1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 */
5
6/**
7 * DOC: Enclave lifetime management driver for Nitro Enclaves (NE).
8 * Nitro is a hypervisor that has been developed by Amazon.
9 */
10
11#include <linux/anon_inodes.h>
12#include <linux/capability.h>
13#include <linux/cpu.h>
14#include <linux/device.h>
15#include <linux/file.h>
16#include <linux/hugetlb.h>
17#include <linux/limits.h>
18#include <linux/list.h>
19#include <linux/miscdevice.h>
20#include <linux/mm.h>
21#include <linux/mman.h>
22#include <linux/module.h>
23#include <linux/mutex.h>
24#include <linux/nitro_enclaves.h>
25#include <linux/pci.h>
26#include <linux/poll.h>
27#include <linux/slab.h>
28#include <linux/types.h>
29#include <uapi/linux/vm_sockets.h>
30
31#include "ne_misc_dev.h"
32#include "ne_pci_dev.h"
33
34/**
35 * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma
36 *		  separated. The NE CPU pool includes CPUs from a single NUMA
37 *		  node.
38 */
39#define NE_CPUS_SIZE		(512)
40
41/**
42 * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF)
43 *			image in enclave memory.
44 */
45#define NE_EIF_LOAD_OFFSET	(8 * 1024UL * 1024UL)
46
47/**
48 * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched
49 *			     with.
50 */
51#define NE_MIN_ENCLAVE_MEM_SIZE	(64 * 1024UL * 1024UL)
52
53/**
54 * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region.
55 */
56#define NE_MIN_MEM_REGION_SIZE	(2 * 1024UL * 1024UL)
57
58/**
59 * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM.
60 */
61#define NE_PARENT_VM_CID	(3)
62
63static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
64
65static const struct file_operations ne_fops = {
66	.owner		= THIS_MODULE,
67	.llseek		= noop_llseek,
68	.unlocked_ioctl	= ne_ioctl,
69};
70
71static struct miscdevice ne_misc_dev = {
72	.minor	= MISC_DYNAMIC_MINOR,
73	.name	= "nitro_enclaves",
74	.fops	= &ne_fops,
75	.mode	= 0660,
76};
77
78struct ne_devs ne_devs = {
79	.ne_misc_dev	= &ne_misc_dev,
80};
81
82/*
83 * TODO: Update logic to create new sysfs entries instead of using
84 * a kernel parameter e.g. if multiple sysfs files needed.
85 */
86static int ne_set_kernel_param(const char *val, const struct kernel_param *kp);
87
88static const struct kernel_param_ops ne_cpu_pool_ops = {
89	.get	= param_get_string,
90	.set	= ne_set_kernel_param,
91};
92
93static char ne_cpus[NE_CPUS_SIZE];
94static struct kparam_string ne_cpus_arg = {
95	.maxlen	= sizeof(ne_cpus),
96	.string	= ne_cpus,
97};
98
99module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644);
100/* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */
101MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves");
102
103/**
104 * struct ne_cpu_pool - CPU pool used for Nitro Enclaves.
105 * @avail_threads_per_core:	Available full CPU cores to be dedicated to
106 *				enclave(s). The cpumasks from the array, indexed
107 *				by core id, contain all the threads from the
108 *				available cores, that are not set for created
109 *				enclave(s). The full CPU cores are part of the
110 *				NE CPU pool.
111 * @mutex:			Mutex for the access to the NE CPU pool.
112 * @nr_parent_vm_cores :	The size of the available threads per core array.
113 *				The total number of CPU cores available on the
114 *				primary / parent VM.
115 * @nr_threads_per_core:	The number of threads that a full CPU core has.
116 * @numa_node:			NUMA node of the CPUs in the pool.
117 */
118struct ne_cpu_pool {
119	cpumask_var_t	*avail_threads_per_core;
120	struct mutex	mutex;
121	unsigned int	nr_parent_vm_cores;
122	unsigned int	nr_threads_per_core;
123	int		numa_node;
124};
125
126static struct ne_cpu_pool ne_cpu_pool;
127
128/**
129 * ne_check_enclaves_created() - Verify if at least one enclave has been created.
130 * @void:	No parameters provided.
131 *
132 * Context: Process context.
133 * Return:
134 * * True if at least one enclave is created.
135 * * False otherwise.
136 */
137static bool ne_check_enclaves_created(void)
138{
139	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
140	bool ret = false;
141
142	if (!ne_pci_dev)
143		return ret;
144
145	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
146
147	if (!list_empty(&ne_pci_dev->enclaves_list))
148		ret = true;
149
150	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
151
152	return ret;
153}
154
155/**
156 * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such
157 *			 as not sharing CPU cores with the primary / parent VM
158 *			 or not using CPU 0, which should remain available for
159 *			 the primary / parent VM. Offline the CPUs from the
160 *			 pool after the checks passed.
161 * @ne_cpu_list:	The CPU list used for setting NE CPU pool.
162 *
163 * Context: Process context.
164 * Return:
165 * * 0 on success.
166 * * Negative return value on failure.
167 */
168static int ne_setup_cpu_pool(const char *ne_cpu_list)
169{
170	int core_id = -1;
171	unsigned int cpu = 0;
172	cpumask_var_t cpu_pool;
173	unsigned int cpu_sibling = 0;
174	unsigned int i = 0;
175	int numa_node = -1;
176	int rc = -EINVAL;
177
178	if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL))
179		return -ENOMEM;
180
181	mutex_lock(&ne_cpu_pool.mutex);
182
183	rc = cpulist_parse(ne_cpu_list, cpu_pool);
184	if (rc < 0) {
185		pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc);
186
187		goto free_pool_cpumask;
188	}
189
190	cpu = cpumask_any(cpu_pool);
191	if (cpu >= nr_cpu_ids) {
192		pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name);
193
194		rc = -EINVAL;
195
196		goto free_pool_cpumask;
197	}
198
199	/*
200	 * Check if the CPUs are online, to further get info about them
201	 * e.g. numa node, core id, siblings.
202	 */
203	for_each_cpu(cpu, cpu_pool)
204		if (cpu_is_offline(cpu)) {
205			pr_err("%s: CPU %d is offline, has to be online to get its metadata\n",
206			       ne_misc_dev.name, cpu);
207
208			rc = -EINVAL;
209
210			goto free_pool_cpumask;
211		}
212
213	/*
214	 * Check if the CPUs from the NE CPU pool are from the same NUMA node.
215	 */
216	for_each_cpu(cpu, cpu_pool)
217		if (numa_node < 0) {
218			numa_node = cpu_to_node(cpu);
219			if (numa_node < 0) {
220				pr_err("%s: Invalid NUMA node %d\n",
221				       ne_misc_dev.name, numa_node);
222
223				rc = -EINVAL;
224
225				goto free_pool_cpumask;
226			}
227		} else {
228			if (numa_node != cpu_to_node(cpu)) {
229				pr_err("%s: CPUs with different NUMA nodes\n",
230				       ne_misc_dev.name);
231
232				rc = -EINVAL;
233
234				goto free_pool_cpumask;
235			}
236		}
237
238	/*
239	 * Check if CPU 0 and its siblings are included in the provided CPU pool
240	 * They should remain available for the primary / parent VM.
241	 */
242	if (cpumask_test_cpu(0, cpu_pool)) {
243		pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name);
244
245		rc = -EINVAL;
246
247		goto free_pool_cpumask;
248	}
249
250	for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) {
251		if (cpumask_test_cpu(cpu_sibling, cpu_pool)) {
252			pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n",
253			       ne_misc_dev.name, cpu_sibling);
254
255			rc = -EINVAL;
256
257			goto free_pool_cpumask;
258		}
259	}
260
261	/*
262	 * Check if CPU siblings are included in the provided CPU pool. The
263	 * expectation is that full CPU cores are made available in the CPU pool
264	 * for enclaves.
265	 */
266	for_each_cpu(cpu, cpu_pool) {
267		for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) {
268			if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) {
269				pr_err("%s: CPU %d is not in CPU pool\n",
270				       ne_misc_dev.name, cpu_sibling);
271
272				rc = -EINVAL;
273
274				goto free_pool_cpumask;
275			}
276		}
277	}
278
279	/* Calculate the number of threads from a full CPU core. */
280	cpu = cpumask_any(cpu_pool);
281	for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu))
282		ne_cpu_pool.nr_threads_per_core++;
283
284	ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core;
285
286	ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores,
287					     sizeof(*ne_cpu_pool.avail_threads_per_core),
288					     GFP_KERNEL);
289	if (!ne_cpu_pool.avail_threads_per_core) {
290		rc = -ENOMEM;
291
292		goto free_pool_cpumask;
293	}
294
295	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
296		if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) {
297			rc = -ENOMEM;
298
299			goto free_cores_cpumask;
300		}
301
302	/*
303	 * Split the NE CPU pool in threads per core to keep the CPU topology
304	 * after offlining the CPUs.
305	 */
306	for_each_cpu(cpu, cpu_pool) {
307		core_id = topology_core_id(cpu);
308		if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) {
309			pr_err("%s: Invalid core id  %d for CPU %d\n",
310			       ne_misc_dev.name, core_id, cpu);
311
312			rc = -EINVAL;
313
314			goto clear_cpumask;
315		}
316
317		cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]);
318	}
319
320	/*
321	 * CPUs that are given to enclave(s) should not be considered online
322	 * by Linux anymore, as the hypervisor will degrade them to floating.
323	 * The physical CPUs (full cores) are carved out of the primary / parent
324	 * VM and given to the enclave VM. The same number of vCPUs would run
325	 * on less pCPUs for the primary / parent VM.
326	 *
327	 * We offline them here, to not degrade performance and expose correct
328	 * topology to Linux and user space.
329	 */
330	for_each_cpu(cpu, cpu_pool) {
331		rc = remove_cpu(cpu);
332		if (rc != 0) {
333			pr_err("%s: CPU %d is not offlined [rc=%d]\n",
334			       ne_misc_dev.name, cpu, rc);
335
336			goto online_cpus;
337		}
338	}
339
340	free_cpumask_var(cpu_pool);
341
342	ne_cpu_pool.numa_node = numa_node;
343
344	mutex_unlock(&ne_cpu_pool.mutex);
345
346	return 0;
347
348online_cpus:
349	for_each_cpu(cpu, cpu_pool)
350		add_cpu(cpu);
351clear_cpumask:
352	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
353		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
354free_cores_cpumask:
355	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
356		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
357	kfree(ne_cpu_pool.avail_threads_per_core);
358free_pool_cpumask:
359	free_cpumask_var(cpu_pool);
360	ne_cpu_pool.nr_parent_vm_cores = 0;
361	ne_cpu_pool.nr_threads_per_core = 0;
362	ne_cpu_pool.numa_node = -1;
363	mutex_unlock(&ne_cpu_pool.mutex);
364
365	return rc;
366}
367
368/**
369 * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the
370 *			    CPU pool.
371 * @void:	No parameters provided.
372 *
373 * Context: Process context.
374 */
375static void ne_teardown_cpu_pool(void)
376{
377	unsigned int cpu = 0;
378	unsigned int i = 0;
379	int rc = -EINVAL;
380
381	mutex_lock(&ne_cpu_pool.mutex);
382
383	if (!ne_cpu_pool.nr_parent_vm_cores) {
384		mutex_unlock(&ne_cpu_pool.mutex);
385
386		return;
387	}
388
389	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) {
390		for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) {
391			rc = add_cpu(cpu);
392			if (rc != 0)
393				pr_err("%s: CPU %d is not onlined [rc=%d]\n",
394				       ne_misc_dev.name, cpu, rc);
395		}
396
397		cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
398
399		free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
400	}
401
402	kfree(ne_cpu_pool.avail_threads_per_core);
403	ne_cpu_pool.nr_parent_vm_cores = 0;
404	ne_cpu_pool.nr_threads_per_core = 0;
405	ne_cpu_pool.numa_node = -1;
406
407	mutex_unlock(&ne_cpu_pool.mutex);
408}
409
410/**
411 * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter.
412 * @val:	NE CPU pool string value.
413 * @kp :	NE kernel parameter associated with the NE CPU pool.
414 *
415 * Context: Process context.
416 * Return:
417 * * 0 on success.
418 * * Negative return value on failure.
419 */
420static int ne_set_kernel_param(const char *val, const struct kernel_param *kp)
421{
422	char error_val[] = "";
423	int rc = -EINVAL;
424
425	if (!capable(CAP_SYS_ADMIN))
426		return -EPERM;
427
428	if (ne_check_enclaves_created()) {
429		pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name);
430
431		return -EPERM;
432	}
433
434	ne_teardown_cpu_pool();
435
436	rc = ne_setup_cpu_pool(val);
437	if (rc < 0) {
438		pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc);
439
440		param_set_copystring(error_val, kp);
441
442		return rc;
443	}
444
445	rc = param_set_copystring(val, kp);
446	if (rc < 0) {
447		pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc);
448
449		ne_teardown_cpu_pool();
450
451		param_set_copystring(error_val, kp);
452
453		return rc;
454	}
455
456	return 0;
457}
458
459/**
460 * ne_donated_cpu() - Check if the provided CPU is already used by the enclave.
461 * @ne_enclave :	Private data associated with the current enclave.
462 * @cpu:		CPU to check if already used.
463 *
464 * Context: Process context. This function is called with the ne_enclave mutex held.
465 * Return:
466 * * True if the provided CPU is already used by the enclave.
467 * * False otherwise.
468 */
469static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu)
470{
471	if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids))
472		return true;
473
474	return false;
475}
476
477/**
478 * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the
479 *					NE CPU pool.
480 * @void:	No parameters provided.
481 *
482 * Context: Process context. This function is called with the ne_enclave and
483 *	    ne_cpu_pool mutexes held.
484 * Return:
485 * * Core id.
486 * * -1 if no CPU core available in the pool.
487 */
488static int ne_get_unused_core_from_cpu_pool(void)
489{
490	int core_id = -1;
491	unsigned int i = 0;
492
493	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
494		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) {
495			core_id = i;
496
497			break;
498		}
499
500	return core_id;
501}
502
503/**
504 * ne_set_enclave_threads_per_core() - Set the threads of the provided core in
505 *				       the enclave data structure.
506 * @ne_enclave :	Private data associated with the current enclave.
507 * @core_id:		Core id to get its threads from the NE CPU pool.
508 * @vcpu_id:		vCPU id part of the provided core.
509 *
510 * Context: Process context. This function is called with the ne_enclave and
511 *	    ne_cpu_pool mutexes held.
512 * Return:
513 * * 0 on success.
514 * * Negative return value on failure.
515 */
516static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave,
517					   int core_id, u32 vcpu_id)
518{
519	unsigned int cpu = 0;
520
521	if (core_id < 0 && vcpu_id == 0) {
522		dev_err_ratelimited(ne_misc_dev.this_device,
523				    "No CPUs available in NE CPU pool\n");
524
525		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
526	}
527
528	if (core_id < 0) {
529		dev_err_ratelimited(ne_misc_dev.this_device,
530				    "CPU %d is not in NE CPU pool\n", vcpu_id);
531
532		return -NE_ERR_VCPU_NOT_IN_CPU_POOL;
533	}
534
535	if (core_id >= ne_enclave->nr_parent_vm_cores) {
536		dev_err_ratelimited(ne_misc_dev.this_device,
537				    "Invalid core id %d - ne_enclave\n", core_id);
538
539		return -NE_ERR_VCPU_INVALID_CPU_CORE;
540	}
541
542	for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id])
543		cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]);
544
545	cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]);
546
547	return 0;
548}
549
550/**
551 * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the
552 *				remaining sibling(s) of a CPU core or the first
553 *				sibling of a new CPU core.
554 * @ne_enclave :	Private data associated with the current enclave.
555 * @vcpu_id:		vCPU to get from the NE CPU pool.
556 *
557 * Context: Process context. This function is called with the ne_enclave mutex held.
558 * Return:
559 * * 0 on success.
560 * * Negative return value on failure.
561 */
562static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id)
563{
564	int core_id = -1;
565	unsigned int cpu = 0;
566	unsigned int i = 0;
567	int rc = -EINVAL;
568
569	/*
570	 * If previously allocated a thread of a core to this enclave, first
571	 * check remaining sibling(s) for new CPU allocations, so that full
572	 * CPU cores are used for the enclave.
573	 */
574	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
575		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
576			if (!ne_donated_cpu(ne_enclave, cpu)) {
577				*vcpu_id = cpu;
578
579				return 0;
580			}
581
582	mutex_lock(&ne_cpu_pool.mutex);
583
584	/*
585	 * If no remaining siblings, get a core from the NE CPU pool and keep
586	 * track of all the threads in the enclave threads per core data structure.
587	 */
588	core_id = ne_get_unused_core_from_cpu_pool();
589
590	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id);
591	if (rc < 0)
592		goto unlock_mutex;
593
594	*vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]);
595
596	rc = 0;
597
598unlock_mutex:
599	mutex_unlock(&ne_cpu_pool.mutex);
600
601	return rc;
602}
603
604/**
605 * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the
606 *				      core associated with the provided vCPU.
607 * @vcpu_id:	Provided vCPU id to get its associated core id.
608 *
609 * Context: Process context. This function is called with the ne_enclave and
610 *	    ne_cpu_pool mutexes held.
611 * Return:
612 * * Core id.
613 * * -1 if the provided vCPU is not in the pool.
614 */
615static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)
616{
617	int core_id = -1;
618	unsigned int i = 0;
619
620	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
621		if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) {
622			core_id = i;
623
624			break;
625	}
626
627	return core_id;
628}
629
630/**
631 * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs
632 *				from the pool.
633 * @ne_enclave :	Private data associated with the current enclave.
634 * @vcpu_id:		ID of the vCPU to check if available in the NE CPU pool.
635 *
636 * Context: Process context. This function is called with the ne_enclave mutex held.
637 * Return:
638 * * 0 on success.
639 * * Negative return value on failure.
640 */
641static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id)
642{
643	int core_id = -1;
644	unsigned int i = 0;
645	int rc = -EINVAL;
646
647	if (ne_donated_cpu(ne_enclave, vcpu_id)) {
648		dev_err_ratelimited(ne_misc_dev.this_device,
649				    "CPU %d already used\n", vcpu_id);
650
651		return -NE_ERR_VCPU_ALREADY_USED;
652	}
653
654	/*
655	 * If previously allocated a thread of a core to this enclave, but not
656	 * the full core, first check remaining sibling(s).
657	 */
658	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
659		if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i]))
660			return 0;
661
662	mutex_lock(&ne_cpu_pool.mutex);
663
664	/*
665	 * If no remaining siblings, get from the NE CPU pool the core
666	 * associated with the vCPU and keep track of all the threads in the
667	 * enclave threads per core data structure.
668	 */
669	core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id);
670
671	rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id);
672	if (rc < 0)
673		goto unlock_mutex;
674
675	rc = 0;
676
677unlock_mutex:
678	mutex_unlock(&ne_cpu_pool.mutex);
679
680	return rc;
681}
682
683/**
684 * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current
685 *			 enclave.
686 * @ne_enclave :	Private data associated with the current enclave.
687 * @vcpu_id:		ID of the CPU to be associated with the given slot,
688 *			apic id on x86.
689 *
690 * Context: Process context. This function is called with the ne_enclave mutex held.
691 * Return:
692 * * 0 on success.
693 * * Negative return value on failure.
694 */
695static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id)
696{
697	struct ne_pci_dev_cmd_reply cmd_reply = {};
698	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
699	int rc = -EINVAL;
700	struct slot_add_vcpu_req slot_add_vcpu_req = {};
701
702	if (ne_enclave->mm != current->mm)
703		return -EIO;
704
705	slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid;
706	slot_add_vcpu_req.vcpu_id = vcpu_id;
707
708	rc = ne_do_request(pdev, SLOT_ADD_VCPU,
709			   &slot_add_vcpu_req, sizeof(slot_add_vcpu_req),
710			   &cmd_reply, sizeof(cmd_reply));
711	if (rc < 0) {
712		dev_err_ratelimited(ne_misc_dev.this_device,
713				    "Error in slot add vCPU [rc=%d]\n", rc);
714
715		return rc;
716	}
717
718	cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids);
719
720	ne_enclave->nr_vcpus++;
721
722	return 0;
723}
724
725/**
726 * ne_sanity_check_user_mem_region() - Sanity check the user space memory
727 *				       region received during the set user
728 *				       memory region ioctl call.
729 * @ne_enclave :	Private data associated with the current enclave.
730 * @mem_region :	User space memory region to be sanity checked.
731 *
732 * Context: Process context. This function is called with the ne_enclave mutex held.
733 * Return:
734 * * 0 on success.
735 * * Negative return value on failure.
736 */
737static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave,
738	struct ne_user_memory_region mem_region)
739{
740	struct ne_mem_region *ne_mem_region = NULL;
741
742	if (ne_enclave->mm != current->mm)
743		return -EIO;
744
745	if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
746		dev_err_ratelimited(ne_misc_dev.this_device,
747				    "User space memory size is not multiple of 2 MiB\n");
748
749		return -NE_ERR_INVALID_MEM_REGION_SIZE;
750	}
751
752	if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) {
753		dev_err_ratelimited(ne_misc_dev.this_device,
754				    "User space address is not 2 MiB aligned\n");
755
756		return -NE_ERR_UNALIGNED_MEM_REGION_ADDR;
757	}
758
759	if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) ||
760	    !access_ok((void __user *)(unsigned long)mem_region.userspace_addr,
761		       mem_region.memory_size)) {
762		dev_err_ratelimited(ne_misc_dev.this_device,
763				    "Invalid user space address range\n");
764
765		return -NE_ERR_INVALID_MEM_REGION_ADDR;
766	}
767
768	list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list,
769			    mem_region_list_entry) {
770		u64 memory_size = ne_mem_region->memory_size;
771		u64 userspace_addr = ne_mem_region->userspace_addr;
772
773		if ((userspace_addr <= mem_region.userspace_addr &&
774		    mem_region.userspace_addr < (userspace_addr + memory_size)) ||
775		    (mem_region.userspace_addr <= userspace_addr &&
776		    (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) {
777			dev_err_ratelimited(ne_misc_dev.this_device,
778					    "User space memory region already used\n");
779
780			return -NE_ERR_MEM_REGION_ALREADY_USED;
781		}
782	}
783
784	return 0;
785}
786
787/**
788 * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space
789 *					    memory region received during the set
790 *					    user memory region ioctl call.
791 * @ne_enclave :	Private data associated with the current enclave.
792 * @mem_region_page:	Page from the user space memory region to be sanity checked.
793 *
794 * Context: Process context. This function is called with the ne_enclave mutex held.
795 * Return:
796 * * 0 on success.
797 * * Negative return value on failure.
798 */
799static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave,
800						struct page *mem_region_page)
801{
802	if (!PageHuge(mem_region_page)) {
803		dev_err_ratelimited(ne_misc_dev.this_device,
804				    "Not a hugetlbfs page\n");
805
806		return -NE_ERR_MEM_NOT_HUGE_PAGE;
807	}
808
809	if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) {
810		dev_err_ratelimited(ne_misc_dev.this_device,
811				    "Page size not multiple of 2 MiB\n");
812
813		return -NE_ERR_INVALID_PAGE_SIZE;
814	}
815
816	if (ne_enclave->numa_node != page_to_nid(mem_region_page)) {
817		dev_err_ratelimited(ne_misc_dev.this_device,
818				    "Page is not from NUMA node %d\n",
819				    ne_enclave->numa_node);
820
821		return -NE_ERR_MEM_DIFFERENT_NUMA_NODE;
822	}
823
824	return 0;
825}
826
827/**
828 * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot
829 *				       associated with the current enclave.
830 * @ne_enclave :	Private data associated with the current enclave.
831 * @mem_region :	User space memory region to be associated with the given slot.
832 *
833 * Context: Process context. This function is called with the ne_enclave mutex held.
834 * Return:
835 * * 0 on success.
836 * * Negative return value on failure.
837 */
838static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave,
839	struct ne_user_memory_region mem_region)
840{
841	long gup_rc = 0;
842	unsigned long i = 0;
843	unsigned long max_nr_pages = 0;
844	unsigned long memory_size = 0;
845	struct ne_mem_region *ne_mem_region = NULL;
846	unsigned long nr_phys_contig_mem_regions = 0;
847	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
848	struct page **phys_contig_mem_regions = NULL;
849	int rc = -EINVAL;
850
851	rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region);
852	if (rc < 0)
853		return rc;
854
855	ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL);
856	if (!ne_mem_region)
857		return -ENOMEM;
858
859	max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE;
860
861	ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages),
862				       GFP_KERNEL);
863	if (!ne_mem_region->pages) {
864		rc = -ENOMEM;
865
866		goto free_mem_region;
867	}
868
869	phys_contig_mem_regions = kcalloc(max_nr_pages, sizeof(*phys_contig_mem_regions),
870					  GFP_KERNEL);
871	if (!phys_contig_mem_regions) {
872		rc = -ENOMEM;
873
874		goto free_mem_region;
875	}
876
877	do {
878		i = ne_mem_region->nr_pages;
879
880		if (i == max_nr_pages) {
881			dev_err_ratelimited(ne_misc_dev.this_device,
882					    "Reached max nr of pages in the pages data struct\n");
883
884			rc = -ENOMEM;
885
886			goto put_pages;
887		}
888
889		gup_rc = get_user_pages(mem_region.userspace_addr + memory_size, 1, FOLL_GET,
890					ne_mem_region->pages + i, NULL);
891		if (gup_rc < 0) {
892			rc = gup_rc;
893
894			dev_err_ratelimited(ne_misc_dev.this_device,
895					    "Error in get user pages [rc=%d]\n", rc);
896
897			goto put_pages;
898		}
899
900		rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]);
901		if (rc < 0)
902			goto put_pages;
903
904		/*
905		 * TODO: Update once handled non-contiguous memory regions
906		 * received from user space or contiguous physical memory regions
907		 * larger than 2 MiB e.g. 8 MiB.
908		 */
909		phys_contig_mem_regions[i] = ne_mem_region->pages[i];
910
911		memory_size += page_size(ne_mem_region->pages[i]);
912
913		ne_mem_region->nr_pages++;
914	} while (memory_size < mem_region.memory_size);
915
916	/*
917	 * TODO: Update once handled non-contiguous memory regions received
918	 * from user space or contiguous physical memory regions larger than
919	 * 2 MiB e.g. 8 MiB.
920	 */
921	nr_phys_contig_mem_regions = ne_mem_region->nr_pages;
922
923	if ((ne_enclave->nr_mem_regions + nr_phys_contig_mem_regions) >
924	    ne_enclave->max_mem_regions) {
925		dev_err_ratelimited(ne_misc_dev.this_device,
926				    "Reached max memory regions %lld\n",
927				    ne_enclave->max_mem_regions);
928
929		rc = -NE_ERR_MEM_MAX_REGIONS;
930
931		goto put_pages;
932	}
933
934	for (i = 0; i < nr_phys_contig_mem_regions; i++) {
935		u64 phys_region_addr = page_to_phys(phys_contig_mem_regions[i]);
936		u64 phys_region_size = page_size(phys_contig_mem_regions[i]);
937
938		if (phys_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
939			dev_err_ratelimited(ne_misc_dev.this_device,
940					    "Physical mem region size is not multiple of 2 MiB\n");
941
942			rc = -EINVAL;
943
944			goto put_pages;
945		}
946
947		if (!IS_ALIGNED(phys_region_addr, NE_MIN_MEM_REGION_SIZE)) {
948			dev_err_ratelimited(ne_misc_dev.this_device,
949					    "Physical mem region address is not 2 MiB aligned\n");
950
951			rc = -EINVAL;
952
953			goto put_pages;
954		}
955	}
956
957	ne_mem_region->memory_size = mem_region.memory_size;
958	ne_mem_region->userspace_addr = mem_region.userspace_addr;
959
960	list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list);
961
962	for (i = 0; i < nr_phys_contig_mem_regions; i++) {
963		struct ne_pci_dev_cmd_reply cmd_reply = {};
964		struct slot_add_mem_req slot_add_mem_req = {};
965
966		slot_add_mem_req.slot_uid = ne_enclave->slot_uid;
967		slot_add_mem_req.paddr = page_to_phys(phys_contig_mem_regions[i]);
968		slot_add_mem_req.size = page_size(phys_contig_mem_regions[i]);
969
970		rc = ne_do_request(pdev, SLOT_ADD_MEM,
971				   &slot_add_mem_req, sizeof(slot_add_mem_req),
972				   &cmd_reply, sizeof(cmd_reply));
973		if (rc < 0) {
974			dev_err_ratelimited(ne_misc_dev.this_device,
975					    "Error in slot add mem [rc=%d]\n", rc);
976
977			kfree(phys_contig_mem_regions);
978
979			/*
980			 * Exit here without put pages as memory regions may
981			 * already been added.
982			 */
983			return rc;
984		}
985
986		ne_enclave->mem_size += slot_add_mem_req.size;
987		ne_enclave->nr_mem_regions++;
988	}
989
990	kfree(phys_contig_mem_regions);
991
992	return 0;
993
994put_pages:
995	for (i = 0; i < ne_mem_region->nr_pages; i++)
996		put_page(ne_mem_region->pages[i]);
997free_mem_region:
998	kfree(phys_contig_mem_regions);
999	kfree(ne_mem_region->pages);
1000	kfree(ne_mem_region);
1001
1002	return rc;
1003}
1004
1005/**
1006 * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources,
1007 *			      such as memory and CPU, have been set.
1008 * @ne_enclave :		Private data associated with the current enclave.
1009 * @enclave_start_info :	Enclave info that includes enclave cid and flags.
1010 *
1011 * Context: Process context. This function is called with the ne_enclave mutex held.
1012 * Return:
1013 * * 0 on success.
1014 * * Negative return value on failure.
1015 */
1016static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave,
1017	struct ne_enclave_start_info *enclave_start_info)
1018{
1019	struct ne_pci_dev_cmd_reply cmd_reply = {};
1020	unsigned int cpu = 0;
1021	struct enclave_start_req enclave_start_req = {};
1022	unsigned int i = 0;
1023	struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
1024	int rc = -EINVAL;
1025
1026	if (!ne_enclave->nr_mem_regions) {
1027		dev_err_ratelimited(ne_misc_dev.this_device,
1028				    "Enclave has no mem regions\n");
1029
1030		return -NE_ERR_NO_MEM_REGIONS_ADDED;
1031	}
1032
1033	if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) {
1034		dev_err_ratelimited(ne_misc_dev.this_device,
1035				    "Enclave memory is less than %ld\n",
1036				    NE_MIN_ENCLAVE_MEM_SIZE);
1037
1038		return -NE_ERR_ENCLAVE_MEM_MIN_SIZE;
1039	}
1040
1041	if (!ne_enclave->nr_vcpus) {
1042		dev_err_ratelimited(ne_misc_dev.this_device,
1043				    "Enclave has no vCPUs\n");
1044
1045		return -NE_ERR_NO_VCPUS_ADDED;
1046	}
1047
1048	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1049		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1050			if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) {
1051				dev_err_ratelimited(ne_misc_dev.this_device,
1052						    "Full CPU cores not used\n");
1053
1054				return -NE_ERR_FULL_CORES_NOT_USED;
1055			}
1056
1057	enclave_start_req.enclave_cid = enclave_start_info->enclave_cid;
1058	enclave_start_req.flags = enclave_start_info->flags;
1059	enclave_start_req.slot_uid = ne_enclave->slot_uid;
1060
1061	rc = ne_do_request(pdev, ENCLAVE_START,
1062			   &enclave_start_req, sizeof(enclave_start_req),
1063			   &cmd_reply, sizeof(cmd_reply));
1064	if (rc < 0) {
1065		dev_err_ratelimited(ne_misc_dev.this_device,
1066				    "Error in enclave start [rc=%d]\n", rc);
1067
1068		return rc;
1069	}
1070
1071	ne_enclave->state = NE_STATE_RUNNING;
1072
1073	enclave_start_info->enclave_cid = cmd_reply.enclave_cid;
1074
1075	return 0;
1076}
1077
1078/**
1079 * ne_enclave_ioctl() - Ioctl function provided by the enclave file.
1080 * @file:	File associated with this ioctl function.
1081 * @cmd:	The command that is set for the ioctl call.
1082 * @arg:	The argument that is provided for the ioctl call.
1083 *
1084 * Context: Process context.
1085 * Return:
1086 * * 0 on success.
1087 * * Negative return value on failure.
1088 */
1089static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1090{
1091	struct ne_enclave *ne_enclave = file->private_data;
1092
1093	switch (cmd) {
1094	case NE_ADD_VCPU: {
1095		int rc = -EINVAL;
1096		u32 vcpu_id = 0;
1097
1098		if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id)))
1099			return -EFAULT;
1100
1101		mutex_lock(&ne_enclave->enclave_info_mutex);
1102
1103		if (ne_enclave->state != NE_STATE_INIT) {
1104			dev_err_ratelimited(ne_misc_dev.this_device,
1105					    "Enclave is not in init state\n");
1106
1107			mutex_unlock(&ne_enclave->enclave_info_mutex);
1108
1109			return -NE_ERR_NOT_IN_INIT_STATE;
1110		}
1111
1112		if (vcpu_id >= (ne_enclave->nr_parent_vm_cores *
1113		    ne_enclave->nr_threads_per_core)) {
1114			dev_err_ratelimited(ne_misc_dev.this_device,
1115					    "vCPU id higher than max CPU id\n");
1116
1117			mutex_unlock(&ne_enclave->enclave_info_mutex);
1118
1119			return -NE_ERR_INVALID_VCPU;
1120		}
1121
1122		if (!vcpu_id) {
1123			/* Use the CPU pool for choosing a CPU for the enclave. */
1124			rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id);
1125			if (rc < 0) {
1126				dev_err_ratelimited(ne_misc_dev.this_device,
1127						    "Error in get CPU from pool [rc=%d]\n",
1128						    rc);
1129
1130				mutex_unlock(&ne_enclave->enclave_info_mutex);
1131
1132				return rc;
1133			}
1134		} else {
1135			/* Check if the provided vCPU is available in the NE CPU pool. */
1136			rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id);
1137			if (rc < 0) {
1138				dev_err_ratelimited(ne_misc_dev.this_device,
1139						    "Error in check CPU %d in pool [rc=%d]\n",
1140						    vcpu_id, rc);
1141
1142				mutex_unlock(&ne_enclave->enclave_info_mutex);
1143
1144				return rc;
1145			}
1146		}
1147
1148		rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id);
1149		if (rc < 0) {
1150			mutex_unlock(&ne_enclave->enclave_info_mutex);
1151
1152			return rc;
1153		}
1154
1155		mutex_unlock(&ne_enclave->enclave_info_mutex);
1156
1157		if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id)))
1158			return -EFAULT;
1159
1160		return 0;
1161	}
1162
1163	case NE_GET_IMAGE_LOAD_INFO: {
1164		struct ne_image_load_info image_load_info = {};
1165
1166		if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info)))
1167			return -EFAULT;
1168
1169		mutex_lock(&ne_enclave->enclave_info_mutex);
1170
1171		if (ne_enclave->state != NE_STATE_INIT) {
1172			dev_err_ratelimited(ne_misc_dev.this_device,
1173					    "Enclave is not in init state\n");
1174
1175			mutex_unlock(&ne_enclave->enclave_info_mutex);
1176
1177			return -NE_ERR_NOT_IN_INIT_STATE;
1178		}
1179
1180		mutex_unlock(&ne_enclave->enclave_info_mutex);
1181
1182		if (!image_load_info.flags ||
1183		    image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) {
1184			dev_err_ratelimited(ne_misc_dev.this_device,
1185					    "Incorrect flag in enclave image load info\n");
1186
1187			return -NE_ERR_INVALID_FLAG_VALUE;
1188		}
1189
1190		if (image_load_info.flags == NE_EIF_IMAGE)
1191			image_load_info.memory_offset = NE_EIF_LOAD_OFFSET;
1192
1193		if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info)))
1194			return -EFAULT;
1195
1196		return 0;
1197	}
1198
1199	case NE_SET_USER_MEMORY_REGION: {
1200		struct ne_user_memory_region mem_region = {};
1201		int rc = -EINVAL;
1202
1203		if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region)))
1204			return -EFAULT;
1205
1206		if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) {
1207			dev_err_ratelimited(ne_misc_dev.this_device,
1208					    "Incorrect flag for user memory region\n");
1209
1210			return -NE_ERR_INVALID_FLAG_VALUE;
1211		}
1212
1213		mutex_lock(&ne_enclave->enclave_info_mutex);
1214
1215		if (ne_enclave->state != NE_STATE_INIT) {
1216			dev_err_ratelimited(ne_misc_dev.this_device,
1217					    "Enclave is not in init state\n");
1218
1219			mutex_unlock(&ne_enclave->enclave_info_mutex);
1220
1221			return -NE_ERR_NOT_IN_INIT_STATE;
1222		}
1223
1224		rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region);
1225		if (rc < 0) {
1226			mutex_unlock(&ne_enclave->enclave_info_mutex);
1227
1228			return rc;
1229		}
1230
1231		mutex_unlock(&ne_enclave->enclave_info_mutex);
1232
1233		return 0;
1234	}
1235
1236	case NE_START_ENCLAVE: {
1237		struct ne_enclave_start_info enclave_start_info = {};
1238		int rc = -EINVAL;
1239
1240		if (copy_from_user(&enclave_start_info, (void __user *)arg,
1241				   sizeof(enclave_start_info)))
1242			return -EFAULT;
1243
1244		if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) {
1245			dev_err_ratelimited(ne_misc_dev.this_device,
1246					    "Incorrect flag in enclave start info\n");
1247
1248			return -NE_ERR_INVALID_FLAG_VALUE;
1249		}
1250
1251		/*
1252		 * Do not use well-known CIDs - 0, 1, 2 - for enclaves.
1253		 * VMADDR_CID_ANY = -1U
1254		 * VMADDR_CID_HYPERVISOR = 0
1255		 * VMADDR_CID_LOCAL = 1
1256		 * VMADDR_CID_HOST = 2
1257		 * Note: 0 is used as a placeholder to auto-generate an enclave CID.
1258		 * http://man7.org/linux/man-pages/man7/vsock.7.html
1259		 */
1260		if (enclave_start_info.enclave_cid > 0 &&
1261		    enclave_start_info.enclave_cid <= VMADDR_CID_HOST) {
1262			dev_err_ratelimited(ne_misc_dev.this_device,
1263					    "Well-known CID value, not to be used for enclaves\n");
1264
1265			return -NE_ERR_INVALID_ENCLAVE_CID;
1266		}
1267
1268		if (enclave_start_info.enclave_cid == U32_MAX) {
1269			dev_err_ratelimited(ne_misc_dev.this_device,
1270					    "Well-known CID value, not to be used for enclaves\n");
1271
1272			return -NE_ERR_INVALID_ENCLAVE_CID;
1273		}
1274
1275		/*
1276		 * Do not use the CID of the primary / parent VM for enclaves.
1277		 */
1278		if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) {
1279			dev_err_ratelimited(ne_misc_dev.this_device,
1280					    "CID of the parent VM, not to be used for enclaves\n");
1281
1282			return -NE_ERR_INVALID_ENCLAVE_CID;
1283		}
1284
1285		/* 64-bit CIDs are not yet supported for the vsock device. */
1286		if (enclave_start_info.enclave_cid > U32_MAX) {
1287			dev_err_ratelimited(ne_misc_dev.this_device,
1288					    "64-bit CIDs not yet supported for the vsock device\n");
1289
1290			return -NE_ERR_INVALID_ENCLAVE_CID;
1291		}
1292
1293		mutex_lock(&ne_enclave->enclave_info_mutex);
1294
1295		if (ne_enclave->state != NE_STATE_INIT) {
1296			dev_err_ratelimited(ne_misc_dev.this_device,
1297					    "Enclave is not in init state\n");
1298
1299			mutex_unlock(&ne_enclave->enclave_info_mutex);
1300
1301			return -NE_ERR_NOT_IN_INIT_STATE;
1302		}
1303
1304		rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info);
1305		if (rc < 0) {
1306			mutex_unlock(&ne_enclave->enclave_info_mutex);
1307
1308			return rc;
1309		}
1310
1311		mutex_unlock(&ne_enclave->enclave_info_mutex);
1312
1313		if (copy_to_user((void __user *)arg, &enclave_start_info,
1314				 sizeof(enclave_start_info)))
1315			return -EFAULT;
1316
1317		return 0;
1318	}
1319
1320	default:
1321		return -ENOTTY;
1322	}
1323
1324	return 0;
1325}
1326
1327/**
1328 * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries
1329 *						from the enclave data structure.
1330 * @ne_enclave :	Private data associated with the current enclave.
1331 *
1332 * Context: Process context. This function is called with the ne_enclave mutex held.
1333 */
1334static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave)
1335{
1336	unsigned long i = 0;
1337	struct ne_mem_region *ne_mem_region = NULL;
1338	struct ne_mem_region *ne_mem_region_tmp = NULL;
1339
1340	list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp,
1341				 &ne_enclave->mem_regions_list,
1342				 mem_region_list_entry) {
1343		list_del(&ne_mem_region->mem_region_list_entry);
1344
1345		for (i = 0; i < ne_mem_region->nr_pages; i++)
1346			put_page(ne_mem_region->pages[i]);
1347
1348		kfree(ne_mem_region->pages);
1349
1350		kfree(ne_mem_region);
1351	}
1352}
1353
1354/**
1355 * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from
1356 *					     the enclave data structure.
1357 * @ne_enclave :	Private data associated with the current enclave.
1358 *
1359 * Context: Process context. This function is called with the ne_enclave mutex held.
1360 */
1361static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave)
1362{
1363	unsigned int cpu = 0;
1364	unsigned int i = 0;
1365
1366	mutex_lock(&ne_cpu_pool.mutex);
1367
1368	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) {
1369		for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1370			/* Update the available NE CPU pool. */
1371			cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]);
1372
1373		free_cpumask_var(ne_enclave->threads_per_core[i]);
1374	}
1375
1376	mutex_unlock(&ne_cpu_pool.mutex);
1377
1378	kfree(ne_enclave->threads_per_core);
1379
1380	free_cpumask_var(ne_enclave->vcpu_ids);
1381}
1382
1383/**
1384 * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data
1385 *				       structure that is part of the NE PCI
1386 *				       device private data.
1387 * @ne_enclave :	Private data associated with the current enclave.
1388 * @ne_pci_dev :	Private data associated with the PCI device.
1389 *
1390 * Context: Process context. This function is called with the ne_pci_dev enclave
1391 *	    mutex held.
1392 */
1393static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave,
1394					    struct ne_pci_dev *ne_pci_dev)
1395{
1396	struct ne_enclave *ne_enclave_entry = NULL;
1397	struct ne_enclave *ne_enclave_entry_tmp = NULL;
1398
1399	list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp,
1400				 &ne_pci_dev->enclaves_list, enclave_list_entry) {
1401		if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) {
1402			list_del(&ne_enclave_entry->enclave_list_entry);
1403
1404			break;
1405		}
1406	}
1407}
1408
1409/**
1410 * ne_enclave_release() - Release function provided by the enclave file.
1411 * @inode:	Inode associated with this file release function.
1412 * @file:	File associated with this release function.
1413 *
1414 * Context: Process context.
1415 * Return:
1416 * * 0 on success.
1417 * * Negative return value on failure.
1418 */
1419static int ne_enclave_release(struct inode *inode, struct file *file)
1420{
1421	struct ne_pci_dev_cmd_reply cmd_reply = {};
1422	struct enclave_stop_req enclave_stop_request = {};
1423	struct ne_enclave *ne_enclave = file->private_data;
1424	struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1425	struct pci_dev *pdev = ne_pci_dev->pdev;
1426	int rc = -EINVAL;
1427	struct slot_free_req slot_free_req = {};
1428
1429	if (!ne_enclave)
1430		return 0;
1431
1432	/*
1433	 * Early exit in case there is an error in the enclave creation logic
1434	 * and fput() is called on the cleanup path.
1435	 */
1436	if (!ne_enclave->slot_uid)
1437		return 0;
1438
1439	/*
1440	 * Acquire the enclave list mutex before the enclave mutex
1441	 * in order to avoid deadlocks with @ref ne_event_work_handler.
1442	 */
1443	mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1444	mutex_lock(&ne_enclave->enclave_info_mutex);
1445
1446	if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) {
1447		enclave_stop_request.slot_uid = ne_enclave->slot_uid;
1448
1449		rc = ne_do_request(pdev, ENCLAVE_STOP,
1450				   &enclave_stop_request, sizeof(enclave_stop_request),
1451				   &cmd_reply, sizeof(cmd_reply));
1452		if (rc < 0) {
1453			dev_err_ratelimited(ne_misc_dev.this_device,
1454					    "Error in enclave stop [rc=%d]\n", rc);
1455
1456			goto unlock_mutex;
1457		}
1458
1459		memset(&cmd_reply, 0, sizeof(cmd_reply));
1460	}
1461
1462	slot_free_req.slot_uid = ne_enclave->slot_uid;
1463
1464	rc = ne_do_request(pdev, SLOT_FREE,
1465			   &slot_free_req, sizeof(slot_free_req),
1466			   &cmd_reply, sizeof(cmd_reply));
1467	if (rc < 0) {
1468		dev_err_ratelimited(ne_misc_dev.this_device,
1469				    "Error in slot free [rc=%d]\n", rc);
1470
1471		goto unlock_mutex;
1472	}
1473
1474	ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev);
1475	ne_enclave_remove_all_mem_region_entries(ne_enclave);
1476	ne_enclave_remove_all_vcpu_id_entries(ne_enclave);
1477
1478	mutex_unlock(&ne_enclave->enclave_info_mutex);
1479	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1480
1481	kfree(ne_enclave);
1482
1483	return 0;
1484
1485unlock_mutex:
1486	mutex_unlock(&ne_enclave->enclave_info_mutex);
1487	mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1488
1489	return rc;
1490}
1491
1492/**
1493 * ne_enclave_poll() - Poll functionality used for enclave out-of-band events.
1494 * @file:	File associated with this poll function.
1495 * @wait:	Poll table data structure.
1496 *
1497 * Context: Process context.
1498 * Return:
1499 * * Poll mask.
1500 */
1501static __poll_t ne_enclave_poll(struct file *file, poll_table *wait)
1502{
1503	__poll_t mask = 0;
1504	struct ne_enclave *ne_enclave = file->private_data;
1505
1506	poll_wait(file, &ne_enclave->eventq, wait);
1507
1508	if (ne_enclave->has_event)
1509		mask |= EPOLLHUP;
1510
1511	return mask;
1512}
1513
1514static const struct file_operations ne_enclave_fops = {
1515	.owner		= THIS_MODULE,
1516	.llseek		= noop_llseek,
1517	.poll		= ne_enclave_poll,
1518	.unlocked_ioctl	= ne_enclave_ioctl,
1519	.release	= ne_enclave_release,
1520};
1521
1522/**
1523 * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create
1524 *			  enclave file descriptor to be further used for enclave
1525 *			  resources handling e.g. memory regions and CPUs.
1526 * @ne_pci_dev :	Private data associated with the PCI device.
1527 * @slot_uid:		User pointer to store the generated unique slot id
1528 *			associated with an enclave to.
1529 *
1530 * Context: Process context. This function is called with the ne_pci_dev enclave
1531 *	    mutex held.
1532 * Return:
1533 * * Enclave fd on success.
1534 * * Negative return value on failure.
1535 */
1536static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid)
1537{
1538	struct ne_pci_dev_cmd_reply cmd_reply = {};
1539	int enclave_fd = -1;
1540	struct file *enclave_file = NULL;
1541	unsigned int i = 0;
1542	struct ne_enclave *ne_enclave = NULL;
1543	struct pci_dev *pdev = ne_pci_dev->pdev;
1544	int rc = -EINVAL;
1545	struct slot_alloc_req slot_alloc_req = {};
1546
1547	mutex_lock(&ne_cpu_pool.mutex);
1548
1549	for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
1550		if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i]))
1551			break;
1552
1553	if (i == ne_cpu_pool.nr_parent_vm_cores) {
1554		dev_err_ratelimited(ne_misc_dev.this_device,
1555				    "No CPUs available in CPU pool\n");
1556
1557		mutex_unlock(&ne_cpu_pool.mutex);
1558
1559		return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
1560	}
1561
1562	mutex_unlock(&ne_cpu_pool.mutex);
1563
1564	ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL);
1565	if (!ne_enclave)
1566		return -ENOMEM;
1567
1568	mutex_lock(&ne_cpu_pool.mutex);
1569
1570	ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores;
1571	ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core;
1572	ne_enclave->numa_node = ne_cpu_pool.numa_node;
1573
1574	mutex_unlock(&ne_cpu_pool.mutex);
1575
1576	ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores,
1577		sizeof(*ne_enclave->threads_per_core), GFP_KERNEL);
1578	if (!ne_enclave->threads_per_core) {
1579		rc = -ENOMEM;
1580
1581		goto free_ne_enclave;
1582	}
1583
1584	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1585		if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) {
1586			rc = -ENOMEM;
1587
1588			goto free_cpumask;
1589		}
1590
1591	if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) {
1592		rc = -ENOMEM;
1593
1594		goto free_cpumask;
1595	}
1596
1597	enclave_fd = get_unused_fd_flags(O_CLOEXEC);
1598	if (enclave_fd < 0) {
1599		rc = enclave_fd;
1600
1601		dev_err_ratelimited(ne_misc_dev.this_device,
1602				    "Error in getting unused fd [rc=%d]\n", rc);
1603
1604		goto free_cpumask;
1605	}
1606
1607	enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR);
1608	if (IS_ERR(enclave_file)) {
1609		rc = PTR_ERR(enclave_file);
1610
1611		dev_err_ratelimited(ne_misc_dev.this_device,
1612				    "Error in anon inode get file [rc=%d]\n", rc);
1613
1614		goto put_fd;
1615	}
1616
1617	rc = ne_do_request(pdev, SLOT_ALLOC,
1618			   &slot_alloc_req, sizeof(slot_alloc_req),
1619			   &cmd_reply, sizeof(cmd_reply));
1620	if (rc < 0) {
1621		dev_err_ratelimited(ne_misc_dev.this_device,
1622				    "Error in slot alloc [rc=%d]\n", rc);
1623
1624		goto put_file;
1625	}
1626
1627	init_waitqueue_head(&ne_enclave->eventq);
1628	ne_enclave->has_event = false;
1629	mutex_init(&ne_enclave->enclave_info_mutex);
1630	ne_enclave->max_mem_regions = cmd_reply.mem_regions;
1631	INIT_LIST_HEAD(&ne_enclave->mem_regions_list);
1632	ne_enclave->mm = current->mm;
1633	ne_enclave->slot_uid = cmd_reply.slot_uid;
1634	ne_enclave->state = NE_STATE_INIT;
1635
1636	list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list);
1637
1638	if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) {
1639		/*
1640		 * As we're holding the only reference to 'enclave_file', fput()
1641		 * will call ne_enclave_release() which will do a proper cleanup
1642		 * of all so far allocated resources, leaving only the unused fd
1643		 * for us to free.
1644		 */
1645		fput(enclave_file);
1646		put_unused_fd(enclave_fd);
1647
1648		return -EFAULT;
1649	}
1650
1651	fd_install(enclave_fd, enclave_file);
1652
1653	return enclave_fd;
1654
1655put_file:
1656	fput(enclave_file);
1657put_fd:
1658	put_unused_fd(enclave_fd);
1659free_cpumask:
1660	free_cpumask_var(ne_enclave->vcpu_ids);
1661	for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1662		free_cpumask_var(ne_enclave->threads_per_core[i]);
1663	kfree(ne_enclave->threads_per_core);
1664free_ne_enclave:
1665	kfree(ne_enclave);
1666
1667	return rc;
1668}
1669
1670/**
1671 * ne_ioctl() - Ioctl function provided by the NE misc device.
1672 * @file:	File associated with this ioctl function.
1673 * @cmd:	The command that is set for the ioctl call.
1674 * @arg:	The argument that is provided for the ioctl call.
1675 *
1676 * Context: Process context.
1677 * Return:
1678 * * Ioctl result (e.g. enclave file descriptor) on success.
1679 * * Negative return value on failure.
1680 */
1681static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682{
1683	switch (cmd) {
1684	case NE_CREATE_VM: {
1685		int enclave_fd = -1;
1686		struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1687		u64 __user *slot_uid = (void __user *)arg;
1688
1689		mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1690		enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid);
1691		mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1692
1693		return enclave_fd;
1694	}
1695
1696	default:
1697		return -ENOTTY;
1698	}
1699
1700	return 0;
1701}
1702
1703static int __init ne_init(void)
1704{
1705	mutex_init(&ne_cpu_pool.mutex);
1706
1707	return pci_register_driver(&ne_pci_driver);
1708}
1709
1710static void __exit ne_exit(void)
1711{
1712	pci_unregister_driver(&ne_pci_driver);
1713
1714	ne_teardown_cpu_pool();
1715}
1716
1717module_init(ne_init);
1718module_exit(ne_exit);
1719
1720MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
1721MODULE_DESCRIPTION("Nitro Enclaves Driver");
1722MODULE_LICENSE("GPL v2");
1723