1/*
2 *  linux/drivers/video/pxafb.c
3 *
4 *  Copyright (C) 1999 Eric A. Thomas.
5 *  Copyright (C) 2004 Jean-Frederic Clere.
6 *  Copyright (C) 2004 Ian Campbell.
7 *  Copyright (C) 2004 Jeff Lackey.
8 *   Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 *  which in turn is
10 *   Based on acornfb.c Copyright (C) Russell King.
11 *
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License.  See the file COPYING in the main directory of this archive for
14 * more details.
15 *
16 *	        Intel PXA250/210 LCD Controller Frame Buffer Driver
17 *
18 * Please direct your questions and comments on this driver to the following
19 * email address:
20 *
21 *	linux-arm-kernel@lists.arm.linux.org.uk
22 *
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
24 *
25 *   Copyright (C) 2004, Intel Corporation
26 *
27 *     2003/08/27: <yu.tang@intel.com>
28 *     2004/03/10: <stanley.cai@intel.com>
29 *     2004/10/28: <yan.yin@intel.com>
30 *
31 *   Copyright (C) 2006-2008 Marvell International Ltd.
32 *   All Rights Reserved
33 */
34
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/kernel.h>
38#include <linux/sched.h>
39#include <linux/errno.h>
40#include <linux/string.h>
41#include <linux/interrupt.h>
42#include <linux/slab.h>
43#include <linux/mm.h>
44#include <linux/fb.h>
45#include <linux/delay.h>
46#include <linux/init.h>
47#include <linux/ioport.h>
48#include <linux/cpufreq.h>
49#include <linux/platform_device.h>
50#include <linux/dma-mapping.h>
51#include <linux/clk.h>
52#include <linux/err.h>
53#include <linux/completion.h>
54#include <linux/mutex.h>
55#include <linux/kthread.h>
56#include <linux/freezer.h>
57#include <linux/console.h>
58#include <linux/of_graph.h>
59#include <linux/regulator/consumer.h>
60#include <video/of_display_timing.h>
61#include <video/videomode.h>
62
63#include <mach/hardware.h>
64#include <asm/io.h>
65#include <asm/irq.h>
66#include <asm/div64.h>
67#include <mach/bitfield.h>
68#include <linux/platform_data/video-pxafb.h>
69
70/*
71 * Complain if VAR is out of range.
72 */
73#define DEBUG_VAR 1
74
75#include "pxafb.h"
76
77/* Bits which should not be set in machine configuration structures */
78#define LCCR0_INVALID_CONFIG_MASK	(LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
79					 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
80					 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
81
82#define LCCR3_INVALID_CONFIG_MASK	(LCCR3_HSP | LCCR3_VSP |\
83					 LCCR3_PCD | LCCR3_BPP(0xf))
84
85static int pxafb_activate_var(struct fb_var_screeninfo *var,
86				struct pxafb_info *);
87static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
88static void setup_base_frame(struct pxafb_info *fbi,
89                             struct fb_var_screeninfo *var, int branch);
90static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
91			   unsigned long offset, size_t size);
92
93static unsigned long video_mem_size = 0;
94
95static inline unsigned long
96lcd_readl(struct pxafb_info *fbi, unsigned int off)
97{
98	return __raw_readl(fbi->mmio_base + off);
99}
100
101static inline void
102lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
103{
104	__raw_writel(val, fbi->mmio_base + off);
105}
106
107static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
108{
109	unsigned long flags;
110
111	local_irq_save(flags);
112	/*
113	 * We need to handle two requests being made at the same time.
114	 * There are two important cases:
115	 *  1. When we are changing VT (C_REENABLE) while unblanking
116	 *     (C_ENABLE) We must perform the unblanking, which will
117	 *     do our REENABLE for us.
118	 *  2. When we are blanking, but immediately unblank before
119	 *     we have blanked.  We do the "REENABLE" thing here as
120	 *     well, just to be sure.
121	 */
122	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
123		state = (u_int) -1;
124	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
125		state = C_REENABLE;
126
127	if (state != (u_int)-1) {
128		fbi->task_state = state;
129		schedule_work(&fbi->task);
130	}
131	local_irq_restore(flags);
132}
133
134static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
135{
136	chan &= 0xffff;
137	chan >>= 16 - bf->length;
138	return chan << bf->offset;
139}
140
141static int
142pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
143		       u_int trans, struct fb_info *info)
144{
145	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
146	u_int val;
147
148	if (regno >= fbi->palette_size)
149		return 1;
150
151	if (fbi->fb.var.grayscale) {
152		fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
153		return 0;
154	}
155
156	switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
157	case LCCR4_PAL_FOR_0:
158		val  = ((red   >>  0) & 0xf800);
159		val |= ((green >>  5) & 0x07e0);
160		val |= ((blue  >> 11) & 0x001f);
161		fbi->palette_cpu[regno] = val;
162		break;
163	case LCCR4_PAL_FOR_1:
164		val  = ((red   << 8) & 0x00f80000);
165		val |= ((green >> 0) & 0x0000fc00);
166		val |= ((blue  >> 8) & 0x000000f8);
167		((u32 *)(fbi->palette_cpu))[regno] = val;
168		break;
169	case LCCR4_PAL_FOR_2:
170		val  = ((red   << 8) & 0x00fc0000);
171		val |= ((green >> 0) & 0x0000fc00);
172		val |= ((blue  >> 8) & 0x000000fc);
173		((u32 *)(fbi->palette_cpu))[regno] = val;
174		break;
175	case LCCR4_PAL_FOR_3:
176		val  = ((red   << 8) & 0x00ff0000);
177		val |= ((green >> 0) & 0x0000ff00);
178		val |= ((blue  >> 8) & 0x000000ff);
179		((u32 *)(fbi->palette_cpu))[regno] = val;
180		break;
181	}
182
183	return 0;
184}
185
186static int
187pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
188		   u_int trans, struct fb_info *info)
189{
190	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
191	unsigned int val;
192	int ret = 1;
193
194	/*
195	 * If inverse mode was selected, invert all the colours
196	 * rather than the register number.  The register number
197	 * is what you poke into the framebuffer to produce the
198	 * colour you requested.
199	 */
200	if (fbi->cmap_inverse) {
201		red   = 0xffff - red;
202		green = 0xffff - green;
203		blue  = 0xffff - blue;
204	}
205
206	/*
207	 * If greyscale is true, then we convert the RGB value
208	 * to greyscale no matter what visual we are using.
209	 */
210	if (fbi->fb.var.grayscale)
211		red = green = blue = (19595 * red + 38470 * green +
212					7471 * blue) >> 16;
213
214	switch (fbi->fb.fix.visual) {
215	case FB_VISUAL_TRUECOLOR:
216		/*
217		 * 16-bit True Colour.  We encode the RGB value
218		 * according to the RGB bitfield information.
219		 */
220		if (regno < 16) {
221			u32 *pal = fbi->fb.pseudo_palette;
222
223			val  = chan_to_field(red, &fbi->fb.var.red);
224			val |= chan_to_field(green, &fbi->fb.var.green);
225			val |= chan_to_field(blue, &fbi->fb.var.blue);
226
227			pal[regno] = val;
228			ret = 0;
229		}
230		break;
231
232	case FB_VISUAL_STATIC_PSEUDOCOLOR:
233	case FB_VISUAL_PSEUDOCOLOR:
234		ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
235		break;
236	}
237
238	return ret;
239}
240
241/* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
242static inline int var_to_depth(struct fb_var_screeninfo *var)
243{
244	return var->red.length + var->green.length +
245		var->blue.length + var->transp.length;
246}
247
248/* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
249static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
250{
251	int bpp = -EINVAL;
252
253	switch (var->bits_per_pixel) {
254	case 1:  bpp = 0; break;
255	case 2:  bpp = 1; break;
256	case 4:  bpp = 2; break;
257	case 8:  bpp = 3; break;
258	case 16: bpp = 4; break;
259	case 24:
260		switch (var_to_depth(var)) {
261		case 18: bpp = 6; break; /* 18-bits/pixel packed */
262		case 19: bpp = 8; break; /* 19-bits/pixel packed */
263		case 24: bpp = 9; break;
264		}
265		break;
266	case 32:
267		switch (var_to_depth(var)) {
268		case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
269		case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
270		case 25: bpp = 10; break;
271		}
272		break;
273	}
274	return bpp;
275}
276
277/*
278 *  pxafb_var_to_lccr3():
279 *    Convert a bits per pixel value to the correct bit pattern for LCCR3
280 *
281 *  NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
282 *  implication of the acutal use of transparency bit,  which we handle it
283 *  here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
284 *  Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
285 *
286 *  Transparency for palette pixel formats is not supported at the moment.
287 */
288static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
289{
290	int bpp = pxafb_var_to_bpp(var);
291	uint32_t lccr3;
292
293	if (bpp < 0)
294		return 0;
295
296	lccr3 = LCCR3_BPP(bpp);
297
298	switch (var_to_depth(var)) {
299	case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
300	case 18: lccr3 |= LCCR3_PDFOR_3; break;
301	case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
302		 break;
303	case 19:
304	case 25: lccr3 |= LCCR3_PDFOR_0; break;
305	}
306	return lccr3;
307}
308
309#define SET_PIXFMT(v, r, g, b, t)				\
310({								\
311	(v)->transp.offset = (t) ? (r) + (g) + (b) : 0;		\
312	(v)->transp.length = (t) ? (t) : 0;			\
313	(v)->blue.length   = (b); (v)->blue.offset = 0;		\
314	(v)->green.length  = (g); (v)->green.offset = (b);	\
315	(v)->red.length    = (r); (v)->red.offset = (b) + (g);	\
316})
317
318/* set the RGBT bitfields of fb_var_screeninf according to
319 * var->bits_per_pixel and given depth
320 */
321static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
322{
323	if (depth == 0)
324		depth = var->bits_per_pixel;
325
326	if (var->bits_per_pixel < 16) {
327		/* indexed pixel formats */
328		var->red.offset    = 0; var->red.length    = 8;
329		var->green.offset  = 0; var->green.length  = 8;
330		var->blue.offset   = 0; var->blue.length   = 8;
331		var->transp.offset = 0; var->transp.length = 8;
332	}
333
334	switch (depth) {
335	case 16: var->transp.length ?
336		 SET_PIXFMT(var, 5, 5, 5, 1) :		/* RGBT555 */
337		 SET_PIXFMT(var, 5, 6, 5, 0); break;	/* RGB565 */
338	case 18: SET_PIXFMT(var, 6, 6, 6, 0); break;	/* RGB666 */
339	case 19: SET_PIXFMT(var, 6, 6, 6, 1); break;	/* RGBT666 */
340	case 24: var->transp.length ?
341		 SET_PIXFMT(var, 8, 8, 7, 1) :		/* RGBT887 */
342		 SET_PIXFMT(var, 8, 8, 8, 0); break;	/* RGB888 */
343	case 25: SET_PIXFMT(var, 8, 8, 8, 1); break;	/* RGBT888 */
344	}
345}
346
347#ifdef CONFIG_CPU_FREQ
348/*
349 *  pxafb_display_dma_period()
350 *    Calculate the minimum period (in picoseconds) between two DMA
351 *    requests for the LCD controller.  If we hit this, it means we're
352 *    doing nothing but LCD DMA.
353 */
354static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
355{
356	/*
357	 * Period = pixclock * bits_per_byte * bytes_per_transfer
358	 *              / memory_bits_per_pixel;
359	 */
360	return var->pixclock * 8 * 16 / var->bits_per_pixel;
361}
362#endif
363
364/*
365 * Select the smallest mode that allows the desired resolution to be
366 * displayed. If desired parameters can be rounded up.
367 */
368static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
369					     struct fb_var_screeninfo *var)
370{
371	struct pxafb_mode_info *mode = NULL;
372	struct pxafb_mode_info *modelist = mach->modes;
373	unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
374	unsigned int i;
375
376	for (i = 0; i < mach->num_modes; i++) {
377		if (modelist[i].xres >= var->xres &&
378		    modelist[i].yres >= var->yres &&
379		    modelist[i].xres < best_x &&
380		    modelist[i].yres < best_y &&
381		    modelist[i].bpp >= var->bits_per_pixel) {
382			best_x = modelist[i].xres;
383			best_y = modelist[i].yres;
384			mode = &modelist[i];
385		}
386	}
387
388	return mode;
389}
390
391static void pxafb_setmode(struct fb_var_screeninfo *var,
392			  struct pxafb_mode_info *mode)
393{
394	var->xres		= mode->xres;
395	var->yres		= mode->yres;
396	var->bits_per_pixel	= mode->bpp;
397	var->pixclock		= mode->pixclock;
398	var->hsync_len		= mode->hsync_len;
399	var->left_margin	= mode->left_margin;
400	var->right_margin	= mode->right_margin;
401	var->vsync_len		= mode->vsync_len;
402	var->upper_margin	= mode->upper_margin;
403	var->lower_margin	= mode->lower_margin;
404	var->sync		= mode->sync;
405	var->grayscale		= mode->cmap_greyscale;
406	var->transp.length	= mode->transparency;
407
408	/* set the initial RGBA bitfields */
409	pxafb_set_pixfmt(var, mode->depth);
410}
411
412static int pxafb_adjust_timing(struct pxafb_info *fbi,
413			       struct fb_var_screeninfo *var)
414{
415	int line_length;
416
417	var->xres = max_t(int, var->xres, MIN_XRES);
418	var->yres = max_t(int, var->yres, MIN_YRES);
419
420	if (!(fbi->lccr0 & LCCR0_LCDT)) {
421		clamp_val(var->hsync_len, 1, 64);
422		clamp_val(var->vsync_len, 1, 64);
423		clamp_val(var->left_margin,  1, 255);
424		clamp_val(var->right_margin, 1, 255);
425		clamp_val(var->upper_margin, 1, 255);
426		clamp_val(var->lower_margin, 1, 255);
427	}
428
429	/* make sure each line is aligned on word boundary */
430	line_length = var->xres * var->bits_per_pixel / 8;
431	line_length = ALIGN(line_length, 4);
432	var->xres = line_length * 8 / var->bits_per_pixel;
433
434	/* we don't support xpan, force xres_virtual to be equal to xres */
435	var->xres_virtual = var->xres;
436
437	if (var->accel_flags & FB_ACCELF_TEXT)
438		var->yres_virtual = fbi->fb.fix.smem_len / line_length;
439	else
440		var->yres_virtual = max(var->yres_virtual, var->yres);
441
442	/* check for limits */
443	if (var->xres > MAX_XRES || var->yres > MAX_YRES)
444		return -EINVAL;
445
446	if (var->yres > var->yres_virtual)
447		return -EINVAL;
448
449	return 0;
450}
451
452/*
453 *  pxafb_check_var():
454 *    Get the video params out of 'var'. If a value doesn't fit, round it up,
455 *    if it's too big, return -EINVAL.
456 *
457 *    Round up in the following order: bits_per_pixel, xres,
458 *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
459 *    bitfields, horizontal timing, vertical timing.
460 */
461static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
462{
463	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
464	struct pxafb_mach_info *inf = fbi->inf;
465	int err;
466
467	if (inf->fixed_modes) {
468		struct pxafb_mode_info *mode;
469
470		mode = pxafb_getmode(inf, var);
471		if (!mode)
472			return -EINVAL;
473		pxafb_setmode(var, mode);
474	}
475
476	/* do a test conversion to BPP fields to check the color formats */
477	err = pxafb_var_to_bpp(var);
478	if (err < 0)
479		return err;
480
481	pxafb_set_pixfmt(var, var_to_depth(var));
482
483	err = pxafb_adjust_timing(fbi, var);
484	if (err)
485		return err;
486
487#ifdef CONFIG_CPU_FREQ
488	pr_debug("pxafb: dma period = %d ps\n",
489		 pxafb_display_dma_period(var));
490#endif
491
492	return 0;
493}
494
495/*
496 * pxafb_set_par():
497 *	Set the user defined part of the display for the specified console
498 */
499static int pxafb_set_par(struct fb_info *info)
500{
501	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
502	struct fb_var_screeninfo *var = &info->var;
503
504	if (var->bits_per_pixel >= 16)
505		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
506	else if (!fbi->cmap_static)
507		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
508	else {
509		/*
510		 * Some people have weird ideas about wanting static
511		 * pseudocolor maps.  I suspect their user space
512		 * applications are broken.
513		 */
514		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
515	}
516
517	fbi->fb.fix.line_length = var->xres_virtual *
518				  var->bits_per_pixel / 8;
519	if (var->bits_per_pixel >= 16)
520		fbi->palette_size = 0;
521	else
522		fbi->palette_size = var->bits_per_pixel == 1 ?
523					4 : 1 << var->bits_per_pixel;
524
525	fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
526
527	if (fbi->fb.var.bits_per_pixel >= 16)
528		fb_dealloc_cmap(&fbi->fb.cmap);
529	else
530		fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
531
532	pxafb_activate_var(var, fbi);
533
534	return 0;
535}
536
537static int pxafb_pan_display(struct fb_var_screeninfo *var,
538			     struct fb_info *info)
539{
540	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
541	struct fb_var_screeninfo newvar;
542	int dma = DMA_MAX + DMA_BASE;
543
544	if (fbi->state != C_ENABLE)
545		return 0;
546
547	/* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
548	 * was passed in and copy the rest from the old screeninfo.
549	 */
550	memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
551	newvar.xoffset = var->xoffset;
552	newvar.yoffset = var->yoffset;
553	newvar.vmode &= ~FB_VMODE_YWRAP;
554	newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
555
556	setup_base_frame(fbi, &newvar, 1);
557
558	if (fbi->lccr0 & LCCR0_SDS)
559		lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
560
561	lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
562	return 0;
563}
564
565/*
566 * pxafb_blank():
567 *	Blank the display by setting all palette values to zero.  Note, the
568 * 	16 bpp mode does not really use the palette, so this will not
569 *      blank the display in all modes.
570 */
571static int pxafb_blank(int blank, struct fb_info *info)
572{
573	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
574	int i;
575
576	switch (blank) {
577	case FB_BLANK_POWERDOWN:
578	case FB_BLANK_VSYNC_SUSPEND:
579	case FB_BLANK_HSYNC_SUSPEND:
580	case FB_BLANK_NORMAL:
581		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
582		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
583			for (i = 0; i < fbi->palette_size; i++)
584				pxafb_setpalettereg(i, 0, 0, 0, 0, info);
585
586		pxafb_schedule_work(fbi, C_DISABLE);
587		/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
588		break;
589
590	case FB_BLANK_UNBLANK:
591		/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
592		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
593		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
594			fb_set_cmap(&fbi->fb.cmap, info);
595		pxafb_schedule_work(fbi, C_ENABLE);
596	}
597	return 0;
598}
599
600static const struct fb_ops pxafb_ops = {
601	.owner		= THIS_MODULE,
602	.fb_check_var	= pxafb_check_var,
603	.fb_set_par	= pxafb_set_par,
604	.fb_pan_display	= pxafb_pan_display,
605	.fb_setcolreg	= pxafb_setcolreg,
606	.fb_fillrect	= cfb_fillrect,
607	.fb_copyarea	= cfb_copyarea,
608	.fb_imageblit	= cfb_imageblit,
609	.fb_blank	= pxafb_blank,
610};
611
612#ifdef CONFIG_FB_PXA_OVERLAY
613static void overlay1fb_setup(struct pxafb_layer *ofb)
614{
615	int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
616	unsigned long start = ofb->video_mem_phys;
617	setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
618}
619
620/* Depending on the enable status of overlay1/2, the DMA should be
621 * updated from FDADRx (when disabled) or FBRx (when enabled).
622 */
623static void overlay1fb_enable(struct pxafb_layer *ofb)
624{
625	int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
626	uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
627
628	lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
629	lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
630	lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
631}
632
633static void overlay1fb_disable(struct pxafb_layer *ofb)
634{
635	uint32_t lccr5;
636
637	if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN))
638		return;
639
640	lccr5 = lcd_readl(ofb->fbi, LCCR5);
641
642	lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
643
644	lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
645	lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
646	lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
647
648	if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
649		pr_warn("%s: timeout disabling overlay1\n", __func__);
650
651	lcd_writel(ofb->fbi, LCCR5, lccr5);
652}
653
654static void overlay2fb_setup(struct pxafb_layer *ofb)
655{
656	int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
657	unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
658
659	if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
660		size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
661		setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
662	} else {
663		size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
664		switch (pfor) {
665		case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
666		case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
667		case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
668		}
669		start[1] = start[0] + size;
670		start[2] = start[1] + size / div;
671		setup_frame_dma(ofb->fbi, DMA_OV2_Y,  -1, start[0], size);
672		setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
673		setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
674	}
675}
676
677static void overlay2fb_enable(struct pxafb_layer *ofb)
678{
679	int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
680	int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
681	uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y]  | (enabled ? 0x1 : 0);
682	uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
683	uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
684
685	if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
686		lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
687	else {
688		lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
689		lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
690		lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
691	}
692	lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
693	lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
694}
695
696static void overlay2fb_disable(struct pxafb_layer *ofb)
697{
698	uint32_t lccr5;
699
700	if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN))
701		return;
702
703	lccr5 = lcd_readl(ofb->fbi, LCCR5);
704
705	lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
706
707	lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
708	lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
709	lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y]  | 0x3);
710	lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
711	lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
712
713	if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
714		pr_warn("%s: timeout disabling overlay2\n", __func__);
715}
716
717static struct pxafb_layer_ops ofb_ops[] = {
718	[0] = {
719		.enable		= overlay1fb_enable,
720		.disable	= overlay1fb_disable,
721		.setup		= overlay1fb_setup,
722	},
723	[1] = {
724		.enable		= overlay2fb_enable,
725		.disable	= overlay2fb_disable,
726		.setup		= overlay2fb_setup,
727	},
728};
729
730static int overlayfb_open(struct fb_info *info, int user)
731{
732	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
733
734	/* no support for framebuffer console on overlay */
735	if (user == 0)
736		return -ENODEV;
737
738	if (ofb->usage++ == 0) {
739		/* unblank the base framebuffer */
740		console_lock();
741		fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
742		console_unlock();
743	}
744
745	return 0;
746}
747
748static int overlayfb_release(struct fb_info *info, int user)
749{
750	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
751
752	if (ofb->usage == 1) {
753		ofb->ops->disable(ofb);
754		ofb->fb.var.height	= -1;
755		ofb->fb.var.width	= -1;
756		ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0;
757		ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0;
758
759		ofb->usage--;
760	}
761	return 0;
762}
763
764static int overlayfb_check_var(struct fb_var_screeninfo *var,
765			       struct fb_info *info)
766{
767	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
768	struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
769	int xpos, ypos, pfor, bpp;
770
771	xpos = NONSTD_TO_XPOS(var->nonstd);
772	ypos = NONSTD_TO_YPOS(var->nonstd);
773	pfor = NONSTD_TO_PFOR(var->nonstd);
774
775	bpp = pxafb_var_to_bpp(var);
776	if (bpp < 0)
777		return -EINVAL;
778
779	/* no support for YUV format on overlay1 */
780	if (ofb->id == OVERLAY1 && pfor != 0)
781		return -EINVAL;
782
783	/* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
784	switch (pfor) {
785	case OVERLAY_FORMAT_RGB:
786		bpp = pxafb_var_to_bpp(var);
787		if (bpp < 0)
788			return -EINVAL;
789
790		pxafb_set_pixfmt(var, var_to_depth(var));
791		break;
792	case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
793	case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
794	case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
795	case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
796	default:
797		return -EINVAL;
798	}
799
800	/* each line must start at a 32-bit word boundary */
801	if ((xpos * bpp) % 32)
802		return -EINVAL;
803
804	/* xres must align on 32-bit word boundary */
805	var->xres = roundup(var->xres * bpp, 32) / bpp;
806
807	if ((xpos + var->xres > base_var->xres) ||
808	    (ypos + var->yres > base_var->yres))
809		return -EINVAL;
810
811	var->xres_virtual = var->xres;
812	var->yres_virtual = max(var->yres, var->yres_virtual);
813	return 0;
814}
815
816static int overlayfb_check_video_memory(struct pxafb_layer *ofb)
817{
818	struct fb_var_screeninfo *var = &ofb->fb.var;
819	int pfor = NONSTD_TO_PFOR(var->nonstd);
820	int size, bpp = 0;
821
822	switch (pfor) {
823	case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
824	case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
825	case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
826	case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
827	case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
828	}
829
830	ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
831
832	size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
833
834	if (ofb->video_mem) {
835		if (ofb->video_mem_size >= size)
836			return 0;
837	}
838	return -EINVAL;
839}
840
841static int overlayfb_set_par(struct fb_info *info)
842{
843	struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb);
844	struct fb_var_screeninfo *var = &info->var;
845	int xpos, ypos, pfor, bpp, ret;
846
847	ret = overlayfb_check_video_memory(ofb);
848	if (ret)
849		return ret;
850
851	bpp  = pxafb_var_to_bpp(var);
852	xpos = NONSTD_TO_XPOS(var->nonstd);
853	ypos = NONSTD_TO_YPOS(var->nonstd);
854	pfor = NONSTD_TO_PFOR(var->nonstd);
855
856	ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
857			  OVLxC1_BPP(bpp);
858	ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
859
860	if (ofb->id == OVERLAY2)
861		ofb->control[1] |= OVL2C2_PFOR(pfor);
862
863	ofb->ops->setup(ofb);
864	ofb->ops->enable(ofb);
865	return 0;
866}
867
868static const struct fb_ops overlay_fb_ops = {
869	.owner			= THIS_MODULE,
870	.fb_open		= overlayfb_open,
871	.fb_release		= overlayfb_release,
872	.fb_check_var 		= overlayfb_check_var,
873	.fb_set_par		= overlayfb_set_par,
874};
875
876static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb,
877			       int id)
878{
879	sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
880
881	ofb->fb.fix.type		= FB_TYPE_PACKED_PIXELS;
882	ofb->fb.fix.xpanstep		= 0;
883	ofb->fb.fix.ypanstep		= 1;
884
885	ofb->fb.var.activate		= FB_ACTIVATE_NOW;
886	ofb->fb.var.height		= -1;
887	ofb->fb.var.width		= -1;
888	ofb->fb.var.vmode		= FB_VMODE_NONINTERLACED;
889
890	ofb->fb.fbops			= &overlay_fb_ops;
891	ofb->fb.flags			= FBINFO_FLAG_DEFAULT;
892	ofb->fb.node			= -1;
893	ofb->fb.pseudo_palette		= NULL;
894
895	ofb->id = id;
896	ofb->ops = &ofb_ops[id];
897	ofb->usage = 0;
898	ofb->fbi = fbi;
899	init_completion(&ofb->branch_done);
900}
901
902static inline int pxafb_overlay_supported(void)
903{
904	if (cpu_is_pxa27x() || cpu_is_pxa3xx())
905		return 1;
906
907	return 0;
908}
909
910static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb,
911					  struct pxafb_layer *ofb)
912{
913	/* We assume that user will use at most video_mem_size for overlay fb,
914	 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
915	 */
916	ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size),
917		GFP_KERNEL | __GFP_ZERO);
918	if (ofb->video_mem == NULL)
919		return -ENOMEM;
920
921	ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
922	ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size);
923
924	mutex_lock(&ofb->fb.mm_lock);
925	ofb->fb.fix.smem_start	= ofb->video_mem_phys;
926	ofb->fb.fix.smem_len	= pxafb->video_mem_size;
927	mutex_unlock(&ofb->fb.mm_lock);
928
929	ofb->fb.screen_base	= ofb->video_mem;
930
931	return 0;
932}
933
934static void pxafb_overlay_init(struct pxafb_info *fbi)
935{
936	int i, ret;
937
938	if (!pxafb_overlay_supported())
939		return;
940
941	for (i = 0; i < 2; i++) {
942		struct pxafb_layer *ofb = &fbi->overlay[i];
943		init_pxafb_overlay(fbi, ofb, i);
944		ret = register_framebuffer(&ofb->fb);
945		if (ret) {
946			dev_err(fbi->dev, "failed to register overlay %d\n", i);
947			continue;
948		}
949		ret = pxafb_overlay_map_video_memory(fbi, ofb);
950		if (ret) {
951			dev_err(fbi->dev,
952				"failed to map video memory for overlay %d\n",
953				i);
954			unregister_framebuffer(&ofb->fb);
955			continue;
956		}
957		ofb->registered = 1;
958	}
959
960	/* mask all IU/BS/EOF/SOF interrupts */
961	lcd_writel(fbi, LCCR5, ~0);
962
963	pr_info("PXA Overlay driver loaded successfully!\n");
964}
965
966static void pxafb_overlay_exit(struct pxafb_info *fbi)
967{
968	int i;
969
970	if (!pxafb_overlay_supported())
971		return;
972
973	for (i = 0; i < 2; i++) {
974		struct pxafb_layer *ofb = &fbi->overlay[i];
975		if (ofb->registered) {
976			if (ofb->video_mem)
977				free_pages_exact(ofb->video_mem,
978					ofb->video_mem_size);
979			unregister_framebuffer(&ofb->fb);
980		}
981	}
982}
983#else
984static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
985static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
986#endif /* CONFIG_FB_PXA_OVERLAY */
987
988/*
989 * Calculate the PCD value from the clock rate (in picoseconds).
990 * We take account of the PPCR clock setting.
991 * From PXA Developer's Manual:
992 *
993 *   PixelClock =      LCLK
994 *                -------------
995 *                2 ( PCD + 1 )
996 *
997 *   PCD =      LCLK
998 *         ------------- - 1
999 *         2(PixelClock)
1000 *
1001 * Where:
1002 *   LCLK = LCD/Memory Clock
1003 *   PCD = LCCR3[7:0]
1004 *
1005 * PixelClock here is in Hz while the pixclock argument given is the
1006 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1007 *
1008 * The function get_lclk_frequency_10khz returns LCLK in units of
1009 * 10khz. Calling the result of this function lclk gives us the
1010 * following
1011 *
1012 *    PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1013 *          -------------------------------------- - 1
1014 *                          2
1015 *
1016 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1017 */
1018static inline unsigned int get_pcd(struct pxafb_info *fbi,
1019				   unsigned int pixclock)
1020{
1021	unsigned long long pcd;
1022
1023	/* FIXME: Need to take into account Double Pixel Clock mode
1024	 * (DPC) bit? or perhaps set it based on the various clock
1025	 * speeds */
1026	pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
1027	pcd *= pixclock;
1028	do_div(pcd, 100000000 * 2);
1029	/* no need for this, since we should subtract 1 anyway. they cancel */
1030	/* pcd += 1; */ /* make up for integer math truncations */
1031	return (unsigned int)pcd;
1032}
1033
1034/*
1035 * Some touchscreens need hsync information from the video driver to
1036 * function correctly. We export it here.  Note that 'hsync_time' and
1037 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1038 * of the hsync period in seconds.
1039 */
1040static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
1041{
1042	unsigned long htime;
1043
1044	if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
1045		fbi->hsync_time = 0;
1046		return;
1047	}
1048
1049	htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
1050
1051	fbi->hsync_time = htime;
1052}
1053
1054unsigned long pxafb_get_hsync_time(struct device *dev)
1055{
1056	struct pxafb_info *fbi = dev_get_drvdata(dev);
1057
1058	/* If display is blanked/suspended, hsync isn't active */
1059	if (!fbi || (fbi->state != C_ENABLE))
1060		return 0;
1061
1062	return fbi->hsync_time;
1063}
1064EXPORT_SYMBOL(pxafb_get_hsync_time);
1065
1066static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
1067			   unsigned long start, size_t size)
1068{
1069	struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1070	unsigned int dma_desc_off, pal_desc_off;
1071
1072	if (dma < 0 || dma >= DMA_MAX * 2)
1073		return -EINVAL;
1074
1075	dma_desc = &fbi->dma_buff->dma_desc[dma];
1076	dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1077
1078	dma_desc->fsadr = start;
1079	dma_desc->fidr  = 0;
1080	dma_desc->ldcmd = size;
1081
1082	if (pal < 0 || pal >= PAL_MAX * 2) {
1083		dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1084		fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1085	} else {
1086		pal_desc = &fbi->dma_buff->pal_desc[pal];
1087		pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1088
1089		pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1090		pal_desc->fidr  = 0;
1091
1092		if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1093			pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1094		else
1095			pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1096
1097		pal_desc->ldcmd |= LDCMD_PAL;
1098
1099		/* flip back and forth between palette and frame buffer */
1100		pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1101		dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1102		fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1103	}
1104
1105	return 0;
1106}
1107
1108static void setup_base_frame(struct pxafb_info *fbi,
1109                             struct fb_var_screeninfo *var,
1110                             int branch)
1111{
1112	struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1113	int nbytes, dma, pal, bpp = var->bits_per_pixel;
1114	unsigned long offset;
1115
1116	dma = DMA_BASE + (branch ? DMA_MAX : 0);
1117	pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1118
1119	nbytes = fix->line_length * var->yres;
1120	offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1121
1122	if (fbi->lccr0 & LCCR0_SDS) {
1123		nbytes = nbytes / 2;
1124		setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1125	}
1126
1127	setup_frame_dma(fbi, dma, pal, offset, nbytes);
1128}
1129
1130#ifdef CONFIG_FB_PXA_SMARTPANEL
1131static int setup_smart_dma(struct pxafb_info *fbi)
1132{
1133	struct pxafb_dma_descriptor *dma_desc;
1134	unsigned long dma_desc_off, cmd_buff_off;
1135
1136	dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1137	dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1138	cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1139
1140	dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1141	dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1142	dma_desc->fidr  = 0;
1143	dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1144
1145	fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1146	return 0;
1147}
1148
1149int pxafb_smart_flush(struct fb_info *info)
1150{
1151	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1152	uint32_t prsr;
1153	int ret = 0;
1154
1155	/* disable controller until all registers are set up */
1156	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1157
1158	/* 1. make it an even number of commands to align on 32-bit boundary
1159	 * 2. add the interrupt command to the end of the chain so we can
1160	 *    keep track of the end of the transfer
1161	 */
1162
1163	while (fbi->n_smart_cmds & 1)
1164		fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1165
1166	fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1167	fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1168	setup_smart_dma(fbi);
1169
1170	/* continue to execute next command */
1171	prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1172	lcd_writel(fbi, PRSR, prsr);
1173
1174	/* stop the processor in case it executed "wait for sync" cmd */
1175	lcd_writel(fbi, CMDCR, 0x0001);
1176
1177	/* don't send interrupts for fifo underruns on channel 6 */
1178	lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1179
1180	lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1181	lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1182	lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1183	lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1184	lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1185	lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1186
1187	/* begin sending */
1188	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1189
1190	if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1191		pr_warn("%s: timeout waiting for command done\n", __func__);
1192		ret = -ETIMEDOUT;
1193	}
1194
1195	/* quick disable */
1196	prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1197	lcd_writel(fbi, PRSR, prsr);
1198	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1199	lcd_writel(fbi, FDADR6, 0);
1200	fbi->n_smart_cmds = 0;
1201	return ret;
1202}
1203
1204int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1205{
1206	int i;
1207	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1208
1209	for (i = 0; i < n_cmds; i++, cmds++) {
1210		/* if it is a software delay, flush and delay */
1211		if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1212			pxafb_smart_flush(info);
1213			mdelay(*cmds & 0xff);
1214			continue;
1215		}
1216
1217		/* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1218		if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1219			pxafb_smart_flush(info);
1220
1221		fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1222	}
1223
1224	return 0;
1225}
1226
1227static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1228{
1229	unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1230	return (t == 0) ? 1 : t;
1231}
1232
1233static void setup_smart_timing(struct pxafb_info *fbi,
1234				struct fb_var_screeninfo *var)
1235{
1236	struct pxafb_mach_info *inf = fbi->inf;
1237	struct pxafb_mode_info *mode = &inf->modes[0];
1238	unsigned long lclk = clk_get_rate(fbi->clk);
1239	unsigned t1, t2, t3, t4;
1240
1241	t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1242	t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1243	t3 = mode->op_hold_time;
1244	t4 = mode->cmd_inh_time;
1245
1246	fbi->reg_lccr1 =
1247		LCCR1_DisWdth(var->xres) |
1248		LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1249		LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1250		LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1251
1252	fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1253	fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1254	fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1255	fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1256
1257	/* FIXME: make this configurable */
1258	fbi->reg_cmdcr = 1;
1259}
1260
1261static int pxafb_smart_thread(void *arg)
1262{
1263	struct pxafb_info *fbi = arg;
1264	struct pxafb_mach_info *inf = fbi->inf;
1265
1266	if (!inf->smart_update) {
1267		pr_err("%s: not properly initialized, thread terminated\n",
1268				__func__);
1269		return -EINVAL;
1270	}
1271
1272	pr_debug("%s(): task starting\n", __func__);
1273
1274	set_freezable();
1275	while (!kthread_should_stop()) {
1276
1277		if (try_to_freeze())
1278			continue;
1279
1280		mutex_lock(&fbi->ctrlr_lock);
1281
1282		if (fbi->state == C_ENABLE) {
1283			inf->smart_update(&fbi->fb);
1284			complete(&fbi->refresh_done);
1285		}
1286
1287		mutex_unlock(&fbi->ctrlr_lock);
1288
1289		set_current_state(TASK_INTERRUPTIBLE);
1290		schedule_timeout(msecs_to_jiffies(30));
1291	}
1292
1293	pr_debug("%s(): task ending\n", __func__);
1294	return 0;
1295}
1296
1297static int pxafb_smart_init(struct pxafb_info *fbi)
1298{
1299	if (!(fbi->lccr0 & LCCR0_LCDT))
1300		return 0;
1301
1302	fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1303	fbi->n_smart_cmds = 0;
1304
1305	init_completion(&fbi->command_done);
1306	init_completion(&fbi->refresh_done);
1307
1308	fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1309					"lcd_refresh");
1310	if (IS_ERR(fbi->smart_thread)) {
1311		pr_err("%s: unable to create kernel thread\n", __func__);
1312		return PTR_ERR(fbi->smart_thread);
1313	}
1314
1315	return 0;
1316}
1317#else
1318static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1319#endif /* CONFIG_FB_PXA_SMARTPANEL */
1320
1321static void setup_parallel_timing(struct pxafb_info *fbi,
1322				  struct fb_var_screeninfo *var)
1323{
1324	unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1325
1326	fbi->reg_lccr1 =
1327		LCCR1_DisWdth(var->xres) +
1328		LCCR1_HorSnchWdth(var->hsync_len) +
1329		LCCR1_BegLnDel(var->left_margin) +
1330		LCCR1_EndLnDel(var->right_margin);
1331
1332	/*
1333	 * If we have a dual scan LCD, we need to halve
1334	 * the YRES parameter.
1335	 */
1336	lines_per_panel = var->yres;
1337	if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1338		lines_per_panel /= 2;
1339
1340	fbi->reg_lccr2 =
1341		LCCR2_DisHght(lines_per_panel) +
1342		LCCR2_VrtSnchWdth(var->vsync_len) +
1343		LCCR2_BegFrmDel(var->upper_margin) +
1344		LCCR2_EndFrmDel(var->lower_margin);
1345
1346	fbi->reg_lccr3 = fbi->lccr3 |
1347		(var->sync & FB_SYNC_HOR_HIGH_ACT ?
1348		 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1349		(var->sync & FB_SYNC_VERT_HIGH_ACT ?
1350		 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1351
1352	if (pcd) {
1353		fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1354		set_hsync_time(fbi, pcd);
1355	}
1356}
1357
1358/*
1359 * pxafb_activate_var():
1360 *	Configures LCD Controller based on entries in var parameter.
1361 *	Settings are only written to the controller if changes were made.
1362 */
1363static int pxafb_activate_var(struct fb_var_screeninfo *var,
1364			      struct pxafb_info *fbi)
1365{
1366	u_long flags;
1367
1368	/* Update shadow copy atomically */
1369	local_irq_save(flags);
1370
1371#ifdef CONFIG_FB_PXA_SMARTPANEL
1372	if (fbi->lccr0 & LCCR0_LCDT)
1373		setup_smart_timing(fbi, var);
1374	else
1375#endif
1376		setup_parallel_timing(fbi, var);
1377
1378	setup_base_frame(fbi, var, 0);
1379
1380	fbi->reg_lccr0 = fbi->lccr0 |
1381		(LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1382		 LCCR0_QDM | LCCR0_BM  | LCCR0_OUM);
1383
1384	fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1385
1386	fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1387	fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1388	local_irq_restore(flags);
1389
1390	/*
1391	 * Only update the registers if the controller is enabled
1392	 * and something has changed.
1393	 */
1394	if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1395	    (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1396	    (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1397	    (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1398	    (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1399	    (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1400	    ((fbi->lccr0 & LCCR0_SDS) &&
1401	    (lcd_readl(fbi, FDADR1) != fbi->fdadr[1])))
1402		pxafb_schedule_work(fbi, C_REENABLE);
1403
1404	return 0;
1405}
1406
1407/*
1408 * NOTE!  The following functions are purely helpers for set_ctrlr_state.
1409 * Do not call them directly; set_ctrlr_state does the correct serialisation
1410 * to ensure that things happen in the right way 100% of time time.
1411 *	-- rmk
1412 */
1413static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1414{
1415	pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1416
1417	if (fbi->backlight_power)
1418		fbi->backlight_power(on);
1419}
1420
1421static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1422{
1423	pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1424
1425	if (fbi->lcd_power)
1426		fbi->lcd_power(on, &fbi->fb.var);
1427
1428	if (fbi->lcd_supply && fbi->lcd_supply_enabled != on) {
1429		int ret;
1430
1431		if (on)
1432			ret = regulator_enable(fbi->lcd_supply);
1433		else
1434			ret = regulator_disable(fbi->lcd_supply);
1435
1436		if (ret < 0)
1437			pr_warn("Unable to %s LCD supply regulator: %d\n",
1438				on ? "enable" : "disable", ret);
1439		else
1440			fbi->lcd_supply_enabled = on;
1441	}
1442}
1443
1444static void pxafb_enable_controller(struct pxafb_info *fbi)
1445{
1446	pr_debug("pxafb: Enabling LCD controller\n");
1447	pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1448	pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1449	pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1450	pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1451	pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1452	pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1453
1454	/* enable LCD controller clock */
1455	if (clk_prepare_enable(fbi->clk)) {
1456		pr_err("%s: Failed to prepare clock\n", __func__);
1457		return;
1458	}
1459
1460	if (fbi->lccr0 & LCCR0_LCDT)
1461		return;
1462
1463	/* Sequence from 11.7.10 */
1464	lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1465	lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1466	lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1467	lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1468	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1469
1470	lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1471	if (fbi->lccr0 & LCCR0_SDS)
1472		lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1473	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1474}
1475
1476static void pxafb_disable_controller(struct pxafb_info *fbi)
1477{
1478	uint32_t lccr0;
1479
1480#ifdef CONFIG_FB_PXA_SMARTPANEL
1481	if (fbi->lccr0 & LCCR0_LCDT) {
1482		wait_for_completion_timeout(&fbi->refresh_done,
1483				msecs_to_jiffies(200));
1484		return;
1485	}
1486#endif
1487
1488	/* Clear LCD Status Register */
1489	lcd_writel(fbi, LCSR, 0xffffffff);
1490
1491	lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1492	lcd_writel(fbi, LCCR0, lccr0);
1493	lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1494
1495	wait_for_completion_timeout(&fbi->disable_done, msecs_to_jiffies(200));
1496
1497	/* disable LCD controller clock */
1498	clk_disable_unprepare(fbi->clk);
1499}
1500
1501/*
1502 *  pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1503 */
1504static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1505{
1506	struct pxafb_info *fbi = dev_id;
1507	unsigned int lccr0, lcsr;
1508
1509	lcsr = lcd_readl(fbi, LCSR);
1510	if (lcsr & LCSR_LDD) {
1511		lccr0 = lcd_readl(fbi, LCCR0);
1512		lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1513		complete(&fbi->disable_done);
1514	}
1515
1516#ifdef CONFIG_FB_PXA_SMARTPANEL
1517	if (lcsr & LCSR_CMD_INT)
1518		complete(&fbi->command_done);
1519#endif
1520	lcd_writel(fbi, LCSR, lcsr);
1521
1522#ifdef CONFIG_FB_PXA_OVERLAY
1523	{
1524		unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
1525		if (lcsr1 & LCSR1_BS(1))
1526			complete(&fbi->overlay[0].branch_done);
1527
1528		if (lcsr1 & LCSR1_BS(2))
1529			complete(&fbi->overlay[1].branch_done);
1530
1531		lcd_writel(fbi, LCSR1, lcsr1);
1532	}
1533#endif
1534	return IRQ_HANDLED;
1535}
1536
1537/*
1538 * This function must be called from task context only, since it will
1539 * sleep when disabling the LCD controller, or if we get two contending
1540 * processes trying to alter state.
1541 */
1542static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1543{
1544	u_int old_state;
1545
1546	mutex_lock(&fbi->ctrlr_lock);
1547
1548	old_state = fbi->state;
1549
1550	/*
1551	 * Hack around fbcon initialisation.
1552	 */
1553	if (old_state == C_STARTUP && state == C_REENABLE)
1554		state = C_ENABLE;
1555
1556	switch (state) {
1557	case C_DISABLE_CLKCHANGE:
1558		/*
1559		 * Disable controller for clock change.  If the
1560		 * controller is already disabled, then do nothing.
1561		 */
1562		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1563			fbi->state = state;
1564			/* TODO __pxafb_lcd_power(fbi, 0); */
1565			pxafb_disable_controller(fbi);
1566		}
1567		break;
1568
1569	case C_DISABLE_PM:
1570	case C_DISABLE:
1571		/*
1572		 * Disable controller
1573		 */
1574		if (old_state != C_DISABLE) {
1575			fbi->state = state;
1576			__pxafb_backlight_power(fbi, 0);
1577			__pxafb_lcd_power(fbi, 0);
1578			if (old_state != C_DISABLE_CLKCHANGE)
1579				pxafb_disable_controller(fbi);
1580		}
1581		break;
1582
1583	case C_ENABLE_CLKCHANGE:
1584		/*
1585		 * Enable the controller after clock change.  Only
1586		 * do this if we were disabled for the clock change.
1587		 */
1588		if (old_state == C_DISABLE_CLKCHANGE) {
1589			fbi->state = C_ENABLE;
1590			pxafb_enable_controller(fbi);
1591			/* TODO __pxafb_lcd_power(fbi, 1); */
1592		}
1593		break;
1594
1595	case C_REENABLE:
1596		/*
1597		 * Re-enable the controller only if it was already
1598		 * enabled.  This is so we reprogram the control
1599		 * registers.
1600		 */
1601		if (old_state == C_ENABLE) {
1602			__pxafb_lcd_power(fbi, 0);
1603			pxafb_disable_controller(fbi);
1604			pxafb_enable_controller(fbi);
1605			__pxafb_lcd_power(fbi, 1);
1606		}
1607		break;
1608
1609	case C_ENABLE_PM:
1610		/*
1611		 * Re-enable the controller after PM.  This is not
1612		 * perfect - think about the case where we were doing
1613		 * a clock change, and we suspended half-way through.
1614		 */
1615		if (old_state != C_DISABLE_PM)
1616			break;
1617		fallthrough;
1618
1619	case C_ENABLE:
1620		/*
1621		 * Power up the LCD screen, enable controller, and
1622		 * turn on the backlight.
1623		 */
1624		if (old_state != C_ENABLE) {
1625			fbi->state = C_ENABLE;
1626			pxafb_enable_controller(fbi);
1627			__pxafb_lcd_power(fbi, 1);
1628			__pxafb_backlight_power(fbi, 1);
1629		}
1630		break;
1631	}
1632	mutex_unlock(&fbi->ctrlr_lock);
1633}
1634
1635/*
1636 * Our LCD controller task (which is called when we blank or unblank)
1637 * via keventd.
1638 */
1639static void pxafb_task(struct work_struct *work)
1640{
1641	struct pxafb_info *fbi =
1642		container_of(work, struct pxafb_info, task);
1643	u_int state = xchg(&fbi->task_state, -1);
1644
1645	set_ctrlr_state(fbi, state);
1646}
1647
1648#ifdef CONFIG_CPU_FREQ
1649/*
1650 * CPU clock speed change handler.  We need to adjust the LCD timing
1651 * parameters when the CPU clock is adjusted by the power management
1652 * subsystem.
1653 *
1654 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1655 */
1656static int
1657pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1658{
1659	struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1660	/* TODO struct cpufreq_freqs *f = data; */
1661	u_int pcd;
1662
1663	switch (val) {
1664	case CPUFREQ_PRECHANGE:
1665#ifdef CONFIG_FB_PXA_OVERLAY
1666		if (!(fbi->overlay[0].usage || fbi->overlay[1].usage))
1667#endif
1668			set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1669		break;
1670
1671	case CPUFREQ_POSTCHANGE:
1672		pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1673		set_hsync_time(fbi, pcd);
1674		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1675				  LCCR3_PixClkDiv(pcd);
1676		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1677		break;
1678	}
1679	return 0;
1680}
1681#endif
1682
1683#ifdef CONFIG_PM
1684/*
1685 * Power management hooks.  Note that we won't be called from IRQ context,
1686 * unlike the blank functions above, so we may sleep.
1687 */
1688static int pxafb_suspend(struct device *dev)
1689{
1690	struct pxafb_info *fbi = dev_get_drvdata(dev);
1691
1692	set_ctrlr_state(fbi, C_DISABLE_PM);
1693	return 0;
1694}
1695
1696static int pxafb_resume(struct device *dev)
1697{
1698	struct pxafb_info *fbi = dev_get_drvdata(dev);
1699
1700	set_ctrlr_state(fbi, C_ENABLE_PM);
1701	return 0;
1702}
1703
1704static const struct dev_pm_ops pxafb_pm_ops = {
1705	.suspend	= pxafb_suspend,
1706	.resume		= pxafb_resume,
1707};
1708#endif
1709
1710static int pxafb_init_video_memory(struct pxafb_info *fbi)
1711{
1712	int size = PAGE_ALIGN(fbi->video_mem_size);
1713
1714	fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1715	if (fbi->video_mem == NULL)
1716		return -ENOMEM;
1717
1718	fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1719	fbi->video_mem_size = size;
1720
1721	fbi->fb.fix.smem_start	= fbi->video_mem_phys;
1722	fbi->fb.fix.smem_len	= fbi->video_mem_size;
1723	fbi->fb.screen_base	= fbi->video_mem;
1724
1725	return fbi->video_mem ? 0 : -ENOMEM;
1726}
1727
1728static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1729				   struct pxafb_mach_info *inf)
1730{
1731	unsigned int lcd_conn = inf->lcd_conn;
1732	struct pxafb_mode_info *m;
1733	int i;
1734
1735	fbi->cmap_inverse	= inf->cmap_inverse;
1736	fbi->cmap_static	= inf->cmap_static;
1737	fbi->lccr4 		= inf->lccr4;
1738
1739	switch (lcd_conn & LCD_TYPE_MASK) {
1740	case LCD_TYPE_MONO_STN:
1741		fbi->lccr0 = LCCR0_CMS;
1742		break;
1743	case LCD_TYPE_MONO_DSTN:
1744		fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1745		break;
1746	case LCD_TYPE_COLOR_STN:
1747		fbi->lccr0 = 0;
1748		break;
1749	case LCD_TYPE_COLOR_DSTN:
1750		fbi->lccr0 = LCCR0_SDS;
1751		break;
1752	case LCD_TYPE_COLOR_TFT:
1753		fbi->lccr0 = LCCR0_PAS;
1754		break;
1755	case LCD_TYPE_SMART_PANEL:
1756		fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1757		break;
1758	default:
1759		/* fall back to backward compatibility way */
1760		fbi->lccr0 = inf->lccr0;
1761		fbi->lccr3 = inf->lccr3;
1762		goto decode_mode;
1763	}
1764
1765	if (lcd_conn == LCD_MONO_STN_8BPP)
1766		fbi->lccr0 |= LCCR0_DPD;
1767
1768	fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1769
1770	fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1771	fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1772	fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL)  ? LCCR3_PCP : 0;
1773
1774decode_mode:
1775	pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1776
1777	/* decide video memory size as follows:
1778	 * 1. default to mode of maximum resolution
1779	 * 2. allow platform to override
1780	 * 3. allow module parameter to override
1781	 */
1782	for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1783		fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1784				m->xres * m->yres * m->bpp / 8);
1785
1786	if (inf->video_mem_size > fbi->video_mem_size)
1787		fbi->video_mem_size = inf->video_mem_size;
1788
1789	if (video_mem_size > fbi->video_mem_size)
1790		fbi->video_mem_size = video_mem_size;
1791}
1792
1793static struct pxafb_info *pxafb_init_fbinfo(struct device *dev,
1794					    struct pxafb_mach_info *inf)
1795{
1796	struct pxafb_info *fbi;
1797	void *addr;
1798
1799	/* Alloc the pxafb_info and pseudo_palette in one step */
1800	fbi = devm_kzalloc(dev, sizeof(struct pxafb_info) + sizeof(u32) * 16,
1801			   GFP_KERNEL);
1802	if (!fbi)
1803		return ERR_PTR(-ENOMEM);
1804
1805	fbi->dev = dev;
1806	fbi->inf = inf;
1807
1808	fbi->clk = devm_clk_get(dev, NULL);
1809	if (IS_ERR(fbi->clk))
1810		return ERR_CAST(fbi->clk);
1811
1812	strcpy(fbi->fb.fix.id, PXA_NAME);
1813
1814	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1815	fbi->fb.fix.type_aux	= 0;
1816	fbi->fb.fix.xpanstep	= 0;
1817	fbi->fb.fix.ypanstep	= 1;
1818	fbi->fb.fix.ywrapstep	= 0;
1819	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1820
1821	fbi->fb.var.nonstd	= 0;
1822	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1823	fbi->fb.var.height	= -1;
1824	fbi->fb.var.width	= -1;
1825	fbi->fb.var.accel_flags	= FB_ACCELF_TEXT;
1826	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1827
1828	fbi->fb.fbops		= &pxafb_ops;
1829	fbi->fb.flags		= FBINFO_DEFAULT;
1830	fbi->fb.node		= -1;
1831
1832	addr = fbi;
1833	addr = addr + sizeof(struct pxafb_info);
1834	fbi->fb.pseudo_palette	= addr;
1835
1836	fbi->state		= C_STARTUP;
1837	fbi->task_state		= (u_char)-1;
1838
1839	pxafb_decode_mach_info(fbi, inf);
1840
1841#ifdef CONFIG_FB_PXA_OVERLAY
1842	/* place overlay(s) on top of base */
1843	if (pxafb_overlay_supported())
1844		fbi->lccr0 |= LCCR0_OUC;
1845#endif
1846
1847	init_waitqueue_head(&fbi->ctrlr_wait);
1848	INIT_WORK(&fbi->task, pxafb_task);
1849	mutex_init(&fbi->ctrlr_lock);
1850	init_completion(&fbi->disable_done);
1851
1852	return fbi;
1853}
1854
1855#ifdef CONFIG_FB_PXA_PARAMETERS
1856static int parse_opt_mode(struct device *dev, const char *this_opt,
1857			  struct pxafb_mach_info *inf)
1858{
1859	const char *name = this_opt+5;
1860	unsigned int namelen = strlen(name);
1861	int res_specified = 0, bpp_specified = 0;
1862	unsigned int xres = 0, yres = 0, bpp = 0;
1863	int yres_specified = 0;
1864	int i;
1865	for (i = namelen-1; i >= 0; i--) {
1866		switch (name[i]) {
1867		case '-':
1868			namelen = i;
1869			if (!bpp_specified && !yres_specified) {
1870				bpp = simple_strtoul(&name[i+1], NULL, 0);
1871				bpp_specified = 1;
1872			} else
1873				goto done;
1874			break;
1875		case 'x':
1876			if (!yres_specified) {
1877				yres = simple_strtoul(&name[i+1], NULL, 0);
1878				yres_specified = 1;
1879			} else
1880				goto done;
1881			break;
1882		case '0' ... '9':
1883			break;
1884		default:
1885			goto done;
1886		}
1887	}
1888	if (i < 0 && yres_specified) {
1889		xres = simple_strtoul(name, NULL, 0);
1890		res_specified = 1;
1891	}
1892done:
1893	if (res_specified) {
1894		dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1895		inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1896	}
1897	if (bpp_specified)
1898		switch (bpp) {
1899		case 1:
1900		case 2:
1901		case 4:
1902		case 8:
1903		case 16:
1904			inf->modes[0].bpp = bpp;
1905			dev_info(dev, "overriding bit depth: %d\n", bpp);
1906			break;
1907		default:
1908			dev_err(dev, "Depth %d is not valid\n", bpp);
1909			return -EINVAL;
1910		}
1911	return 0;
1912}
1913
1914static int parse_opt(struct device *dev, char *this_opt,
1915		     struct pxafb_mach_info *inf)
1916{
1917	struct pxafb_mode_info *mode = &inf->modes[0];
1918	char s[64];
1919
1920	s[0] = '\0';
1921
1922	if (!strncmp(this_opt, "vmem:", 5)) {
1923		video_mem_size = memparse(this_opt + 5, NULL);
1924	} else if (!strncmp(this_opt, "mode:", 5)) {
1925		return parse_opt_mode(dev, this_opt, inf);
1926	} else if (!strncmp(this_opt, "pixclock:", 9)) {
1927		mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1928		sprintf(s, "pixclock: %ld\n", mode->pixclock);
1929	} else if (!strncmp(this_opt, "left:", 5)) {
1930		mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1931		sprintf(s, "left: %u\n", mode->left_margin);
1932	} else if (!strncmp(this_opt, "right:", 6)) {
1933		mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1934		sprintf(s, "right: %u\n", mode->right_margin);
1935	} else if (!strncmp(this_opt, "upper:", 6)) {
1936		mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1937		sprintf(s, "upper: %u\n", mode->upper_margin);
1938	} else if (!strncmp(this_opt, "lower:", 6)) {
1939		mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1940		sprintf(s, "lower: %u\n", mode->lower_margin);
1941	} else if (!strncmp(this_opt, "hsynclen:", 9)) {
1942		mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1943		sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1944	} else if (!strncmp(this_opt, "vsynclen:", 9)) {
1945		mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1946		sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1947	} else if (!strncmp(this_opt, "hsync:", 6)) {
1948		if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1949			sprintf(s, "hsync: Active Low\n");
1950			mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1951		} else {
1952			sprintf(s, "hsync: Active High\n");
1953			mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1954		}
1955	} else if (!strncmp(this_opt, "vsync:", 6)) {
1956		if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1957			sprintf(s, "vsync: Active Low\n");
1958			mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1959		} else {
1960			sprintf(s, "vsync: Active High\n");
1961			mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1962		}
1963	} else if (!strncmp(this_opt, "dpc:", 4)) {
1964		if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1965			sprintf(s, "double pixel clock: false\n");
1966			inf->lccr3 &= ~LCCR3_DPC;
1967		} else {
1968			sprintf(s, "double pixel clock: true\n");
1969			inf->lccr3 |= LCCR3_DPC;
1970		}
1971	} else if (!strncmp(this_opt, "outputen:", 9)) {
1972		if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1973			sprintf(s, "output enable: active low\n");
1974			inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1975		} else {
1976			sprintf(s, "output enable: active high\n");
1977			inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1978		}
1979	} else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1980		if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1981			sprintf(s, "pixel clock polarity: falling edge\n");
1982			inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1983		} else {
1984			sprintf(s, "pixel clock polarity: rising edge\n");
1985			inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1986		}
1987	} else if (!strncmp(this_opt, "color", 5)) {
1988		inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1989	} else if (!strncmp(this_opt, "mono", 4)) {
1990		inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1991	} else if (!strncmp(this_opt, "active", 6)) {
1992		inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1993	} else if (!strncmp(this_opt, "passive", 7)) {
1994		inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1995	} else if (!strncmp(this_opt, "single", 6)) {
1996		inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1997	} else if (!strncmp(this_opt, "dual", 4)) {
1998		inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1999	} else if (!strncmp(this_opt, "4pix", 4)) {
2000		inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
2001	} else if (!strncmp(this_opt, "8pix", 4)) {
2002		inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
2003	} else {
2004		dev_err(dev, "unknown option: %s\n", this_opt);
2005		return -EINVAL;
2006	}
2007
2008	if (s[0] != '\0')
2009		dev_info(dev, "override %s", s);
2010
2011	return 0;
2012}
2013
2014static int pxafb_parse_options(struct device *dev, char *options,
2015			       struct pxafb_mach_info *inf)
2016{
2017	char *this_opt;
2018	int ret;
2019
2020	if (!options || !*options)
2021		return 0;
2022
2023	dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
2024
2025	/* could be made table driven or similar?... */
2026	while ((this_opt = strsep(&options, ",")) != NULL) {
2027		ret = parse_opt(dev, this_opt, inf);
2028		if (ret)
2029			return ret;
2030	}
2031	return 0;
2032}
2033
2034static char g_options[256] = "";
2035
2036#ifndef MODULE
2037static int __init pxafb_setup_options(void)
2038{
2039	char *options = NULL;
2040
2041	if (fb_get_options("pxafb", &options))
2042		return -ENODEV;
2043
2044	if (options)
2045		strlcpy(g_options, options, sizeof(g_options));
2046
2047	return 0;
2048}
2049#else
2050#define pxafb_setup_options()		(0)
2051
2052module_param_string(options, g_options, sizeof(g_options), 0);
2053MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.rst)");
2054#endif
2055
2056#else
2057#define pxafb_parse_options(...)	(0)
2058#define pxafb_setup_options()		(0)
2059#endif
2060
2061#ifdef DEBUG_VAR
2062/* Check for various illegal bit-combinations. Currently only
2063 * a warning is given. */
2064static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf)
2065{
2066	if (inf->lcd_conn)
2067		return;
2068
2069	if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2070		dev_warn(dev, "machine LCCR0 setting contains "
2071				"illegal bits: %08x\n",
2072			inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2073	if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2074		dev_warn(dev, "machine LCCR3 setting contains "
2075				"illegal bits: %08x\n",
2076			inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2077	if (inf->lccr0 & LCCR0_DPD &&
2078	    ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2079	     (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2080	     (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2081		dev_warn(dev, "Double Pixel Data (DPD) mode is "
2082				"only valid in passive mono"
2083				" single panel mode\n");
2084	if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2085	    (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2086		dev_warn(dev, "Dual panel only valid in passive mode\n");
2087	if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2088	     (inf->modes->upper_margin || inf->modes->lower_margin))
2089		dev_warn(dev, "Upper and lower margins must be 0 in "
2090				"passive mode\n");
2091}
2092#else
2093#define pxafb_check_options(...)	do {} while (0)
2094#endif
2095
2096#if defined(CONFIG_OF)
2097static const char * const lcd_types[] = {
2098	"unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn",
2099	"color-tft", "smart-panel", NULL
2100};
2101
2102static int of_get_pxafb_display(struct device *dev, struct device_node *disp,
2103				struct pxafb_mach_info *info, u32 bus_width)
2104{
2105	struct display_timings *timings;
2106	struct videomode vm;
2107	int i, ret = -EINVAL;
2108	const char *s;
2109
2110	ret = of_property_read_string(disp, "lcd-type", &s);
2111	if (ret)
2112		s = "color-tft";
2113
2114	i = match_string(lcd_types, -1, s);
2115	if (i < 0) {
2116		dev_err(dev, "lcd-type %s is unknown\n", s);
2117		return i;
2118	}
2119	info->lcd_conn |= LCD_CONN_TYPE(i);
2120	info->lcd_conn |= LCD_CONN_WIDTH(bus_width);
2121
2122	timings = of_get_display_timings(disp);
2123	if (!timings)
2124		return -EINVAL;
2125
2126	ret = -ENOMEM;
2127	info->modes = devm_kcalloc(dev, timings->num_timings,
2128				   sizeof(info->modes[0]),
2129				   GFP_KERNEL);
2130	if (!info->modes)
2131		goto out;
2132	info->num_modes = timings->num_timings;
2133
2134	for (i = 0; i < timings->num_timings; i++) {
2135		ret = videomode_from_timings(timings, &vm, i);
2136		if (ret) {
2137			dev_err(dev, "videomode_from_timings %d failed: %d\n",
2138				i, ret);
2139			goto out;
2140		}
2141		if (vm.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
2142			info->lcd_conn |= LCD_PCLK_EDGE_RISE;
2143		if (vm.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE)
2144			info->lcd_conn |= LCD_PCLK_EDGE_FALL;
2145		if (vm.flags & DISPLAY_FLAGS_DE_HIGH)
2146			info->lcd_conn |= LCD_BIAS_ACTIVE_HIGH;
2147		if (vm.flags & DISPLAY_FLAGS_DE_LOW)
2148			info->lcd_conn |= LCD_BIAS_ACTIVE_LOW;
2149		if (vm.flags & DISPLAY_FLAGS_HSYNC_HIGH)
2150			info->modes[i].sync |= FB_SYNC_HOR_HIGH_ACT;
2151		if (vm.flags & DISPLAY_FLAGS_VSYNC_HIGH)
2152			info->modes[i].sync |= FB_SYNC_VERT_HIGH_ACT;
2153
2154		info->modes[i].pixclock = 1000000000UL / (vm.pixelclock / 1000);
2155		info->modes[i].xres = vm.hactive;
2156		info->modes[i].yres = vm.vactive;
2157		info->modes[i].hsync_len = vm.hsync_len;
2158		info->modes[i].left_margin = vm.hback_porch;
2159		info->modes[i].right_margin = vm.hfront_porch;
2160		info->modes[i].vsync_len = vm.vsync_len;
2161		info->modes[i].upper_margin = vm.vback_porch;
2162		info->modes[i].lower_margin = vm.vfront_porch;
2163	}
2164	ret = 0;
2165
2166out:
2167	display_timings_release(timings);
2168	return ret;
2169}
2170
2171static int of_get_pxafb_mode_info(struct device *dev,
2172				  struct pxafb_mach_info *info)
2173{
2174	struct device_node *display, *np;
2175	u32 bus_width;
2176	int ret, i;
2177
2178	np = of_graph_get_next_endpoint(dev->of_node, NULL);
2179	if (!np) {
2180		dev_err(dev, "could not find endpoint\n");
2181		return -EINVAL;
2182	}
2183	ret = of_property_read_u32(np, "bus-width", &bus_width);
2184	if (ret) {
2185		dev_err(dev, "no bus-width specified: %d\n", ret);
2186		of_node_put(np);
2187		return ret;
2188	}
2189
2190	display = of_graph_get_remote_port_parent(np);
2191	of_node_put(np);
2192	if (!display) {
2193		dev_err(dev, "no display defined\n");
2194		return -EINVAL;
2195	}
2196
2197	ret = of_get_pxafb_display(dev, display, info, bus_width);
2198	of_node_put(display);
2199	if (ret)
2200		return ret;
2201
2202	for (i = 0; i < info->num_modes; i++)
2203		info->modes[i].bpp = bus_width;
2204
2205	return 0;
2206}
2207
2208static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
2209{
2210	int ret;
2211	struct pxafb_mach_info *info;
2212
2213	if (!dev->of_node)
2214		return NULL;
2215	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2216	if (!info)
2217		return ERR_PTR(-ENOMEM);
2218	ret = of_get_pxafb_mode_info(dev, info);
2219	if (ret)
2220		return ERR_PTR(ret);
2221
2222	/*
2223	 * On purpose, neither lccrX registers nor video memory size can be
2224	 * specified through device-tree, they are considered more a debug hack
2225	 * available through command line.
2226	 */
2227	return info;
2228}
2229#else
2230static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev)
2231{
2232	return NULL;
2233}
2234#endif
2235
2236static int pxafb_probe(struct platform_device *dev)
2237{
2238	struct pxafb_info *fbi;
2239	struct pxafb_mach_info *inf, *pdata;
2240	int i, irq, ret;
2241
2242	dev_dbg(&dev->dev, "pxafb_probe\n");
2243
2244	ret = -ENOMEM;
2245	pdata = dev_get_platdata(&dev->dev);
2246	inf = devm_kmalloc(&dev->dev, sizeof(*inf), GFP_KERNEL);
2247	if (!inf)
2248		goto failed;
2249
2250	if (pdata) {
2251		*inf = *pdata;
2252		inf->modes =
2253			devm_kmalloc_array(&dev->dev, pdata->num_modes,
2254					   sizeof(inf->modes[0]), GFP_KERNEL);
2255		if (!inf->modes)
2256			goto failed;
2257		for (i = 0; i < inf->num_modes; i++)
2258			inf->modes[i] = pdata->modes[i];
2259	}
2260
2261	if (!pdata)
2262		inf = of_pxafb_of_mach_info(&dev->dev);
2263	if (IS_ERR_OR_NULL(inf))
2264		goto failed;
2265
2266	ret = pxafb_parse_options(&dev->dev, g_options, inf);
2267	if (ret < 0)
2268		goto failed;
2269
2270	pxafb_check_options(&dev->dev, inf);
2271
2272	dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2273			inf->modes->xres,
2274			inf->modes->yres,
2275			inf->modes->bpp);
2276	if (inf->modes->xres == 0 ||
2277	    inf->modes->yres == 0 ||
2278	    inf->modes->bpp == 0) {
2279		dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2280		ret = -EINVAL;
2281		goto failed;
2282	}
2283
2284	fbi = pxafb_init_fbinfo(&dev->dev, inf);
2285	if (IS_ERR(fbi)) {
2286		dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2287		ret = PTR_ERR(fbi);
2288		goto failed;
2289	}
2290
2291	if (cpu_is_pxa3xx() && inf->acceleration_enabled)
2292		fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
2293
2294	fbi->backlight_power = inf->pxafb_backlight_power;
2295	fbi->lcd_power = inf->pxafb_lcd_power;
2296
2297	fbi->lcd_supply = devm_regulator_get_optional(&dev->dev, "lcd");
2298	if (IS_ERR(fbi->lcd_supply)) {
2299		if (PTR_ERR(fbi->lcd_supply) == -EPROBE_DEFER)
2300			return -EPROBE_DEFER;
2301
2302		fbi->lcd_supply = NULL;
2303	}
2304
2305	fbi->mmio_base = devm_platform_ioremap_resource(dev, 0);
2306	if (IS_ERR(fbi->mmio_base)) {
2307		dev_err(&dev->dev, "failed to get I/O memory\n");
2308		ret = PTR_ERR(fbi->mmio_base);
2309		goto failed;
2310	}
2311
2312	fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2313	fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2314				&fbi->dma_buff_phys, GFP_KERNEL);
2315	if (fbi->dma_buff == NULL) {
2316		dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2317		ret = -ENOMEM;
2318		goto failed;
2319	}
2320
2321	ret = pxafb_init_video_memory(fbi);
2322	if (ret) {
2323		dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2324		ret = -ENOMEM;
2325		goto failed_free_dma;
2326	}
2327
2328	irq = platform_get_irq(dev, 0);
2329	if (irq < 0) {
2330		dev_err(&dev->dev, "no IRQ defined\n");
2331		ret = -ENODEV;
2332		goto failed_free_mem;
2333	}
2334
2335	ret = devm_request_irq(&dev->dev, irq, pxafb_handle_irq, 0, "LCD", fbi);
2336	if (ret) {
2337		dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2338		ret = -EBUSY;
2339		goto failed_free_mem;
2340	}
2341
2342	ret = pxafb_smart_init(fbi);
2343	if (ret) {
2344		dev_err(&dev->dev, "failed to initialize smartpanel\n");
2345		goto failed_free_mem;
2346	}
2347
2348	/*
2349	 * This makes sure that our colour bitfield
2350	 * descriptors are correctly initialised.
2351	 */
2352	ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2353	if (ret) {
2354		dev_err(&dev->dev, "failed to get suitable mode\n");
2355		goto failed_free_mem;
2356	}
2357
2358	ret = pxafb_set_par(&fbi->fb);
2359	if (ret) {
2360		dev_err(&dev->dev, "Failed to set parameters\n");
2361		goto failed_free_mem;
2362	}
2363
2364	platform_set_drvdata(dev, fbi);
2365
2366	ret = register_framebuffer(&fbi->fb);
2367	if (ret < 0) {
2368		dev_err(&dev->dev,
2369			"Failed to register framebuffer device: %d\n", ret);
2370		goto failed_free_cmap;
2371	}
2372
2373	pxafb_overlay_init(fbi);
2374
2375#ifdef CONFIG_CPU_FREQ
2376	fbi->freq_transition.notifier_call = pxafb_freq_transition;
2377	cpufreq_register_notifier(&fbi->freq_transition,
2378				CPUFREQ_TRANSITION_NOTIFIER);
2379#endif
2380
2381	/*
2382	 * Ok, now enable the LCD controller
2383	 */
2384	set_ctrlr_state(fbi, C_ENABLE);
2385
2386	return 0;
2387
2388failed_free_cmap:
2389	if (fbi->fb.cmap.len)
2390		fb_dealloc_cmap(&fbi->fb.cmap);
2391failed_free_mem:
2392	free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2393failed_free_dma:
2394	dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2395			fbi->dma_buff, fbi->dma_buff_phys);
2396failed:
2397	return ret;
2398}
2399
2400static int pxafb_remove(struct platform_device *dev)
2401{
2402	struct pxafb_info *fbi = platform_get_drvdata(dev);
2403	struct fb_info *info;
2404
2405	if (!fbi)
2406		return 0;
2407
2408	info = &fbi->fb;
2409
2410	pxafb_overlay_exit(fbi);
2411	unregister_framebuffer(info);
2412
2413	pxafb_disable_controller(fbi);
2414
2415	if (fbi->fb.cmap.len)
2416		fb_dealloc_cmap(&fbi->fb.cmap);
2417
2418	free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2419
2420	dma_free_coherent(&dev->dev, fbi->dma_buff_size, fbi->dma_buff,
2421			  fbi->dma_buff_phys);
2422
2423	return 0;
2424}
2425
2426static const struct of_device_id pxafb_of_dev_id[] = {
2427	{ .compatible = "marvell,pxa270-lcdc", },
2428	{ .compatible = "marvell,pxa300-lcdc", },
2429	{ .compatible = "marvell,pxa2xx-lcdc", },
2430	{ /* sentinel */ }
2431};
2432MODULE_DEVICE_TABLE(of, pxafb_of_dev_id);
2433
2434static struct platform_driver pxafb_driver = {
2435	.probe		= pxafb_probe,
2436	.remove 	= pxafb_remove,
2437	.driver		= {
2438		.name	= "pxa2xx-fb",
2439		.of_match_table = pxafb_of_dev_id,
2440#ifdef CONFIG_PM
2441		.pm	= &pxafb_pm_ops,
2442#endif
2443	},
2444};
2445
2446static int __init pxafb_init(void)
2447{
2448	if (pxafb_setup_options())
2449		return -EINVAL;
2450
2451	return platform_driver_register(&pxafb_driver);
2452}
2453
2454static void __exit pxafb_exit(void)
2455{
2456	platform_driver_unregister(&pxafb_driver);
2457}
2458
2459module_init(pxafb_init);
2460module_exit(pxafb_exit);
2461
2462MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2463MODULE_LICENSE("GPL");
2464