1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  Copyright 2010
4 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 *
6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 *
8 * PV guests under Xen are running in an non-contiguous memory architecture.
9 *
10 * When PCI pass-through is utilized, this necessitates an IOMMU for
11 * translating bus (DMA) to virtual and vice-versa and also providing a
12 * mechanism to have contiguous pages for device drivers operations (say DMA
13 * operations).
14 *
15 * Specifically, under Xen the Linux idea of pages is an illusion. It
16 * assumes that pages start at zero and go up to the available memory. To
17 * help with that, the Linux Xen MMU provides a lookup mechanism to
18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20 * memory is not contiguous. Xen hypervisor stitches memory for guests
21 * from different pools, which means there is no guarantee that PFN==MFN
22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23 * allocated in descending order (high to low), meaning the guest might
24 * never get any MFN's under the 4GB mark.
25 */
26
27#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28
29#include <linux/memblock.h>
30#include <linux/dma-direct.h>
31#include <linux/dma-map-ops.h>
32#include <linux/export.h>
33#include <xen/swiotlb-xen.h>
34#include <xen/page.h>
35#include <xen/xen-ops.h>
36#include <xen/hvc-console.h>
37
38#include <asm/dma-mapping.h>
39#include <asm/xen/page-coherent.h>
40
41#include <trace/events/swiotlb.h>
42#define MAX_DMA_BITS 32
43/*
44 * Used to do a quick range check in swiotlb_tbl_unmap_single and
45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
46 * API.
47 */
48
49static char *xen_io_tlb_start, *xen_io_tlb_end;
50static unsigned long xen_io_tlb_nslabs;
51/*
52 * Quick lookup value of the bus address of the IOTLB.
53 */
54
55static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
56{
57	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
58	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
59
60	baddr |= paddr & ~XEN_PAGE_MASK;
61	return baddr;
62}
63
64static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
65{
66	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
67}
68
69static inline phys_addr_t xen_bus_to_phys(struct device *dev,
70					  phys_addr_t baddr)
71{
72	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
73	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
74			    (baddr & ~XEN_PAGE_MASK);
75
76	return paddr;
77}
78
79static inline phys_addr_t xen_dma_to_phys(struct device *dev,
80					  dma_addr_t dma_addr)
81{
82	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
83}
84
85static inline dma_addr_t xen_virt_to_bus(struct device *dev, void *address)
86{
87	return xen_phys_to_dma(dev, virt_to_phys(address));
88}
89
90static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
91{
92	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
93	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
94
95	next_bfn = pfn_to_bfn(xen_pfn);
96
97	for (i = 1; i < nr_pages; i++)
98		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
99			return 1;
100
101	return 0;
102}
103
104static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
105{
106	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
107	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
108	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
109
110	/* If the address is outside our domain, it CAN
111	 * have the same virtual address as another address
112	 * in our domain. Therefore _only_ check address within our domain.
113	 */
114	if (pfn_valid(PFN_DOWN(paddr))) {
115		return paddr >= virt_to_phys(xen_io_tlb_start) &&
116		       paddr < virt_to_phys(xen_io_tlb_end);
117	}
118	return 0;
119}
120
121static int
122xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
123{
124	int i, rc;
125	int dma_bits;
126	dma_addr_t dma_handle;
127	phys_addr_t p = virt_to_phys(buf);
128
129	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
130
131	i = 0;
132	do {
133		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
134
135		do {
136			rc = xen_create_contiguous_region(
137				p + (i << IO_TLB_SHIFT),
138				get_order(slabs << IO_TLB_SHIFT),
139				dma_bits, &dma_handle);
140		} while (rc && dma_bits++ < MAX_DMA_BITS);
141		if (rc)
142			return rc;
143
144		i += slabs;
145	} while (i < nslabs);
146	return 0;
147}
148static unsigned long xen_set_nslabs(unsigned long nr_tbl)
149{
150	if (!nr_tbl) {
151		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
152		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
153	} else
154		xen_io_tlb_nslabs = nr_tbl;
155
156	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
157}
158
159enum xen_swiotlb_err {
160	XEN_SWIOTLB_UNKNOWN = 0,
161	XEN_SWIOTLB_ENOMEM,
162	XEN_SWIOTLB_EFIXUP
163};
164
165static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
166{
167	switch (err) {
168	case XEN_SWIOTLB_ENOMEM:
169		return "Cannot allocate Xen-SWIOTLB buffer\n";
170	case XEN_SWIOTLB_EFIXUP:
171		return "Failed to get contiguous memory for DMA from Xen!\n"\
172		    "You either: don't have the permissions, do not have"\
173		    " enough free memory under 4GB, or the hypervisor memory"\
174		    " is too fragmented!";
175	default:
176		break;
177	}
178	return "";
179}
180int __ref xen_swiotlb_init(int verbose, bool early)
181{
182	unsigned long bytes, order;
183	int rc = -ENOMEM;
184	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
185	unsigned int repeat = 3;
186
187	xen_io_tlb_nslabs = swiotlb_nr_tbl();
188retry:
189	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
190	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
191
192	/*
193	 * IO TLB memory already allocated. Just use it.
194	 */
195	if (io_tlb_start != 0) {
196		xen_io_tlb_start = phys_to_virt(io_tlb_start);
197		goto end;
198	}
199
200	/*
201	 * Get IO TLB memory from any location.
202	 */
203	if (early) {
204		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
205						  PAGE_SIZE);
206		if (!xen_io_tlb_start)
207			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
208			      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
209	} else {
210#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
211#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
212		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
213			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
214			if (xen_io_tlb_start)
215				break;
216			order--;
217		}
218		if (order != get_order(bytes)) {
219			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
220				(PAGE_SIZE << order) >> 20);
221			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
222			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
223		}
224	}
225	if (!xen_io_tlb_start) {
226		m_ret = XEN_SWIOTLB_ENOMEM;
227		goto error;
228	}
229	/*
230	 * And replace that memory with pages under 4GB.
231	 */
232	rc = xen_swiotlb_fixup(xen_io_tlb_start,
233			       bytes,
234			       xen_io_tlb_nslabs);
235	if (rc) {
236		if (early)
237			memblock_free(__pa(xen_io_tlb_start),
238				      PAGE_ALIGN(bytes));
239		else {
240			free_pages((unsigned long)xen_io_tlb_start, order);
241			xen_io_tlb_start = NULL;
242		}
243		m_ret = XEN_SWIOTLB_EFIXUP;
244		goto error;
245	}
246	if (early) {
247		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
248			 verbose))
249			panic("Cannot allocate SWIOTLB buffer");
250		rc = 0;
251	} else
252		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
253
254end:
255	xen_io_tlb_end = xen_io_tlb_start + bytes;
256	if (!rc)
257		swiotlb_set_max_segment(PAGE_SIZE);
258
259	return rc;
260error:
261	if (repeat--) {
262		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
263					(xen_io_tlb_nslabs >> 1));
264		pr_info("Lowering to %luMB\n",
265			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
266		goto retry;
267	}
268	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
269	if (early)
270		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
271	else
272		free_pages((unsigned long)xen_io_tlb_start, order);
273	return rc;
274}
275
276static void *
277xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
278			   dma_addr_t *dma_handle, gfp_t flags,
279			   unsigned long attrs)
280{
281	void *ret;
282	int order = get_order(size);
283	u64 dma_mask = DMA_BIT_MASK(32);
284	phys_addr_t phys;
285	dma_addr_t dev_addr;
286
287	/*
288	* Ignore region specifiers - the kernel's ideas of
289	* pseudo-phys memory layout has nothing to do with the
290	* machine physical layout.  We can't allocate highmem
291	* because we can't return a pointer to it.
292	*/
293	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
294
295	/* Convert the size to actually allocated. */
296	size = 1UL << (order + XEN_PAGE_SHIFT);
297
298	/* On ARM this function returns an ioremap'ped virtual address for
299	 * which virt_to_phys doesn't return the corresponding physical
300	 * address. In fact on ARM virt_to_phys only works for kernel direct
301	 * mapped RAM memory. Also see comment below.
302	 */
303	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
304
305	if (!ret)
306		return ret;
307
308	if (hwdev && hwdev->coherent_dma_mask)
309		dma_mask = hwdev->coherent_dma_mask;
310
311	/* At this point dma_handle is the dma address, next we are
312	 * going to set it to the machine address.
313	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
314	 * to *dma_handle. */
315	phys = dma_to_phys(hwdev, *dma_handle);
316	dev_addr = xen_phys_to_dma(hwdev, phys);
317	if (((dev_addr + size - 1 <= dma_mask)) &&
318	    !range_straddles_page_boundary(phys, size))
319		*dma_handle = dev_addr;
320	else {
321		if (xen_create_contiguous_region(phys, order,
322						 fls64(dma_mask), dma_handle) != 0) {
323			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
324			return NULL;
325		}
326		*dma_handle = phys_to_dma(hwdev, *dma_handle);
327		SetPageXenRemapped(virt_to_page(ret));
328	}
329	memset(ret, 0, size);
330	return ret;
331}
332
333static void
334xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
335			  dma_addr_t dev_addr, unsigned long attrs)
336{
337	int order = get_order(size);
338	phys_addr_t phys;
339	u64 dma_mask = DMA_BIT_MASK(32);
340	struct page *page;
341
342	if (hwdev && hwdev->coherent_dma_mask)
343		dma_mask = hwdev->coherent_dma_mask;
344
345	/* do not use virt_to_phys because on ARM it doesn't return you the
346	 * physical address */
347	phys = xen_dma_to_phys(hwdev, dev_addr);
348
349	/* Convert the size to actually allocated. */
350	size = 1UL << (order + XEN_PAGE_SHIFT);
351
352	if (is_vmalloc_addr(vaddr))
353		page = vmalloc_to_page(vaddr);
354	else
355		page = virt_to_page(vaddr);
356
357	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
358		     range_straddles_page_boundary(phys, size)) &&
359	    TestClearPageXenRemapped(page))
360		xen_destroy_contiguous_region(phys, order);
361
362	xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
363				attrs);
364}
365
366/*
367 * Map a single buffer of the indicated size for DMA in streaming mode.  The
368 * physical address to use is returned.
369 *
370 * Once the device is given the dma address, the device owns this memory until
371 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
372 */
373static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
374				unsigned long offset, size_t size,
375				enum dma_data_direction dir,
376				unsigned long attrs)
377{
378	phys_addr_t map, phys = page_to_phys(page) + offset;
379	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
380
381	BUG_ON(dir == DMA_NONE);
382	/*
383	 * If the address happens to be in the device's DMA window,
384	 * we can safely return the device addr and not worry about bounce
385	 * buffering it.
386	 */
387	if (dma_capable(dev, dev_addr, size, true) &&
388	    !range_straddles_page_boundary(phys, size) &&
389		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
390		swiotlb_force != SWIOTLB_FORCE)
391		goto done;
392
393	/*
394	 * Oh well, have to allocate and map a bounce buffer.
395	 */
396	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
397
398	map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs);
399	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
400		return DMA_MAPPING_ERROR;
401
402	phys = map;
403	dev_addr = xen_phys_to_dma(dev, map);
404
405	/*
406	 * Ensure that the address returned is DMA'ble
407	 */
408	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
409		swiotlb_tbl_unmap_single(dev, map, size, size, dir,
410				attrs | DMA_ATTR_SKIP_CPU_SYNC);
411		return DMA_MAPPING_ERROR;
412	}
413
414done:
415	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
416		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
417			arch_sync_dma_for_device(phys, size, dir);
418		else
419			xen_dma_sync_for_device(dev, dev_addr, size, dir);
420	}
421	return dev_addr;
422}
423
424/*
425 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
426 * match what was provided for in a previous xen_swiotlb_map_page call.  All
427 * other usages are undefined.
428 *
429 * After this call, reads by the cpu to the buffer are guaranteed to see
430 * whatever the device wrote there.
431 */
432static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
433		size_t size, enum dma_data_direction dir, unsigned long attrs)
434{
435	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
436
437	BUG_ON(dir == DMA_NONE);
438
439	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
440		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
441			arch_sync_dma_for_cpu(paddr, size, dir);
442		else
443			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
444	}
445
446	/* NOTE: We use dev_addr here, not paddr! */
447	if (is_xen_swiotlb_buffer(hwdev, dev_addr))
448		swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs);
449}
450
451static void
452xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
453		size_t size, enum dma_data_direction dir)
454{
455	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
456
457	if (!dev_is_dma_coherent(dev)) {
458		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
459			arch_sync_dma_for_cpu(paddr, size, dir);
460		else
461			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
462	}
463
464	if (is_xen_swiotlb_buffer(dev, dma_addr))
465		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
466}
467
468static void
469xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
470		size_t size, enum dma_data_direction dir)
471{
472	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
473
474	if (is_xen_swiotlb_buffer(dev, dma_addr))
475		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
476
477	if (!dev_is_dma_coherent(dev)) {
478		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
479			arch_sync_dma_for_device(paddr, size, dir);
480		else
481			xen_dma_sync_for_device(dev, dma_addr, size, dir);
482	}
483}
484
485/*
486 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
487 * concerning calls here are the same as for swiotlb_unmap_page() above.
488 */
489static void
490xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
491		enum dma_data_direction dir, unsigned long attrs)
492{
493	struct scatterlist *sg;
494	int i;
495
496	BUG_ON(dir == DMA_NONE);
497
498	for_each_sg(sgl, sg, nelems, i)
499		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
500				dir, attrs);
501
502}
503
504static int
505xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
506		enum dma_data_direction dir, unsigned long attrs)
507{
508	struct scatterlist *sg;
509	int i;
510
511	BUG_ON(dir == DMA_NONE);
512
513	for_each_sg(sgl, sg, nelems, i) {
514		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
515				sg->offset, sg->length, dir, attrs);
516		if (sg->dma_address == DMA_MAPPING_ERROR)
517			goto out_unmap;
518		sg_dma_len(sg) = sg->length;
519	}
520
521	return nelems;
522out_unmap:
523	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
524	sg_dma_len(sgl) = 0;
525	return 0;
526}
527
528static void
529xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
530			    int nelems, enum dma_data_direction dir)
531{
532	struct scatterlist *sg;
533	int i;
534
535	for_each_sg(sgl, sg, nelems, i) {
536		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
537				sg->length, dir);
538	}
539}
540
541static void
542xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
543			       int nelems, enum dma_data_direction dir)
544{
545	struct scatterlist *sg;
546	int i;
547
548	for_each_sg(sgl, sg, nelems, i) {
549		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
550				sg->length, dir);
551	}
552}
553
554/*
555 * Return whether the given device DMA address mask can be supported
556 * properly.  For example, if your device can only drive the low 24-bits
557 * during bus mastering, then you would pass 0x00ffffff as the mask to
558 * this function.
559 */
560static int
561xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
562{
563	return xen_virt_to_bus(hwdev, xen_io_tlb_end - 1) <= mask;
564}
565
566const struct dma_map_ops xen_swiotlb_dma_ops = {
567	.alloc = xen_swiotlb_alloc_coherent,
568	.free = xen_swiotlb_free_coherent,
569	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
570	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
571	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
572	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
573	.map_sg = xen_swiotlb_map_sg,
574	.unmap_sg = xen_swiotlb_unmap_sg,
575	.map_page = xen_swiotlb_map_page,
576	.unmap_page = xen_swiotlb_unmap_page,
577	.dma_supported = xen_swiotlb_dma_supported,
578	.mmap = dma_common_mmap,
579	.get_sgtable = dma_common_get_sgtable,
580	.alloc_pages = dma_common_alloc_pages,
581	.free_pages = dma_common_free_pages,
582	.max_mapping_size = swiotlb_max_mapping_size,
583};
584