1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2010-2011 Picochip Ltd., Jamie Iles
4 * https://www.picochip.com
5 *
6 * This file implements a driver for the Synopsys DesignWare watchdog device
7 * in the many subsystems. The watchdog has 16 different timeout periods
8 * and these are a function of the input clock frequency.
9 *
10 * The DesignWare watchdog cannot be stopped once it has been started so we
11 * do not implement a stop function. The watchdog core will continue to send
12 * heartbeat requests after the watchdog device has been closed.
13 */
14
15#include <linux/bitops.h>
16#include <linux/limits.h>
17#include <linux/kernel.h>
18#include <linux/clk.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/io.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/moduleparam.h>
25#include <linux/interrupt.h>
26#include <linux/of.h>
27#include <linux/pm.h>
28#include <linux/platform_device.h>
29#include <linux/reset.h>
30#include <linux/watchdog.h>
31#include <linux/debugfs.h>
32
33#define WDOG_CONTROL_REG_OFFSET		    0x00
34#define WDOG_CONTROL_REG_WDT_EN_MASK	    0x01
35#define WDOG_CONTROL_REG_RESP_MODE_MASK	    0x02
36#define WDOG_TIMEOUT_RANGE_REG_OFFSET	    0x04
37#define WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT    4
38#define WDOG_CURRENT_COUNT_REG_OFFSET	    0x08
39#define WDOG_COUNTER_RESTART_REG_OFFSET     0x0c
40#define WDOG_COUNTER_RESTART_KICK_VALUE	    0x76
41#define WDOG_INTERRUPT_STATUS_REG_OFFSET    0x10
42#define WDOG_INTERRUPT_CLEAR_REG_OFFSET     0x14
43#define WDOG_COMP_PARAMS_5_REG_OFFSET       0xe4
44#define WDOG_COMP_PARAMS_4_REG_OFFSET       0xe8
45#define WDOG_COMP_PARAMS_3_REG_OFFSET       0xec
46#define WDOG_COMP_PARAMS_2_REG_OFFSET       0xf0
47#define WDOG_COMP_PARAMS_1_REG_OFFSET       0xf4
48#define WDOG_COMP_PARAMS_1_USE_FIX_TOP      BIT(6)
49#define WDOG_COMP_VERSION_REG_OFFSET        0xf8
50#define WDOG_COMP_TYPE_REG_OFFSET           0xfc
51
52/* There are sixteen TOPs (timeout periods) that can be set in the watchdog. */
53#define DW_WDT_NUM_TOPS		16
54#define DW_WDT_FIX_TOP(_idx)	(1U << (16 + _idx))
55
56#define DW_WDT_DEFAULT_SECONDS	30
57
58static const u32 dw_wdt_fix_tops[DW_WDT_NUM_TOPS] = {
59	DW_WDT_FIX_TOP(0), DW_WDT_FIX_TOP(1), DW_WDT_FIX_TOP(2),
60	DW_WDT_FIX_TOP(3), DW_WDT_FIX_TOP(4), DW_WDT_FIX_TOP(5),
61	DW_WDT_FIX_TOP(6), DW_WDT_FIX_TOP(7), DW_WDT_FIX_TOP(8),
62	DW_WDT_FIX_TOP(9), DW_WDT_FIX_TOP(10), DW_WDT_FIX_TOP(11),
63	DW_WDT_FIX_TOP(12), DW_WDT_FIX_TOP(13), DW_WDT_FIX_TOP(14),
64	DW_WDT_FIX_TOP(15)
65};
66
67static bool nowayout = WATCHDOG_NOWAYOUT;
68module_param(nowayout, bool, 0);
69MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started "
70		 "(default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
71
72enum dw_wdt_rmod {
73	DW_WDT_RMOD_RESET = 1,
74	DW_WDT_RMOD_IRQ = 2
75};
76
77struct dw_wdt_timeout {
78	u32 top_val;
79	unsigned int sec;
80	unsigned int msec;
81};
82
83struct dw_wdt {
84	void __iomem		*regs;
85	struct clk		*clk;
86	struct clk		*pclk;
87	unsigned long		rate;
88	enum dw_wdt_rmod	rmod;
89	struct dw_wdt_timeout	timeouts[DW_WDT_NUM_TOPS];
90	struct watchdog_device	wdd;
91	struct reset_control	*rst;
92	/* Save/restore */
93	u32			control;
94	u32			timeout;
95
96#ifdef CONFIG_DEBUG_FS
97	struct dentry		*dbgfs_dir;
98#endif
99};
100
101#define to_dw_wdt(wdd)	container_of(wdd, struct dw_wdt, wdd)
102
103static inline int dw_wdt_is_enabled(struct dw_wdt *dw_wdt)
104{
105	return readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET) &
106		WDOG_CONTROL_REG_WDT_EN_MASK;
107}
108
109static void dw_wdt_update_mode(struct dw_wdt *dw_wdt, enum dw_wdt_rmod rmod)
110{
111	u32 val;
112
113	val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
114	if (rmod == DW_WDT_RMOD_IRQ)
115		val |= WDOG_CONTROL_REG_RESP_MODE_MASK;
116	else
117		val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK;
118	writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
119
120	dw_wdt->rmod = rmod;
121}
122
123static unsigned int dw_wdt_find_best_top(struct dw_wdt *dw_wdt,
124					 unsigned int timeout, u32 *top_val)
125{
126	int idx;
127
128	/*
129	 * Find a TOP with timeout greater or equal to the requested number.
130	 * Note we'll select a TOP with maximum timeout if the requested
131	 * timeout couldn't be reached.
132	 */
133	for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
134		if (dw_wdt->timeouts[idx].sec >= timeout)
135			break;
136	}
137
138	if (idx == DW_WDT_NUM_TOPS)
139		--idx;
140
141	*top_val = dw_wdt->timeouts[idx].top_val;
142
143	return dw_wdt->timeouts[idx].sec;
144}
145
146static unsigned int dw_wdt_get_min_timeout(struct dw_wdt *dw_wdt)
147{
148	int idx;
149
150	/*
151	 * We'll find a timeout greater or equal to one second anyway because
152	 * the driver probe would have failed if there was none.
153	 */
154	for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
155		if (dw_wdt->timeouts[idx].sec)
156			break;
157	}
158
159	return dw_wdt->timeouts[idx].sec;
160}
161
162static unsigned int dw_wdt_get_max_timeout_ms(struct dw_wdt *dw_wdt)
163{
164	struct dw_wdt_timeout *timeout = &dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1];
165	u64 msec;
166
167	msec = (u64)timeout->sec * MSEC_PER_SEC + timeout->msec;
168
169	return msec < UINT_MAX ? msec : UINT_MAX;
170}
171
172static unsigned int dw_wdt_get_timeout(struct dw_wdt *dw_wdt)
173{
174	int top_val = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET) & 0xF;
175	int idx;
176
177	for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
178		if (dw_wdt->timeouts[idx].top_val == top_val)
179			break;
180	}
181
182	/*
183	 * In IRQ mode due to the two stages counter, the actual timeout is
184	 * twice greater than the TOP setting.
185	 */
186	return dw_wdt->timeouts[idx].sec * dw_wdt->rmod;
187}
188
189static int dw_wdt_ping(struct watchdog_device *wdd)
190{
191	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
192
193	writel(WDOG_COUNTER_RESTART_KICK_VALUE, dw_wdt->regs +
194	       WDOG_COUNTER_RESTART_REG_OFFSET);
195
196	return 0;
197}
198
199static int dw_wdt_set_timeout(struct watchdog_device *wdd, unsigned int top_s)
200{
201	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
202	unsigned int timeout;
203	u32 top_val;
204
205	/*
206	 * Note IRQ mode being enabled means having a non-zero pre-timeout
207	 * setup. In this case we try to find a TOP as close to the half of the
208	 * requested timeout as possible since DW Watchdog IRQ mode is designed
209	 * in two stages way - first timeout rises the pre-timeout interrupt,
210	 * second timeout performs the system reset. So basically the effective
211	 * watchdog-caused reset happens after two watchdog TOPs elapsed.
212	 */
213	timeout = dw_wdt_find_best_top(dw_wdt, DIV_ROUND_UP(top_s, dw_wdt->rmod),
214				       &top_val);
215	if (dw_wdt->rmod == DW_WDT_RMOD_IRQ)
216		wdd->pretimeout = timeout;
217	else
218		wdd->pretimeout = 0;
219
220	/*
221	 * Set the new value in the watchdog.  Some versions of dw_wdt
222	 * have have TOPINIT in the TIMEOUT_RANGE register (as per
223	 * CP_WDT_DUAL_TOP in WDT_COMP_PARAMS_1).  On those we
224	 * effectively get a pat of the watchdog right here.
225	 */
226	writel(top_val | top_val << WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT,
227	       dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
228
229	/* Kick new TOP value into the watchdog counter if activated. */
230	if (watchdog_active(wdd))
231		dw_wdt_ping(wdd);
232
233	/*
234	 * In case users set bigger timeout value than HW can support,
235	 * kernel(watchdog_dev.c) helps to feed watchdog before
236	 * wdd->max_hw_heartbeat_ms
237	 */
238	if (top_s * 1000 <= wdd->max_hw_heartbeat_ms)
239		wdd->timeout = timeout * dw_wdt->rmod;
240	else
241		wdd->timeout = top_s;
242
243	return 0;
244}
245
246static int dw_wdt_set_pretimeout(struct watchdog_device *wdd, unsigned int req)
247{
248	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
249
250	/*
251	 * We ignore actual value of the timeout passed from user-space
252	 * using it as a flag whether the pretimeout functionality is intended
253	 * to be activated.
254	 */
255	dw_wdt_update_mode(dw_wdt, req ? DW_WDT_RMOD_IRQ : DW_WDT_RMOD_RESET);
256	dw_wdt_set_timeout(wdd, wdd->timeout);
257
258	return 0;
259}
260
261static void dw_wdt_arm_system_reset(struct dw_wdt *dw_wdt)
262{
263	u32 val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
264
265	/* Disable/enable interrupt mode depending on the RMOD flag. */
266	if (dw_wdt->rmod == DW_WDT_RMOD_IRQ)
267		val |= WDOG_CONTROL_REG_RESP_MODE_MASK;
268	else
269		val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK;
270	/* Enable watchdog. */
271	val |= WDOG_CONTROL_REG_WDT_EN_MASK;
272	writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
273}
274
275static int dw_wdt_start(struct watchdog_device *wdd)
276{
277	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
278
279	dw_wdt_set_timeout(wdd, wdd->timeout);
280	dw_wdt_ping(&dw_wdt->wdd);
281	dw_wdt_arm_system_reset(dw_wdt);
282
283	return 0;
284}
285
286static int dw_wdt_stop(struct watchdog_device *wdd)
287{
288	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
289
290	if (!dw_wdt->rst) {
291		set_bit(WDOG_HW_RUNNING, &wdd->status);
292		return 0;
293	}
294
295	reset_control_assert(dw_wdt->rst);
296	reset_control_deassert(dw_wdt->rst);
297
298	return 0;
299}
300
301static int dw_wdt_restart(struct watchdog_device *wdd,
302			  unsigned long action, void *data)
303{
304	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
305
306	writel(0, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
307	dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET);
308	if (dw_wdt_is_enabled(dw_wdt))
309		writel(WDOG_COUNTER_RESTART_KICK_VALUE,
310		       dw_wdt->regs + WDOG_COUNTER_RESTART_REG_OFFSET);
311	else
312		dw_wdt_arm_system_reset(dw_wdt);
313
314	/* wait for reset to assert... */
315	mdelay(500);
316
317	return 0;
318}
319
320static unsigned int dw_wdt_get_timeleft(struct watchdog_device *wdd)
321{
322	struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
323	unsigned int sec;
324	u32 val;
325
326	val = readl(dw_wdt->regs + WDOG_CURRENT_COUNT_REG_OFFSET);
327	sec = val / dw_wdt->rate;
328
329	if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) {
330		val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET);
331		if (!val)
332			sec += wdd->pretimeout;
333	}
334
335	return sec;
336}
337
338static const struct watchdog_info dw_wdt_ident = {
339	.options	= WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
340			  WDIOF_MAGICCLOSE,
341	.identity	= "Synopsys DesignWare Watchdog",
342};
343
344static const struct watchdog_info dw_wdt_pt_ident = {
345	.options	= WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
346			  WDIOF_PRETIMEOUT | WDIOF_MAGICCLOSE,
347	.identity	= "Synopsys DesignWare Watchdog",
348};
349
350static const struct watchdog_ops dw_wdt_ops = {
351	.owner		= THIS_MODULE,
352	.start		= dw_wdt_start,
353	.stop		= dw_wdt_stop,
354	.ping		= dw_wdt_ping,
355	.set_timeout	= dw_wdt_set_timeout,
356	.set_pretimeout	= dw_wdt_set_pretimeout,
357	.get_timeleft	= dw_wdt_get_timeleft,
358	.restart	= dw_wdt_restart,
359};
360
361static irqreturn_t dw_wdt_irq(int irq, void *devid)
362{
363	struct dw_wdt *dw_wdt = devid;
364	u32 val;
365
366	/*
367	 * We don't clear the IRQ status. It's supposed to be done by the
368	 * following ping operations.
369	 */
370	val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET);
371	if (!val)
372		return IRQ_NONE;
373
374	watchdog_notify_pretimeout(&dw_wdt->wdd);
375
376	return IRQ_HANDLED;
377}
378
379#ifdef CONFIG_PM_SLEEP
380static int dw_wdt_suspend(struct device *dev)
381{
382	struct dw_wdt *dw_wdt = dev_get_drvdata(dev);
383
384	dw_wdt->control = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
385	dw_wdt->timeout = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
386
387	clk_disable_unprepare(dw_wdt->pclk);
388	clk_disable_unprepare(dw_wdt->clk);
389
390	return 0;
391}
392
393static int dw_wdt_resume(struct device *dev)
394{
395	struct dw_wdt *dw_wdt = dev_get_drvdata(dev);
396	int err = clk_prepare_enable(dw_wdt->clk);
397
398	if (err)
399		return err;
400
401	err = clk_prepare_enable(dw_wdt->pclk);
402	if (err) {
403		clk_disable_unprepare(dw_wdt->clk);
404		return err;
405	}
406
407	writel(dw_wdt->timeout, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
408	writel(dw_wdt->control, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
409
410	dw_wdt_ping(&dw_wdt->wdd);
411
412	return 0;
413}
414#endif /* CONFIG_PM_SLEEP */
415
416static SIMPLE_DEV_PM_OPS(dw_wdt_pm_ops, dw_wdt_suspend, dw_wdt_resume);
417
418/*
419 * In case if DW WDT IP core is synthesized with fixed TOP feature disabled the
420 * TOPs array can be arbitrary ordered with nearly any sixteen uint numbers
421 * depending on the system engineer imagination. The next method handles the
422 * passed TOPs array to pre-calculate the effective timeouts and to sort the
423 * TOP items out in the ascending order with respect to the timeouts.
424 */
425
426static void dw_wdt_handle_tops(struct dw_wdt *dw_wdt, const u32 *tops)
427{
428	struct dw_wdt_timeout tout, *dst;
429	int val, tidx;
430	u64 msec;
431
432	/*
433	 * We walk over the passed TOPs array and calculate corresponding
434	 * timeouts in seconds and milliseconds. The milliseconds granularity
435	 * is needed to distinguish the TOPs with very close timeouts and to
436	 * set the watchdog max heartbeat setting further.
437	 */
438	for (val = 0; val < DW_WDT_NUM_TOPS; ++val) {
439		tout.top_val = val;
440		tout.sec = tops[val] / dw_wdt->rate;
441		msec = (u64)tops[val] * MSEC_PER_SEC;
442		do_div(msec, dw_wdt->rate);
443		tout.msec = msec - ((u64)tout.sec * MSEC_PER_SEC);
444
445		/*
446		 * Find a suitable place for the current TOP in the timeouts
447		 * array so that the list is remained in the ascending order.
448		 */
449		for (tidx = 0; tidx < val; ++tidx) {
450			dst = &dw_wdt->timeouts[tidx];
451			if (tout.sec > dst->sec || (tout.sec == dst->sec &&
452			    tout.msec >= dst->msec))
453				continue;
454			else
455				swap(*dst, tout);
456		}
457
458		dw_wdt->timeouts[val] = tout;
459	}
460}
461
462static int dw_wdt_init_timeouts(struct dw_wdt *dw_wdt, struct device *dev)
463{
464	u32 data, of_tops[DW_WDT_NUM_TOPS];
465	const u32 *tops;
466	int ret;
467
468	/*
469	 * Retrieve custom or fixed counter values depending on the
470	 * WDT_USE_FIX_TOP flag found in the component specific parameters
471	 * #1 register.
472	 */
473	data = readl(dw_wdt->regs + WDOG_COMP_PARAMS_1_REG_OFFSET);
474	if (data & WDOG_COMP_PARAMS_1_USE_FIX_TOP) {
475		tops = dw_wdt_fix_tops;
476	} else {
477		ret = of_property_read_variable_u32_array(dev_of_node(dev),
478			"snps,watchdog-tops", of_tops, DW_WDT_NUM_TOPS,
479			DW_WDT_NUM_TOPS);
480		if (ret < 0) {
481			dev_warn(dev, "No valid TOPs array specified\n");
482			tops = dw_wdt_fix_tops;
483		} else {
484			tops = of_tops;
485		}
486	}
487
488	/* Convert the specified TOPs into an array of watchdog timeouts. */
489	dw_wdt_handle_tops(dw_wdt, tops);
490	if (!dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1].sec) {
491		dev_err(dev, "No any valid TOP detected\n");
492		return -EINVAL;
493	}
494
495	return 0;
496}
497
498#ifdef CONFIG_DEBUG_FS
499
500#define DW_WDT_DBGFS_REG(_name, _off) \
501{				      \
502	.name = _name,		      \
503	.offset = _off		      \
504}
505
506static const struct debugfs_reg32 dw_wdt_dbgfs_regs[] = {
507	DW_WDT_DBGFS_REG("cr", WDOG_CONTROL_REG_OFFSET),
508	DW_WDT_DBGFS_REG("torr", WDOG_TIMEOUT_RANGE_REG_OFFSET),
509	DW_WDT_DBGFS_REG("ccvr", WDOG_CURRENT_COUNT_REG_OFFSET),
510	DW_WDT_DBGFS_REG("crr", WDOG_COUNTER_RESTART_REG_OFFSET),
511	DW_WDT_DBGFS_REG("stat", WDOG_INTERRUPT_STATUS_REG_OFFSET),
512	DW_WDT_DBGFS_REG("param5", WDOG_COMP_PARAMS_5_REG_OFFSET),
513	DW_WDT_DBGFS_REG("param4", WDOG_COMP_PARAMS_4_REG_OFFSET),
514	DW_WDT_DBGFS_REG("param3", WDOG_COMP_PARAMS_3_REG_OFFSET),
515	DW_WDT_DBGFS_REG("param2", WDOG_COMP_PARAMS_2_REG_OFFSET),
516	DW_WDT_DBGFS_REG("param1", WDOG_COMP_PARAMS_1_REG_OFFSET),
517	DW_WDT_DBGFS_REG("version", WDOG_COMP_VERSION_REG_OFFSET),
518	DW_WDT_DBGFS_REG("type", WDOG_COMP_TYPE_REG_OFFSET)
519};
520
521static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt)
522{
523	struct device *dev = dw_wdt->wdd.parent;
524	struct debugfs_regset32 *regset;
525
526	regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
527	if (!regset)
528		return;
529
530	regset->regs = dw_wdt_dbgfs_regs;
531	regset->nregs = ARRAY_SIZE(dw_wdt_dbgfs_regs);
532	regset->base = dw_wdt->regs;
533
534	dw_wdt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
535
536	debugfs_create_regset32("registers", 0444, dw_wdt->dbgfs_dir, regset);
537}
538
539static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt)
540{
541	debugfs_remove_recursive(dw_wdt->dbgfs_dir);
542}
543
544#else /* !CONFIG_DEBUG_FS */
545
546static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt) {}
547static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt) {}
548
549#endif /* !CONFIG_DEBUG_FS */
550
551static int dw_wdt_drv_probe(struct platform_device *pdev)
552{
553	struct device *dev = &pdev->dev;
554	struct watchdog_device *wdd;
555	struct dw_wdt *dw_wdt;
556	int ret;
557
558	dw_wdt = devm_kzalloc(dev, sizeof(*dw_wdt), GFP_KERNEL);
559	if (!dw_wdt)
560		return -ENOMEM;
561
562	dw_wdt->regs = devm_platform_ioremap_resource(pdev, 0);
563	if (IS_ERR(dw_wdt->regs))
564		return PTR_ERR(dw_wdt->regs);
565
566	/*
567	 * Try to request the watchdog dedicated timer clock source. It must
568	 * be supplied if asynchronous mode is enabled. Otherwise fallback
569	 * to the common timer/bus clocks configuration, in which the very
570	 * first found clock supply both timer and APB signals.
571	 */
572	dw_wdt->clk = devm_clk_get(dev, "tclk");
573	if (IS_ERR(dw_wdt->clk)) {
574		dw_wdt->clk = devm_clk_get(dev, NULL);
575		if (IS_ERR(dw_wdt->clk))
576			return PTR_ERR(dw_wdt->clk);
577	}
578
579	ret = clk_prepare_enable(dw_wdt->clk);
580	if (ret)
581		return ret;
582
583	dw_wdt->rate = clk_get_rate(dw_wdt->clk);
584	if (dw_wdt->rate == 0) {
585		ret = -EINVAL;
586		goto out_disable_clk;
587	}
588
589	/*
590	 * Request APB clock if device is configured with async clocks mode.
591	 * In this case both tclk and pclk clocks are supposed to be specified.
592	 * Alas we can't know for sure whether async mode was really activated,
593	 * so the pclk phandle reference is left optional. If it couldn't be
594	 * found we consider the device configured in synchronous clocks mode.
595	 */
596	dw_wdt->pclk = devm_clk_get_optional(dev, "pclk");
597	if (IS_ERR(dw_wdt->pclk)) {
598		ret = PTR_ERR(dw_wdt->pclk);
599		goto out_disable_clk;
600	}
601
602	ret = clk_prepare_enable(dw_wdt->pclk);
603	if (ret)
604		goto out_disable_clk;
605
606	dw_wdt->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
607	if (IS_ERR(dw_wdt->rst)) {
608		ret = PTR_ERR(dw_wdt->rst);
609		goto out_disable_pclk;
610	}
611
612	/* Enable normal reset without pre-timeout by default. */
613	dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET);
614
615	/*
616	 * Pre-timeout IRQ is optional, since some hardware may lack support
617	 * of it. Note we must request rising-edge IRQ, since the lane is left
618	 * pending either until the next watchdog kick event or up to the
619	 * system reset.
620	 */
621	ret = platform_get_irq_optional(pdev, 0);
622	if (ret > 0) {
623		ret = devm_request_irq(dev, ret, dw_wdt_irq,
624				       IRQF_SHARED | IRQF_TRIGGER_RISING,
625				       pdev->name, dw_wdt);
626		if (ret)
627			goto out_disable_pclk;
628
629		dw_wdt->wdd.info = &dw_wdt_pt_ident;
630	} else {
631		if (ret == -EPROBE_DEFER)
632			goto out_disable_pclk;
633
634		dw_wdt->wdd.info = &dw_wdt_ident;
635	}
636
637	reset_control_deassert(dw_wdt->rst);
638
639	ret = dw_wdt_init_timeouts(dw_wdt, dev);
640	if (ret)
641		goto out_assert_rst;
642
643	wdd = &dw_wdt->wdd;
644	wdd->ops = &dw_wdt_ops;
645	wdd->min_timeout = dw_wdt_get_min_timeout(dw_wdt);
646	wdd->max_hw_heartbeat_ms = dw_wdt_get_max_timeout_ms(dw_wdt);
647	wdd->parent = dev;
648
649	watchdog_set_drvdata(wdd, dw_wdt);
650	watchdog_set_nowayout(wdd, nowayout);
651	watchdog_init_timeout(wdd, 0, dev);
652
653	/*
654	 * If the watchdog is already running, use its already configured
655	 * timeout. Otherwise use the default or the value provided through
656	 * devicetree.
657	 */
658	if (dw_wdt_is_enabled(dw_wdt)) {
659		wdd->timeout = dw_wdt_get_timeout(dw_wdt);
660		set_bit(WDOG_HW_RUNNING, &wdd->status);
661	} else {
662		wdd->timeout = DW_WDT_DEFAULT_SECONDS;
663		watchdog_init_timeout(wdd, 0, dev);
664	}
665
666	platform_set_drvdata(pdev, dw_wdt);
667
668	watchdog_set_restart_priority(wdd, 128);
669
670	ret = watchdog_register_device(wdd);
671	if (ret)
672		goto out_assert_rst;
673
674	dw_wdt_dbgfs_init(dw_wdt);
675
676	return 0;
677
678out_assert_rst:
679	reset_control_assert(dw_wdt->rst);
680
681out_disable_pclk:
682	clk_disable_unprepare(dw_wdt->pclk);
683
684out_disable_clk:
685	clk_disable_unprepare(dw_wdt->clk);
686	return ret;
687}
688
689static int dw_wdt_drv_remove(struct platform_device *pdev)
690{
691	struct dw_wdt *dw_wdt = platform_get_drvdata(pdev);
692
693	dw_wdt_dbgfs_clear(dw_wdt);
694
695	watchdog_unregister_device(&dw_wdt->wdd);
696	reset_control_assert(dw_wdt->rst);
697	clk_disable_unprepare(dw_wdt->pclk);
698	clk_disable_unprepare(dw_wdt->clk);
699
700	return 0;
701}
702
703#ifdef CONFIG_OF
704static const struct of_device_id dw_wdt_of_match[] = {
705	{ .compatible = "snps,dw-wdt", },
706	{ /* sentinel */ }
707};
708MODULE_DEVICE_TABLE(of, dw_wdt_of_match);
709#endif
710
711static struct platform_driver dw_wdt_driver = {
712	.probe		= dw_wdt_drv_probe,
713	.remove		= dw_wdt_drv_remove,
714	.driver		= {
715		.name	= "dw_wdt",
716		.of_match_table = of_match_ptr(dw_wdt_of_match),
717		.pm	= &dw_wdt_pm_ops,
718	},
719};
720
721module_platform_driver(dw_wdt_driver);
722
723MODULE_AUTHOR("Jamie Iles");
724MODULE_DESCRIPTION("Synopsys DesignWare Watchdog Driver");
725MODULE_LICENSE("GPL");
726