ 264void afs_flat_call_destructor(struct afs_call *call) 265{ 266 _enter(""); 267 268 kfree(call->request); 269 call->request = NULL; 270 kfree(call->buffer); 271 call->buffer = NULL; 272} 273 274#define AFS_BVEC_MAX 8 275 276/* 277 * Load the given bvec with the next few pages. 278 */ 279static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, 280 struct bio_vec *bv, pgoff_t first, pgoff_t last, 281 unsigned offset) 282{ 283 struct afs_operation *op = call->op; 284 struct page *pages[AFS_BVEC_MAX]; 285 unsigned int nr, n, i, to, bytes = 0; 286 287 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); 288 n = find_get_pages_contig(op->store.mapping, first, nr, pages); 289 ASSERTCMP(n, ==, nr); 290 291 msg->msg_flags |= MSG_MORE; 292 for (i = 0; i < nr; i++) { 293 to = PAGE_SIZE; 294 if (first + i >= last) { 295 to = op->store.last_to; 296 msg->msg_flags &= ~MSG_MORE; 297 } 298 bv[i].bv_page = pages[i]; 299 bv[i].bv_len = to - offset; 300 bv[i].bv_offset = offset; 301 bytes += to - offset; 302 offset = 0; 303 } 304 305 iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes); 306} 307 308/* 309 * Advance the AFS call state when the RxRPC call ends the transmit phase. 310 */ 311static void afs_notify_end_request_tx(struct sock *sock, 312 struct rxrpc_call *rxcall, 313 unsigned long call_user_ID) 314{ 315 struct afs_call *call = (struct afs_call *)call_user_ID; 316 317 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 318} 319 320/* 321 * attach the data from a bunch of pages on an inode to a call 322 */ 323static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 324{ 325 struct afs_operation *op = call->op; 326 struct bio_vec bv[AFS_BVEC_MAX]; 327 unsigned int bytes, nr, loop, offset; 328 pgoff_t first = op->store.first, last = op->store.last; 329 int ret; 330 331 offset = op->store.first_offset; 332 op->store.first_offset = 0; 333 334 do { 335 afs_load_bvec(call, msg, bv, first, last, offset); 336 trace_afs_send_pages(call, msg, first, last, offset); 337 338 offset = 0; 339 bytes = msg->msg_iter.count; 340 nr = msg->msg_iter.nr_segs; 341 342 ret = rxrpc_kernel_send_data(op->net->socket, call->rxcall, msg, 343 bytes, afs_notify_end_request_tx); 344 for (loop = 0; loop < nr; loop++) 345 put_page(bv[loop].bv_page); 346 if (ret < 0) 347 break; 348 349 first += nr; 350 } while (first <= last); 351 352 trace_afs_sent_pages(call, op->store.first, last, first, ret); 353 return ret; 354} 355 356/* 357 * Initiate a call and synchronously queue up the parameters for dispatch. Any 358 * error is stored into the call struct, which the caller must check for. 359 */ 360void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp) 361{ 362 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index]; 363 struct rxrpc_call *rxcall; 364 struct msghdr msg; 365 struct kvec iov[1]; 366 s64 tx_total_len; 367 int ret; 368 369 _enter(",{%pISp},", &srx->transport); 370 371 ASSERT(call->type != NULL); 372 ASSERT(call->type->name != NULL); 373 374 _debug("____MAKE %p{%s,%x} [%d]____", 375 call, call->type->name, key_serial(call->key), 376 atomic_read(&call->net->nr_outstanding_calls)); 377 378 call->addr_ix = ac->index; 379 call->alist = afs_get_addrlist(ac->alist); 380 381 /* Work out the length we're going to transmit. This is awkward for 382 * calls such as FS.StoreData where there's an extra injection of data 383 * after the initial fixed part. 384 */ 385 tx_total_len = call->request_size; 386 if (call->send_pages) { 387 struct afs_operation *op = call->op; 388 389 if (op->store.last == op->store.first) { 390 tx_total_len += op->store.last_to - op->store.first_offset; 391 } else { 392 /* It looks mathematically like you should be able to 393 * combine the following lines with the ones above, but 394 * unsigned arithmetic is fun when it wraps... 395 */ 396 tx_total_len += PAGE_SIZE - op->store.first_offset; 397 tx_total_len += op->store.last_to; 398 tx_total_len += (op->store.last - op->store.first - 1) * PAGE_SIZE; 399 } 400 } 401 402 /* If the call is going to be asynchronous, we need an extra ref for 403 * the call to hold itself so the caller need not hang on to its ref. 404 */ 405 if (call->async) { 406 afs_get_call(call, afs_call_trace_get); 407 call->drop_ref = true; 408 } 409 410 /* create a call */ 411 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 412 (unsigned long)call, 413 tx_total_len, gfp, 414 (call->async ? 415 afs_wake_up_async_call : 416 afs_wake_up_call_waiter), 417 call->upgrade, 418 (call->intr ? RXRPC_PREINTERRUPTIBLE : 419 RXRPC_UNINTERRUPTIBLE), 420 call->debug_id); 421 if (IS_ERR(rxcall)) { 422 ret = PTR_ERR(rxcall); 423 call->error = ret; 424 goto error_kill_call; 425 } 426 427 call->rxcall = rxcall; 428 429 if (call->max_lifespan) 430 rxrpc_kernel_set_max_life(call->net->socket, rxcall, 431 call->max_lifespan); 432 call->issue_time = ktime_get_real(); 433 434 /* send the request */ 435 iov[0].iov_base = call->request; 436 iov[0].iov_len = call->request_size; 437 438 msg.msg_name = NULL; 439 msg.msg_namelen = 0; 440 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size); 441 msg.msg_control = NULL; 442 msg.msg_controllen = 0; 443 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); 444 445 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 446 &msg, call->request_size, 447 afs_notify_end_request_tx); 448 if (ret < 0) 449 goto error_do_abort; 450 451 if (call->send_pages) { 452 ret = afs_send_pages(call, &msg); 453 if (ret < 0) 454 goto error_do_abort; 455 } 456 457 /* Note that at this point, we may have received the reply or an abort 458 * - and an asynchronous call may already have completed. 459 * 460 * afs_wait_for_call_to_complete(call, ac) 461 * must be called to synchronously clean up. 462 */ 463 return; 464 465error_do_abort: 466 if (ret != -ECONNABORTED) { 467 rxrpc_kernel_abort_call(call->net->socket, rxcall, 468 RX_USER_ABORT, ret, "KSD"); 469 } else { 470 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0); 471 rxrpc_kernel_recv_data(call->net->socket, rxcall, 472 &msg.msg_iter, false, 473 &call->abort_code, &call->service_id); 474 ac->abort_code = call->abort_code; 475 ac->responded = true; 476 } 477 call->error = ret; 478 trace_afs_call_done(call); 479error_kill_call: 480 if (call->type->done) 481 call->type->done(call); 482 483 /* We need to dispose of the extra ref we grabbed for an async call. 484 * The call, however, might be queued on afs_async_calls and we need to 485 * make sure we don't get any more notifications that might requeue it. 486 */ 487 if (call->rxcall) { 488 rxrpc_kernel_end_call(call->net->socket, call->rxcall); 489 call->rxcall = NULL; 490 } 491 if (call->async) { 492 if (cancel_work_sync(&call->async_work)) 493 afs_put_call(call); 494 afs_set_call_complete(call, ret, 0); 495 } 496 497 ac->error = ret; 498 call->state = AFS_CALL_COMPLETE; 499 _leave(" = %d", ret); 500} 501 502/* 503 * deliver messages to a call 504 */ 505static void afs_deliver_to_call(struct afs_call *call) 506{ 507 enum afs_call_state state; 508 u32 abort_code, remote_abort = 0; 509 int ret; 510 511 _enter("%s", call->type->name); 512 513 while (state = READ_ONCE(call->state), 514 state == AFS_CALL_CL_AWAIT_REPLY || 515 state == AFS_CALL_SV_AWAIT_OP_ID || 516 state == AFS_CALL_SV_AWAIT_REQUEST || 517 state == AFS_CALL_SV_AWAIT_ACK 518 ) { 519 if (state == AFS_CALL_SV_AWAIT_ACK) { 520 iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0); 521 ret = rxrpc_kernel_recv_data(call->net->socket, 522 call->rxcall, &call->def_iter, 523 false, &remote_abort, 524 &call->service_id); 525 trace_afs_receive_data(call, &call->def_iter, false, ret); 526 527 if (ret == -EINPROGRESS || ret == -EAGAIN) 528 return; 529 if (ret < 0 || ret == 1) { 530 if (ret == 1) 531 ret = 0; 532 goto call_complete; 533 } 534 return; 535 } 536 537 ret = call->type->deliver(call); 538 state = READ_ONCE(call->state); 539 if (ret == 0 && call->unmarshalling_error) 540 ret = -EBADMSG; 541 switch (ret) { 542 case 0: 543 afs_queue_call_work(call); 544 if (state == AFS_CALL_CL_PROC_REPLY) { 545 if (call->op) 546 set_bit(AFS_SERVER_FL_MAY_HAVE_CB, 547 &call->op->server->flags); 548 goto call_complete; 549 } 550 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 551 goto done; 552 case -EINPROGRESS: 553 case -EAGAIN: 554 goto out; 555 case -ECONNABORTED: 556 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 557 goto done; 558 case -ENOTSUPP: 559 abort_code = RXGEN_OPCODE; 560 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 561 abort_code, ret, "KIV"); 562 goto local_abort; 563 case -EIO: 564 pr_err("kAFS: Call %u in bad state %u\n", 565 call->debug_id, state); 566 fallthrough; 567 case -ENODATA: 568 case -EBADMSG: 569 case -EMSGSIZE: 570 case -ENOMEM: 571 case -EFAULT: 572 abort_code = RXGEN_CC_UNMARSHAL; 573 if (state != AFS_CALL_CL_AWAIT_REPLY) 574 abort_code = RXGEN_SS_UNMARSHAL; 575 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 576 abort_code, ret, "KUM"); 577 goto local_abort; 578 default: 579 abort_code = RX_CALL_DEAD; 580 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 581 abort_code, ret, "KER"); 582 goto local_abort; 583 } 584 } 585 586done: 587 if (call->type->done) 588 call->type->done(call); 589out: 590 _leave(""); 591 return; 592 593local_abort: 594 abort_code = 0; 595call_complete: 596 afs_set_call_complete(call, ret, remote_abort); 597 state = AFS_CALL_COMPLETE; 598 goto done; 599} 600 601/* 602 * Wait synchronously for a call to complete and clean up the call struct. 603 */ 604long afs_wait_for_call_to_complete(struct afs_call *call, 605 struct afs_addr_cursor *ac) 606{ 607 long ret; 608 bool rxrpc_complete = false; 609 610 DECLARE_WAITQUEUE(myself, current); 611 612 _enter(""); 613 614 ret = call->error; 615 if (ret < 0) 616 goto out; 617 618 add_wait_queue(&call->waitq, &myself); 619 for (;;) { 620 set_current_state(TASK_UNINTERRUPTIBLE); 621 622 /* deliver any messages that are in the queue */ 623 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && 624 call->need_attention) { 625 call->need_attention = false; 626 __set_current_state(TASK_RUNNING); 627 afs_deliver_to_call(call); 628 continue; 629 } 630 631 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 632 break; 633 634 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) { 635 /* rxrpc terminated the call. */ 636 rxrpc_complete = true; 637 break; 638 } 639 640 schedule(); 641 } 642 643 remove_wait_queue(&call->waitq, &myself); 644 __set_current_state(TASK_RUNNING); 645 646 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 647 if (rxrpc_complete) { 648 afs_set_call_complete(call, call->error, call->abort_code); 649 } else { 650 /* Kill off the call if it's still live. */ 651 _debug("call interrupted"); 652 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 653 RX_USER_ABORT, -EINTR, "KWI")) 654 afs_set_call_complete(call, -EINTR, 0); 655 } 656 } 657 658 spin_lock_bh(&call->state_lock); 659 ac->abort_code = call->abort_code; 660 ac->error = call->error; 661 spin_unlock_bh(&call->state_lock); 662 663 ret = ac->error; 664 switch (ret) { 665 case 0: 666 ret = call->ret0; 667 call->ret0 = 0; 668 669 fallthrough; 670 case -ECONNABORTED: 671 ac->responded = true; 672 break; 673 } 674 675out: 676 _debug("call complete"); 677 afs_put_call(call); 678 _leave(" = %p", (void *)ret); 679 return ret; 680} 681 682/* 683 * wake up a waiting call 684 */ 685static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 686 unsigned long call_user_ID) 687{ 688 struct afs_call *call = (struct afs_call *)call_user_ID; 689 690 call->need_attention = true; 691 wake_up(&call->waitq); 692} 693 694/* 695 * wake up an asynchronous call 696 */ 697static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 698 unsigned long call_user_ID) 699{ 700 struct afs_call *call = (struct afs_call *)call_user_ID; 701 int u; 702 703 trace_afs_notify_call(rxcall, call); 704 call->need_attention = true; 705 706 u = atomic_fetch_add_unless(&call->usage, 1, 0); 707 if (u != 0) { 708 trace_afs_call(call, afs_call_trace_wake, u + 1, 709 atomic_read(&call->net->nr_outstanding_calls), 710 __builtin_return_address(0)); 711 712 if (!queue_work(afs_async_calls, &call->async_work)) 713 afs_put_call(call); 714 } 715} 716 717/* 718 * Perform I/O processing on an asynchronous call. The work item carries a ref 719 * to the call struct that we either need to release or to pass on. 720 */ 721static void afs_process_async_call(struct work_struct *work) 722{ 723 struct afs_call *call = container_of(work, struct afs_call, async_work); 724 725 _enter(""); 726 727 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 728 call->need_attention = false; 729 afs_deliver_to_call(call); 730 } 731 732 afs_put_call(call); 733 _leave(""); 734} 735 736static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 737{ 738 struct afs_call *call = (struct afs_call *)user_call_ID; 739 740 call->rxcall = rxcall; 741} 742 743/* 744 * Charge the incoming call preallocation. 745 */ 746void afs_charge_preallocation(struct work_struct *work) 747{ 748 struct afs_net *net = 749 container_of(work, struct afs_net, charge_preallocation_work); 750 struct afs_call *call = net->spare_incoming_call; 751 752 for (;;) { 753 if (!call) { 754 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 755 if (!call) 756 break; 757 758 call->drop_ref = true; 759 call->async = true; 760 call->state = AFS_CALL_SV_AWAIT_OP_ID; 761 init_waitqueue_head(&call->waitq); 762 afs_extract_to_tmp(call); 763 } 764 765 if (rxrpc_kernel_charge_accept(net->socket, 766 afs_wake_up_async_call, 767 afs_rx_attach, 768 (unsigned long)call, 769 GFP_KERNEL, 770 call->debug_id) < 0) 771 break; 772 call = NULL; 773 } 774 net->spare_incoming_call = call; 775} 776 777/* 778 * Discard a preallocated call when a socket is shut down. 779 */ 780static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 781 unsigned long user_call_ID) 782{ 783 struct afs_call *call = (struct afs_call *)user_call_ID; 784 785 call->rxcall = NULL; 786 afs_put_call(call); 787} 788 789/* 790 * Notification of an incoming call. 791 */ 792static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 793 unsigned long user_call_ID) 794{ 795 struct afs_net *net = afs_sock2net(sk); 796 797 queue_work(afs_wq, &net->charge_preallocation_work); 798} 799 800/* 801 * Grab the operation ID from an incoming cache manager call. The socket 802 * buffer is discarded on error or if we don't yet have sufficient data. 803 */ 804static int afs_deliver_cm_op_id(struct afs_call *call) 805{ 806 int ret; 807 808 _enter("{%zu}", iov_iter_count(call->iter)); 809 810 /* the operation ID forms the first four bytes of the request data */ 811 ret = afs_extract_data(call, true); 812 if (ret < 0) 813 return ret; 814 815 call->operation_ID = ntohl(call->tmp); 816 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 817 818 /* ask the cache manager to route the call (it'll change the call type 819 * if successful) */ 820 if (!afs_cm_incoming_call(call)) 821 return -ENOTSUPP; 822 823 trace_afs_cb_call(call); 824 825 /* pass responsibility for the remainer of this message off to the 826 * cache manager op */ 827 return call->type->deliver(call); 828} 829 830/* 831 * Advance the AFS call state when an RxRPC service call ends the transmit 832 * phase. 833 */ 834static void afs_notify_end_reply_tx(struct sock *sock, 835 struct rxrpc_call *rxcall, 836 unsigned long call_user_ID) 837{ 838 struct afs_call *call = (struct afs_call *)call_user_ID; 839 840 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 841} 842 843/* 844 * send an empty reply 845 */ 846void afs_send_empty_reply(struct afs_call *call) 847{ 848 struct afs_net *net = call->net; 849 struct msghdr msg; 850 851 _enter(""); 852 853 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 854 855 msg.msg_name = NULL; 856 msg.msg_namelen = 0; 857 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0); 858 msg.msg_control = NULL; 859 msg.msg_controllen = 0; 860 msg.msg_flags = 0; 861 862 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 863 afs_notify_end_reply_tx)) { 864 case 0: 865 _leave(" [replied]"); 866 return; 867 868 case -ENOMEM: 869 _debug("oom"); 870 rxrpc_kernel_abort_call(net->socket, call->rxcall, 871 RXGEN_SS_MARSHAL, -ENOMEM, "KOO"); 872 fallthrough; 873 default: 874 _leave(" [error]"); 875 return; 876 } 877} 878 879/* 880 * send a simple reply 881 */ 882void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 883{ 884 struct afs_net *net = call->net; 885 struct msghdr msg; 886 struct kvec iov[1]; 887 int n; 888 889 _enter(""); 890 891 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 892 893 iov[0].iov_base = (void *) buf; 894 iov[0].iov_len = len; 895 msg.msg_name = NULL; 896 msg.msg_namelen = 0; 897 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len); 898 msg.msg_control = NULL; 899 msg.msg_controllen = 0; 900 msg.msg_flags = 0; 901 902 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 903 afs_notify_end_reply_tx); 904 if (n >= 0) { 905 /* Success */ 906 _leave(" [replied]"); 907 return; 908 } 909 910 if (n == -ENOMEM) { 911 _debug("oom"); 912 rxrpc_kernel_abort_call(net->socket, call->rxcall, 913 RXGEN_SS_MARSHAL, -ENOMEM, "KOO"); 914 } 915 _leave(" [error]"); 916} 917 918/* 919 * Extract a piece of data from the received data socket buffers. 920 */ 921int afs_extract_data(struct afs_call *call, bool want_more) 922{ 923 struct afs_net *net = call->net; 924 struct iov_iter *iter = call->iter; 925 enum afs_call_state state; 926 u32 remote_abort = 0; 927 int ret; 928 929 _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more); 930 931 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter, 932 want_more, &remote_abort, 933 &call->service_id); 934 if (ret == 0 || ret == -EAGAIN) 935 return ret; 936 937 state = READ_ONCE(call->state); 938 if (ret == 1) { 939 switch (state) { 940 case AFS_CALL_CL_AWAIT_REPLY: 941 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 942 break; 943 case AFS_CALL_SV_AWAIT_REQUEST: 944 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 945 break; 946 case AFS_CALL_COMPLETE: 947 kdebug("prem complete %d", call->error); 948 return afs_io_error(call, afs_io_error_extract); 949 default: 950 break; 951 } 952 return 0; 953 } 954 955 afs_set_call_complete(call, ret, remote_abort); 956 return ret; 957} 958 959/* 960 * Log protocol error production. 961 */ 962noinline int afs_protocol_error(struct afs_call *call, 963 enum afs_eproto_cause cause) 964{ 965 trace_afs_protocol_error(call, cause); 966 if (call) 967 call->unmarshalling_error = true; 968 return -EBADMSG; 969} 970