1// SPDX-License-Identifier: GPL-2.0-or-later 2/* Virtio ring implementation. 3 * 4 * Copyright 2007 Rusty Russell IBM Corporation 5 */ 6#include <linux/virtio.h> 7#include <linux/virtio_ring.h> 8#include <linux/virtio_config.h> 9#include <linux/device.h> 10#include <linux/slab.h> 11#include <linux/module.h> 12#include <linux/hrtimer.h> 13#include <linux/dma-mapping.h> 14#include <xen/xen.h> 15 16#ifdef DEBUG 17/* For development, we want to crash whenever the ring is screwed. */ 18#define BAD_RING(_vq, fmt, args...) \ 19 do { \ 20 dev_err(&(_vq)->vq.vdev->dev, \ 21 "%s:"fmt, (_vq)->vq.name, ##args); \ 22 BUG(); \ 23 } while (0) 24/* Caller is supposed to guarantee no reentry. */ 25#define START_USE(_vq) \ 26 do { \ 27 if ((_vq)->in_use) \ 28 panic("%s:in_use = %i\n", \ 29 (_vq)->vq.name, (_vq)->in_use); \ 30 (_vq)->in_use = __LINE__; \ 31 } while (0) 32#define END_USE(_vq) \ 33 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0) 34#define LAST_ADD_TIME_UPDATE(_vq) \ 35 do { \ 36 ktime_t now = ktime_get(); \ 37 \ 38 /* No kick or get, with .1 second between? Warn. */ \ 39 if ((_vq)->last_add_time_valid) \ 40 WARN_ON(ktime_to_ms(ktime_sub(now, \ 41 (_vq)->last_add_time)) > 100); \ 42 (_vq)->last_add_time = now; \ 43 (_vq)->last_add_time_valid = true; \ 44 } while (0) 45#define LAST_ADD_TIME_CHECK(_vq) \ 46 do { \ 47 if ((_vq)->last_add_time_valid) { \ 48 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \ 49 (_vq)->last_add_time)) > 100); \ 50 } \ 51 } while (0) 52#define LAST_ADD_TIME_INVALID(_vq) \ 53 ((_vq)->last_add_time_valid = false) 54#else 55#define BAD_RING(_vq, fmt, args...) \ 56 do { \ 57 dev_err(&_vq->vq.vdev->dev, \ 58 "%s:"fmt, (_vq)->vq.name, ##args); \ 59 (_vq)->broken = true; \ 60 } while (0) 61#define START_USE(vq) 62#define END_USE(vq) 63#define LAST_ADD_TIME_UPDATE(vq) 64#define LAST_ADD_TIME_CHECK(vq) 65#define LAST_ADD_TIME_INVALID(vq) 66#endif 67 68struct vring_desc_state_split { 69 void *data; /* Data for callback. */ 70 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */ 71}; 72 73struct vring_desc_state_packed { 74 void *data; /* Data for callback. */ 75 struct vring_packed_desc *indir_desc; /* Indirect descriptor, if any. */ 76 u16 num; /* Descriptor list length. */ 77 u16 next; /* The next desc state in a list. */ 78 u16 last; /* The last desc state in a list. */ 79}; 80 81struct vring_desc_extra_packed { 82 dma_addr_t addr; /* Buffer DMA addr. */ 83 u32 len; /* Buffer length. */ 84 u16 flags; /* Descriptor flags. */ 85}; 86 87struct vring_virtqueue { 88 struct virtqueue vq; 89 90 /* Is this a packed ring? */ 91 bool packed_ring; 92 93 /* Is DMA API used? */ 94 bool use_dma_api; 95 96 /* Can we use weak barriers? */ 97 bool weak_barriers; 98 99 /* Other side has made a mess, don't try any more. */ 100 bool broken; 101 102 /* Host supports indirect buffers */ 103 bool indirect; 104 105 /* Host publishes avail event idx */ 106 bool event; 107 108 /* Head of free buffer list. */ 109 unsigned int free_head; 110 /* Number we've added since last sync. */ 111 unsigned int num_added; 112 113 /* Last used index we've seen. */ 114 u16 last_used_idx; 115 116 union { 117 /* Available for split ring */ 118 struct { 119 /* Actual memory layout for this queue. */ 120 struct vring vring; 121 122 /* Last written value to avail->flags */ 123 u16 avail_flags_shadow; 124 125 /* 126 * Last written value to avail->idx in 127 * guest byte order. 128 */ 129 u16 avail_idx_shadow; 130 131 /* Per-descriptor state. */ 132 struct vring_desc_state_split *desc_state; 133 134 /* DMA address and size information */ 135 dma_addr_t queue_dma_addr; 136 size_t queue_size_in_bytes; 137 } split; 138 139 /* Available for packed ring */ 140 struct { 141 /* Actual memory layout for this queue. */ 142 struct { 143 unsigned int num; 144 struct vring_packed_desc *desc; 145 struct vring_packed_desc_event *driver; 146 struct vring_packed_desc_event *device; 147 } vring; 148 149 /* Driver ring wrap counter. */ 150 bool avail_wrap_counter; 151 152 /* Device ring wrap counter. */ 153 bool used_wrap_counter; 154 155 /* Avail used flags. */ 156 u16 avail_used_flags; 157 158 /* Index of the next avail descriptor. */ 159 u16 next_avail_idx; 160 161 /* 162 * Last written value to driver->flags in 163 * guest byte order. 164 */ 165 u16 event_flags_shadow; 166 167 /* Per-descriptor state. */ 168 struct vring_desc_state_packed *desc_state; 169 struct vring_desc_extra_packed *desc_extra; 170 171 /* DMA address and size information */ 172 dma_addr_t ring_dma_addr; 173 dma_addr_t driver_event_dma_addr; 174 dma_addr_t device_event_dma_addr; 175 size_t ring_size_in_bytes; 176 size_t event_size_in_bytes; 177 } packed; 178 }; 179 180 /* How to notify other side. FIXME: commonalize hcalls! */ 181 bool (*notify)(struct virtqueue *vq); 182 183 /* DMA, allocation, and size information */ 184 bool we_own_ring; 185 186#ifdef DEBUG 187 /* They're supposed to lock for us. */ 188 unsigned int in_use; 189 190 /* Figure out if their kicks are too delayed. */ 191 bool last_add_time_valid; 192 ktime_t last_add_time; 193#endif 194}; 195 196 197/* 198 * Helpers. 199 */ 200 201#define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq) 202 203static inline bool virtqueue_use_indirect(struct virtqueue *_vq, 204 unsigned int total_sg) 205{ 206 struct vring_virtqueue *vq = to_vvq(_vq); 207 208 /* 209 * If the host supports indirect descriptor tables, and we have multiple 210 * buffers, then go indirect. FIXME: tune this threshold 211 */ 212 return (vq->indirect && total_sg > 1 && vq->vq.num_free); 213} 214 215/* 216 * Modern virtio devices have feature bits to specify whether they need a 217 * quirk and bypass the IOMMU. If not there, just use the DMA API. 218 * 219 * If there, the interaction between virtio and DMA API is messy. 220 * 221 * On most systems with virtio, physical addresses match bus addresses, 222 * and it doesn't particularly matter whether we use the DMA API. 223 * 224 * On some systems, including Xen and any system with a physical device 225 * that speaks virtio behind a physical IOMMU, we must use the DMA API 226 * for virtio DMA to work at all. 227 * 228 * On other systems, including SPARC and PPC64, virtio-pci devices are 229 * enumerated as though they are behind an IOMMU, but the virtio host 230 * ignores the IOMMU, so we must either pretend that the IOMMU isn't 231 * there or somehow map everything as the identity. 232 * 233 * For the time being, we preserve historic behavior and bypass the DMA 234 * API. 235 * 236 * TODO: install a per-device DMA ops structure that does the right thing 237 * taking into account all the above quirks, and use the DMA API 238 * unconditionally on data path. 239 */ 240 241static bool vring_use_dma_api(struct virtio_device *vdev) 242{ 243 if (!virtio_has_dma_quirk(vdev)) 244 return true; 245 246 /* Otherwise, we are left to guess. */ 247 /* 248 * In theory, it's possible to have a buggy QEMU-supposed 249 * emulated Q35 IOMMU and Xen enabled at the same time. On 250 * such a configuration, virtio has never worked and will 251 * not work without an even larger kludge. Instead, enable 252 * the DMA API if we're a Xen guest, which at least allows 253 * all of the sensible Xen configurations to work correctly. 254 */ 255 if (xen_domain()) 256 return true; 257 258 return false; 259} 260 261size_t virtio_max_dma_size(struct virtio_device *vdev) 262{ 263 size_t max_segment_size = SIZE_MAX; 264 265 if (vring_use_dma_api(vdev)) 266 max_segment_size = dma_max_mapping_size(vdev->dev.parent); 267 268 return max_segment_size; 269} 270EXPORT_SYMBOL_GPL(virtio_max_dma_size); 271 272static void *vring_alloc_queue(struct virtio_device *vdev, size_t size, 273 dma_addr_t *dma_handle, gfp_t flag) 274{ 275 if (vring_use_dma_api(vdev)) { 276 return dma_alloc_coherent(vdev->dev.parent, size, 277 dma_handle, flag); 278 } else { 279 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag); 280 281 if (queue) { 282 phys_addr_t phys_addr = virt_to_phys(queue); 283 *dma_handle = (dma_addr_t)phys_addr; 284 285 /* 286 * Sanity check: make sure we dind't truncate 287 * the address. The only arches I can find that 288 * have 64-bit phys_addr_t but 32-bit dma_addr_t 289 * are certain non-highmem MIPS and x86 290 * configurations, but these configurations 291 * should never allocate physical pages above 32 292 * bits, so this is fine. Just in case, throw a 293 * warning and abort if we end up with an 294 * unrepresentable address. 295 */ 296 if (WARN_ON_ONCE(*dma_handle != phys_addr)) { 297 free_pages_exact(queue, PAGE_ALIGN(size)); 298 return NULL; 299 } 300 } 301 return queue; 302 } 303} 304 305static void vring_free_queue(struct virtio_device *vdev, size_t size, 306 void *queue, dma_addr_t dma_handle) 307{ 308 if (vring_use_dma_api(vdev)) 309 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle); 310 else 311 free_pages_exact(queue, PAGE_ALIGN(size)); 312} 313 314/* 315 * The DMA ops on various arches are rather gnarly right now, and 316 * making all of the arch DMA ops work on the vring device itself 317 * is a mess. For now, we use the parent device for DMA ops. 318 */ 319static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq) 320{ 321 return vq->vq.vdev->dev.parent; 322} 323 324/* Map one sg entry. */ 325static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq, 326 struct scatterlist *sg, 327 enum dma_data_direction direction) 328{ 329 if (!vq->use_dma_api) 330 return (dma_addr_t)sg_phys(sg); 331 332 /* 333 * We can't use dma_map_sg, because we don't use scatterlists in 334 * the way it expects (we don't guarantee that the scatterlist 335 * will exist for the lifetime of the mapping). 336 */ 337 return dma_map_page(vring_dma_dev(vq), 338 sg_page(sg), sg->offset, sg->length, 339 direction); 340} 341 342static dma_addr_t vring_map_single(const struct vring_virtqueue *vq, 343 void *cpu_addr, size_t size, 344 enum dma_data_direction direction) 345{ 346 if (!vq->use_dma_api) 347 return (dma_addr_t)virt_to_phys(cpu_addr); 348 349 return dma_map_single(vring_dma_dev(vq), 350 cpu_addr, size, direction); 351} 352 353static int vring_mapping_error(const struct vring_virtqueue *vq, 354 dma_addr_t addr) 355{ 356 if (!vq->use_dma_api) 357 return 0; 358 359 return dma_mapping_error(vring_dma_dev(vq), addr); 360} 361 362 363/* 364 * Split ring specific functions - *_split(). 365 */ 366 367static void vring_unmap_one_split(const struct vring_virtqueue *vq, 368 struct vring_desc *desc) 369{ 370 u16 flags; 371 372 if (!vq->use_dma_api) 373 return; 374 375 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags); 376 377 if (flags & VRING_DESC_F_INDIRECT) { 378 dma_unmap_single(vring_dma_dev(vq), 379 virtio64_to_cpu(vq->vq.vdev, desc->addr), 380 virtio32_to_cpu(vq->vq.vdev, desc->len), 381 (flags & VRING_DESC_F_WRITE) ? 382 DMA_FROM_DEVICE : DMA_TO_DEVICE); 383 } else { 384 dma_unmap_page(vring_dma_dev(vq), 385 virtio64_to_cpu(vq->vq.vdev, desc->addr), 386 virtio32_to_cpu(vq->vq.vdev, desc->len), 387 (flags & VRING_DESC_F_WRITE) ? 388 DMA_FROM_DEVICE : DMA_TO_DEVICE); 389 } 390} 391 392static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq, 393 unsigned int total_sg, 394 gfp_t gfp) 395{ 396 struct vring_desc *desc; 397 unsigned int i; 398 399 /* 400 * We require lowmem mappings for the descriptors because 401 * otherwise virt_to_phys will give us bogus addresses in the 402 * virtqueue. 403 */ 404 gfp &= ~__GFP_HIGHMEM; 405 406 desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp); 407 if (!desc) 408 return NULL; 409 410 for (i = 0; i < total_sg; i++) 411 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1); 412 return desc; 413} 414 415static inline int virtqueue_add_split(struct virtqueue *_vq, 416 struct scatterlist *sgs[], 417 unsigned int total_sg, 418 unsigned int out_sgs, 419 unsigned int in_sgs, 420 void *data, 421 void *ctx, 422 gfp_t gfp) 423{ 424 struct vring_virtqueue *vq = to_vvq(_vq); 425 struct scatterlist *sg; 426 struct vring_desc *desc; 427 unsigned int i, n, avail, descs_used, prev, err_idx; 428 int head; 429 bool indirect; 430 431 START_USE(vq); 432 433 BUG_ON(data == NULL); 434 BUG_ON(ctx && vq->indirect); 435 436 if (unlikely(vq->broken)) { 437 END_USE(vq); 438 return -EIO; 439 } 440 441 LAST_ADD_TIME_UPDATE(vq); 442 443 BUG_ON(total_sg == 0); 444 445 head = vq->free_head; 446 447 if (virtqueue_use_indirect(_vq, total_sg)) 448 desc = alloc_indirect_split(_vq, total_sg, gfp); 449 else { 450 desc = NULL; 451 WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect); 452 } 453 454 if (desc) { 455 /* Use a single buffer which doesn't continue */ 456 indirect = true; 457 /* Set up rest to use this indirect table. */ 458 i = 0; 459 descs_used = 1; 460 } else { 461 indirect = false; 462 desc = vq->split.vring.desc; 463 i = head; 464 descs_used = total_sg; 465 } 466 467 if (vq->vq.num_free < descs_used) { 468 pr_debug("Can't add buf len %i - avail = %i\n", 469 descs_used, vq->vq.num_free); 470 /* FIXME: for historical reasons, we force a notify here if 471 * there are outgoing parts to the buffer. Presumably the 472 * host should service the ring ASAP. */ 473 if (out_sgs) 474 vq->notify(&vq->vq); 475 if (indirect) 476 kfree(desc); 477 END_USE(vq); 478 return -ENOSPC; 479 } 480 481 for (n = 0; n < out_sgs; n++) { 482 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 483 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE); 484 if (vring_mapping_error(vq, addr)) 485 goto unmap_release; 486 487 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT); 488 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr); 489 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length); 490 prev = i; 491 i = virtio16_to_cpu(_vq->vdev, desc[i].next); 492 } 493 } 494 for (; n < (out_sgs + in_sgs); n++) { 495 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 496 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE); 497 if (vring_mapping_error(vq, addr)) 498 goto unmap_release; 499 500 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE); 501 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr); 502 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length); 503 prev = i; 504 i = virtio16_to_cpu(_vq->vdev, desc[i].next); 505 } 506 } 507 /* Last one doesn't continue. */ 508 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT); 509 510 if (indirect) { 511 /* Now that the indirect table is filled in, map it. */ 512 dma_addr_t addr = vring_map_single( 513 vq, desc, total_sg * sizeof(struct vring_desc), 514 DMA_TO_DEVICE); 515 if (vring_mapping_error(vq, addr)) 516 goto unmap_release; 517 518 vq->split.vring.desc[head].flags = cpu_to_virtio16(_vq->vdev, 519 VRING_DESC_F_INDIRECT); 520 vq->split.vring.desc[head].addr = cpu_to_virtio64(_vq->vdev, 521 addr); 522 523 vq->split.vring.desc[head].len = cpu_to_virtio32(_vq->vdev, 524 total_sg * sizeof(struct vring_desc)); 525 } 526 527 /* We're using some buffers from the free list. */ 528 vq->vq.num_free -= descs_used; 529 530 /* Update free pointer */ 531 if (indirect) 532 vq->free_head = virtio16_to_cpu(_vq->vdev, 533 vq->split.vring.desc[head].next); 534 else 535 vq->free_head = i; 536 537 /* Store token and indirect buffer state. */ 538 vq->split.desc_state[head].data = data; 539 if (indirect) 540 vq->split.desc_state[head].indir_desc = desc; 541 else 542 vq->split.desc_state[head].indir_desc = ctx; 543 544 /* Put entry in available array (but don't update avail->idx until they 545 * do sync). */ 546 avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1); 547 vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head); 548 549 /* Descriptors and available array need to be set before we expose the 550 * new available array entries. */ 551 virtio_wmb(vq->weak_barriers); 552 vq->split.avail_idx_shadow++; 553 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev, 554 vq->split.avail_idx_shadow); 555 vq->num_added++; 556 557 pr_debug("Added buffer head %i to %p\n", head, vq); 558 END_USE(vq); 559 560 /* This is very unlikely, but theoretically possible. Kick 561 * just in case. */ 562 if (unlikely(vq->num_added == (1 << 16) - 1)) 563 virtqueue_kick(_vq); 564 565 return 0; 566 567unmap_release: 568 err_idx = i; 569 570 if (indirect) 571 i = 0; 572 else 573 i = head; 574 575 for (n = 0; n < total_sg; n++) { 576 if (i == err_idx) 577 break; 578 vring_unmap_one_split(vq, &desc[i]); 579 i = virtio16_to_cpu(_vq->vdev, desc[i].next); 580 } 581 582 if (indirect) 583 kfree(desc); 584 585 END_USE(vq); 586 return -ENOMEM; 587} 588 589static bool virtqueue_kick_prepare_split(struct virtqueue *_vq) 590{ 591 struct vring_virtqueue *vq = to_vvq(_vq); 592 u16 new, old; 593 bool needs_kick; 594 595 START_USE(vq); 596 /* We need to expose available array entries before checking avail 597 * event. */ 598 virtio_mb(vq->weak_barriers); 599 600 old = vq->split.avail_idx_shadow - vq->num_added; 601 new = vq->split.avail_idx_shadow; 602 vq->num_added = 0; 603 604 LAST_ADD_TIME_CHECK(vq); 605 LAST_ADD_TIME_INVALID(vq); 606 607 if (vq->event) { 608 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev, 609 vring_avail_event(&vq->split.vring)), 610 new, old); 611 } else { 612 needs_kick = !(vq->split.vring.used->flags & 613 cpu_to_virtio16(_vq->vdev, 614 VRING_USED_F_NO_NOTIFY)); 615 } 616 END_USE(vq); 617 return needs_kick; 618} 619 620static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head, 621 void **ctx) 622{ 623 unsigned int i, j; 624 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT); 625 626 /* Clear data ptr. */ 627 vq->split.desc_state[head].data = NULL; 628 629 /* Put back on free list: unmap first-level descriptors and find end */ 630 i = head; 631 632 while (vq->split.vring.desc[i].flags & nextflag) { 633 vring_unmap_one_split(vq, &vq->split.vring.desc[i]); 634 i = virtio16_to_cpu(vq->vq.vdev, vq->split.vring.desc[i].next); 635 vq->vq.num_free++; 636 } 637 638 vring_unmap_one_split(vq, &vq->split.vring.desc[i]); 639 vq->split.vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev, 640 vq->free_head); 641 vq->free_head = head; 642 643 /* Plus final descriptor */ 644 vq->vq.num_free++; 645 646 if (vq->indirect) { 647 struct vring_desc *indir_desc = 648 vq->split.desc_state[head].indir_desc; 649 u32 len; 650 651 /* Free the indirect table, if any, now that it's unmapped. */ 652 if (!indir_desc) 653 return; 654 655 len = virtio32_to_cpu(vq->vq.vdev, 656 vq->split.vring.desc[head].len); 657 658 BUG_ON(!(vq->split.vring.desc[head].flags & 659 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT))); 660 BUG_ON(len == 0 || len % sizeof(struct vring_desc)); 661 662 for (j = 0; j < len / sizeof(struct vring_desc); j++) 663 vring_unmap_one_split(vq, &indir_desc[j]); 664 665 kfree(indir_desc); 666 vq->split.desc_state[head].indir_desc = NULL; 667 } else if (ctx) { 668 *ctx = vq->split.desc_state[head].indir_desc; 669 } 670} 671 672static inline bool more_used_split(const struct vring_virtqueue *vq) 673{ 674 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev, 675 vq->split.vring.used->idx); 676} 677 678static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq, 679 unsigned int *len, 680 void **ctx) 681{ 682 struct vring_virtqueue *vq = to_vvq(_vq); 683 void *ret; 684 unsigned int i; 685 u16 last_used; 686 687 START_USE(vq); 688 689 if (unlikely(vq->broken)) { 690 END_USE(vq); 691 return NULL; 692 } 693 694 if (!more_used_split(vq)) { 695 pr_debug("No more buffers in queue\n"); 696 END_USE(vq); 697 return NULL; 698 } 699 700 /* Only get used array entries after they have been exposed by host. */ 701 virtio_rmb(vq->weak_barriers); 702 703 last_used = (vq->last_used_idx & (vq->split.vring.num - 1)); 704 i = virtio32_to_cpu(_vq->vdev, 705 vq->split.vring.used->ring[last_used].id); 706 *len = virtio32_to_cpu(_vq->vdev, 707 vq->split.vring.used->ring[last_used].len); 708 709 if (unlikely(i >= vq->split.vring.num)) { 710 BAD_RING(vq, "id %u out of range\n", i); 711 return NULL; 712 } 713 if (unlikely(!vq->split.desc_state[i].data)) { 714 BAD_RING(vq, "id %u is not a head!\n", i); 715 return NULL; 716 } 717 718 /* detach_buf_split clears data, so grab it now. */ 719 ret = vq->split.desc_state[i].data; 720 detach_buf_split(vq, i, ctx); 721 vq->last_used_idx++; 722 /* If we expect an interrupt for the next entry, tell host 723 * by writing event index and flush out the write before 724 * the read in the next get_buf call. */ 725 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) 726 virtio_store_mb(vq->weak_barriers, 727 &vring_used_event(&vq->split.vring), 728 cpu_to_virtio16(_vq->vdev, vq->last_used_idx)); 729 730 LAST_ADD_TIME_INVALID(vq); 731 732 END_USE(vq); 733 return ret; 734} 735 736static void virtqueue_disable_cb_split(struct virtqueue *_vq) 737{ 738 struct vring_virtqueue *vq = to_vvq(_vq); 739 740 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) { 741 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 742 if (!vq->event) 743 vq->split.vring.avail->flags = 744 cpu_to_virtio16(_vq->vdev, 745 vq->split.avail_flags_shadow); 746 } 747} 748 749static unsigned virtqueue_enable_cb_prepare_split(struct virtqueue *_vq) 750{ 751 struct vring_virtqueue *vq = to_vvq(_vq); 752 u16 last_used_idx; 753 754 START_USE(vq); 755 756 /* We optimistically turn back on interrupts, then check if there was 757 * more to do. */ 758 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to 759 * either clear the flags bit or point the event index at the next 760 * entry. Always do both to keep code simple. */ 761 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 762 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 763 if (!vq->event) 764 vq->split.vring.avail->flags = 765 cpu_to_virtio16(_vq->vdev, 766 vq->split.avail_flags_shadow); 767 } 768 vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev, 769 last_used_idx = vq->last_used_idx); 770 END_USE(vq); 771 return last_used_idx; 772} 773 774static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned last_used_idx) 775{ 776 struct vring_virtqueue *vq = to_vvq(_vq); 777 778 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev, 779 vq->split.vring.used->idx); 780} 781 782static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq) 783{ 784 struct vring_virtqueue *vq = to_vvq(_vq); 785 u16 bufs; 786 787 START_USE(vq); 788 789 /* We optimistically turn back on interrupts, then check if there was 790 * more to do. */ 791 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to 792 * either clear the flags bit or point the event index at the next 793 * entry. Always update the event index to keep code simple. */ 794 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 795 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 796 if (!vq->event) 797 vq->split.vring.avail->flags = 798 cpu_to_virtio16(_vq->vdev, 799 vq->split.avail_flags_shadow); 800 } 801 /* TODO: tune this threshold */ 802 bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4; 803 804 virtio_store_mb(vq->weak_barriers, 805 &vring_used_event(&vq->split.vring), 806 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs)); 807 808 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx) 809 - vq->last_used_idx) > bufs)) { 810 END_USE(vq); 811 return false; 812 } 813 814 END_USE(vq); 815 return true; 816} 817 818static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq) 819{ 820 struct vring_virtqueue *vq = to_vvq(_vq); 821 unsigned int i; 822 void *buf; 823 824 START_USE(vq); 825 826 for (i = 0; i < vq->split.vring.num; i++) { 827 if (!vq->split.desc_state[i].data) 828 continue; 829 /* detach_buf_split clears data, so grab it now. */ 830 buf = vq->split.desc_state[i].data; 831 detach_buf_split(vq, i, NULL); 832 vq->split.avail_idx_shadow--; 833 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev, 834 vq->split.avail_idx_shadow); 835 END_USE(vq); 836 return buf; 837 } 838 /* That should have freed everything. */ 839 BUG_ON(vq->vq.num_free != vq->split.vring.num); 840 841 END_USE(vq); 842 return NULL; 843} 844 845static struct virtqueue *vring_create_virtqueue_split( 846 unsigned int index, 847 unsigned int num, 848 unsigned int vring_align, 849 struct virtio_device *vdev, 850 bool weak_barriers, 851 bool may_reduce_num, 852 bool context, 853 bool (*notify)(struct virtqueue *), 854 void (*callback)(struct virtqueue *), 855 const char *name) 856{ 857 struct virtqueue *vq; 858 void *queue = NULL; 859 dma_addr_t dma_addr; 860 size_t queue_size_in_bytes; 861 struct vring vring; 862 863 /* We assume num is a power of 2. */ 864 if (num & (num - 1)) { 865 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num); 866 return NULL; 867 } 868 869 /* TODO: allocate each queue chunk individually */ 870 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) { 871 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 872 &dma_addr, 873 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO); 874 if (queue) 875 break; 876 if (!may_reduce_num) 877 return NULL; 878 } 879 880 if (!num) 881 return NULL; 882 883 if (!queue) { 884 /* Try to get a single page. You are my only hope! */ 885 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 886 &dma_addr, GFP_KERNEL|__GFP_ZERO); 887 } 888 if (!queue) 889 return NULL; 890 891 queue_size_in_bytes = vring_size(num, vring_align); 892 vring_init(&vring, num, queue, vring_align); 893 894 vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context, 895 notify, callback, name); 896 if (!vq) { 897 vring_free_queue(vdev, queue_size_in_bytes, queue, 898 dma_addr); 899 return NULL; 900 } 901 902 to_vvq(vq)->split.queue_dma_addr = dma_addr; 903 to_vvq(vq)->split.queue_size_in_bytes = queue_size_in_bytes; 904 to_vvq(vq)->we_own_ring = true; 905 906 return vq; 907} 908 909 910/* 911 * Packed ring specific functions - *_packed(). 912 */ 913 914static void vring_unmap_state_packed(const struct vring_virtqueue *vq, 915 struct vring_desc_extra_packed *state) 916{ 917 u16 flags; 918 919 if (!vq->use_dma_api) 920 return; 921 922 flags = state->flags; 923 924 if (flags & VRING_DESC_F_INDIRECT) { 925 dma_unmap_single(vring_dma_dev(vq), 926 state->addr, state->len, 927 (flags & VRING_DESC_F_WRITE) ? 928 DMA_FROM_DEVICE : DMA_TO_DEVICE); 929 } else { 930 dma_unmap_page(vring_dma_dev(vq), 931 state->addr, state->len, 932 (flags & VRING_DESC_F_WRITE) ? 933 DMA_FROM_DEVICE : DMA_TO_DEVICE); 934 } 935} 936 937static void vring_unmap_desc_packed(const struct vring_virtqueue *vq, 938 struct vring_packed_desc *desc) 939{ 940 u16 flags; 941 942 if (!vq->use_dma_api) 943 return; 944 945 flags = le16_to_cpu(desc->flags); 946 947 if (flags & VRING_DESC_F_INDIRECT) { 948 dma_unmap_single(vring_dma_dev(vq), 949 le64_to_cpu(desc->addr), 950 le32_to_cpu(desc->len), 951 (flags & VRING_DESC_F_WRITE) ? 952 DMA_FROM_DEVICE : DMA_TO_DEVICE); 953 } else { 954 dma_unmap_page(vring_dma_dev(vq), 955 le64_to_cpu(desc->addr), 956 le32_to_cpu(desc->len), 957 (flags & VRING_DESC_F_WRITE) ? 958 DMA_FROM_DEVICE : DMA_TO_DEVICE); 959 } 960} 961 962static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg, 963 gfp_t gfp) 964{ 965 struct vring_packed_desc *desc; 966 967 /* 968 * We require lowmem mappings for the descriptors because 969 * otherwise virt_to_phys will give us bogus addresses in the 970 * virtqueue. 971 */ 972 gfp &= ~__GFP_HIGHMEM; 973 974 desc = kmalloc_array(total_sg, sizeof(struct vring_packed_desc), gfp); 975 976 return desc; 977} 978 979static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq, 980 struct scatterlist *sgs[], 981 unsigned int total_sg, 982 unsigned int out_sgs, 983 unsigned int in_sgs, 984 void *data, 985 gfp_t gfp) 986{ 987 struct vring_packed_desc *desc; 988 struct scatterlist *sg; 989 unsigned int i, n, err_idx; 990 u16 head, id; 991 dma_addr_t addr; 992 993 head = vq->packed.next_avail_idx; 994 desc = alloc_indirect_packed(total_sg, gfp); 995 if (!desc) 996 return -ENOMEM; 997 998 if (unlikely(vq->vq.num_free < 1)) { 999 pr_debug("Can't add buf len 1 - avail = 0\n"); 1000 kfree(desc); 1001 END_USE(vq); 1002 return -ENOSPC; 1003 } 1004 1005 i = 0; 1006 id = vq->free_head; 1007 BUG_ON(id == vq->packed.vring.num); 1008 1009 for (n = 0; n < out_sgs + in_sgs; n++) { 1010 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 1011 addr = vring_map_one_sg(vq, sg, n < out_sgs ? 1012 DMA_TO_DEVICE : DMA_FROM_DEVICE); 1013 if (vring_mapping_error(vq, addr)) 1014 goto unmap_release; 1015 1016 desc[i].flags = cpu_to_le16(n < out_sgs ? 1017 0 : VRING_DESC_F_WRITE); 1018 desc[i].addr = cpu_to_le64(addr); 1019 desc[i].len = cpu_to_le32(sg->length); 1020 i++; 1021 } 1022 } 1023 1024 /* Now that the indirect table is filled in, map it. */ 1025 addr = vring_map_single(vq, desc, 1026 total_sg * sizeof(struct vring_packed_desc), 1027 DMA_TO_DEVICE); 1028 if (vring_mapping_error(vq, addr)) 1029 goto unmap_release; 1030 1031 vq->packed.vring.desc[head].addr = cpu_to_le64(addr); 1032 vq->packed.vring.desc[head].len = cpu_to_le32(total_sg * 1033 sizeof(struct vring_packed_desc)); 1034 vq->packed.vring.desc[head].id = cpu_to_le16(id); 1035 1036 if (vq->use_dma_api) { 1037 vq->packed.desc_extra[id].addr = addr; 1038 vq->packed.desc_extra[id].len = total_sg * 1039 sizeof(struct vring_packed_desc); 1040 vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT | 1041 vq->packed.avail_used_flags; 1042 } 1043 1044 /* 1045 * A driver MUST NOT make the first descriptor in the list 1046 * available before all subsequent descriptors comprising 1047 * the list are made available. 1048 */ 1049 virtio_wmb(vq->weak_barriers); 1050 vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT | 1051 vq->packed.avail_used_flags); 1052 1053 /* We're using some buffers from the free list. */ 1054 vq->vq.num_free -= 1; 1055 1056 /* Update free pointer */ 1057 n = head + 1; 1058 if (n >= vq->packed.vring.num) { 1059 n = 0; 1060 vq->packed.avail_wrap_counter ^= 1; 1061 vq->packed.avail_used_flags ^= 1062 1 << VRING_PACKED_DESC_F_AVAIL | 1063 1 << VRING_PACKED_DESC_F_USED; 1064 } 1065 vq->packed.next_avail_idx = n; 1066 vq->free_head = vq->packed.desc_state[id].next; 1067 1068 /* Store token and indirect buffer state. */ 1069 vq->packed.desc_state[id].num = 1; 1070 vq->packed.desc_state[id].data = data; 1071 vq->packed.desc_state[id].indir_desc = desc; 1072 vq->packed.desc_state[id].last = id; 1073 1074 vq->num_added += 1; 1075 1076 pr_debug("Added buffer head %i to %p\n", head, vq); 1077 END_USE(vq); 1078 1079 return 0; 1080 1081unmap_release: 1082 err_idx = i; 1083 1084 for (i = 0; i < err_idx; i++) 1085 vring_unmap_desc_packed(vq, &desc[i]); 1086 1087 kfree(desc); 1088 1089 END_USE(vq); 1090 return -ENOMEM; 1091} 1092 1093static inline int virtqueue_add_packed(struct virtqueue *_vq, 1094 struct scatterlist *sgs[], 1095 unsigned int total_sg, 1096 unsigned int out_sgs, 1097 unsigned int in_sgs, 1098 void *data, 1099 void *ctx, 1100 gfp_t gfp) 1101{ 1102 struct vring_virtqueue *vq = to_vvq(_vq); 1103 struct vring_packed_desc *desc; 1104 struct scatterlist *sg; 1105 unsigned int i, n, c, descs_used, err_idx; 1106 __le16 head_flags, flags; 1107 u16 head, id, prev, curr, avail_used_flags; 1108 int err; 1109 1110 START_USE(vq); 1111 1112 BUG_ON(data == NULL); 1113 BUG_ON(ctx && vq->indirect); 1114 1115 if (unlikely(vq->broken)) { 1116 END_USE(vq); 1117 return -EIO; 1118 } 1119 1120 LAST_ADD_TIME_UPDATE(vq); 1121 1122 BUG_ON(total_sg == 0); 1123 1124 if (virtqueue_use_indirect(_vq, total_sg)) { 1125 err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs, 1126 in_sgs, data, gfp); 1127 if (err != -ENOMEM) { 1128 END_USE(vq); 1129 return err; 1130 } 1131 1132 /* fall back on direct */ 1133 } 1134 1135 head = vq->packed.next_avail_idx; 1136 avail_used_flags = vq->packed.avail_used_flags; 1137 1138 WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect); 1139 1140 desc = vq->packed.vring.desc; 1141 i = head; 1142 descs_used = total_sg; 1143 1144 if (unlikely(vq->vq.num_free < descs_used)) { 1145 pr_debug("Can't add buf len %i - avail = %i\n", 1146 descs_used, vq->vq.num_free); 1147 END_USE(vq); 1148 return -ENOSPC; 1149 } 1150 1151 id = vq->free_head; 1152 BUG_ON(id == vq->packed.vring.num); 1153 1154 curr = id; 1155 c = 0; 1156 for (n = 0; n < out_sgs + in_sgs; n++) { 1157 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 1158 dma_addr_t addr = vring_map_one_sg(vq, sg, n < out_sgs ? 1159 DMA_TO_DEVICE : DMA_FROM_DEVICE); 1160 if (vring_mapping_error(vq, addr)) 1161 goto unmap_release; 1162 1163 flags = cpu_to_le16(vq->packed.avail_used_flags | 1164 (++c == total_sg ? 0 : VRING_DESC_F_NEXT) | 1165 (n < out_sgs ? 0 : VRING_DESC_F_WRITE)); 1166 if (i == head) 1167 head_flags = flags; 1168 else 1169 desc[i].flags = flags; 1170 1171 desc[i].addr = cpu_to_le64(addr); 1172 desc[i].len = cpu_to_le32(sg->length); 1173 desc[i].id = cpu_to_le16(id); 1174 1175 if (unlikely(vq->use_dma_api)) { 1176 vq->packed.desc_extra[curr].addr = addr; 1177 vq->packed.desc_extra[curr].len = sg->length; 1178 vq->packed.desc_extra[curr].flags = 1179 le16_to_cpu(flags); 1180 } 1181 prev = curr; 1182 curr = vq->packed.desc_state[curr].next; 1183 1184 if ((unlikely(++i >= vq->packed.vring.num))) { 1185 i = 0; 1186 vq->packed.avail_used_flags ^= 1187 1 << VRING_PACKED_DESC_F_AVAIL | 1188 1 << VRING_PACKED_DESC_F_USED; 1189 } 1190 } 1191 } 1192 1193 if (i <= head) 1194 vq->packed.avail_wrap_counter ^= 1; 1195 1196 /* We're using some buffers from the free list. */ 1197 vq->vq.num_free -= descs_used; 1198 1199 /* Update free pointer */ 1200 vq->packed.next_avail_idx = i; 1201 vq->free_head = curr; 1202 1203 /* Store token. */ 1204 vq->packed.desc_state[id].num = descs_used; 1205 vq->packed.desc_state[id].data = data; 1206 vq->packed.desc_state[id].indir_desc = ctx; 1207 vq->packed.desc_state[id].last = prev; 1208 1209 /* 1210 * A driver MUST NOT make the first descriptor in the list 1211 * available before all subsequent descriptors comprising 1212 * the list are made available. 1213 */ 1214 virtio_wmb(vq->weak_barriers); 1215 vq->packed.vring.desc[head].flags = head_flags; 1216 vq->num_added += descs_used; 1217 1218 pr_debug("Added buffer head %i to %p\n", head, vq); 1219 END_USE(vq); 1220 1221 return 0; 1222 1223unmap_release: 1224 err_idx = i; 1225 i = head; 1226 1227 vq->packed.avail_used_flags = avail_used_flags; 1228 1229 for (n = 0; n < total_sg; n++) { 1230 if (i == err_idx) 1231 break; 1232 vring_unmap_desc_packed(vq, &desc[i]); 1233 i++; 1234 if (i >= vq->packed.vring.num) 1235 i = 0; 1236 } 1237 1238 END_USE(vq); 1239 return -EIO; 1240} 1241 1242static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq) 1243{ 1244 struct vring_virtqueue *vq = to_vvq(_vq); 1245 u16 new, old, off_wrap, flags, wrap_counter, event_idx; 1246 bool needs_kick; 1247 union { 1248 struct { 1249 __le16 off_wrap; 1250 __le16 flags; 1251 }; 1252 u32 u32; 1253 } snapshot; 1254 1255 START_USE(vq); 1256 1257 /* 1258 * We need to expose the new flags value before checking notification 1259 * suppressions. 1260 */ 1261 virtio_mb(vq->weak_barriers); 1262 1263 old = vq->packed.next_avail_idx - vq->num_added; 1264 new = vq->packed.next_avail_idx; 1265 vq->num_added = 0; 1266 1267 snapshot.u32 = *(u32 *)vq->packed.vring.device; 1268 flags = le16_to_cpu(snapshot.flags); 1269 1270 LAST_ADD_TIME_CHECK(vq); 1271 LAST_ADD_TIME_INVALID(vq); 1272 1273 if (flags != VRING_PACKED_EVENT_FLAG_DESC) { 1274 needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE); 1275 goto out; 1276 } 1277 1278 off_wrap = le16_to_cpu(snapshot.off_wrap); 1279 1280 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR; 1281 event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR); 1282 if (wrap_counter != vq->packed.avail_wrap_counter) 1283 event_idx -= vq->packed.vring.num; 1284 1285 needs_kick = vring_need_event(event_idx, new, old); 1286out: 1287 END_USE(vq); 1288 return needs_kick; 1289} 1290 1291static void detach_buf_packed(struct vring_virtqueue *vq, 1292 unsigned int id, void **ctx) 1293{ 1294 struct vring_desc_state_packed *state = NULL; 1295 struct vring_packed_desc *desc; 1296 unsigned int i, curr; 1297 1298 state = &vq->packed.desc_state[id]; 1299 1300 /* Clear data ptr. */ 1301 state->data = NULL; 1302 1303 vq->packed.desc_state[state->last].next = vq->free_head; 1304 vq->free_head = id; 1305 vq->vq.num_free += state->num; 1306 1307 if (unlikely(vq->use_dma_api)) { 1308 curr = id; 1309 for (i = 0; i < state->num; i++) { 1310 vring_unmap_state_packed(vq, 1311 &vq->packed.desc_extra[curr]); 1312 curr = vq->packed.desc_state[curr].next; 1313 } 1314 } 1315 1316 if (vq->indirect) { 1317 u32 len; 1318 1319 /* Free the indirect table, if any, now that it's unmapped. */ 1320 desc = state->indir_desc; 1321 if (!desc) 1322 return; 1323 1324 if (vq->use_dma_api) { 1325 len = vq->packed.desc_extra[id].len; 1326 for (i = 0; i < len / sizeof(struct vring_packed_desc); 1327 i++) 1328 vring_unmap_desc_packed(vq, &desc[i]); 1329 } 1330 kfree(desc); 1331 state->indir_desc = NULL; 1332 } else if (ctx) { 1333 *ctx = state->indir_desc; 1334 } 1335} 1336 1337static inline bool is_used_desc_packed(const struct vring_virtqueue *vq, 1338 u16 idx, bool used_wrap_counter) 1339{ 1340 bool avail, used; 1341 u16 flags; 1342 1343 flags = le16_to_cpu(vq->packed.vring.desc[idx].flags); 1344 avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL)); 1345 used = !!(flags & (1 << VRING_PACKED_DESC_F_USED)); 1346 1347 return avail == used && used == used_wrap_counter; 1348} 1349 1350static inline bool more_used_packed(const struct vring_virtqueue *vq) 1351{ 1352 return is_used_desc_packed(vq, vq->last_used_idx, 1353 vq->packed.used_wrap_counter); 1354} 1355 1356static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq, 1357 unsigned int *len, 1358 void **ctx) 1359{ 1360 struct vring_virtqueue *vq = to_vvq(_vq); 1361 u16 last_used, id; 1362 void *ret; 1363 1364 START_USE(vq); 1365 1366 if (unlikely(vq->broken)) { 1367 END_USE(vq); 1368 return NULL; 1369 } 1370 1371 if (!more_used_packed(vq)) { 1372 pr_debug("No more buffers in queue\n"); 1373 END_USE(vq); 1374 return NULL; 1375 } 1376 1377 /* Only get used elements after they have been exposed by host. */ 1378 virtio_rmb(vq->weak_barriers); 1379 1380 last_used = vq->last_used_idx; 1381 id = le16_to_cpu(vq->packed.vring.desc[last_used].id); 1382 *len = le32_to_cpu(vq->packed.vring.desc[last_used].len); 1383 1384 if (unlikely(id >= vq->packed.vring.num)) { 1385 BAD_RING(vq, "id %u out of range\n", id); 1386 return NULL; 1387 } 1388 if (unlikely(!vq->packed.desc_state[id].data)) { 1389 BAD_RING(vq, "id %u is not a head!\n", id); 1390 return NULL; 1391 } 1392 1393 /* detach_buf_packed clears data, so grab it now. */ 1394 ret = vq->packed.desc_state[id].data; 1395 detach_buf_packed(vq, id, ctx); 1396 1397 vq->last_used_idx += vq->packed.desc_state[id].num; 1398 if (unlikely(vq->last_used_idx >= vq->packed.vring.num)) { 1399 vq->last_used_idx -= vq->packed.vring.num; 1400 vq->packed.used_wrap_counter ^= 1; 1401 } 1402 1403 /* 1404 * If we expect an interrupt for the next entry, tell host 1405 * by writing event index and flush out the write before 1406 * the read in the next get_buf call. 1407 */ 1408 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC) 1409 virtio_store_mb(vq->weak_barriers, 1410 &vq->packed.vring.driver->off_wrap, 1411 cpu_to_le16(vq->last_used_idx | 1412 (vq->packed.used_wrap_counter << 1413 VRING_PACKED_EVENT_F_WRAP_CTR))); 1414 1415 LAST_ADD_TIME_INVALID(vq); 1416 1417 END_USE(vq); 1418 return ret; 1419} 1420 1421static void virtqueue_disable_cb_packed(struct virtqueue *_vq) 1422{ 1423 struct vring_virtqueue *vq = to_vvq(_vq); 1424 1425 if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) { 1426 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE; 1427 vq->packed.vring.driver->flags = 1428 cpu_to_le16(vq->packed.event_flags_shadow); 1429 } 1430} 1431 1432static unsigned virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq) 1433{ 1434 struct vring_virtqueue *vq = to_vvq(_vq); 1435 1436 START_USE(vq); 1437 1438 /* 1439 * We optimistically turn back on interrupts, then check if there was 1440 * more to do. 1441 */ 1442 1443 if (vq->event) { 1444 vq->packed.vring.driver->off_wrap = 1445 cpu_to_le16(vq->last_used_idx | 1446 (vq->packed.used_wrap_counter << 1447 VRING_PACKED_EVENT_F_WRAP_CTR)); 1448 /* 1449 * We need to update event offset and event wrap 1450 * counter first before updating event flags. 1451 */ 1452 virtio_wmb(vq->weak_barriers); 1453 } 1454 1455 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) { 1456 vq->packed.event_flags_shadow = vq->event ? 1457 VRING_PACKED_EVENT_FLAG_DESC : 1458 VRING_PACKED_EVENT_FLAG_ENABLE; 1459 vq->packed.vring.driver->flags = 1460 cpu_to_le16(vq->packed.event_flags_shadow); 1461 } 1462 1463 END_USE(vq); 1464 return vq->last_used_idx | ((u16)vq->packed.used_wrap_counter << 1465 VRING_PACKED_EVENT_F_WRAP_CTR); 1466} 1467 1468static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap) 1469{ 1470 struct vring_virtqueue *vq = to_vvq(_vq); 1471 bool wrap_counter; 1472 u16 used_idx; 1473 1474 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR; 1475 used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR); 1476 1477 return is_used_desc_packed(vq, used_idx, wrap_counter); 1478} 1479 1480static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq) 1481{ 1482 struct vring_virtqueue *vq = to_vvq(_vq); 1483 u16 used_idx, wrap_counter; 1484 u16 bufs; 1485 1486 START_USE(vq); 1487 1488 /* 1489 * We optimistically turn back on interrupts, then check if there was 1490 * more to do. 1491 */ 1492 1493 if (vq->event) { 1494 /* TODO: tune this threshold */ 1495 bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4; 1496 wrap_counter = vq->packed.used_wrap_counter; 1497 1498 used_idx = vq->last_used_idx + bufs; 1499 if (used_idx >= vq->packed.vring.num) { 1500 used_idx -= vq->packed.vring.num; 1501 wrap_counter ^= 1; 1502 } 1503 1504 vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx | 1505 (wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR)); 1506 1507 /* 1508 * We need to update event offset and event wrap 1509 * counter first before updating event flags. 1510 */ 1511 virtio_wmb(vq->weak_barriers); 1512 } 1513 1514 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) { 1515 vq->packed.event_flags_shadow = vq->event ? 1516 VRING_PACKED_EVENT_FLAG_DESC : 1517 VRING_PACKED_EVENT_FLAG_ENABLE; 1518 vq->packed.vring.driver->flags = 1519 cpu_to_le16(vq->packed.event_flags_shadow); 1520 } 1521 1522 /* 1523 * We need to update event suppression structure first 1524 * before re-checking for more used buffers. 1525 */ 1526 virtio_mb(vq->weak_barriers); 1527 1528 if (is_used_desc_packed(vq, 1529 vq->last_used_idx, 1530 vq->packed.used_wrap_counter)) { 1531 END_USE(vq); 1532 return false; 1533 } 1534 1535 END_USE(vq); 1536 return true; 1537} 1538 1539static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq) 1540{ 1541 struct vring_virtqueue *vq = to_vvq(_vq); 1542 unsigned int i; 1543 void *buf; 1544 1545 START_USE(vq); 1546 1547 for (i = 0; i < vq->packed.vring.num; i++) { 1548 if (!vq->packed.desc_state[i].data) 1549 continue; 1550 /* detach_buf clears data, so grab it now. */ 1551 buf = vq->packed.desc_state[i].data; 1552 detach_buf_packed(vq, i, NULL); 1553 END_USE(vq); 1554 return buf; 1555 } 1556 /* That should have freed everything. */ 1557 BUG_ON(vq->vq.num_free != vq->packed.vring.num); 1558 1559 END_USE(vq); 1560 return NULL; 1561} 1562 1563static struct virtqueue *vring_create_virtqueue_packed( 1564 unsigned int index, 1565 unsigned int num, 1566 unsigned int vring_align, 1567 struct virtio_device *vdev, 1568 bool weak_barriers, 1569 bool may_reduce_num, 1570 bool context, 1571 bool (*notify)(struct virtqueue *), 1572 void (*callback)(struct virtqueue *), 1573 const char *name) 1574{ 1575 struct vring_virtqueue *vq; 1576 struct vring_packed_desc *ring; 1577 struct vring_packed_desc_event *driver, *device; 1578 dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr; 1579 size_t ring_size_in_bytes, event_size_in_bytes; 1580 unsigned int i; 1581 1582 ring_size_in_bytes = num * sizeof(struct vring_packed_desc); 1583 1584 ring = vring_alloc_queue(vdev, ring_size_in_bytes, 1585 &ring_dma_addr, 1586 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO); 1587 if (!ring) 1588 goto err_ring; 1589 1590 event_size_in_bytes = sizeof(struct vring_packed_desc_event); 1591 1592 driver = vring_alloc_queue(vdev, event_size_in_bytes, 1593 &driver_event_dma_addr, 1594 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO); 1595 if (!driver) 1596 goto err_driver; 1597 1598 device = vring_alloc_queue(vdev, event_size_in_bytes, 1599 &device_event_dma_addr, 1600 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO); 1601 if (!device) 1602 goto err_device; 1603 1604 vq = kmalloc(sizeof(*vq), GFP_KERNEL); 1605 if (!vq) 1606 goto err_vq; 1607 1608 vq->vq.callback = callback; 1609 vq->vq.vdev = vdev; 1610 vq->vq.name = name; 1611 vq->vq.num_free = num; 1612 vq->vq.index = index; 1613 vq->we_own_ring = true; 1614 vq->notify = notify; 1615 vq->weak_barriers = weak_barriers; 1616 vq->broken = false; 1617 vq->last_used_idx = 0; 1618 vq->num_added = 0; 1619 vq->packed_ring = true; 1620 vq->use_dma_api = vring_use_dma_api(vdev); 1621#ifdef DEBUG 1622 vq->in_use = false; 1623 vq->last_add_time_valid = false; 1624#endif 1625 1626 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) && 1627 !context; 1628 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX); 1629 1630 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM)) 1631 vq->weak_barriers = false; 1632 1633 vq->packed.ring_dma_addr = ring_dma_addr; 1634 vq->packed.driver_event_dma_addr = driver_event_dma_addr; 1635 vq->packed.device_event_dma_addr = device_event_dma_addr; 1636 1637 vq->packed.ring_size_in_bytes = ring_size_in_bytes; 1638 vq->packed.event_size_in_bytes = event_size_in_bytes; 1639 1640 vq->packed.vring.num = num; 1641 vq->packed.vring.desc = ring; 1642 vq->packed.vring.driver = driver; 1643 vq->packed.vring.device = device; 1644 1645 vq->packed.next_avail_idx = 0; 1646 vq->packed.avail_wrap_counter = 1; 1647 vq->packed.used_wrap_counter = 1; 1648 vq->packed.event_flags_shadow = 0; 1649 vq->packed.avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL; 1650 1651 vq->packed.desc_state = kmalloc_array(num, 1652 sizeof(struct vring_desc_state_packed), 1653 GFP_KERNEL); 1654 if (!vq->packed.desc_state) 1655 goto err_desc_state; 1656 1657 memset(vq->packed.desc_state, 0, 1658 num * sizeof(struct vring_desc_state_packed)); 1659 1660 /* Put everything in free lists. */ 1661 vq->free_head = 0; 1662 for (i = 0; i < num-1; i++) 1663 vq->packed.desc_state[i].next = i + 1; 1664 1665 vq->packed.desc_extra = kmalloc_array(num, 1666 sizeof(struct vring_desc_extra_packed), 1667 GFP_KERNEL); 1668 if (!vq->packed.desc_extra) 1669 goto err_desc_extra; 1670 1671 memset(vq->packed.desc_extra, 0, 1672 num * sizeof(struct vring_desc_extra_packed)); 1673 1674 /* No callback? Tell other side not to bother us. */ 1675 if (!callback) { 1676 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE; 1677 vq->packed.vring.driver->flags = 1678 cpu_to_le16(vq->packed.event_flags_shadow); 1679 } 1680 1681 spin_lock(&vdev->vqs_list_lock); 1682 list_add_tail(&vq->vq.list, &vdev->vqs); 1683 spin_unlock(&vdev->vqs_list_lock); 1684 return &vq->vq; 1685 1686err_desc_extra: 1687 kfree(vq->packed.desc_state); 1688err_desc_state: 1689 kfree(vq); 1690err_vq: 1691 vring_free_queue(vdev, event_size_in_bytes, device, device_event_dma_addr); 1692err_device: 1693 vring_free_queue(vdev, event_size_in_bytes, driver, driver_event_dma_addr); 1694err_driver: 1695 vring_free_queue(vdev, ring_size_in_bytes, ring, ring_dma_addr); 1696err_ring: 1697 return NULL; 1698} 1699 1700 1701/* 1702 * Generic functions and exported symbols. 1703 */ 1704 1705static inline int virtqueue_add(struct virtqueue *_vq, 1706 struct scatterlist *sgs[], 1707 unsigned int total_sg, 1708 unsigned int out_sgs, 1709 unsigned int in_sgs, 1710 void *data, 1711 void *ctx, 1712 gfp_t gfp) 1713{ 1714 struct vring_virtqueue *vq = to_vvq(_vq); 1715 1716 return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg, 1717 out_sgs, in_sgs, data, ctx, gfp) : 1718 virtqueue_add_split(_vq, sgs, total_sg, 1719 out_sgs, in_sgs, data, ctx, gfp); 1720} 1721 1722/** 1723 * virtqueue_add_sgs - expose buffers to other end 1724 * @_vq: the struct virtqueue we're talking about. 1725 * @sgs: array of terminated scatterlists. 1726 * @out_sgs: the number of scatterlists readable by other side 1727 * @in_sgs: the number of scatterlists which are writable (after readable ones) 1728 * @data: the token identifying the buffer. 1729 * @gfp: how to do memory allocations (if necessary). 1730 * 1731 * Caller must ensure we don't call this with other virtqueue operations 1732 * at the same time (except where noted). 1733 * 1734 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 1735 */ 1736int virtqueue_add_sgs(struct virtqueue *_vq, 1737 struct scatterlist *sgs[], 1738 unsigned int out_sgs, 1739 unsigned int in_sgs, 1740 void *data, 1741 gfp_t gfp) 1742{ 1743 unsigned int i, total_sg = 0; 1744 1745 /* Count them first. */ 1746 for (i = 0; i < out_sgs + in_sgs; i++) { 1747 struct scatterlist *sg; 1748 1749 for (sg = sgs[i]; sg; sg = sg_next(sg)) 1750 total_sg++; 1751 } 1752 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs, 1753 data, NULL, gfp); 1754} 1755EXPORT_SYMBOL_GPL(virtqueue_add_sgs); 1756 1757/** 1758 * virtqueue_add_outbuf - expose output buffers to other end 1759 * @vq: the struct virtqueue we're talking about. 1760 * @sg: scatterlist (must be well-formed and terminated!) 1761 * @num: the number of entries in @sg readable by other side 1762 * @data: the token identifying the buffer. 1763 * @gfp: how to do memory allocations (if necessary). 1764 * 1765 * Caller must ensure we don't call this with other virtqueue operations 1766 * at the same time (except where noted). 1767 * 1768 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 1769 */ 1770int virtqueue_add_outbuf(struct virtqueue *vq, 1771 struct scatterlist *sg, unsigned int num, 1772 void *data, 1773 gfp_t gfp) 1774{ 1775 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp); 1776} 1777EXPORT_SYMBOL_GPL(virtqueue_add_outbuf); 1778 1779/** 1780 * virtqueue_add_inbuf - expose input buffers to other end 1781 * @vq: the struct virtqueue we're talking about. 1782 * @sg: scatterlist (must be well-formed and terminated!) 1783 * @num: the number of entries in @sg writable by other side 1784 * @data: the token identifying the buffer. 1785 * @gfp: how to do memory allocations (if necessary). 1786 * 1787 * Caller must ensure we don't call this with other virtqueue operations 1788 * at the same time (except where noted). 1789 * 1790 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 1791 */ 1792int virtqueue_add_inbuf(struct virtqueue *vq, 1793 struct scatterlist *sg, unsigned int num, 1794 void *data, 1795 gfp_t gfp) 1796{ 1797 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp); 1798} 1799EXPORT_SYMBOL_GPL(virtqueue_add_inbuf); 1800 1801/** 1802 * virtqueue_add_inbuf_ctx - expose input buffers to other end 1803 * @vq: the struct virtqueue we're talking about. 1804 * @sg: scatterlist (must be well-formed and terminated!) 1805 * @num: the number of entries in @sg writable by other side 1806 * @data: the token identifying the buffer. 1807 * @ctx: extra context for the token 1808 * @gfp: how to do memory allocations (if necessary). 1809 * 1810 * Caller must ensure we don't call this with other virtqueue operations 1811 * at the same time (except where noted). 1812 * 1813 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 1814 */ 1815int virtqueue_add_inbuf_ctx(struct virtqueue *vq, 1816 struct scatterlist *sg, unsigned int num, 1817 void *data, 1818 void *ctx, 1819 gfp_t gfp) 1820{ 1821 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp); 1822} 1823EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx); 1824 1825/** 1826 * virtqueue_kick_prepare - first half of split virtqueue_kick call. 1827 * @_vq: the struct virtqueue 1828 * 1829 * Instead of virtqueue_kick(), you can do: 1830 * if (virtqueue_kick_prepare(vq)) 1831 * virtqueue_notify(vq); 1832 * 1833 * This is sometimes useful because the virtqueue_kick_prepare() needs 1834 * to be serialized, but the actual virtqueue_notify() call does not. 1835 */ 1836bool virtqueue_kick_prepare(struct virtqueue *_vq) 1837{ 1838 struct vring_virtqueue *vq = to_vvq(_vq); 1839 1840 return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) : 1841 virtqueue_kick_prepare_split(_vq); 1842} 1843EXPORT_SYMBOL_GPL(virtqueue_kick_prepare); 1844 1845/** 1846 * virtqueue_notify - second half of split virtqueue_kick call. 1847 * @_vq: the struct virtqueue 1848 * 1849 * This does not need to be serialized. 1850 * 1851 * Returns false if host notify failed or queue is broken, otherwise true. 1852 */ 1853bool virtqueue_notify(struct virtqueue *_vq) 1854{ 1855 struct vring_virtqueue *vq = to_vvq(_vq); 1856 1857 if (unlikely(vq->broken)) 1858 return false; 1859 1860 /* Prod other side to tell it about changes. */ 1861 if (!vq->notify(_vq)) { 1862 vq->broken = true; 1863 return false; 1864 } 1865 return true; 1866} 1867EXPORT_SYMBOL_GPL(virtqueue_notify); 1868 1869/** 1870 * virtqueue_kick - update after add_buf 1871 * @vq: the struct virtqueue 1872 * 1873 * After one or more virtqueue_add_* calls, invoke this to kick 1874 * the other side. 1875 * 1876 * Caller must ensure we don't call this with other virtqueue 1877 * operations at the same time (except where noted). 1878 * 1879 * Returns false if kick failed, otherwise true. 1880 */ 1881bool virtqueue_kick(struct virtqueue *vq) 1882{ 1883 if (virtqueue_kick_prepare(vq)) 1884 return virtqueue_notify(vq); 1885 return true; 1886} 1887EXPORT_SYMBOL_GPL(virtqueue_kick); 1888 1889/** 1890 * virtqueue_get_buf - get the next used buffer 1891 * @_vq: the struct virtqueue we're talking about. 1892 * @len: the length written into the buffer 1893 * @ctx: extra context for the token 1894 * 1895 * If the device wrote data into the buffer, @len will be set to the 1896 * amount written. This means you don't need to clear the buffer 1897 * beforehand to ensure there's no data leakage in the case of short 1898 * writes. 1899 * 1900 * Caller must ensure we don't call this with other virtqueue 1901 * operations at the same time (except where noted). 1902 * 1903 * Returns NULL if there are no used buffers, or the "data" token 1904 * handed to virtqueue_add_*(). 1905 */ 1906void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len, 1907 void **ctx) 1908{ 1909 struct vring_virtqueue *vq = to_vvq(_vq); 1910 1911 return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) : 1912 virtqueue_get_buf_ctx_split(_vq, len, ctx); 1913} 1914EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx); 1915 1916void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len) 1917{ 1918 return virtqueue_get_buf_ctx(_vq, len, NULL); 1919} 1920EXPORT_SYMBOL_GPL(virtqueue_get_buf); 1921/** 1922 * virtqueue_disable_cb - disable callbacks 1923 * @_vq: the struct virtqueue we're talking about. 1924 * 1925 * Note that this is not necessarily synchronous, hence unreliable and only 1926 * useful as an optimization. 1927 * 1928 * Unlike other operations, this need not be serialized. 1929 */ 1930void virtqueue_disable_cb(struct virtqueue *_vq) 1931{ 1932 struct vring_virtqueue *vq = to_vvq(_vq); 1933 1934 if (vq->packed_ring) 1935 virtqueue_disable_cb_packed(_vq); 1936 else 1937 virtqueue_disable_cb_split(_vq); 1938} 1939EXPORT_SYMBOL_GPL(virtqueue_disable_cb); 1940 1941/** 1942 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb 1943 * @_vq: the struct virtqueue we're talking about. 1944 * 1945 * This re-enables callbacks; it returns current queue state 1946 * in an opaque unsigned value. This value should be later tested by 1947 * virtqueue_poll, to detect a possible race between the driver checking for 1948 * more work, and enabling callbacks. 1949 * 1950 * Caller must ensure we don't call this with other virtqueue 1951 * operations at the same time (except where noted). 1952 */ 1953unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq) 1954{ 1955 struct vring_virtqueue *vq = to_vvq(_vq); 1956 1957 return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) : 1958 virtqueue_enable_cb_prepare_split(_vq); 1959} 1960EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare); 1961 1962/** 1963 * virtqueue_poll - query pending used buffers 1964 * @_vq: the struct virtqueue we're talking about. 1965 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare). 1966 * 1967 * Returns "true" if there are pending used buffers in the queue. 1968 * 1969 * This does not need to be serialized. 1970 */ 1971bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx) 1972{ 1973 struct vring_virtqueue *vq = to_vvq(_vq); 1974 1975 if (unlikely(vq->broken)) 1976 return false; 1977 1978 virtio_mb(vq->weak_barriers); 1979 return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) : 1980 virtqueue_poll_split(_vq, last_used_idx); 1981} 1982EXPORT_SYMBOL_GPL(virtqueue_poll); 1983 1984/** 1985 * virtqueue_enable_cb - restart callbacks after disable_cb. 1986 * @_vq: the struct virtqueue we're talking about. 1987 * 1988 * This re-enables callbacks; it returns "false" if there are pending 1989 * buffers in the queue, to detect a possible race between the driver 1990 * checking for more work, and enabling callbacks. 1991 * 1992 * Caller must ensure we don't call this with other virtqueue 1993 * operations at the same time (except where noted). 1994 */ 1995bool virtqueue_enable_cb(struct virtqueue *_vq) 1996{ 1997 unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq); 1998 1999 return !virtqueue_poll(_vq, last_used_idx); 2000} 2001EXPORT_SYMBOL_GPL(virtqueue_enable_cb); 2002 2003/** 2004 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb. 2005 * @_vq: the struct virtqueue we're talking about. 2006 * 2007 * This re-enables callbacks but hints to the other side to delay 2008 * interrupts until most of the available buffers have been processed; 2009 * it returns "false" if there are many pending buffers in the queue, 2010 * to detect a possible race between the driver checking for more work, 2011 * and enabling callbacks. 2012 * 2013 * Caller must ensure we don't call this with other virtqueue 2014 * operations at the same time (except where noted). 2015 */ 2016bool virtqueue_enable_cb_delayed(struct virtqueue *_vq) 2017{ 2018 struct vring_virtqueue *vq = to_vvq(_vq); 2019 2020 return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) : 2021 virtqueue_enable_cb_delayed_split(_vq); 2022} 2023EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed); 2024 2025/** 2026 * virtqueue_detach_unused_buf - detach first unused buffer 2027 * @_vq: the struct virtqueue we're talking about. 2028 * 2029 * Returns NULL or the "data" token handed to virtqueue_add_*(). 2030 * This is not valid on an active queue; it is useful only for device 2031 * shutdown. 2032 */ 2033void *virtqueue_detach_unused_buf(struct virtqueue *_vq) 2034{ 2035 struct vring_virtqueue *vq = to_vvq(_vq); 2036 2037 return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) : 2038 virtqueue_detach_unused_buf_split(_vq); 2039} 2040EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf); 2041 2042static inline bool more_used(const struct vring_virtqueue *vq) 2043{ 2044 return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq); 2045} 2046 2047irqreturn_t vring_interrupt(int irq, void *_vq) 2048{ 2049 struct vring_virtqueue *vq = to_vvq(_vq); 2050 2051 if (!more_used(vq)) { 2052 pr_debug("virtqueue interrupt with no work for %p\n", vq); 2053 return IRQ_NONE; 2054 } 2055 2056 if (unlikely(vq->broken)) 2057 return IRQ_HANDLED; 2058 2059 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback); 2060 if (vq->vq.callback) 2061 vq->vq.callback(&vq->vq); 2062 2063 return IRQ_HANDLED; 2064} 2065EXPORT_SYMBOL_GPL(vring_interrupt); 2066 2067/* Only available for split ring */ 2068struct virtqueue *__vring_new_virtqueue(unsigned int index, 2069 struct vring vring, 2070 struct virtio_device *vdev, 2071 bool weak_barriers, 2072 bool context, 2073 bool (*notify)(struct virtqueue *), 2074 void (*callback)(struct virtqueue *), 2075 const char *name) 2076{ 2077 unsigned int i; 2078 struct vring_virtqueue *vq; 2079 2080 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) 2081 return NULL; 2082 2083 vq = kmalloc(sizeof(*vq), GFP_KERNEL); 2084 if (!vq) 2085 return NULL; 2086 2087 vq->packed_ring = false; 2088 vq->vq.callback = callback; 2089 vq->vq.vdev = vdev; 2090 vq->vq.name = name; 2091 vq->vq.num_free = vring.num; 2092 vq->vq.index = index; 2093 vq->we_own_ring = false; 2094 vq->notify = notify; 2095 vq->weak_barriers = weak_barriers; 2096 vq->broken = false; 2097 vq->last_used_idx = 0; 2098 vq->num_added = 0; 2099 vq->use_dma_api = vring_use_dma_api(vdev); 2100#ifdef DEBUG 2101 vq->in_use = false; 2102 vq->last_add_time_valid = false; 2103#endif 2104 2105 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) && 2106 !context; 2107 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX); 2108 2109 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM)) 2110 vq->weak_barriers = false; 2111 2112 vq->split.queue_dma_addr = 0; 2113 vq->split.queue_size_in_bytes = 0; 2114 2115 vq->split.vring = vring; 2116 vq->split.avail_flags_shadow = 0; 2117 vq->split.avail_idx_shadow = 0; 2118 2119 /* No callback? Tell other side not to bother us. */ 2120 if (!callback) { 2121 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 2122 if (!vq->event) 2123 vq->split.vring.avail->flags = cpu_to_virtio16(vdev, 2124 vq->split.avail_flags_shadow); 2125 } 2126 2127 vq->split.desc_state = kmalloc_array(vring.num, 2128 sizeof(struct vring_desc_state_split), GFP_KERNEL); 2129 if (!vq->split.desc_state) { 2130 kfree(vq); 2131 return NULL; 2132 } 2133 2134 /* Put everything in free lists. */ 2135 vq->free_head = 0; 2136 for (i = 0; i < vring.num-1; i++) 2137 vq->split.vring.desc[i].next = cpu_to_virtio16(vdev, i + 1); 2138 memset(vq->split.desc_state, 0, vring.num * 2139 sizeof(struct vring_desc_state_split)); 2140 2141 spin_lock(&vdev->vqs_list_lock); 2142 list_add_tail(&vq->vq.list, &vdev->vqs); 2143 spin_unlock(&vdev->vqs_list_lock); 2144 return &vq->vq; 2145} 2146EXPORT_SYMBOL_GPL(__vring_new_virtqueue); 2147 2148struct virtqueue *vring_create_virtqueue( 2149 unsigned int index, 2150 unsigned int num, 2151 unsigned int vring_align, 2152 struct virtio_device *vdev, 2153 bool weak_barriers, 2154 bool may_reduce_num, 2155 bool context, 2156 bool (*notify)(struct virtqueue *), 2157 void (*callback)(struct virtqueue *), 2158 const char *name) 2159{ 2160 2161 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) 2162 return vring_create_virtqueue_packed(index, num, vring_align, 2163 vdev, weak_barriers, may_reduce_num, 2164 context, notify, callback, name); 2165 2166 return vring_create_virtqueue_split(index, num, vring_align, 2167 vdev, weak_barriers, may_reduce_num, 2168 context, notify, callback, name); 2169} 2170EXPORT_SYMBOL_GPL(vring_create_virtqueue); 2171 2172/* Only available for split ring */ 2173struct virtqueue *vring_new_virtqueue(unsigned int index, 2174 unsigned int num, 2175 unsigned int vring_align, 2176 struct virtio_device *vdev, 2177 bool weak_barriers, 2178 bool context, 2179 void *pages, 2180 bool (*notify)(struct virtqueue *vq), 2181 void (*callback)(struct virtqueue *vq), 2182 const char *name) 2183{ 2184 struct vring vring; 2185 2186 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) 2187 return NULL; 2188 2189 vring_init(&vring, num, pages, vring_align); 2190 return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context, 2191 notify, callback, name); 2192} 2193EXPORT_SYMBOL_GPL(vring_new_virtqueue); 2194 2195void vring_del_virtqueue(struct virtqueue *_vq) 2196{ 2197 struct vring_virtqueue *vq = to_vvq(_vq); 2198 2199 if (vq->we_own_ring) { 2200 if (vq->packed_ring) { 2201 vring_free_queue(vq->vq.vdev, 2202 vq->packed.ring_size_in_bytes, 2203 vq->packed.vring.desc, 2204 vq->packed.ring_dma_addr); 2205 2206 vring_free_queue(vq->vq.vdev, 2207 vq->packed.event_size_in_bytes, 2208 vq->packed.vring.driver, 2209 vq->packed.driver_event_dma_addr); 2210 2211 vring_free_queue(vq->vq.vdev, 2212 vq->packed.event_size_in_bytes, 2213 vq->packed.vring.device, 2214 vq->packed.device_event_dma_addr); 2215 2216 kfree(vq->packed.desc_state); 2217 kfree(vq->packed.desc_extra); 2218 } else { 2219 vring_free_queue(vq->vq.vdev, 2220 vq->split.queue_size_in_bytes, 2221 vq->split.vring.desc, 2222 vq->split.queue_dma_addr); 2223 } 2224 } 2225 if (!vq->packed_ring) 2226 kfree(vq->split.desc_state); 2227 spin_lock(&vq->vq.vdev->vqs_list_lock); 2228 list_del(&_vq->list); 2229 spin_unlock(&vq->vq.vdev->vqs_list_lock); 2230 kfree(vq); 2231} 2232EXPORT_SYMBOL_GPL(vring_del_virtqueue); 2233 2234/* Manipulates transport-specific feature bits. */ 2235void vring_transport_features(struct virtio_device *vdev) 2236{ 2237 unsigned int i; 2238 2239 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) { 2240 switch (i) { 2241 case VIRTIO_RING_F_INDIRECT_DESC: 2242 break; 2243 case VIRTIO_RING_F_EVENT_IDX: 2244 break; 2245 case VIRTIO_F_VERSION_1: 2246 break; 2247 case VIRTIO_F_ACCESS_PLATFORM: 2248 break; 2249 case VIRTIO_F_RING_PACKED: 2250 break; 2251 case VIRTIO_F_ORDER_PLATFORM: 2252 break; 2253 default: 2254 /* We don't understand this bit. */ 2255 __virtio_clear_bit(vdev, i); 2256 } 2257 } 2258} 2259EXPORT_SYMBOL_GPL(vring_transport_features); 2260 2261/** 2262 * virtqueue_get_vring_size - return the size of the virtqueue's vring 2263 * @_vq: the struct virtqueue containing the vring of interest. 2264 * 2265 * Returns the size of the vring. This is mainly used for boasting to 2266 * userspace. Unlike other operations, this need not be serialized. 2267 */ 2268unsigned int virtqueue_get_vring_size(struct virtqueue *_vq) 2269{ 2270 2271 struct vring_virtqueue *vq = to_vvq(_vq); 2272 2273 return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num; 2274} 2275EXPORT_SYMBOL_GPL(virtqueue_get_vring_size); 2276 2277bool virtqueue_is_broken(struct virtqueue *_vq) 2278{ 2279 struct vring_virtqueue *vq = to_vvq(_vq); 2280 2281 return READ_ONCE(vq->broken); 2282} 2283EXPORT_SYMBOL_GPL(virtqueue_is_broken); 2284 2285/* 2286 * This should prevent the device from being used, allowing drivers to 2287 * recover. You may need to grab appropriate locks to flush. 2288 */ 2289void virtio_break_device(struct virtio_device *dev) 2290{ 2291 struct virtqueue *_vq; 2292 2293 spin_lock(&dev->vqs_list_lock); 2294 list_for_each_entry(_vq, &dev->vqs, list) { 2295 struct vring_virtqueue *vq = to_vvq(_vq); 2296 2297 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */ 2298 WRITE_ONCE(vq->broken, true); 2299 } 2300 spin_unlock(&dev->vqs_list_lock); 2301} 2302EXPORT_SYMBOL_GPL(virtio_break_device); 2303 2304dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq) 2305{ 2306 struct vring_virtqueue *vq = to_vvq(_vq); 2307 2308 BUG_ON(!vq->we_own_ring); 2309 2310 if (vq->packed_ring) 2311 return vq->packed.ring_dma_addr; 2312 2313 return vq->split.queue_dma_addr; 2314} 2315EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr); 2316 2317dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq) 2318{ 2319 struct vring_virtqueue *vq = to_vvq(_vq); 2320 2321 BUG_ON(!vq->we_own_ring); 2322 2323 if (vq->packed_ring) 2324 return vq->packed.driver_event_dma_addr; 2325 2326 return vq->split.queue_dma_addr + 2327 ((char *)vq->split.vring.avail - (char *)vq->split.vring.desc); 2328} 2329EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr); 2330 2331dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq) 2332{ 2333 struct vring_virtqueue *vq = to_vvq(_vq); 2334 2335 BUG_ON(!vq->we_own_ring); 2336 2337 if (vq->packed_ring) 2338 return vq->packed.device_event_dma_addr; 2339 2340 return vq->split.queue_dma_addr + 2341 ((char *)vq->split.vring.used - (char *)vq->split.vring.desc); 2342} 2343EXPORT_SYMBOL_GPL(virtqueue_get_used_addr); 2344 2345/* Only available for split ring */ 2346const struct vring *virtqueue_get_vring(struct virtqueue *vq) 2347{ 2348 return &to_vvq(vq)->split.vring; 2349} 2350EXPORT_SYMBOL_GPL(virtqueue_get_vring); 2351 2352MODULE_LICENSE("GPL"); 2353