xref: /kernel/linux/linux-5.10/drivers/vme/vme.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * VME Bridge Framework
4 *
5 * Author: Martyn Welch <martyn.welch@ge.com>
6 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
7 *
8 * Based on work by Tom Armistead and Ajit Prem
9 * Copyright 2004 Motorola Inc.
10 */
11
12#include <linux/init.h>
13#include <linux/export.h>
14#include <linux/mm.h>
15#include <linux/types.h>
16#include <linux/kernel.h>
17#include <linux/errno.h>
18#include <linux/pci.h>
19#include <linux/poll.h>
20#include <linux/highmem.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/device.h>
24#include <linux/dma-mapping.h>
25#include <linux/syscalls.h>
26#include <linux/mutex.h>
27#include <linux/spinlock.h>
28#include <linux/slab.h>
29#include <linux/vme.h>
30
31#include "vme_bridge.h"
32
33/* Bitmask and list of registered buses both protected by common mutex */
34static unsigned int vme_bus_numbers;
35static LIST_HEAD(vme_bus_list);
36static DEFINE_MUTEX(vme_buses_lock);
37
38static int __init vme_init(void);
39
40static struct vme_dev *dev_to_vme_dev(struct device *dev)
41{
42	return container_of(dev, struct vme_dev, dev);
43}
44
45/*
46 * Find the bridge that the resource is associated with.
47 */
48static struct vme_bridge *find_bridge(struct vme_resource *resource)
49{
50	/* Get list to search */
51	switch (resource->type) {
52	case VME_MASTER:
53		return list_entry(resource->entry, struct vme_master_resource,
54			list)->parent;
55		break;
56	case VME_SLAVE:
57		return list_entry(resource->entry, struct vme_slave_resource,
58			list)->parent;
59		break;
60	case VME_DMA:
61		return list_entry(resource->entry, struct vme_dma_resource,
62			list)->parent;
63		break;
64	case VME_LM:
65		return list_entry(resource->entry, struct vme_lm_resource,
66			list)->parent;
67		break;
68	default:
69		printk(KERN_ERR "Unknown resource type\n");
70		return NULL;
71		break;
72	}
73}
74
75/**
76 * vme_free_consistent - Allocate contiguous memory.
77 * @resource: Pointer to VME resource.
78 * @size: Size of allocation required.
79 * @dma: Pointer to variable to store physical address of allocation.
80 *
81 * Allocate a contiguous block of memory for use by the driver. This is used to
82 * create the buffers for the slave windows.
83 *
84 * Return: Virtual address of allocation on success, NULL on failure.
85 */
86void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
87	dma_addr_t *dma)
88{
89	struct vme_bridge *bridge;
90
91	if (!resource) {
92		printk(KERN_ERR "No resource\n");
93		return NULL;
94	}
95
96	bridge = find_bridge(resource);
97	if (!bridge) {
98		printk(KERN_ERR "Can't find bridge\n");
99		return NULL;
100	}
101
102	if (!bridge->parent) {
103		printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
104		return NULL;
105	}
106
107	if (!bridge->alloc_consistent) {
108		printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
109		       bridge->name);
110		return NULL;
111	}
112
113	return bridge->alloc_consistent(bridge->parent, size, dma);
114}
115EXPORT_SYMBOL(vme_alloc_consistent);
116
117/**
118 * vme_free_consistent - Free previously allocated memory.
119 * @resource: Pointer to VME resource.
120 * @size: Size of allocation to free.
121 * @vaddr: Virtual address of allocation.
122 * @dma: Physical address of allocation.
123 *
124 * Free previously allocated block of contiguous memory.
125 */
126void vme_free_consistent(struct vme_resource *resource, size_t size,
127	void *vaddr, dma_addr_t dma)
128{
129	struct vme_bridge *bridge;
130
131	if (!resource) {
132		printk(KERN_ERR "No resource\n");
133		return;
134	}
135
136	bridge = find_bridge(resource);
137	if (!bridge) {
138		printk(KERN_ERR "Can't find bridge\n");
139		return;
140	}
141
142	if (!bridge->parent) {
143		printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
144		return;
145	}
146
147	if (!bridge->free_consistent) {
148		printk(KERN_ERR "free_consistent not supported by bridge %s\n",
149		       bridge->name);
150		return;
151	}
152
153	bridge->free_consistent(bridge->parent, size, vaddr, dma);
154}
155EXPORT_SYMBOL(vme_free_consistent);
156
157/**
158 * vme_get_size - Helper function returning size of a VME window
159 * @resource: Pointer to VME slave or master resource.
160 *
161 * Determine the size of the VME window provided. This is a helper
162 * function, wrappering the call to vme_master_get or vme_slave_get
163 * depending on the type of window resource handed to it.
164 *
165 * Return: Size of the window on success, zero on failure.
166 */
167size_t vme_get_size(struct vme_resource *resource)
168{
169	int enabled, retval;
170	unsigned long long base, size;
171	dma_addr_t buf_base;
172	u32 aspace, cycle, dwidth;
173
174	switch (resource->type) {
175	case VME_MASTER:
176		retval = vme_master_get(resource, &enabled, &base, &size,
177			&aspace, &cycle, &dwidth);
178		if (retval)
179			return 0;
180
181		return size;
182		break;
183	case VME_SLAVE:
184		retval = vme_slave_get(resource, &enabled, &base, &size,
185			&buf_base, &aspace, &cycle);
186		if (retval)
187			return 0;
188
189		return size;
190		break;
191	case VME_DMA:
192		return 0;
193		break;
194	default:
195		printk(KERN_ERR "Unknown resource type\n");
196		return 0;
197		break;
198	}
199}
200EXPORT_SYMBOL(vme_get_size);
201
202int vme_check_window(u32 aspace, unsigned long long vme_base,
203		     unsigned long long size)
204{
205	int retval = 0;
206
207	if (vme_base + size < size)
208		return -EINVAL;
209
210	switch (aspace) {
211	case VME_A16:
212		if (vme_base + size > VME_A16_MAX)
213			retval = -EFAULT;
214		break;
215	case VME_A24:
216		if (vme_base + size > VME_A24_MAX)
217			retval = -EFAULT;
218		break;
219	case VME_A32:
220		if (vme_base + size > VME_A32_MAX)
221			retval = -EFAULT;
222		break;
223	case VME_A64:
224		/* The VME_A64_MAX limit is actually U64_MAX + 1 */
225		break;
226	case VME_CRCSR:
227		if (vme_base + size > VME_CRCSR_MAX)
228			retval = -EFAULT;
229		break;
230	case VME_USER1:
231	case VME_USER2:
232	case VME_USER3:
233	case VME_USER4:
234		/* User Defined */
235		break;
236	default:
237		printk(KERN_ERR "Invalid address space\n");
238		retval = -EINVAL;
239		break;
240	}
241
242	return retval;
243}
244EXPORT_SYMBOL(vme_check_window);
245
246static u32 vme_get_aspace(int am)
247{
248	switch (am) {
249	case 0x29:
250	case 0x2D:
251		return VME_A16;
252	case 0x38:
253	case 0x39:
254	case 0x3A:
255	case 0x3B:
256	case 0x3C:
257	case 0x3D:
258	case 0x3E:
259	case 0x3F:
260		return VME_A24;
261	case 0x8:
262	case 0x9:
263	case 0xA:
264	case 0xB:
265	case 0xC:
266	case 0xD:
267	case 0xE:
268	case 0xF:
269		return VME_A32;
270	case 0x0:
271	case 0x1:
272	case 0x3:
273		return VME_A64;
274	}
275
276	return 0;
277}
278
279/**
280 * vme_slave_request - Request a VME slave window resource.
281 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
282 * @address: Required VME address space.
283 * @cycle: Required VME data transfer cycle type.
284 *
285 * Request use of a VME window resource capable of being set for the requested
286 * address space and data transfer cycle.
287 *
288 * Return: Pointer to VME resource on success, NULL on failure.
289 */
290struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
291	u32 cycle)
292{
293	struct vme_bridge *bridge;
294	struct list_head *slave_pos = NULL;
295	struct vme_slave_resource *allocated_image = NULL;
296	struct vme_slave_resource *slave_image = NULL;
297	struct vme_resource *resource = NULL;
298
299	bridge = vdev->bridge;
300	if (!bridge) {
301		printk(KERN_ERR "Can't find VME bus\n");
302		goto err_bus;
303	}
304
305	/* Loop through slave resources */
306	list_for_each(slave_pos, &bridge->slave_resources) {
307		slave_image = list_entry(slave_pos,
308			struct vme_slave_resource, list);
309
310		if (!slave_image) {
311			printk(KERN_ERR "Registered NULL Slave resource\n");
312			continue;
313		}
314
315		/* Find an unlocked and compatible image */
316		mutex_lock(&slave_image->mtx);
317		if (((slave_image->address_attr & address) == address) &&
318			((slave_image->cycle_attr & cycle) == cycle) &&
319			(slave_image->locked == 0)) {
320
321			slave_image->locked = 1;
322			mutex_unlock(&slave_image->mtx);
323			allocated_image = slave_image;
324			break;
325		}
326		mutex_unlock(&slave_image->mtx);
327	}
328
329	/* No free image */
330	if (!allocated_image)
331		goto err_image;
332
333	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
334	if (!resource)
335		goto err_alloc;
336
337	resource->type = VME_SLAVE;
338	resource->entry = &allocated_image->list;
339
340	return resource;
341
342err_alloc:
343	/* Unlock image */
344	mutex_lock(&slave_image->mtx);
345	slave_image->locked = 0;
346	mutex_unlock(&slave_image->mtx);
347err_image:
348err_bus:
349	return NULL;
350}
351EXPORT_SYMBOL(vme_slave_request);
352
353/**
354 * vme_slave_set - Set VME slave window configuration.
355 * @resource: Pointer to VME slave resource.
356 * @enabled: State to which the window should be configured.
357 * @vme_base: Base address for the window.
358 * @size: Size of the VME window.
359 * @buf_base: Based address of buffer used to provide VME slave window storage.
360 * @aspace: VME address space for the VME window.
361 * @cycle: VME data transfer cycle type for the VME window.
362 *
363 * Set configuration for provided VME slave window.
364 *
365 * Return: Zero on success, -EINVAL if operation is not supported on this
366 *         device, if an invalid resource has been provided or invalid
367 *         attributes are provided. Hardware specific errors may also be
368 *         returned.
369 */
370int vme_slave_set(struct vme_resource *resource, int enabled,
371	unsigned long long vme_base, unsigned long long size,
372	dma_addr_t buf_base, u32 aspace, u32 cycle)
373{
374	struct vme_bridge *bridge = find_bridge(resource);
375	struct vme_slave_resource *image;
376	int retval;
377
378	if (resource->type != VME_SLAVE) {
379		printk(KERN_ERR "Not a slave resource\n");
380		return -EINVAL;
381	}
382
383	image = list_entry(resource->entry, struct vme_slave_resource, list);
384
385	if (!bridge->slave_set) {
386		printk(KERN_ERR "Function not supported\n");
387		return -ENOSYS;
388	}
389
390	if (!(((image->address_attr & aspace) == aspace) &&
391		((image->cycle_attr & cycle) == cycle))) {
392		printk(KERN_ERR "Invalid attributes\n");
393		return -EINVAL;
394	}
395
396	retval = vme_check_window(aspace, vme_base, size);
397	if (retval)
398		return retval;
399
400	return bridge->slave_set(image, enabled, vme_base, size, buf_base,
401		aspace, cycle);
402}
403EXPORT_SYMBOL(vme_slave_set);
404
405/**
406 * vme_slave_get - Retrieve VME slave window configuration.
407 * @resource: Pointer to VME slave resource.
408 * @enabled: Pointer to variable for storing state.
409 * @vme_base: Pointer to variable for storing window base address.
410 * @size: Pointer to variable for storing window size.
411 * @buf_base: Pointer to variable for storing slave buffer base address.
412 * @aspace: Pointer to variable for storing VME address space.
413 * @cycle: Pointer to variable for storing VME data transfer cycle type.
414 *
415 * Return configuration for provided VME slave window.
416 *
417 * Return: Zero on success, -EINVAL if operation is not supported on this
418 *         device or if an invalid resource has been provided.
419 */
420int vme_slave_get(struct vme_resource *resource, int *enabled,
421	unsigned long long *vme_base, unsigned long long *size,
422	dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
423{
424	struct vme_bridge *bridge = find_bridge(resource);
425	struct vme_slave_resource *image;
426
427	if (resource->type != VME_SLAVE) {
428		printk(KERN_ERR "Not a slave resource\n");
429		return -EINVAL;
430	}
431
432	image = list_entry(resource->entry, struct vme_slave_resource, list);
433
434	if (!bridge->slave_get) {
435		printk(KERN_ERR "vme_slave_get not supported\n");
436		return -EINVAL;
437	}
438
439	return bridge->slave_get(image, enabled, vme_base, size, buf_base,
440		aspace, cycle);
441}
442EXPORT_SYMBOL(vme_slave_get);
443
444/**
445 * vme_slave_free - Free VME slave window
446 * @resource: Pointer to VME slave resource.
447 *
448 * Free the provided slave resource so that it may be reallocated.
449 */
450void vme_slave_free(struct vme_resource *resource)
451{
452	struct vme_slave_resource *slave_image;
453
454	if (resource->type != VME_SLAVE) {
455		printk(KERN_ERR "Not a slave resource\n");
456		return;
457	}
458
459	slave_image = list_entry(resource->entry, struct vme_slave_resource,
460		list);
461	if (!slave_image) {
462		printk(KERN_ERR "Can't find slave resource\n");
463		return;
464	}
465
466	/* Unlock image */
467	mutex_lock(&slave_image->mtx);
468	if (slave_image->locked == 0)
469		printk(KERN_ERR "Image is already free\n");
470
471	slave_image->locked = 0;
472	mutex_unlock(&slave_image->mtx);
473
474	/* Free up resource memory */
475	kfree(resource);
476}
477EXPORT_SYMBOL(vme_slave_free);
478
479/**
480 * vme_master_request - Request a VME master window resource.
481 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
482 * @address: Required VME address space.
483 * @cycle: Required VME data transfer cycle type.
484 * @dwidth: Required VME data transfer width.
485 *
486 * Request use of a VME window resource capable of being set for the requested
487 * address space, data transfer cycle and width.
488 *
489 * Return: Pointer to VME resource on success, NULL on failure.
490 */
491struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
492	u32 cycle, u32 dwidth)
493{
494	struct vme_bridge *bridge;
495	struct list_head *master_pos = NULL;
496	struct vme_master_resource *allocated_image = NULL;
497	struct vme_master_resource *master_image = NULL;
498	struct vme_resource *resource = NULL;
499
500	bridge = vdev->bridge;
501	if (!bridge) {
502		printk(KERN_ERR "Can't find VME bus\n");
503		goto err_bus;
504	}
505
506	/* Loop through master resources */
507	list_for_each(master_pos, &bridge->master_resources) {
508		master_image = list_entry(master_pos,
509			struct vme_master_resource, list);
510
511		if (!master_image) {
512			printk(KERN_WARNING "Registered NULL master resource\n");
513			continue;
514		}
515
516		/* Find an unlocked and compatible image */
517		spin_lock(&master_image->lock);
518		if (((master_image->address_attr & address) == address) &&
519			((master_image->cycle_attr & cycle) == cycle) &&
520			((master_image->width_attr & dwidth) == dwidth) &&
521			(master_image->locked == 0)) {
522
523			master_image->locked = 1;
524			spin_unlock(&master_image->lock);
525			allocated_image = master_image;
526			break;
527		}
528		spin_unlock(&master_image->lock);
529	}
530
531	/* Check to see if we found a resource */
532	if (!allocated_image) {
533		printk(KERN_ERR "Can't find a suitable resource\n");
534		goto err_image;
535	}
536
537	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
538	if (!resource)
539		goto err_alloc;
540
541	resource->type = VME_MASTER;
542	resource->entry = &allocated_image->list;
543
544	return resource;
545
546err_alloc:
547	/* Unlock image */
548	spin_lock(&master_image->lock);
549	master_image->locked = 0;
550	spin_unlock(&master_image->lock);
551err_image:
552err_bus:
553	return NULL;
554}
555EXPORT_SYMBOL(vme_master_request);
556
557/**
558 * vme_master_set - Set VME master window configuration.
559 * @resource: Pointer to VME master resource.
560 * @enabled: State to which the window should be configured.
561 * @vme_base: Base address for the window.
562 * @size: Size of the VME window.
563 * @aspace: VME address space for the VME window.
564 * @cycle: VME data transfer cycle type for the VME window.
565 * @dwidth: VME data transfer width for the VME window.
566 *
567 * Set configuration for provided VME master window.
568 *
569 * Return: Zero on success, -EINVAL if operation is not supported on this
570 *         device, if an invalid resource has been provided or invalid
571 *         attributes are provided. Hardware specific errors may also be
572 *         returned.
573 */
574int vme_master_set(struct vme_resource *resource, int enabled,
575	unsigned long long vme_base, unsigned long long size, u32 aspace,
576	u32 cycle, u32 dwidth)
577{
578	struct vme_bridge *bridge = find_bridge(resource);
579	struct vme_master_resource *image;
580	int retval;
581
582	if (resource->type != VME_MASTER) {
583		printk(KERN_ERR "Not a master resource\n");
584		return -EINVAL;
585	}
586
587	image = list_entry(resource->entry, struct vme_master_resource, list);
588
589	if (!bridge->master_set) {
590		printk(KERN_WARNING "vme_master_set not supported\n");
591		return -EINVAL;
592	}
593
594	if (!(((image->address_attr & aspace) == aspace) &&
595		((image->cycle_attr & cycle) == cycle) &&
596		((image->width_attr & dwidth) == dwidth))) {
597		printk(KERN_WARNING "Invalid attributes\n");
598		return -EINVAL;
599	}
600
601	retval = vme_check_window(aspace, vme_base, size);
602	if (retval)
603		return retval;
604
605	return bridge->master_set(image, enabled, vme_base, size, aspace,
606		cycle, dwidth);
607}
608EXPORT_SYMBOL(vme_master_set);
609
610/**
611 * vme_master_get - Retrieve VME master window configuration.
612 * @resource: Pointer to VME master resource.
613 * @enabled: Pointer to variable for storing state.
614 * @vme_base: Pointer to variable for storing window base address.
615 * @size: Pointer to variable for storing window size.
616 * @aspace: Pointer to variable for storing VME address space.
617 * @cycle: Pointer to variable for storing VME data transfer cycle type.
618 * @dwidth: Pointer to variable for storing VME data transfer width.
619 *
620 * Return configuration for provided VME master window.
621 *
622 * Return: Zero on success, -EINVAL if operation is not supported on this
623 *         device or if an invalid resource has been provided.
624 */
625int vme_master_get(struct vme_resource *resource, int *enabled,
626	unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
627	u32 *cycle, u32 *dwidth)
628{
629	struct vme_bridge *bridge = find_bridge(resource);
630	struct vme_master_resource *image;
631
632	if (resource->type != VME_MASTER) {
633		printk(KERN_ERR "Not a master resource\n");
634		return -EINVAL;
635	}
636
637	image = list_entry(resource->entry, struct vme_master_resource, list);
638
639	if (!bridge->master_get) {
640		printk(KERN_WARNING "%s not supported\n", __func__);
641		return -EINVAL;
642	}
643
644	return bridge->master_get(image, enabled, vme_base, size, aspace,
645		cycle, dwidth);
646}
647EXPORT_SYMBOL(vme_master_get);
648
649/**
650 * vme_master_write - Read data from VME space into a buffer.
651 * @resource: Pointer to VME master resource.
652 * @buf: Pointer to buffer where data should be transferred.
653 * @count: Number of bytes to transfer.
654 * @offset: Offset into VME master window at which to start transfer.
655 *
656 * Perform read of count bytes of data from location on VME bus which maps into
657 * the VME master window at offset to buf.
658 *
659 * Return: Number of bytes read, -EINVAL if resource is not a VME master
660 *         resource or read operation is not supported. -EFAULT returned if
661 *         invalid offset is provided. Hardware specific errors may also be
662 *         returned.
663 */
664ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
665	loff_t offset)
666{
667	struct vme_bridge *bridge = find_bridge(resource);
668	struct vme_master_resource *image;
669	size_t length;
670
671	if (!bridge->master_read) {
672		printk(KERN_WARNING "Reading from resource not supported\n");
673		return -EINVAL;
674	}
675
676	if (resource->type != VME_MASTER) {
677		printk(KERN_ERR "Not a master resource\n");
678		return -EINVAL;
679	}
680
681	image = list_entry(resource->entry, struct vme_master_resource, list);
682
683	length = vme_get_size(resource);
684
685	if (offset > length) {
686		printk(KERN_WARNING "Invalid Offset\n");
687		return -EFAULT;
688	}
689
690	if ((offset + count) > length)
691		count = length - offset;
692
693	return bridge->master_read(image, buf, count, offset);
694
695}
696EXPORT_SYMBOL(vme_master_read);
697
698/**
699 * vme_master_write - Write data out to VME space from a buffer.
700 * @resource: Pointer to VME master resource.
701 * @buf: Pointer to buffer holding data to transfer.
702 * @count: Number of bytes to transfer.
703 * @offset: Offset into VME master window at which to start transfer.
704 *
705 * Perform write of count bytes of data from buf to location on VME bus which
706 * maps into the VME master window at offset.
707 *
708 * Return: Number of bytes written, -EINVAL if resource is not a VME master
709 *         resource or write operation is not supported. -EFAULT returned if
710 *         invalid offset is provided. Hardware specific errors may also be
711 *         returned.
712 */
713ssize_t vme_master_write(struct vme_resource *resource, void *buf,
714	size_t count, loff_t offset)
715{
716	struct vme_bridge *bridge = find_bridge(resource);
717	struct vme_master_resource *image;
718	size_t length;
719
720	if (!bridge->master_write) {
721		printk(KERN_WARNING "Writing to resource not supported\n");
722		return -EINVAL;
723	}
724
725	if (resource->type != VME_MASTER) {
726		printk(KERN_ERR "Not a master resource\n");
727		return -EINVAL;
728	}
729
730	image = list_entry(resource->entry, struct vme_master_resource, list);
731
732	length = vme_get_size(resource);
733
734	if (offset > length) {
735		printk(KERN_WARNING "Invalid Offset\n");
736		return -EFAULT;
737	}
738
739	if ((offset + count) > length)
740		count = length - offset;
741
742	return bridge->master_write(image, buf, count, offset);
743}
744EXPORT_SYMBOL(vme_master_write);
745
746/**
747 * vme_master_rmw - Perform read-modify-write cycle.
748 * @resource: Pointer to VME master resource.
749 * @mask: Bits to be compared and swapped in operation.
750 * @compare: Bits to be compared with data read from offset.
751 * @swap: Bits to be swapped in data read from offset.
752 * @offset: Offset into VME master window at which to perform operation.
753 *
754 * Perform read-modify-write cycle on provided location:
755 * - Location on VME bus is read.
756 * - Bits selected by mask are compared with compare.
757 * - Where a selected bit matches that in compare and are selected in swap,
758 * the bit is swapped.
759 * - Result written back to location on VME bus.
760 *
761 * Return: Bytes written on success, -EINVAL if resource is not a VME master
762 *         resource or RMW operation is not supported. Hardware specific
763 *         errors may also be returned.
764 */
765unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
766	unsigned int compare, unsigned int swap, loff_t offset)
767{
768	struct vme_bridge *bridge = find_bridge(resource);
769	struct vme_master_resource *image;
770
771	if (!bridge->master_rmw) {
772		printk(KERN_WARNING "Writing to resource not supported\n");
773		return -EINVAL;
774	}
775
776	if (resource->type != VME_MASTER) {
777		printk(KERN_ERR "Not a master resource\n");
778		return -EINVAL;
779	}
780
781	image = list_entry(resource->entry, struct vme_master_resource, list);
782
783	return bridge->master_rmw(image, mask, compare, swap, offset);
784}
785EXPORT_SYMBOL(vme_master_rmw);
786
787/**
788 * vme_master_mmap - Mmap region of VME master window.
789 * @resource: Pointer to VME master resource.
790 * @vma: Pointer to definition of user mapping.
791 *
792 * Memory map a region of the VME master window into user space.
793 *
794 * Return: Zero on success, -EINVAL if resource is not a VME master
795 *         resource or -EFAULT if map exceeds window size. Other generic mmap
796 *         errors may also be returned.
797 */
798int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
799{
800	struct vme_master_resource *image;
801	phys_addr_t phys_addr;
802	unsigned long vma_size;
803
804	if (resource->type != VME_MASTER) {
805		pr_err("Not a master resource\n");
806		return -EINVAL;
807	}
808
809	image = list_entry(resource->entry, struct vme_master_resource, list);
810	phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
811	vma_size = vma->vm_end - vma->vm_start;
812
813	if (phys_addr + vma_size > image->bus_resource.end + 1) {
814		pr_err("Map size cannot exceed the window size\n");
815		return -EFAULT;
816	}
817
818	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
819
820	return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
821}
822EXPORT_SYMBOL(vme_master_mmap);
823
824/**
825 * vme_master_free - Free VME master window
826 * @resource: Pointer to VME master resource.
827 *
828 * Free the provided master resource so that it may be reallocated.
829 */
830void vme_master_free(struct vme_resource *resource)
831{
832	struct vme_master_resource *master_image;
833
834	if (resource->type != VME_MASTER) {
835		printk(KERN_ERR "Not a master resource\n");
836		return;
837	}
838
839	master_image = list_entry(resource->entry, struct vme_master_resource,
840		list);
841	if (!master_image) {
842		printk(KERN_ERR "Can't find master resource\n");
843		return;
844	}
845
846	/* Unlock image */
847	spin_lock(&master_image->lock);
848	if (master_image->locked == 0)
849		printk(KERN_ERR "Image is already free\n");
850
851	master_image->locked = 0;
852	spin_unlock(&master_image->lock);
853
854	/* Free up resource memory */
855	kfree(resource);
856}
857EXPORT_SYMBOL(vme_master_free);
858
859/**
860 * vme_dma_request - Request a DMA controller.
861 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
862 * @route: Required src/destination combination.
863 *
864 * Request a VME DMA controller with capability to perform transfers bewteen
865 * requested source/destination combination.
866 *
867 * Return: Pointer to VME DMA resource on success, NULL on failure.
868 */
869struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
870{
871	struct vme_bridge *bridge;
872	struct list_head *dma_pos = NULL;
873	struct vme_dma_resource *allocated_ctrlr = NULL;
874	struct vme_dma_resource *dma_ctrlr = NULL;
875	struct vme_resource *resource = NULL;
876
877	/* XXX Not checking resource attributes */
878	printk(KERN_ERR "No VME resource Attribute tests done\n");
879
880	bridge = vdev->bridge;
881	if (!bridge) {
882		printk(KERN_ERR "Can't find VME bus\n");
883		goto err_bus;
884	}
885
886	/* Loop through DMA resources */
887	list_for_each(dma_pos, &bridge->dma_resources) {
888		dma_ctrlr = list_entry(dma_pos,
889			struct vme_dma_resource, list);
890		if (!dma_ctrlr) {
891			printk(KERN_ERR "Registered NULL DMA resource\n");
892			continue;
893		}
894
895		/* Find an unlocked and compatible controller */
896		mutex_lock(&dma_ctrlr->mtx);
897		if (((dma_ctrlr->route_attr & route) == route) &&
898			(dma_ctrlr->locked == 0)) {
899
900			dma_ctrlr->locked = 1;
901			mutex_unlock(&dma_ctrlr->mtx);
902			allocated_ctrlr = dma_ctrlr;
903			break;
904		}
905		mutex_unlock(&dma_ctrlr->mtx);
906	}
907
908	/* Check to see if we found a resource */
909	if (!allocated_ctrlr)
910		goto err_ctrlr;
911
912	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
913	if (!resource)
914		goto err_alloc;
915
916	resource->type = VME_DMA;
917	resource->entry = &allocated_ctrlr->list;
918
919	return resource;
920
921err_alloc:
922	/* Unlock image */
923	mutex_lock(&dma_ctrlr->mtx);
924	dma_ctrlr->locked = 0;
925	mutex_unlock(&dma_ctrlr->mtx);
926err_ctrlr:
927err_bus:
928	return NULL;
929}
930EXPORT_SYMBOL(vme_dma_request);
931
932/**
933 * vme_new_dma_list - Create new VME DMA list.
934 * @resource: Pointer to VME DMA resource.
935 *
936 * Create a new VME DMA list. It is the responsibility of the user to free
937 * the list once it is no longer required with vme_dma_list_free().
938 *
939 * Return: Pointer to new VME DMA list, NULL on allocation failure or invalid
940 *         VME DMA resource.
941 */
942struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
943{
944	struct vme_dma_list *dma_list;
945
946	if (resource->type != VME_DMA) {
947		printk(KERN_ERR "Not a DMA resource\n");
948		return NULL;
949	}
950
951	dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL);
952	if (!dma_list)
953		return NULL;
954
955	INIT_LIST_HEAD(&dma_list->entries);
956	dma_list->parent = list_entry(resource->entry,
957				      struct vme_dma_resource,
958				      list);
959	mutex_init(&dma_list->mtx);
960
961	return dma_list;
962}
963EXPORT_SYMBOL(vme_new_dma_list);
964
965/**
966 * vme_dma_pattern_attribute - Create "Pattern" type VME DMA list attribute.
967 * @pattern: Value to use used as pattern
968 * @type: Type of pattern to be written.
969 *
970 * Create VME DMA list attribute for pattern generation. It is the
971 * responsibility of the user to free used attributes using
972 * vme_dma_free_attribute().
973 *
974 * Return: Pointer to VME DMA attribute, NULL on failure.
975 */
976struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
977{
978	struct vme_dma_attr *attributes;
979	struct vme_dma_pattern *pattern_attr;
980
981	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
982	if (!attributes)
983		goto err_attr;
984
985	pattern_attr = kmalloc(sizeof(*pattern_attr), GFP_KERNEL);
986	if (!pattern_attr)
987		goto err_pat;
988
989	attributes->type = VME_DMA_PATTERN;
990	attributes->private = (void *)pattern_attr;
991
992	pattern_attr->pattern = pattern;
993	pattern_attr->type = type;
994
995	return attributes;
996
997err_pat:
998	kfree(attributes);
999err_attr:
1000	return NULL;
1001}
1002EXPORT_SYMBOL(vme_dma_pattern_attribute);
1003
1004/**
1005 * vme_dma_pci_attribute - Create "PCI" type VME DMA list attribute.
1006 * @address: PCI base address for DMA transfer.
1007 *
1008 * Create VME DMA list attribute pointing to a location on PCI for DMA
1009 * transfers. It is the responsibility of the user to free used attributes
1010 * using vme_dma_free_attribute().
1011 *
1012 * Return: Pointer to VME DMA attribute, NULL on failure.
1013 */
1014struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
1015{
1016	struct vme_dma_attr *attributes;
1017	struct vme_dma_pci *pci_attr;
1018
1019	/* XXX Run some sanity checks here */
1020
1021	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1022	if (!attributes)
1023		goto err_attr;
1024
1025	pci_attr = kmalloc(sizeof(*pci_attr), GFP_KERNEL);
1026	if (!pci_attr)
1027		goto err_pci;
1028
1029	attributes->type = VME_DMA_PCI;
1030	attributes->private = (void *)pci_attr;
1031
1032	pci_attr->address = address;
1033
1034	return attributes;
1035
1036err_pci:
1037	kfree(attributes);
1038err_attr:
1039	return NULL;
1040}
1041EXPORT_SYMBOL(vme_dma_pci_attribute);
1042
1043/**
1044 * vme_dma_vme_attribute - Create "VME" type VME DMA list attribute.
1045 * @address: VME base address for DMA transfer.
1046 * @aspace: VME address space to use for DMA transfer.
1047 * @cycle: VME bus cycle to use for DMA transfer.
1048 * @dwidth: VME data width to use for DMA transfer.
1049 *
1050 * Create VME DMA list attribute pointing to a location on the VME bus for DMA
1051 * transfers. It is the responsibility of the user to free used attributes
1052 * using vme_dma_free_attribute().
1053 *
1054 * Return: Pointer to VME DMA attribute, NULL on failure.
1055 */
1056struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
1057	u32 aspace, u32 cycle, u32 dwidth)
1058{
1059	struct vme_dma_attr *attributes;
1060	struct vme_dma_vme *vme_attr;
1061
1062	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1063	if (!attributes)
1064		goto err_attr;
1065
1066	vme_attr = kmalloc(sizeof(*vme_attr), GFP_KERNEL);
1067	if (!vme_attr)
1068		goto err_vme;
1069
1070	attributes->type = VME_DMA_VME;
1071	attributes->private = (void *)vme_attr;
1072
1073	vme_attr->address = address;
1074	vme_attr->aspace = aspace;
1075	vme_attr->cycle = cycle;
1076	vme_attr->dwidth = dwidth;
1077
1078	return attributes;
1079
1080err_vme:
1081	kfree(attributes);
1082err_attr:
1083	return NULL;
1084}
1085EXPORT_SYMBOL(vme_dma_vme_attribute);
1086
1087/**
1088 * vme_dma_free_attribute - Free DMA list attribute.
1089 * @attributes: Pointer to DMA list attribute.
1090 *
1091 * Free VME DMA list attribute. VME DMA list attributes can be safely freed
1092 * once vme_dma_list_add() has returned.
1093 */
1094void vme_dma_free_attribute(struct vme_dma_attr *attributes)
1095{
1096	kfree(attributes->private);
1097	kfree(attributes);
1098}
1099EXPORT_SYMBOL(vme_dma_free_attribute);
1100
1101/**
1102 * vme_dma_list_add - Add enty to a VME DMA list.
1103 * @list: Pointer to VME list.
1104 * @src: Pointer to DMA list attribute to use as source.
1105 * @dest: Pointer to DMA list attribute to use as destination.
1106 * @count: Number of bytes to transfer.
1107 *
1108 * Add an entry to the provided VME DMA list. Entry requires pointers to source
1109 * and destination DMA attributes and a count.
1110 *
1111 * Please note, the attributes supported as source and destinations for
1112 * transfers are hardware dependent.
1113 *
1114 * Return: Zero on success, -EINVAL if operation is not supported on this
1115 *         device or if the link list has already been submitted for execution.
1116 *         Hardware specific errors also possible.
1117 */
1118int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
1119	struct vme_dma_attr *dest, size_t count)
1120{
1121	struct vme_bridge *bridge = list->parent->parent;
1122	int retval;
1123
1124	if (!bridge->dma_list_add) {
1125		printk(KERN_WARNING "Link List DMA generation not supported\n");
1126		return -EINVAL;
1127	}
1128
1129	if (!mutex_trylock(&list->mtx)) {
1130		printk(KERN_ERR "Link List already submitted\n");
1131		return -EINVAL;
1132	}
1133
1134	retval = bridge->dma_list_add(list, src, dest, count);
1135
1136	mutex_unlock(&list->mtx);
1137
1138	return retval;
1139}
1140EXPORT_SYMBOL(vme_dma_list_add);
1141
1142/**
1143 * vme_dma_list_exec - Queue a VME DMA list for execution.
1144 * @list: Pointer to VME list.
1145 *
1146 * Queue the provided VME DMA list for execution. The call will return once the
1147 * list has been executed.
1148 *
1149 * Return: Zero on success, -EINVAL if operation is not supported on this
1150 *         device. Hardware specific errors also possible.
1151 */
1152int vme_dma_list_exec(struct vme_dma_list *list)
1153{
1154	struct vme_bridge *bridge = list->parent->parent;
1155	int retval;
1156
1157	if (!bridge->dma_list_exec) {
1158		printk(KERN_ERR "Link List DMA execution not supported\n");
1159		return -EINVAL;
1160	}
1161
1162	mutex_lock(&list->mtx);
1163
1164	retval = bridge->dma_list_exec(list);
1165
1166	mutex_unlock(&list->mtx);
1167
1168	return retval;
1169}
1170EXPORT_SYMBOL(vme_dma_list_exec);
1171
1172/**
1173 * vme_dma_list_free - Free a VME DMA list.
1174 * @list: Pointer to VME list.
1175 *
1176 * Free the provided DMA list and all its entries.
1177 *
1178 * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1179 *         is still in use. Hardware specific errors also possible.
1180 */
1181int vme_dma_list_free(struct vme_dma_list *list)
1182{
1183	struct vme_bridge *bridge = list->parent->parent;
1184	int retval;
1185
1186	if (!bridge->dma_list_empty) {
1187		printk(KERN_WARNING "Emptying of Link Lists not supported\n");
1188		return -EINVAL;
1189	}
1190
1191	if (!mutex_trylock(&list->mtx)) {
1192		printk(KERN_ERR "Link List in use\n");
1193		return -EBUSY;
1194	}
1195
1196	/*
1197	 * Empty out all of the entries from the DMA list. We need to go to the
1198	 * low level driver as DMA entries are driver specific.
1199	 */
1200	retval = bridge->dma_list_empty(list);
1201	if (retval) {
1202		printk(KERN_ERR "Unable to empty link-list entries\n");
1203		mutex_unlock(&list->mtx);
1204		return retval;
1205	}
1206	mutex_unlock(&list->mtx);
1207	kfree(list);
1208
1209	return retval;
1210}
1211EXPORT_SYMBOL(vme_dma_list_free);
1212
1213/**
1214 * vme_dma_free - Free a VME DMA resource.
1215 * @resource: Pointer to VME DMA resource.
1216 *
1217 * Free the provided DMA resource so that it may be reallocated.
1218 *
1219 * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1220 *         is still active.
1221 */
1222int vme_dma_free(struct vme_resource *resource)
1223{
1224	struct vme_dma_resource *ctrlr;
1225
1226	if (resource->type != VME_DMA) {
1227		printk(KERN_ERR "Not a DMA resource\n");
1228		return -EINVAL;
1229	}
1230
1231	ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
1232
1233	if (!mutex_trylock(&ctrlr->mtx)) {
1234		printk(KERN_ERR "Resource busy, can't free\n");
1235		return -EBUSY;
1236	}
1237
1238	if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
1239		printk(KERN_WARNING "Resource still processing transfers\n");
1240		mutex_unlock(&ctrlr->mtx);
1241		return -EBUSY;
1242	}
1243
1244	ctrlr->locked = 0;
1245
1246	mutex_unlock(&ctrlr->mtx);
1247
1248	kfree(resource);
1249
1250	return 0;
1251}
1252EXPORT_SYMBOL(vme_dma_free);
1253
1254void vme_bus_error_handler(struct vme_bridge *bridge,
1255			   unsigned long long address, int am)
1256{
1257	struct list_head *handler_pos = NULL;
1258	struct vme_error_handler *handler;
1259	int handler_triggered = 0;
1260	u32 aspace = vme_get_aspace(am);
1261
1262	list_for_each(handler_pos, &bridge->vme_error_handlers) {
1263		handler = list_entry(handler_pos, struct vme_error_handler,
1264				     list);
1265		if ((aspace == handler->aspace) &&
1266		    (address >= handler->start) &&
1267		    (address < handler->end)) {
1268			if (!handler->num_errors)
1269				handler->first_error = address;
1270			if (handler->num_errors != UINT_MAX)
1271				handler->num_errors++;
1272			handler_triggered = 1;
1273		}
1274	}
1275
1276	if (!handler_triggered)
1277		dev_err(bridge->parent,
1278			"Unhandled VME access error at address 0x%llx\n",
1279			address);
1280}
1281EXPORT_SYMBOL(vme_bus_error_handler);
1282
1283struct vme_error_handler *vme_register_error_handler(
1284	struct vme_bridge *bridge, u32 aspace,
1285	unsigned long long address, size_t len)
1286{
1287	struct vme_error_handler *handler;
1288
1289	handler = kmalloc(sizeof(*handler), GFP_ATOMIC);
1290	if (!handler)
1291		return NULL;
1292
1293	handler->aspace = aspace;
1294	handler->start = address;
1295	handler->end = address + len;
1296	handler->num_errors = 0;
1297	handler->first_error = 0;
1298	list_add_tail(&handler->list, &bridge->vme_error_handlers);
1299
1300	return handler;
1301}
1302EXPORT_SYMBOL(vme_register_error_handler);
1303
1304void vme_unregister_error_handler(struct vme_error_handler *handler)
1305{
1306	list_del(&handler->list);
1307	kfree(handler);
1308}
1309EXPORT_SYMBOL(vme_unregister_error_handler);
1310
1311void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
1312{
1313	void (*call)(int, int, void *);
1314	void *priv_data;
1315
1316	call = bridge->irq[level - 1].callback[statid].func;
1317	priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1318	if (call)
1319		call(level, statid, priv_data);
1320	else
1321		printk(KERN_WARNING "Spurious VME interrupt, level:%x, vector:%x\n",
1322		       level, statid);
1323}
1324EXPORT_SYMBOL(vme_irq_handler);
1325
1326/**
1327 * vme_irq_request - Request a specific VME interrupt.
1328 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1329 * @level: Interrupt priority being requested.
1330 * @statid: Interrupt vector being requested.
1331 * @callback: Pointer to callback function called when VME interrupt/vector
1332 *            received.
1333 * @priv_data: Generic pointer that will be passed to the callback function.
1334 *
1335 * Request callback to be attached as a handler for VME interrupts with provided
1336 * level and statid.
1337 *
1338 * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1339 *         function is not supported, -EBUSY if the level/statid combination is
1340 *         already in use. Hardware specific errors also possible.
1341 */
1342int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1343	void (*callback)(int, int, void *),
1344	void *priv_data)
1345{
1346	struct vme_bridge *bridge;
1347
1348	bridge = vdev->bridge;
1349	if (!bridge) {
1350		printk(KERN_ERR "Can't find VME bus\n");
1351		return -EINVAL;
1352	}
1353
1354	if ((level < 1) || (level > 7)) {
1355		printk(KERN_ERR "Invalid interrupt level\n");
1356		return -EINVAL;
1357	}
1358
1359	if (!bridge->irq_set) {
1360		printk(KERN_ERR "Configuring interrupts not supported\n");
1361		return -EINVAL;
1362	}
1363
1364	mutex_lock(&bridge->irq_mtx);
1365
1366	if (bridge->irq[level - 1].callback[statid].func) {
1367		mutex_unlock(&bridge->irq_mtx);
1368		printk(KERN_WARNING "VME Interrupt already taken\n");
1369		return -EBUSY;
1370	}
1371
1372	bridge->irq[level - 1].count++;
1373	bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1374	bridge->irq[level - 1].callback[statid].func = callback;
1375
1376	/* Enable IRQ level */
1377	bridge->irq_set(bridge, level, 1, 1);
1378
1379	mutex_unlock(&bridge->irq_mtx);
1380
1381	return 0;
1382}
1383EXPORT_SYMBOL(vme_irq_request);
1384
1385/**
1386 * vme_irq_free - Free a VME interrupt.
1387 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1388 * @level: Interrupt priority of interrupt being freed.
1389 * @statid: Interrupt vector of interrupt being freed.
1390 *
1391 * Remove previously attached callback from VME interrupt priority/vector.
1392 */
1393void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1394{
1395	struct vme_bridge *bridge;
1396
1397	bridge = vdev->bridge;
1398	if (!bridge) {
1399		printk(KERN_ERR "Can't find VME bus\n");
1400		return;
1401	}
1402
1403	if ((level < 1) || (level > 7)) {
1404		printk(KERN_ERR "Invalid interrupt level\n");
1405		return;
1406	}
1407
1408	if (!bridge->irq_set) {
1409		printk(KERN_ERR "Configuring interrupts not supported\n");
1410		return;
1411	}
1412
1413	mutex_lock(&bridge->irq_mtx);
1414
1415	bridge->irq[level - 1].count--;
1416
1417	/* Disable IRQ level if no more interrupts attached at this level*/
1418	if (bridge->irq[level - 1].count == 0)
1419		bridge->irq_set(bridge, level, 0, 1);
1420
1421	bridge->irq[level - 1].callback[statid].func = NULL;
1422	bridge->irq[level - 1].callback[statid].priv_data = NULL;
1423
1424	mutex_unlock(&bridge->irq_mtx);
1425}
1426EXPORT_SYMBOL(vme_irq_free);
1427
1428/**
1429 * vme_irq_generate - Generate VME interrupt.
1430 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1431 * @level: Interrupt priority at which to assert the interrupt.
1432 * @statid: Interrupt vector to associate with the interrupt.
1433 *
1434 * Generate a VME interrupt of the provided level and with the provided
1435 * statid.
1436 *
1437 * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1438 *         function is not supported. Hardware specific errors also possible.
1439 */
1440int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1441{
1442	struct vme_bridge *bridge;
1443
1444	bridge = vdev->bridge;
1445	if (!bridge) {
1446		printk(KERN_ERR "Can't find VME bus\n");
1447		return -EINVAL;
1448	}
1449
1450	if ((level < 1) || (level > 7)) {
1451		printk(KERN_WARNING "Invalid interrupt level\n");
1452		return -EINVAL;
1453	}
1454
1455	if (!bridge->irq_generate) {
1456		printk(KERN_WARNING "Interrupt generation not supported\n");
1457		return -EINVAL;
1458	}
1459
1460	return bridge->irq_generate(bridge, level, statid);
1461}
1462EXPORT_SYMBOL(vme_irq_generate);
1463
1464/**
1465 * vme_lm_request - Request a VME location monitor
1466 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1467 *
1468 * Allocate a location monitor resource to the driver. A location monitor
1469 * allows the driver to monitor accesses to a contiguous number of
1470 * addresses on the VME bus.
1471 *
1472 * Return: Pointer to a VME resource on success or NULL on failure.
1473 */
1474struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1475{
1476	struct vme_bridge *bridge;
1477	struct list_head *lm_pos = NULL;
1478	struct vme_lm_resource *allocated_lm = NULL;
1479	struct vme_lm_resource *lm = NULL;
1480	struct vme_resource *resource = NULL;
1481
1482	bridge = vdev->bridge;
1483	if (!bridge) {
1484		printk(KERN_ERR "Can't find VME bus\n");
1485		goto err_bus;
1486	}
1487
1488	/* Loop through LM resources */
1489	list_for_each(lm_pos, &bridge->lm_resources) {
1490		lm = list_entry(lm_pos,
1491			struct vme_lm_resource, list);
1492		if (!lm) {
1493			printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1494			continue;
1495		}
1496
1497		/* Find an unlocked controller */
1498		mutex_lock(&lm->mtx);
1499		if (lm->locked == 0) {
1500			lm->locked = 1;
1501			mutex_unlock(&lm->mtx);
1502			allocated_lm = lm;
1503			break;
1504		}
1505		mutex_unlock(&lm->mtx);
1506	}
1507
1508	/* Check to see if we found a resource */
1509	if (!allocated_lm)
1510		goto err_lm;
1511
1512	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
1513	if (!resource)
1514		goto err_alloc;
1515
1516	resource->type = VME_LM;
1517	resource->entry = &allocated_lm->list;
1518
1519	return resource;
1520
1521err_alloc:
1522	/* Unlock image */
1523	mutex_lock(&lm->mtx);
1524	lm->locked = 0;
1525	mutex_unlock(&lm->mtx);
1526err_lm:
1527err_bus:
1528	return NULL;
1529}
1530EXPORT_SYMBOL(vme_lm_request);
1531
1532/**
1533 * vme_lm_count - Determine number of VME Addresses monitored
1534 * @resource: Pointer to VME location monitor resource.
1535 *
1536 * The number of contiguous addresses monitored is hardware dependent.
1537 * Return the number of contiguous addresses monitored by the
1538 * location monitor.
1539 *
1540 * Return: Count of addresses monitored or -EINVAL when provided with an
1541 *	   invalid location monitor resource.
1542 */
1543int vme_lm_count(struct vme_resource *resource)
1544{
1545	struct vme_lm_resource *lm;
1546
1547	if (resource->type != VME_LM) {
1548		printk(KERN_ERR "Not a Location Monitor resource\n");
1549		return -EINVAL;
1550	}
1551
1552	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1553
1554	return lm->monitors;
1555}
1556EXPORT_SYMBOL(vme_lm_count);
1557
1558/**
1559 * vme_lm_set - Configure location monitor
1560 * @resource: Pointer to VME location monitor resource.
1561 * @lm_base: Base address to monitor.
1562 * @aspace: VME address space to monitor.
1563 * @cycle: VME bus cycle type to monitor.
1564 *
1565 * Set the base address, address space and cycle type of accesses to be
1566 * monitored by the location monitor.
1567 *
1568 * Return: Zero on success, -EINVAL when provided with an invalid location
1569 *	   monitor resource or function is not supported. Hardware specific
1570 *	   errors may also be returned.
1571 */
1572int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1573	u32 aspace, u32 cycle)
1574{
1575	struct vme_bridge *bridge = find_bridge(resource);
1576	struct vme_lm_resource *lm;
1577
1578	if (resource->type != VME_LM) {
1579		printk(KERN_ERR "Not a Location Monitor resource\n");
1580		return -EINVAL;
1581	}
1582
1583	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1584
1585	if (!bridge->lm_set) {
1586		printk(KERN_ERR "vme_lm_set not supported\n");
1587		return -EINVAL;
1588	}
1589
1590	return bridge->lm_set(lm, lm_base, aspace, cycle);
1591}
1592EXPORT_SYMBOL(vme_lm_set);
1593
1594/**
1595 * vme_lm_get - Retrieve location monitor settings
1596 * @resource: Pointer to VME location monitor resource.
1597 * @lm_base: Pointer used to output the base address monitored.
1598 * @aspace: Pointer used to output the address space monitored.
1599 * @cycle: Pointer used to output the VME bus cycle type monitored.
1600 *
1601 * Retrieve the base address, address space and cycle type of accesses to
1602 * be monitored by the location monitor.
1603 *
1604 * Return: Zero on success, -EINVAL when provided with an invalid location
1605 *	   monitor resource or function is not supported. Hardware specific
1606 *	   errors may also be returned.
1607 */
1608int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1609	u32 *aspace, u32 *cycle)
1610{
1611	struct vme_bridge *bridge = find_bridge(resource);
1612	struct vme_lm_resource *lm;
1613
1614	if (resource->type != VME_LM) {
1615		printk(KERN_ERR "Not a Location Monitor resource\n");
1616		return -EINVAL;
1617	}
1618
1619	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1620
1621	if (!bridge->lm_get) {
1622		printk(KERN_ERR "vme_lm_get not supported\n");
1623		return -EINVAL;
1624	}
1625
1626	return bridge->lm_get(lm, lm_base, aspace, cycle);
1627}
1628EXPORT_SYMBOL(vme_lm_get);
1629
1630/**
1631 * vme_lm_attach - Provide callback for location monitor address
1632 * @resource: Pointer to VME location monitor resource.
1633 * @monitor: Offset to which callback should be attached.
1634 * @callback: Pointer to callback function called when triggered.
1635 * @data: Generic pointer that will be passed to the callback function.
1636 *
1637 * Attach a callback to the specificed offset into the location monitors
1638 * monitored addresses. A generic pointer is provided to allow data to be
1639 * passed to the callback when called.
1640 *
1641 * Return: Zero on success, -EINVAL when provided with an invalid location
1642 *	   monitor resource or function is not supported. Hardware specific
1643 *	   errors may also be returned.
1644 */
1645int vme_lm_attach(struct vme_resource *resource, int monitor,
1646	void (*callback)(void *), void *data)
1647{
1648	struct vme_bridge *bridge = find_bridge(resource);
1649	struct vme_lm_resource *lm;
1650
1651	if (resource->type != VME_LM) {
1652		printk(KERN_ERR "Not a Location Monitor resource\n");
1653		return -EINVAL;
1654	}
1655
1656	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1657
1658	if (!bridge->lm_attach) {
1659		printk(KERN_ERR "vme_lm_attach not supported\n");
1660		return -EINVAL;
1661	}
1662
1663	return bridge->lm_attach(lm, monitor, callback, data);
1664}
1665EXPORT_SYMBOL(vme_lm_attach);
1666
1667/**
1668 * vme_lm_detach - Remove callback for location monitor address
1669 * @resource: Pointer to VME location monitor resource.
1670 * @monitor: Offset to which callback should be removed.
1671 *
1672 * Remove the callback associated with the specificed offset into the
1673 * location monitors monitored addresses.
1674 *
1675 * Return: Zero on success, -EINVAL when provided with an invalid location
1676 *	   monitor resource or function is not supported. Hardware specific
1677 *	   errors may also be returned.
1678 */
1679int vme_lm_detach(struct vme_resource *resource, int monitor)
1680{
1681	struct vme_bridge *bridge = find_bridge(resource);
1682	struct vme_lm_resource *lm;
1683
1684	if (resource->type != VME_LM) {
1685		printk(KERN_ERR "Not a Location Monitor resource\n");
1686		return -EINVAL;
1687	}
1688
1689	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1690
1691	if (!bridge->lm_detach) {
1692		printk(KERN_ERR "vme_lm_detach not supported\n");
1693		return -EINVAL;
1694	}
1695
1696	return bridge->lm_detach(lm, monitor);
1697}
1698EXPORT_SYMBOL(vme_lm_detach);
1699
1700/**
1701 * vme_lm_free - Free allocated VME location monitor
1702 * @resource: Pointer to VME location monitor resource.
1703 *
1704 * Free allocation of a VME location monitor.
1705 *
1706 * WARNING: This function currently expects that any callbacks that have
1707 *          been attached to the location monitor have been removed.
1708 *
1709 * Return: Zero on success, -EINVAL when provided with an invalid location
1710 *	   monitor resource.
1711 */
1712void vme_lm_free(struct vme_resource *resource)
1713{
1714	struct vme_lm_resource *lm;
1715
1716	if (resource->type != VME_LM) {
1717		printk(KERN_ERR "Not a Location Monitor resource\n");
1718		return;
1719	}
1720
1721	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1722
1723	mutex_lock(&lm->mtx);
1724
1725	/* XXX
1726	 * Check to see that there aren't any callbacks still attached, if
1727	 * there are we should probably be detaching them!
1728	 */
1729
1730	lm->locked = 0;
1731
1732	mutex_unlock(&lm->mtx);
1733
1734	kfree(resource);
1735}
1736EXPORT_SYMBOL(vme_lm_free);
1737
1738/**
1739 * vme_slot_num - Retrieve slot ID
1740 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1741 *
1742 * Retrieve the slot ID associated with the provided VME device.
1743 *
1744 * Return: The slot ID on success, -EINVAL if VME bridge cannot be determined
1745 *         or the function is not supported. Hardware specific errors may also
1746 *         be returned.
1747 */
1748int vme_slot_num(struct vme_dev *vdev)
1749{
1750	struct vme_bridge *bridge;
1751
1752	bridge = vdev->bridge;
1753	if (!bridge) {
1754		printk(KERN_ERR "Can't find VME bus\n");
1755		return -EINVAL;
1756	}
1757
1758	if (!bridge->slot_get) {
1759		printk(KERN_WARNING "vme_slot_num not supported\n");
1760		return -EINVAL;
1761	}
1762
1763	return bridge->slot_get(bridge);
1764}
1765EXPORT_SYMBOL(vme_slot_num);
1766
1767/**
1768 * vme_bus_num - Retrieve bus number
1769 * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1770 *
1771 * Retrieve the bus enumeration associated with the provided VME device.
1772 *
1773 * Return: The bus number on success, -EINVAL if VME bridge cannot be
1774 *         determined.
1775 */
1776int vme_bus_num(struct vme_dev *vdev)
1777{
1778	struct vme_bridge *bridge;
1779
1780	bridge = vdev->bridge;
1781	if (!bridge) {
1782		pr_err("Can't find VME bus\n");
1783		return -EINVAL;
1784	}
1785
1786	return bridge->num;
1787}
1788EXPORT_SYMBOL(vme_bus_num);
1789
1790/* - Bridge Registration --------------------------------------------------- */
1791
1792static void vme_dev_release(struct device *dev)
1793{
1794	kfree(dev_to_vme_dev(dev));
1795}
1796
1797/* Common bridge initialization */
1798struct vme_bridge *vme_init_bridge(struct vme_bridge *bridge)
1799{
1800	INIT_LIST_HEAD(&bridge->vme_error_handlers);
1801	INIT_LIST_HEAD(&bridge->master_resources);
1802	INIT_LIST_HEAD(&bridge->slave_resources);
1803	INIT_LIST_HEAD(&bridge->dma_resources);
1804	INIT_LIST_HEAD(&bridge->lm_resources);
1805	mutex_init(&bridge->irq_mtx);
1806
1807	return bridge;
1808}
1809EXPORT_SYMBOL(vme_init_bridge);
1810
1811int vme_register_bridge(struct vme_bridge *bridge)
1812{
1813	int i;
1814	int ret = -1;
1815
1816	mutex_lock(&vme_buses_lock);
1817	for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1818		if ((vme_bus_numbers & (1 << i)) == 0) {
1819			vme_bus_numbers |= (1 << i);
1820			bridge->num = i;
1821			INIT_LIST_HEAD(&bridge->devices);
1822			list_add_tail(&bridge->bus_list, &vme_bus_list);
1823			ret = 0;
1824			break;
1825		}
1826	}
1827	mutex_unlock(&vme_buses_lock);
1828
1829	return ret;
1830}
1831EXPORT_SYMBOL(vme_register_bridge);
1832
1833void vme_unregister_bridge(struct vme_bridge *bridge)
1834{
1835	struct vme_dev *vdev;
1836	struct vme_dev *tmp;
1837
1838	mutex_lock(&vme_buses_lock);
1839	vme_bus_numbers &= ~(1 << bridge->num);
1840	list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1841		list_del(&vdev->drv_list);
1842		list_del(&vdev->bridge_list);
1843		device_unregister(&vdev->dev);
1844	}
1845	list_del(&bridge->bus_list);
1846	mutex_unlock(&vme_buses_lock);
1847}
1848EXPORT_SYMBOL(vme_unregister_bridge);
1849
1850/* - Driver Registration --------------------------------------------------- */
1851
1852static int __vme_register_driver_bus(struct vme_driver *drv,
1853	struct vme_bridge *bridge, unsigned int ndevs)
1854{
1855	int err;
1856	unsigned int i;
1857	struct vme_dev *vdev;
1858	struct vme_dev *tmp;
1859
1860	for (i = 0; i < ndevs; i++) {
1861		vdev = kzalloc(sizeof(*vdev), GFP_KERNEL);
1862		if (!vdev) {
1863			err = -ENOMEM;
1864			goto err_devalloc;
1865		}
1866		vdev->num = i;
1867		vdev->bridge = bridge;
1868		vdev->dev.platform_data = drv;
1869		vdev->dev.release = vme_dev_release;
1870		vdev->dev.parent = bridge->parent;
1871		vdev->dev.bus = &vme_bus_type;
1872		dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1873			vdev->num);
1874
1875		err = device_register(&vdev->dev);
1876		if (err)
1877			goto err_reg;
1878
1879		if (vdev->dev.platform_data) {
1880			list_add_tail(&vdev->drv_list, &drv->devices);
1881			list_add_tail(&vdev->bridge_list, &bridge->devices);
1882		} else
1883			device_unregister(&vdev->dev);
1884	}
1885	return 0;
1886
1887err_reg:
1888	put_device(&vdev->dev);
1889err_devalloc:
1890	list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1891		list_del(&vdev->drv_list);
1892		list_del(&vdev->bridge_list);
1893		device_unregister(&vdev->dev);
1894	}
1895	return err;
1896}
1897
1898static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1899{
1900	struct vme_bridge *bridge;
1901	int err = 0;
1902
1903	mutex_lock(&vme_buses_lock);
1904	list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1905		/*
1906		 * This cannot cause trouble as we already have vme_buses_lock
1907		 * and if the bridge is removed, it will have to go through
1908		 * vme_unregister_bridge() to do it (which calls remove() on
1909		 * the bridge which in turn tries to acquire vme_buses_lock and
1910		 * will have to wait).
1911		 */
1912		err = __vme_register_driver_bus(drv, bridge, ndevs);
1913		if (err)
1914			break;
1915	}
1916	mutex_unlock(&vme_buses_lock);
1917	return err;
1918}
1919
1920/**
1921 * vme_register_driver - Register a VME driver
1922 * @drv: Pointer to VME driver structure to register.
1923 * @ndevs: Maximum number of devices to allow to be enumerated.
1924 *
1925 * Register a VME device driver with the VME subsystem.
1926 *
1927 * Return: Zero on success, error value on registration failure.
1928 */
1929int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1930{
1931	int err;
1932
1933	drv->driver.name = drv->name;
1934	drv->driver.bus = &vme_bus_type;
1935	INIT_LIST_HEAD(&drv->devices);
1936
1937	err = driver_register(&drv->driver);
1938	if (err)
1939		return err;
1940
1941	err = __vme_register_driver(drv, ndevs);
1942	if (err)
1943		driver_unregister(&drv->driver);
1944
1945	return err;
1946}
1947EXPORT_SYMBOL(vme_register_driver);
1948
1949/**
1950 * vme_unregister_driver - Unregister a VME driver
1951 * @drv: Pointer to VME driver structure to unregister.
1952 *
1953 * Unregister a VME device driver from the VME subsystem.
1954 */
1955void vme_unregister_driver(struct vme_driver *drv)
1956{
1957	struct vme_dev *dev, *dev_tmp;
1958
1959	mutex_lock(&vme_buses_lock);
1960	list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1961		list_del(&dev->drv_list);
1962		list_del(&dev->bridge_list);
1963		device_unregister(&dev->dev);
1964	}
1965	mutex_unlock(&vme_buses_lock);
1966
1967	driver_unregister(&drv->driver);
1968}
1969EXPORT_SYMBOL(vme_unregister_driver);
1970
1971/* - Bus Registration ------------------------------------------------------ */
1972
1973static int vme_bus_match(struct device *dev, struct device_driver *drv)
1974{
1975	struct vme_driver *vme_drv;
1976
1977	vme_drv = container_of(drv, struct vme_driver, driver);
1978
1979	if (dev->platform_data == vme_drv) {
1980		struct vme_dev *vdev = dev_to_vme_dev(dev);
1981
1982		if (vme_drv->match && vme_drv->match(vdev))
1983			return 1;
1984
1985		dev->platform_data = NULL;
1986	}
1987	return 0;
1988}
1989
1990static int vme_bus_probe(struct device *dev)
1991{
1992	struct vme_driver *driver;
1993	struct vme_dev *vdev = dev_to_vme_dev(dev);
1994
1995	driver = dev->platform_data;
1996	if (driver->probe)
1997		return driver->probe(vdev);
1998
1999	return -ENODEV;
2000}
2001
2002static int vme_bus_remove(struct device *dev)
2003{
2004	struct vme_driver *driver;
2005	struct vme_dev *vdev = dev_to_vme_dev(dev);
2006
2007	driver = dev->platform_data;
2008	if (driver->remove)
2009		return driver->remove(vdev);
2010
2011	return -ENODEV;
2012}
2013
2014struct bus_type vme_bus_type = {
2015	.name = "vme",
2016	.match = vme_bus_match,
2017	.probe = vme_bus_probe,
2018	.remove = vme_bus_remove,
2019};
2020EXPORT_SYMBOL(vme_bus_type);
2021
2022static int __init vme_init(void)
2023{
2024	return bus_register(&vme_bus_type);
2025}
2026subsys_initcall(vme_init);
2027