1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (c) Intel Corp. 2007. 4 * All Rights Reserved. 5 * 6 * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to 7 * develop this driver. 8 * 9 * This file is part of the Vermilion Range fb driver. 10 * 11 * Authors: 12 * Thomas Hellström <thomas-at-tungstengraphics-dot-com> 13 * Michel Dänzer <michel-at-tungstengraphics-dot-com> 14 * Alan Hourihane <alanh-at-tungstengraphics-dot-com> 15 */ 16 17#include <linux/module.h> 18#include <linux/kernel.h> 19#include <linux/errno.h> 20#include <linux/string.h> 21#include <linux/delay.h> 22#include <linux/slab.h> 23#include <linux/mm.h> 24#include <linux/fb.h> 25#include <linux/pci.h> 26#include <asm/set_memory.h> 27#include <asm/tlbflush.h> 28#include <linux/mmzone.h> 29 30/* #define VERMILION_DEBUG */ 31 32#include "vermilion.h" 33 34#define MODULE_NAME "vmlfb" 35 36#define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16) 37 38static struct mutex vml_mutex; 39static struct list_head global_no_mode; 40static struct list_head global_has_mode; 41static struct fb_ops vmlfb_ops; 42static struct vml_sys *subsys = NULL; 43static char *vml_default_mode = "1024x768@60"; 44static const struct fb_videomode defaultmode = { 45 NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6, 46 0, FB_VMODE_NONINTERLACED 47}; 48 49static u32 vml_mem_requested = (10 * 1024 * 1024); 50static u32 vml_mem_contig = (4 * 1024 * 1024); 51static u32 vml_mem_min = (4 * 1024 * 1024); 52 53static u32 vml_clocks[] = { 54 6750, 55 13500, 56 27000, 57 29700, 58 37125, 59 54000, 60 59400, 61 74250, 62 120000, 63 148500 64}; 65 66static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks); 67 68/* 69 * Allocate a contiguous vram area and make its linear kernel map 70 * uncached. 71 */ 72 73static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order, 74 unsigned min_order) 75{ 76 gfp_t flags; 77 unsigned long i; 78 79 max_order++; 80 do { 81 /* 82 * Really try hard to get the needed memory. 83 * We need memory below the first 32MB, so we 84 * add the __GFP_DMA flag that guarantees that we are 85 * below the first 16MB. 86 */ 87 88 flags = __GFP_DMA | __GFP_HIGH | __GFP_KSWAPD_RECLAIM; 89 va->logical = 90 __get_free_pages(flags, --max_order); 91 } while (va->logical == 0 && max_order > min_order); 92 93 if (!va->logical) 94 return -ENOMEM; 95 96 va->phys = virt_to_phys((void *)va->logical); 97 va->size = PAGE_SIZE << max_order; 98 va->order = max_order; 99 100 /* 101 * It seems like __get_free_pages only ups the usage count 102 * of the first page. This doesn't work with fault mapping, so 103 * up the usage count once more (XXX: should use split_page or 104 * compound page). 105 */ 106 107 memset((void *)va->logical, 0x00, va->size); 108 for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) { 109 get_page(virt_to_page(i)); 110 } 111 112 /* 113 * Change caching policy of the linear kernel map to avoid 114 * mapping type conflicts with user-space mappings. 115 */ 116 set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT); 117 118 printk(KERN_DEBUG MODULE_NAME 119 ": Allocated %ld bytes vram area at 0x%08lx\n", 120 va->size, va->phys); 121 122 return 0; 123} 124 125/* 126 * Free a contiguous vram area and reset its linear kernel map 127 * mapping type. 128 */ 129 130static void vmlfb_free_vram_area(struct vram_area *va) 131{ 132 unsigned long j; 133 134 if (va->logical) { 135 136 /* 137 * Reset the linear kernel map caching policy. 138 */ 139 140 set_pages_wb(virt_to_page(va->logical), 141 va->size >> PAGE_SHIFT); 142 143 /* 144 * Decrease the usage count on the pages we've used 145 * to compensate for upping when allocating. 146 */ 147 148 for (j = va->logical; j < va->logical + va->size; 149 j += PAGE_SIZE) { 150 (void)put_page_testzero(virt_to_page(j)); 151 } 152 153 printk(KERN_DEBUG MODULE_NAME 154 ": Freeing %ld bytes vram area at 0x%08lx\n", 155 va->size, va->phys); 156 free_pages(va->logical, va->order); 157 158 va->logical = 0; 159 } 160} 161 162/* 163 * Free allocated vram. 164 */ 165 166static void vmlfb_free_vram(struct vml_info *vinfo) 167{ 168 int i; 169 170 for (i = 0; i < vinfo->num_areas; ++i) { 171 vmlfb_free_vram_area(&vinfo->vram[i]); 172 } 173 vinfo->num_areas = 0; 174} 175 176/* 177 * Allocate vram. Currently we try to allocate contiguous areas from the 178 * __GFP_DMA zone and puzzle them together. A better approach would be to 179 * allocate one contiguous area for scanout and use one-page allocations for 180 * offscreen areas. This requires user-space and GPU virtual mappings. 181 */ 182 183static int vmlfb_alloc_vram(struct vml_info *vinfo, 184 size_t requested, 185 size_t min_total, size_t min_contig) 186{ 187 int i, j; 188 int order; 189 int contiguous; 190 int err; 191 struct vram_area *va; 192 struct vram_area *va2; 193 194 vinfo->num_areas = 0; 195 for (i = 0; i < VML_VRAM_AREAS; ++i) { 196 va = &vinfo->vram[i]; 197 order = 0; 198 199 while (requested > (PAGE_SIZE << order) && order < MAX_ORDER) 200 order++; 201 202 err = vmlfb_alloc_vram_area(va, order, 0); 203 204 if (err) 205 break; 206 207 if (i == 0) { 208 vinfo->vram_start = va->phys; 209 vinfo->vram_logical = (void __iomem *) va->logical; 210 vinfo->vram_contig_size = va->size; 211 vinfo->num_areas = 1; 212 } else { 213 contiguous = 0; 214 215 for (j = 0; j < i; ++j) { 216 va2 = &vinfo->vram[j]; 217 if (va->phys + va->size == va2->phys || 218 va2->phys + va2->size == va->phys) { 219 contiguous = 1; 220 break; 221 } 222 } 223 224 if (contiguous) { 225 vinfo->num_areas++; 226 if (va->phys < vinfo->vram_start) { 227 vinfo->vram_start = va->phys; 228 vinfo->vram_logical = 229 (void __iomem *)va->logical; 230 } 231 vinfo->vram_contig_size += va->size; 232 } else { 233 vmlfb_free_vram_area(va); 234 break; 235 } 236 } 237 238 if (requested < va->size) 239 break; 240 else 241 requested -= va->size; 242 } 243 244 if (vinfo->vram_contig_size > min_total && 245 vinfo->vram_contig_size > min_contig) { 246 247 printk(KERN_DEBUG MODULE_NAME 248 ": Contiguous vram: %ld bytes at physical 0x%08lx.\n", 249 (unsigned long)vinfo->vram_contig_size, 250 (unsigned long)vinfo->vram_start); 251 252 return 0; 253 } 254 255 printk(KERN_ERR MODULE_NAME 256 ": Could not allocate requested minimal amount of vram.\n"); 257 258 vmlfb_free_vram(vinfo); 259 260 return -ENOMEM; 261} 262 263/* 264 * Find the GPU to use with our display controller. 265 */ 266 267static int vmlfb_get_gpu(struct vml_par *par) 268{ 269 mutex_lock(&vml_mutex); 270 271 par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL); 272 273 if (!par->gpu) { 274 mutex_unlock(&vml_mutex); 275 return -ENODEV; 276 } 277 278 mutex_unlock(&vml_mutex); 279 280 if (pci_enable_device(par->gpu) < 0) { 281 pci_dev_put(par->gpu); 282 return -ENODEV; 283 } 284 285 return 0; 286} 287 288/* 289 * Find a contiguous vram area that contains a given offset from vram start. 290 */ 291static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset) 292{ 293 unsigned long aoffset; 294 unsigned i; 295 296 for (i = 0; i < vinfo->num_areas; ++i) { 297 aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start); 298 299 if (aoffset < vinfo->vram[i].size) { 300 return 0; 301 } 302 } 303 304 return -EINVAL; 305} 306 307/* 308 * Remap the MMIO register spaces of the VDC and the GPU. 309 */ 310 311static int vmlfb_enable_mmio(struct vml_par *par) 312{ 313 int err; 314 315 par->vdc_mem_base = pci_resource_start(par->vdc, 0); 316 par->vdc_mem_size = pci_resource_len(par->vdc, 0); 317 if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) { 318 printk(KERN_ERR MODULE_NAME 319 ": Could not claim display controller MMIO.\n"); 320 return -EBUSY; 321 } 322 par->vdc_mem = ioremap(par->vdc_mem_base, par->vdc_mem_size); 323 if (par->vdc_mem == NULL) { 324 printk(KERN_ERR MODULE_NAME 325 ": Could not map display controller MMIO.\n"); 326 err = -ENOMEM; 327 goto out_err_0; 328 } 329 330 par->gpu_mem_base = pci_resource_start(par->gpu, 0); 331 par->gpu_mem_size = pci_resource_len(par->gpu, 0); 332 if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) { 333 printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n"); 334 err = -EBUSY; 335 goto out_err_1; 336 } 337 par->gpu_mem = ioremap(par->gpu_mem_base, par->gpu_mem_size); 338 if (par->gpu_mem == NULL) { 339 printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n"); 340 err = -ENOMEM; 341 goto out_err_2; 342 } 343 344 return 0; 345 346out_err_2: 347 release_mem_region(par->gpu_mem_base, par->gpu_mem_size); 348out_err_1: 349 iounmap(par->vdc_mem); 350out_err_0: 351 release_mem_region(par->vdc_mem_base, par->vdc_mem_size); 352 return err; 353} 354 355/* 356 * Unmap the VDC and GPU register spaces. 357 */ 358 359static void vmlfb_disable_mmio(struct vml_par *par) 360{ 361 iounmap(par->gpu_mem); 362 release_mem_region(par->gpu_mem_base, par->gpu_mem_size); 363 iounmap(par->vdc_mem); 364 release_mem_region(par->vdc_mem_base, par->vdc_mem_size); 365} 366 367/* 368 * Release and uninit the VDC and GPU. 369 */ 370 371static void vmlfb_release_devices(struct vml_par *par) 372{ 373 if (atomic_dec_and_test(&par->refcount)) { 374 pci_disable_device(par->gpu); 375 pci_disable_device(par->vdc); 376 } 377} 378 379/* 380 * Free up allocated resources for a device. 381 */ 382 383static void vml_pci_remove(struct pci_dev *dev) 384{ 385 struct fb_info *info; 386 struct vml_info *vinfo; 387 struct vml_par *par; 388 389 info = pci_get_drvdata(dev); 390 if (info) { 391 vinfo = container_of(info, struct vml_info, info); 392 par = vinfo->par; 393 mutex_lock(&vml_mutex); 394 unregister_framebuffer(info); 395 fb_dealloc_cmap(&info->cmap); 396 vmlfb_free_vram(vinfo); 397 vmlfb_disable_mmio(par); 398 vmlfb_release_devices(par); 399 kfree(vinfo); 400 kfree(par); 401 mutex_unlock(&vml_mutex); 402 } 403} 404 405static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var) 406{ 407 switch (var->bits_per_pixel) { 408 case 16: 409 var->blue.offset = 0; 410 var->blue.length = 5; 411 var->green.offset = 5; 412 var->green.length = 5; 413 var->red.offset = 10; 414 var->red.length = 5; 415 var->transp.offset = 15; 416 var->transp.length = 1; 417 break; 418 case 32: 419 var->blue.offset = 0; 420 var->blue.length = 8; 421 var->green.offset = 8; 422 var->green.length = 8; 423 var->red.offset = 16; 424 var->red.length = 8; 425 var->transp.offset = 24; 426 var->transp.length = 0; 427 break; 428 default: 429 break; 430 } 431 432 var->blue.msb_right = var->green.msb_right = 433 var->red.msb_right = var->transp.msb_right = 0; 434} 435 436/* 437 * Device initialization. 438 * We initialize one vml_par struct per device and one vml_info 439 * struct per pipe. Currently we have only one pipe. 440 */ 441 442static int vml_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) 443{ 444 struct vml_info *vinfo; 445 struct fb_info *info; 446 struct vml_par *par; 447 int err = 0; 448 449 par = kzalloc(sizeof(*par), GFP_KERNEL); 450 if (par == NULL) 451 return -ENOMEM; 452 453 vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL); 454 if (vinfo == NULL) { 455 err = -ENOMEM; 456 goto out_err_0; 457 } 458 459 vinfo->par = par; 460 par->vdc = dev; 461 atomic_set(&par->refcount, 1); 462 463 switch (id->device) { 464 case VML_DEVICE_VDC: 465 if ((err = vmlfb_get_gpu(par))) 466 goto out_err_1; 467 pci_set_drvdata(dev, &vinfo->info); 468 break; 469 default: 470 err = -ENODEV; 471 goto out_err_1; 472 } 473 474 info = &vinfo->info; 475 info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK; 476 477 err = vmlfb_enable_mmio(par); 478 if (err) 479 goto out_err_2; 480 481 err = vmlfb_alloc_vram(vinfo, vml_mem_requested, 482 vml_mem_contig, vml_mem_min); 483 if (err) 484 goto out_err_3; 485 486 strcpy(info->fix.id, "Vermilion Range"); 487 info->fix.mmio_start = 0; 488 info->fix.mmio_len = 0; 489 info->fix.smem_start = vinfo->vram_start; 490 info->fix.smem_len = vinfo->vram_contig_size; 491 info->fix.type = FB_TYPE_PACKED_PIXELS; 492 info->fix.visual = FB_VISUAL_TRUECOLOR; 493 info->fix.ypanstep = 1; 494 info->fix.xpanstep = 1; 495 info->fix.ywrapstep = 0; 496 info->fix.accel = FB_ACCEL_NONE; 497 info->screen_base = vinfo->vram_logical; 498 info->pseudo_palette = vinfo->pseudo_palette; 499 info->par = par; 500 info->fbops = &vmlfb_ops; 501 info->device = &dev->dev; 502 503 INIT_LIST_HEAD(&vinfo->head); 504 vinfo->pipe_disabled = 1; 505 vinfo->cur_blank_mode = FB_BLANK_UNBLANK; 506 507 info->var.grayscale = 0; 508 info->var.bits_per_pixel = 16; 509 vmlfb_set_pref_pixel_format(&info->var); 510 511 if (!fb_find_mode 512 (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) { 513 printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n"); 514 } 515 516 if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) { 517 err = -ENOMEM; 518 goto out_err_4; 519 } 520 521 err = register_framebuffer(info); 522 if (err) { 523 printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n"); 524 goto out_err_5; 525 } 526 527 printk("Initialized vmlfb\n"); 528 529 return 0; 530 531out_err_5: 532 fb_dealloc_cmap(&info->cmap); 533out_err_4: 534 vmlfb_free_vram(vinfo); 535out_err_3: 536 vmlfb_disable_mmio(par); 537out_err_2: 538 vmlfb_release_devices(par); 539out_err_1: 540 kfree(vinfo); 541out_err_0: 542 kfree(par); 543 return err; 544} 545 546static int vmlfb_open(struct fb_info *info, int user) 547{ 548 /* 549 * Save registers here? 550 */ 551 return 0; 552} 553 554static int vmlfb_release(struct fb_info *info, int user) 555{ 556 /* 557 * Restore registers here. 558 */ 559 560 return 0; 561} 562 563static int vml_nearest_clock(int clock) 564{ 565 566 int i; 567 int cur_index; 568 int cur_diff; 569 int diff; 570 571 cur_index = 0; 572 cur_diff = clock - vml_clocks[0]; 573 cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff; 574 for (i = 1; i < vml_num_clocks; ++i) { 575 diff = clock - vml_clocks[i]; 576 diff = (diff < 0) ? -diff : diff; 577 if (diff < cur_diff) { 578 cur_index = i; 579 cur_diff = diff; 580 } 581 } 582 return vml_clocks[cur_index]; 583} 584 585static int vmlfb_check_var_locked(struct fb_var_screeninfo *var, 586 struct vml_info *vinfo) 587{ 588 u32 pitch; 589 u64 mem; 590 int nearest_clock; 591 int clock; 592 int clock_diff; 593 struct fb_var_screeninfo v; 594 595 v = *var; 596 clock = PICOS2KHZ(var->pixclock); 597 598 if (subsys && subsys->nearest_clock) { 599 nearest_clock = subsys->nearest_clock(subsys, clock); 600 } else { 601 nearest_clock = vml_nearest_clock(clock); 602 } 603 604 /* 605 * Accept a 20% diff. 606 */ 607 608 clock_diff = nearest_clock - clock; 609 clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff; 610 if (clock_diff > clock / 5) { 611#if 0 612 printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock); 613#endif 614 return -EINVAL; 615 } 616 617 v.pixclock = KHZ2PICOS(nearest_clock); 618 619 if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) { 620 printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n"); 621 return -EINVAL; 622 } 623 if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) { 624 printk(KERN_DEBUG MODULE_NAME 625 ": Virtual resolution failure.\n"); 626 return -EINVAL; 627 } 628 switch (v.bits_per_pixel) { 629 case 0 ... 16: 630 v.bits_per_pixel = 16; 631 break; 632 case 17 ... 32: 633 v.bits_per_pixel = 32; 634 break; 635 default: 636 printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n", 637 var->bits_per_pixel); 638 return -EINVAL; 639 } 640 641 pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40); 642 mem = (u64)pitch * var->yres_virtual; 643 if (mem > vinfo->vram_contig_size) { 644 return -ENOMEM; 645 } 646 647 switch (v.bits_per_pixel) { 648 case 16: 649 if (var->blue.offset != 0 || 650 var->blue.length != 5 || 651 var->green.offset != 5 || 652 var->green.length != 5 || 653 var->red.offset != 10 || 654 var->red.length != 5 || 655 var->transp.offset != 15 || var->transp.length != 1) { 656 vmlfb_set_pref_pixel_format(&v); 657 } 658 break; 659 case 32: 660 if (var->blue.offset != 0 || 661 var->blue.length != 8 || 662 var->green.offset != 8 || 663 var->green.length != 8 || 664 var->red.offset != 16 || 665 var->red.length != 8 || 666 (var->transp.length != 0 && var->transp.length != 8) || 667 (var->transp.length == 8 && var->transp.offset != 24)) { 668 vmlfb_set_pref_pixel_format(&v); 669 } 670 break; 671 default: 672 return -EINVAL; 673 } 674 675 *var = v; 676 677 return 0; 678} 679 680static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) 681{ 682 struct vml_info *vinfo = container_of(info, struct vml_info, info); 683 int ret; 684 685 mutex_lock(&vml_mutex); 686 ret = vmlfb_check_var_locked(var, vinfo); 687 mutex_unlock(&vml_mutex); 688 689 return ret; 690} 691 692static void vml_wait_vblank(struct vml_info *vinfo) 693{ 694 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */ 695 mdelay(20); 696} 697 698static void vmlfb_disable_pipe(struct vml_info *vinfo) 699{ 700 struct vml_par *par = vinfo->par; 701 702 /* Disable the MDVO pad */ 703 VML_WRITE32(par, VML_RCOMPSTAT, 0); 704 while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ; 705 706 /* Disable display planes */ 707 VML_WRITE32(par, VML_DSPCCNTR, 708 VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE); 709 (void)VML_READ32(par, VML_DSPCCNTR); 710 /* Wait for vblank for the disable to take effect */ 711 vml_wait_vblank(vinfo); 712 713 /* Next, disable display pipes */ 714 VML_WRITE32(par, VML_PIPEACONF, 0); 715 (void)VML_READ32(par, VML_PIPEACONF); 716 717 vinfo->pipe_disabled = 1; 718} 719 720#ifdef VERMILION_DEBUG 721static void vml_dump_regs(struct vml_info *vinfo) 722{ 723 struct vml_par *par = vinfo->par; 724 725 printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n"); 726 printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A : 0x%08x\n", 727 (unsigned)VML_READ32(par, VML_HTOTAL_A)); 728 printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A : 0x%08x\n", 729 (unsigned)VML_READ32(par, VML_HBLANK_A)); 730 printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A : 0x%08x\n", 731 (unsigned)VML_READ32(par, VML_HSYNC_A)); 732 printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A : 0x%08x\n", 733 (unsigned)VML_READ32(par, VML_VTOTAL_A)); 734 printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A : 0x%08x\n", 735 (unsigned)VML_READ32(par, VML_VBLANK_A)); 736 printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A : 0x%08x\n", 737 (unsigned)VML_READ32(par, VML_VSYNC_A)); 738 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE : 0x%08x\n", 739 (unsigned)VML_READ32(par, VML_DSPCSTRIDE)); 740 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE : 0x%08x\n", 741 (unsigned)VML_READ32(par, VML_DSPCSIZE)); 742 printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS : 0x%08x\n", 743 (unsigned)VML_READ32(par, VML_DSPCPOS)); 744 printk(KERN_DEBUG MODULE_NAME ": \tDSPARB : 0x%08x\n", 745 (unsigned)VML_READ32(par, VML_DSPARB)); 746 printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR : 0x%08x\n", 747 (unsigned)VML_READ32(par, VML_DSPCADDR)); 748 printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A : 0x%08x\n", 749 (unsigned)VML_READ32(par, VML_BCLRPAT_A)); 750 printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A : 0x%08x\n", 751 (unsigned)VML_READ32(par, VML_CANVSCLR_A)); 752 printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC : 0x%08x\n", 753 (unsigned)VML_READ32(par, VML_PIPEASRC)); 754 printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF : 0x%08x\n", 755 (unsigned)VML_READ32(par, VML_PIPEACONF)); 756 printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR : 0x%08x\n", 757 (unsigned)VML_READ32(par, VML_DSPCCNTR)); 758 printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT : 0x%08x\n", 759 (unsigned)VML_READ32(par, VML_RCOMPSTAT)); 760 printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n"); 761} 762#endif 763 764static int vmlfb_set_par_locked(struct vml_info *vinfo) 765{ 766 struct vml_par *par = vinfo->par; 767 struct fb_info *info = &vinfo->info; 768 struct fb_var_screeninfo *var = &info->var; 769 u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end; 770 u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end; 771 u32 dspcntr; 772 int clock; 773 774 vinfo->bytes_per_pixel = var->bits_per_pixel >> 3; 775 vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40); 776 info->fix.line_length = vinfo->stride; 777 778 if (!subsys) 779 return 0; 780 781 htotal = 782 var->xres + var->right_margin + var->hsync_len + var->left_margin; 783 hactive = var->xres; 784 hblank_start = var->xres; 785 hblank_end = htotal; 786 hsync_start = hactive + var->right_margin; 787 hsync_end = hsync_start + var->hsync_len; 788 789 vtotal = 790 var->yres + var->lower_margin + var->vsync_len + var->upper_margin; 791 vactive = var->yres; 792 vblank_start = var->yres; 793 vblank_end = vtotal; 794 vsync_start = vactive + var->lower_margin; 795 vsync_end = vsync_start + var->vsync_len; 796 797 dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS; 798 clock = PICOS2KHZ(var->pixclock); 799 800 if (subsys->nearest_clock) { 801 clock = subsys->nearest_clock(subsys, clock); 802 } else { 803 clock = vml_nearest_clock(clock); 804 } 805 printk(KERN_DEBUG MODULE_NAME 806 ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal, 807 ((clock / htotal) * 1000) / vtotal); 808 809 switch (var->bits_per_pixel) { 810 case 16: 811 dspcntr |= VML_GFX_ARGB1555; 812 break; 813 case 32: 814 if (var->transp.length == 8) 815 dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT; 816 else 817 dspcntr |= VML_GFX_RGB0888; 818 break; 819 default: 820 return -EINVAL; 821 } 822 823 vmlfb_disable_pipe(vinfo); 824 mb(); 825 826 if (subsys->set_clock) 827 subsys->set_clock(subsys, clock); 828 else 829 return -EINVAL; 830 831 VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1)); 832 VML_WRITE32(par, VML_HBLANK_A, 833 ((hblank_end - 1) << 16) | (hblank_start - 1)); 834 VML_WRITE32(par, VML_HSYNC_A, 835 ((hsync_end - 1) << 16) | (hsync_start - 1)); 836 VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1)); 837 VML_WRITE32(par, VML_VBLANK_A, 838 ((vblank_end - 1) << 16) | (vblank_start - 1)); 839 VML_WRITE32(par, VML_VSYNC_A, 840 ((vsync_end - 1) << 16) | (vsync_start - 1)); 841 VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride); 842 VML_WRITE32(par, VML_DSPCSIZE, 843 ((var->yres - 1) << 16) | (var->xres - 1)); 844 VML_WRITE32(par, VML_DSPCPOS, 0x00000000); 845 VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT); 846 VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000); 847 VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000); 848 VML_WRITE32(par, VML_PIPEASRC, 849 ((var->xres - 1) << 16) | (var->yres - 1)); 850 851 wmb(); 852 VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE); 853 wmb(); 854 VML_WRITE32(par, VML_DSPCCNTR, dspcntr); 855 wmb(); 856 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start + 857 var->yoffset * vinfo->stride + 858 var->xoffset * vinfo->bytes_per_pixel); 859 860 VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE); 861 862 while (!(VML_READ32(par, VML_RCOMPSTAT) & 863 (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ; 864 865 vinfo->pipe_disabled = 0; 866#ifdef VERMILION_DEBUG 867 vml_dump_regs(vinfo); 868#endif 869 870 return 0; 871} 872 873static int vmlfb_set_par(struct fb_info *info) 874{ 875 struct vml_info *vinfo = container_of(info, struct vml_info, info); 876 int ret; 877 878 mutex_lock(&vml_mutex); 879 list_move(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode); 880 ret = vmlfb_set_par_locked(vinfo); 881 882 mutex_unlock(&vml_mutex); 883 return ret; 884} 885 886static int vmlfb_blank_locked(struct vml_info *vinfo) 887{ 888 struct vml_par *par = vinfo->par; 889 u32 cur = VML_READ32(par, VML_PIPEACONF); 890 891 switch (vinfo->cur_blank_mode) { 892 case FB_BLANK_UNBLANK: 893 if (vinfo->pipe_disabled) { 894 vmlfb_set_par_locked(vinfo); 895 } 896 VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER); 897 (void)VML_READ32(par, VML_PIPEACONF); 898 break; 899 case FB_BLANK_NORMAL: 900 if (vinfo->pipe_disabled) { 901 vmlfb_set_par_locked(vinfo); 902 } 903 VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER); 904 (void)VML_READ32(par, VML_PIPEACONF); 905 break; 906 case FB_BLANK_VSYNC_SUSPEND: 907 case FB_BLANK_HSYNC_SUSPEND: 908 if (!vinfo->pipe_disabled) { 909 vmlfb_disable_pipe(vinfo); 910 } 911 break; 912 case FB_BLANK_POWERDOWN: 913 if (!vinfo->pipe_disabled) { 914 vmlfb_disable_pipe(vinfo); 915 } 916 break; 917 default: 918 return -EINVAL; 919 } 920 921 return 0; 922} 923 924static int vmlfb_blank(int blank_mode, struct fb_info *info) 925{ 926 struct vml_info *vinfo = container_of(info, struct vml_info, info); 927 int ret; 928 929 mutex_lock(&vml_mutex); 930 vinfo->cur_blank_mode = blank_mode; 931 ret = vmlfb_blank_locked(vinfo); 932 mutex_unlock(&vml_mutex); 933 return ret; 934} 935 936static int vmlfb_pan_display(struct fb_var_screeninfo *var, 937 struct fb_info *info) 938{ 939 struct vml_info *vinfo = container_of(info, struct vml_info, info); 940 struct vml_par *par = vinfo->par; 941 942 mutex_lock(&vml_mutex); 943 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start + 944 var->yoffset * vinfo->stride + 945 var->xoffset * vinfo->bytes_per_pixel); 946 (void)VML_READ32(par, VML_DSPCADDR); 947 mutex_unlock(&vml_mutex); 948 949 return 0; 950} 951 952static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 953 u_int transp, struct fb_info *info) 954{ 955 u32 v; 956 957 if (regno >= 16) 958 return -EINVAL; 959 960 if (info->var.grayscale) { 961 red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8; 962 } 963 964 if (info->fix.visual != FB_VISUAL_TRUECOLOR) 965 return -EINVAL; 966 967 red = VML_TOHW(red, info->var.red.length); 968 blue = VML_TOHW(blue, info->var.blue.length); 969 green = VML_TOHW(green, info->var.green.length); 970 transp = VML_TOHW(transp, info->var.transp.length); 971 972 v = (red << info->var.red.offset) | 973 (green << info->var.green.offset) | 974 (blue << info->var.blue.offset) | 975 (transp << info->var.transp.offset); 976 977 switch (info->var.bits_per_pixel) { 978 case 16: 979 ((u32 *) info->pseudo_palette)[regno] = v; 980 break; 981 case 24: 982 case 32: 983 ((u32 *) info->pseudo_palette)[regno] = v; 984 break; 985 } 986 return 0; 987} 988 989static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma) 990{ 991 struct vml_info *vinfo = container_of(info, struct vml_info, info); 992 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 993 int ret; 994 unsigned long prot; 995 996 ret = vmlfb_vram_offset(vinfo, offset); 997 if (ret) 998 return -EINVAL; 999 1000 prot = pgprot_val(vma->vm_page_prot) & ~_PAGE_CACHE_MASK; 1001 pgprot_val(vma->vm_page_prot) = 1002 prot | cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS); 1003 1004 return vm_iomap_memory(vma, vinfo->vram_start, 1005 vinfo->vram_contig_size); 1006} 1007 1008static int vmlfb_sync(struct fb_info *info) 1009{ 1010 return 0; 1011} 1012 1013static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor) 1014{ 1015 return -EINVAL; /* just to force soft_cursor() call */ 1016} 1017 1018static struct fb_ops vmlfb_ops = { 1019 .owner = THIS_MODULE, 1020 .fb_open = vmlfb_open, 1021 .fb_release = vmlfb_release, 1022 .fb_check_var = vmlfb_check_var, 1023 .fb_set_par = vmlfb_set_par, 1024 .fb_blank = vmlfb_blank, 1025 .fb_pan_display = vmlfb_pan_display, 1026 .fb_fillrect = cfb_fillrect, 1027 .fb_copyarea = cfb_copyarea, 1028 .fb_imageblit = cfb_imageblit, 1029 .fb_cursor = vmlfb_cursor, 1030 .fb_sync = vmlfb_sync, 1031 .fb_mmap = vmlfb_mmap, 1032 .fb_setcolreg = vmlfb_setcolreg 1033}; 1034 1035static const struct pci_device_id vml_ids[] = { 1036 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)}, 1037 {0} 1038}; 1039 1040static struct pci_driver vmlfb_pci_driver = { 1041 .name = "vmlfb", 1042 .id_table = vml_ids, 1043 .probe = vml_pci_probe, 1044 .remove = vml_pci_remove, 1045}; 1046 1047static void __exit vmlfb_cleanup(void) 1048{ 1049 pci_unregister_driver(&vmlfb_pci_driver); 1050} 1051 1052static int __init vmlfb_init(void) 1053{ 1054 1055#ifndef MODULE 1056 char *option = NULL; 1057 1058 if (fb_get_options(MODULE_NAME, &option)) 1059 return -ENODEV; 1060#endif 1061 1062 printk(KERN_DEBUG MODULE_NAME ": initializing\n"); 1063 mutex_init(&vml_mutex); 1064 INIT_LIST_HEAD(&global_no_mode); 1065 INIT_LIST_HEAD(&global_has_mode); 1066 1067 return pci_register_driver(&vmlfb_pci_driver); 1068} 1069 1070int vmlfb_register_subsys(struct vml_sys *sys) 1071{ 1072 struct vml_info *entry; 1073 struct list_head *list; 1074 u32 save_activate; 1075 1076 mutex_lock(&vml_mutex); 1077 if (subsys != NULL) { 1078 subsys->restore(subsys); 1079 } 1080 subsys = sys; 1081 subsys->save(subsys); 1082 1083 /* 1084 * We need to restart list traversal for each item, since we 1085 * release the list mutex in the loop. 1086 */ 1087 1088 list = global_no_mode.next; 1089 while (list != &global_no_mode) { 1090 list_del_init(list); 1091 entry = list_entry(list, struct vml_info, head); 1092 1093 /* 1094 * First, try the current mode which might not be 1095 * completely validated with respect to the pixel clock. 1096 */ 1097 1098 if (!vmlfb_check_var_locked(&entry->info.var, entry)) { 1099 vmlfb_set_par_locked(entry); 1100 list_add_tail(list, &global_has_mode); 1101 } else { 1102 1103 /* 1104 * Didn't work. Try to find another mode, 1105 * that matches this subsys. 1106 */ 1107 1108 mutex_unlock(&vml_mutex); 1109 save_activate = entry->info.var.activate; 1110 entry->info.var.bits_per_pixel = 16; 1111 vmlfb_set_pref_pixel_format(&entry->info.var); 1112 if (fb_find_mode(&entry->info.var, 1113 &entry->info, 1114 vml_default_mode, NULL, 0, NULL, 16)) { 1115 entry->info.var.activate |= 1116 FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW; 1117 fb_set_var(&entry->info, &entry->info.var); 1118 } else { 1119 printk(KERN_ERR MODULE_NAME 1120 ": Sorry. no mode found for this subsys.\n"); 1121 } 1122 entry->info.var.activate = save_activate; 1123 mutex_lock(&vml_mutex); 1124 } 1125 vmlfb_blank_locked(entry); 1126 list = global_no_mode.next; 1127 } 1128 mutex_unlock(&vml_mutex); 1129 1130 printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n", 1131 subsys->name ? subsys->name : "unknown"); 1132 return 0; 1133} 1134 1135EXPORT_SYMBOL_GPL(vmlfb_register_subsys); 1136 1137void vmlfb_unregister_subsys(struct vml_sys *sys) 1138{ 1139 struct vml_info *entry, *next; 1140 1141 mutex_lock(&vml_mutex); 1142 if (subsys != sys) { 1143 mutex_unlock(&vml_mutex); 1144 return; 1145 } 1146 subsys->restore(subsys); 1147 subsys = NULL; 1148 list_for_each_entry_safe(entry, next, &global_has_mode, head) { 1149 printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n"); 1150 vmlfb_disable_pipe(entry); 1151 list_move_tail(&entry->head, &global_no_mode); 1152 } 1153 mutex_unlock(&vml_mutex); 1154} 1155 1156EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys); 1157 1158module_init(vmlfb_init); 1159module_exit(vmlfb_cleanup); 1160 1161MODULE_AUTHOR("Tungsten Graphics"); 1162MODULE_DESCRIPTION("Initialization of the Vermilion display devices"); 1163MODULE_VERSION("1.0.0"); 1164MODULE_LICENSE("GPL"); 1165