1/*
2 * intelfb
3 *
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5 *
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 *                   2004 Sylvain Meyer
8 *
9 * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12 * provides the code to program the hardware.  Most of it is derived from
13 * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
15 *
16 * Author: David Dawes
17 *
18 */
19
20/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/errno.h>
25#include <linux/string.h>
26#include <linux/mm.h>
27#include <linux/delay.h>
28#include <linux/fb.h>
29#include <linux/ioport.h>
30#include <linux/init.h>
31#include <linux/pci.h>
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/interrupt.h>
35
36#include <asm/io.h>
37
38#include "intelfb.h"
39#include "intelfbhw.h"
40
41struct pll_min_max {
42	int min_m, max_m, min_m1, max_m1;
43	int min_m2, max_m2, min_n, max_n;
44	int min_p, max_p, min_p1, max_p1;
45	int min_vco, max_vco, p_transition_clk, ref_clk;
46	int p_inc_lo, p_inc_hi;
47};
48
49#define PLLS_I8xx 0
50#define PLLS_I9xx 1
51#define PLLS_MAX 2
52
53static struct pll_min_max plls[PLLS_MAX] = {
54	{ 108, 140, 18, 26,
55	  6, 16, 3, 16,
56	  4, 128, 0, 31,
57	  930000, 1400000, 165000, 48000,
58	  4, 2 },		/* I8xx */
59
60	{ 75, 120, 10, 20,
61	  5, 9, 4, 7,
62	  5, 80, 1, 8,
63	  1400000, 2800000, 200000, 96000,
64	  10, 5 }		/* I9xx */
65};
66
67int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
68{
69	u32 tmp;
70	if (!pdev || !dinfo)
71		return 1;
72
73	switch (pdev->device) {
74	case PCI_DEVICE_ID_INTEL_830M:
75		dinfo->name = "Intel(R) 830M";
76		dinfo->chipset = INTEL_830M;
77		dinfo->mobile = 1;
78		dinfo->pll_index = PLLS_I8xx;
79		return 0;
80	case PCI_DEVICE_ID_INTEL_845G:
81		dinfo->name = "Intel(R) 845G";
82		dinfo->chipset = INTEL_845G;
83		dinfo->mobile = 0;
84		dinfo->pll_index = PLLS_I8xx;
85		return 0;
86	case PCI_DEVICE_ID_INTEL_854:
87		dinfo->mobile = 1;
88		dinfo->name = "Intel(R) 854";
89		dinfo->chipset = INTEL_854;
90		return 0;
91	case PCI_DEVICE_ID_INTEL_85XGM:
92		tmp = 0;
93		dinfo->mobile = 1;
94		dinfo->pll_index = PLLS_I8xx;
95		pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
96		switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
97			INTEL_85X_VARIANT_MASK) {
98		case INTEL_VAR_855GME:
99			dinfo->name = "Intel(R) 855GME";
100			dinfo->chipset = INTEL_855GME;
101			return 0;
102		case INTEL_VAR_855GM:
103			dinfo->name = "Intel(R) 855GM";
104			dinfo->chipset = INTEL_855GM;
105			return 0;
106		case INTEL_VAR_852GME:
107			dinfo->name = "Intel(R) 852GME";
108			dinfo->chipset = INTEL_852GME;
109			return 0;
110		case INTEL_VAR_852GM:
111			dinfo->name = "Intel(R) 852GM";
112			dinfo->chipset = INTEL_852GM;
113			return 0;
114		default:
115			dinfo->name = "Intel(R) 852GM/855GM";
116			dinfo->chipset = INTEL_85XGM;
117			return 0;
118		}
119		break;
120	case PCI_DEVICE_ID_INTEL_865G:
121		dinfo->name = "Intel(R) 865G";
122		dinfo->chipset = INTEL_865G;
123		dinfo->mobile = 0;
124		dinfo->pll_index = PLLS_I8xx;
125		return 0;
126	case PCI_DEVICE_ID_INTEL_915G:
127		dinfo->name = "Intel(R) 915G";
128		dinfo->chipset = INTEL_915G;
129		dinfo->mobile = 0;
130		dinfo->pll_index = PLLS_I9xx;
131		return 0;
132	case PCI_DEVICE_ID_INTEL_915GM:
133		dinfo->name = "Intel(R) 915GM";
134		dinfo->chipset = INTEL_915GM;
135		dinfo->mobile = 1;
136		dinfo->pll_index = PLLS_I9xx;
137		return 0;
138	case PCI_DEVICE_ID_INTEL_945G:
139		dinfo->name = "Intel(R) 945G";
140		dinfo->chipset = INTEL_945G;
141		dinfo->mobile = 0;
142		dinfo->pll_index = PLLS_I9xx;
143		return 0;
144	case PCI_DEVICE_ID_INTEL_945GM:
145		dinfo->name = "Intel(R) 945GM";
146		dinfo->chipset = INTEL_945GM;
147		dinfo->mobile = 1;
148		dinfo->pll_index = PLLS_I9xx;
149		return 0;
150	case PCI_DEVICE_ID_INTEL_945GME:
151		dinfo->name = "Intel(R) 945GME";
152		dinfo->chipset = INTEL_945GME;
153		dinfo->mobile = 1;
154		dinfo->pll_index = PLLS_I9xx;
155		return 0;
156	case PCI_DEVICE_ID_INTEL_965G:
157		dinfo->name = "Intel(R) 965G";
158		dinfo->chipset = INTEL_965G;
159		dinfo->mobile = 0;
160		dinfo->pll_index = PLLS_I9xx;
161		return 0;
162	case PCI_DEVICE_ID_INTEL_965GM:
163		dinfo->name = "Intel(R) 965GM";
164		dinfo->chipset = INTEL_965GM;
165		dinfo->mobile = 1;
166		dinfo->pll_index = PLLS_I9xx;
167		return 0;
168	default:
169		return 1;
170	}
171}
172
173int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
174			 int *stolen_size)
175{
176	struct pci_dev *bridge_dev;
177	u16 tmp;
178	int stolen_overhead;
179
180	if (!pdev || !aperture_size || !stolen_size)
181		return 1;
182
183	/* Find the bridge device.  It is always 0:0.0 */
184	bridge_dev = pci_get_domain_bus_and_slot(pci_domain_nr(pdev->bus), 0,
185						 PCI_DEVFN(0, 0));
186	if (!bridge_dev) {
187		ERR_MSG("cannot find bridge device\n");
188		return 1;
189	}
190
191	/* Get the fb aperture size and "stolen" memory amount. */
192	tmp = 0;
193	pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
194	pci_dev_put(bridge_dev);
195
196	switch (pdev->device) {
197	case PCI_DEVICE_ID_INTEL_915G:
198	case PCI_DEVICE_ID_INTEL_915GM:
199	case PCI_DEVICE_ID_INTEL_945G:
200	case PCI_DEVICE_ID_INTEL_945GM:
201	case PCI_DEVICE_ID_INTEL_945GME:
202	case PCI_DEVICE_ID_INTEL_965G:
203	case PCI_DEVICE_ID_INTEL_965GM:
204		/* 915, 945 and 965 chipsets support a 256MB aperture.
205		   Aperture size is determined by inspected the
206		   base address of the aperture. */
207		if (pci_resource_start(pdev, 2) & 0x08000000)
208			*aperture_size = MB(128);
209		else
210			*aperture_size = MB(256);
211		break;
212	default:
213		if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
214			*aperture_size = MB(64);
215		else
216			*aperture_size = MB(128);
217		break;
218	}
219
220	/* Stolen memory size is reduced by the GTT and the popup.
221	   GTT is 1K per MB of aperture size, and popup is 4K. */
222	stolen_overhead = (*aperture_size / MB(1)) + 4;
223	switch(pdev->device) {
224	case PCI_DEVICE_ID_INTEL_830M:
225	case PCI_DEVICE_ID_INTEL_845G:
226		switch (tmp & INTEL_830_GMCH_GMS_MASK) {
227		case INTEL_830_GMCH_GMS_STOLEN_512:
228			*stolen_size = KB(512) - KB(stolen_overhead);
229			return 0;
230		case INTEL_830_GMCH_GMS_STOLEN_1024:
231			*stolen_size = MB(1) - KB(stolen_overhead);
232			return 0;
233		case INTEL_830_GMCH_GMS_STOLEN_8192:
234			*stolen_size = MB(8) - KB(stolen_overhead);
235			return 0;
236		case INTEL_830_GMCH_GMS_LOCAL:
237			ERR_MSG("only local memory found\n");
238			return 1;
239		case INTEL_830_GMCH_GMS_DISABLED:
240			ERR_MSG("video memory is disabled\n");
241			return 1;
242		default:
243			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
244				tmp & INTEL_830_GMCH_GMS_MASK);
245			return 1;
246		}
247		break;
248	default:
249		switch (tmp & INTEL_855_GMCH_GMS_MASK) {
250		case INTEL_855_GMCH_GMS_STOLEN_1M:
251			*stolen_size = MB(1) - KB(stolen_overhead);
252			return 0;
253		case INTEL_855_GMCH_GMS_STOLEN_4M:
254			*stolen_size = MB(4) - KB(stolen_overhead);
255			return 0;
256		case INTEL_855_GMCH_GMS_STOLEN_8M:
257			*stolen_size = MB(8) - KB(stolen_overhead);
258			return 0;
259		case INTEL_855_GMCH_GMS_STOLEN_16M:
260			*stolen_size = MB(16) - KB(stolen_overhead);
261			return 0;
262		case INTEL_855_GMCH_GMS_STOLEN_32M:
263			*stolen_size = MB(32) - KB(stolen_overhead);
264			return 0;
265		case INTEL_915G_GMCH_GMS_STOLEN_48M:
266			*stolen_size = MB(48) - KB(stolen_overhead);
267			return 0;
268		case INTEL_915G_GMCH_GMS_STOLEN_64M:
269			*stolen_size = MB(64) - KB(stolen_overhead);
270			return 0;
271		case INTEL_855_GMCH_GMS_DISABLED:
272			ERR_MSG("video memory is disabled\n");
273			return 0;
274		default:
275			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
276				tmp & INTEL_855_GMCH_GMS_MASK);
277			return 1;
278		}
279	}
280}
281
282int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
283{
284	int dvo = 0;
285
286	if (INREG(LVDS) & PORT_ENABLE)
287		dvo |= LVDS_PORT;
288	if (INREG(DVOA) & PORT_ENABLE)
289		dvo |= DVOA_PORT;
290	if (INREG(DVOB) & PORT_ENABLE)
291		dvo |= DVOB_PORT;
292	if (INREG(DVOC) & PORT_ENABLE)
293		dvo |= DVOC_PORT;
294
295	return dvo;
296}
297
298const char * intelfbhw_dvo_to_string(int dvo)
299{
300	if (dvo & DVOA_PORT)
301		return "DVO port A";
302	else if (dvo & DVOB_PORT)
303		return "DVO port B";
304	else if (dvo & DVOC_PORT)
305		return "DVO port C";
306	else if (dvo & LVDS_PORT)
307		return "LVDS port";
308	else
309		return NULL;
310}
311
312
313int intelfbhw_validate_mode(struct intelfb_info *dinfo,
314			    struct fb_var_screeninfo *var)
315{
316	int bytes_per_pixel;
317	int tmp;
318
319#if VERBOSE > 0
320	DBG_MSG("intelfbhw_validate_mode\n");
321#endif
322
323	bytes_per_pixel = var->bits_per_pixel / 8;
324	if (bytes_per_pixel == 3)
325		bytes_per_pixel = 4;
326
327	/* Check if enough video memory. */
328	tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
329	if (tmp > dinfo->fb.size) {
330		WRN_MSG("Not enough video ram for mode "
331			"(%d KByte vs %d KByte).\n",
332			BtoKB(tmp), BtoKB(dinfo->fb.size));
333		return 1;
334	}
335
336	/* Check if x/y limits are OK. */
337	if (var->xres - 1 > HACTIVE_MASK) {
338		WRN_MSG("X resolution too large (%d vs %d).\n",
339			var->xres, HACTIVE_MASK + 1);
340		return 1;
341	}
342	if (var->yres - 1 > VACTIVE_MASK) {
343		WRN_MSG("Y resolution too large (%d vs %d).\n",
344			var->yres, VACTIVE_MASK + 1);
345		return 1;
346	}
347	if (var->xres < 4) {
348		WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
349		return 1;
350	}
351	if (var->yres < 4) {
352		WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
353		return 1;
354	}
355
356	/* Check for doublescan modes. */
357	if (var->vmode & FB_VMODE_DOUBLE) {
358		WRN_MSG("Mode is double-scan.\n");
359		return 1;
360	}
361
362	if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
363		WRN_MSG("Odd number of lines in interlaced mode\n");
364		return 1;
365	}
366
367	/* Check if clock is OK. */
368	tmp = 1000000000 / var->pixclock;
369	if (tmp < MIN_CLOCK) {
370		WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
371			(tmp + 500) / 1000, MIN_CLOCK / 1000);
372		return 1;
373	}
374	if (tmp > MAX_CLOCK) {
375		WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
376			(tmp + 500) / 1000, MAX_CLOCK / 1000);
377		return 1;
378	}
379
380	return 0;
381}
382
383int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
384{
385	struct intelfb_info *dinfo = GET_DINFO(info);
386	u32 offset, xoffset, yoffset;
387
388#if VERBOSE > 0
389	DBG_MSG("intelfbhw_pan_display\n");
390#endif
391
392	xoffset = ROUND_DOWN_TO(var->xoffset, 8);
393	yoffset = var->yoffset;
394
395	if ((xoffset + info->var.xres > info->var.xres_virtual) ||
396	    (yoffset + info->var.yres > info->var.yres_virtual))
397		return -EINVAL;
398
399	offset = (yoffset * dinfo->pitch) +
400		 (xoffset * info->var.bits_per_pixel) / 8;
401
402	offset += dinfo->fb.offset << 12;
403
404	dinfo->vsync.pan_offset = offset;
405	if ((var->activate & FB_ACTIVATE_VBL) &&
406	    !intelfbhw_enable_irq(dinfo))
407		dinfo->vsync.pan_display = 1;
408	else {
409		dinfo->vsync.pan_display = 0;
410		OUTREG(DSPABASE, offset);
411	}
412
413	return 0;
414}
415
416/* Blank the screen. */
417void intelfbhw_do_blank(int blank, struct fb_info *info)
418{
419	struct intelfb_info *dinfo = GET_DINFO(info);
420	u32 tmp;
421
422#if VERBOSE > 0
423	DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
424#endif
425
426	/* Turn plane A on or off */
427	tmp = INREG(DSPACNTR);
428	if (blank)
429		tmp &= ~DISPPLANE_PLANE_ENABLE;
430	else
431		tmp |= DISPPLANE_PLANE_ENABLE;
432	OUTREG(DSPACNTR, tmp);
433	/* Flush */
434	tmp = INREG(DSPABASE);
435	OUTREG(DSPABASE, tmp);
436
437	/* Turn off/on the HW cursor */
438#if VERBOSE > 0
439	DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
440#endif
441	if (dinfo->cursor_on) {
442		if (blank)
443			intelfbhw_cursor_hide(dinfo);
444		else
445			intelfbhw_cursor_show(dinfo);
446		dinfo->cursor_on = 1;
447	}
448	dinfo->cursor_blanked = blank;
449
450	/* Set DPMS level */
451	tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
452	switch (blank) {
453	case FB_BLANK_UNBLANK:
454	case FB_BLANK_NORMAL:
455		tmp |= ADPA_DPMS_D0;
456		break;
457	case FB_BLANK_VSYNC_SUSPEND:
458		tmp |= ADPA_DPMS_D1;
459		break;
460	case FB_BLANK_HSYNC_SUSPEND:
461		tmp |= ADPA_DPMS_D2;
462		break;
463	case FB_BLANK_POWERDOWN:
464		tmp |= ADPA_DPMS_D3;
465		break;
466	}
467	OUTREG(ADPA, tmp);
468
469	return;
470}
471
472
473/* Check which pipe is connected to an active display plane. */
474int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
475{
476	int pipe = -1;
477
478	/* keep old default behaviour - prefer PIPE_A */
479	if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
480		pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
481		pipe &= PIPE_MASK;
482		if (unlikely(pipe == PIPE_A))
483			return PIPE_A;
484	}
485	if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
486		pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
487		pipe &= PIPE_MASK;
488		if (likely(pipe == PIPE_A))
489			return PIPE_A;
490	}
491	/* Impossible that no pipe is selected - return PIPE_A */
492	WARN_ON(pipe == -1);
493	if (unlikely(pipe == -1))
494		pipe = PIPE_A;
495
496	return pipe;
497}
498
499void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
500			 unsigned red, unsigned green, unsigned blue,
501			 unsigned transp)
502{
503	u32 palette_reg = (dinfo->pipe == PIPE_A) ?
504			  PALETTE_A : PALETTE_B;
505
506#if VERBOSE > 0
507	DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
508		regno, red, green, blue);
509#endif
510
511	OUTREG(palette_reg + (regno << 2),
512	       (red << PALETTE_8_RED_SHIFT) |
513	       (green << PALETTE_8_GREEN_SHIFT) |
514	       (blue << PALETTE_8_BLUE_SHIFT));
515}
516
517
518int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
519			    struct intelfb_hwstate *hw, int flag)
520{
521	int i;
522
523#if VERBOSE > 0
524	DBG_MSG("intelfbhw_read_hw_state\n");
525#endif
526
527	if (!hw || !dinfo)
528		return -1;
529
530	/* Read in as much of the HW state as possible. */
531	hw->vga0_divisor = INREG(VGA0_DIVISOR);
532	hw->vga1_divisor = INREG(VGA1_DIVISOR);
533	hw->vga_pd = INREG(VGAPD);
534	hw->dpll_a = INREG(DPLL_A);
535	hw->dpll_b = INREG(DPLL_B);
536	hw->fpa0 = INREG(FPA0);
537	hw->fpa1 = INREG(FPA1);
538	hw->fpb0 = INREG(FPB0);
539	hw->fpb1 = INREG(FPB1);
540
541	if (flag == 1)
542		return flag;
543
544#if 0
545	/* This seems to be a problem with the 852GM/855GM */
546	for (i = 0; i < PALETTE_8_ENTRIES; i++) {
547		hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
548		hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
549	}
550#endif
551
552	if (flag == 2)
553		return flag;
554
555	hw->htotal_a = INREG(HTOTAL_A);
556	hw->hblank_a = INREG(HBLANK_A);
557	hw->hsync_a = INREG(HSYNC_A);
558	hw->vtotal_a = INREG(VTOTAL_A);
559	hw->vblank_a = INREG(VBLANK_A);
560	hw->vsync_a = INREG(VSYNC_A);
561	hw->src_size_a = INREG(SRC_SIZE_A);
562	hw->bclrpat_a = INREG(BCLRPAT_A);
563	hw->htotal_b = INREG(HTOTAL_B);
564	hw->hblank_b = INREG(HBLANK_B);
565	hw->hsync_b = INREG(HSYNC_B);
566	hw->vtotal_b = INREG(VTOTAL_B);
567	hw->vblank_b = INREG(VBLANK_B);
568	hw->vsync_b = INREG(VSYNC_B);
569	hw->src_size_b = INREG(SRC_SIZE_B);
570	hw->bclrpat_b = INREG(BCLRPAT_B);
571
572	if (flag == 3)
573		return flag;
574
575	hw->adpa = INREG(ADPA);
576	hw->dvoa = INREG(DVOA);
577	hw->dvob = INREG(DVOB);
578	hw->dvoc = INREG(DVOC);
579	hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
580	hw->dvob_srcdim = INREG(DVOB_SRCDIM);
581	hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
582	hw->lvds = INREG(LVDS);
583
584	if (flag == 4)
585		return flag;
586
587	hw->pipe_a_conf = INREG(PIPEACONF);
588	hw->pipe_b_conf = INREG(PIPEBCONF);
589	hw->disp_arb = INREG(DISPARB);
590
591	if (flag == 5)
592		return flag;
593
594	hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
595	hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
596	hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
597	hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
598
599	if (flag == 6)
600		return flag;
601
602	for (i = 0; i < 4; i++) {
603		hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
604		hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
605	}
606
607	if (flag == 7)
608		return flag;
609
610	hw->cursor_size = INREG(CURSOR_SIZE);
611
612	if (flag == 8)
613		return flag;
614
615	hw->disp_a_ctrl = INREG(DSPACNTR);
616	hw->disp_b_ctrl = INREG(DSPBCNTR);
617	hw->disp_a_base = INREG(DSPABASE);
618	hw->disp_b_base = INREG(DSPBBASE);
619	hw->disp_a_stride = INREG(DSPASTRIDE);
620	hw->disp_b_stride = INREG(DSPBSTRIDE);
621
622	if (flag == 9)
623		return flag;
624
625	hw->vgacntrl = INREG(VGACNTRL);
626
627	if (flag == 10)
628		return flag;
629
630	hw->add_id = INREG(ADD_ID);
631
632	if (flag == 11)
633		return flag;
634
635	for (i = 0; i < 7; i++) {
636		hw->swf0x[i] = INREG(SWF00 + (i << 2));
637		hw->swf1x[i] = INREG(SWF10 + (i << 2));
638		if (i < 3)
639			hw->swf3x[i] = INREG(SWF30 + (i << 2));
640	}
641
642	for (i = 0; i < 8; i++)
643		hw->fence[i] = INREG(FENCE + (i << 2));
644
645	hw->instpm = INREG(INSTPM);
646	hw->mem_mode = INREG(MEM_MODE);
647	hw->fw_blc_0 = INREG(FW_BLC_0);
648	hw->fw_blc_1 = INREG(FW_BLC_1);
649
650	hw->hwstam = INREG16(HWSTAM);
651	hw->ier = INREG16(IER);
652	hw->iir = INREG16(IIR);
653	hw->imr = INREG16(IMR);
654
655	return 0;
656}
657
658
659static int calc_vclock3(int index, int m, int n, int p)
660{
661	if (p == 0 || n == 0)
662		return 0;
663	return plls[index].ref_clk * m / n / p;
664}
665
666static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
667		       int lvds)
668{
669	struct pll_min_max *pll = &plls[index];
670	u32 m, vco, p;
671
672	m = (5 * (m1 + 2)) + (m2 + 2);
673	n += 2;
674	vco = pll->ref_clk * m / n;
675
676	if (index == PLLS_I8xx)
677		p = ((p1 + 2) * (1 << (p2 + 1)));
678	else
679		p = ((p1) * (p2 ? 5 : 10));
680	return vco / p;
681}
682
683#if REGDUMP
684static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
685			       int *o_p1, int *o_p2)
686{
687	int p1, p2;
688
689	if (IS_I9XX(dinfo)) {
690		if (dpll & DPLL_P1_FORCE_DIV2)
691			p1 = 1;
692		else
693			p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
694
695		p1 = ffs(p1);
696
697		p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
698	} else {
699		if (dpll & DPLL_P1_FORCE_DIV2)
700			p1 = 0;
701		else
702			p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
703		p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
704	}
705
706	*o_p1 = p1;
707	*o_p2 = p2;
708}
709#endif
710
711
712void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
713			      struct intelfb_hwstate *hw)
714{
715#if REGDUMP
716	int i, m1, m2, n, p1, p2;
717	int index = dinfo->pll_index;
718	DBG_MSG("intelfbhw_print_hw_state\n");
719
720	if (!hw)
721		return;
722	/* Read in as much of the HW state as possible. */
723	printk("hw state dump start\n");
724	printk("	VGA0_DIVISOR:		0x%08x\n", hw->vga0_divisor);
725	printk("	VGA1_DIVISOR:		0x%08x\n", hw->vga1_divisor);
726	printk("	VGAPD:			0x%08x\n", hw->vga_pd);
727	n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
728	m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
729	m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
730
731	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
732
733	printk("	VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
734	       m1, m2, n, p1, p2);
735	printk("	VGA0: clock is %d\n",
736	       calc_vclock(index, m1, m2, n, p1, p2, 0));
737
738	n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
739	m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
740	m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
741
742	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
743	printk("	VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
744	       m1, m2, n, p1, p2);
745	printk("	VGA1: clock is %d\n",
746	       calc_vclock(index, m1, m2, n, p1, p2, 0));
747
748	printk("	DPLL_A:			0x%08x\n", hw->dpll_a);
749	printk("	DPLL_B:			0x%08x\n", hw->dpll_b);
750	printk("	FPA0:			0x%08x\n", hw->fpa0);
751	printk("	FPA1:			0x%08x\n", hw->fpa1);
752	printk("	FPB0:			0x%08x\n", hw->fpb0);
753	printk("	FPB1:			0x%08x\n", hw->fpb1);
754
755	n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
756	m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
757	m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
758
759	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
760
761	printk("	PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
762	       m1, m2, n, p1, p2);
763	printk("	PLLA0: clock is %d\n",
764	       calc_vclock(index, m1, m2, n, p1, p2, 0));
765
766	n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
767	m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
768	m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
769
770	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
771
772	printk("	PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
773	       m1, m2, n, p1, p2);
774	printk("	PLLA1: clock is %d\n",
775	       calc_vclock(index, m1, m2, n, p1, p2, 0));
776
777#if 0
778	printk("	PALETTE_A:\n");
779	for (i = 0; i < PALETTE_8_ENTRIES)
780		printk("	%3d:	0x%08x\n", i, hw->palette_a[i]);
781	printk("	PALETTE_B:\n");
782	for (i = 0; i < PALETTE_8_ENTRIES)
783		printk("	%3d:	0x%08x\n", i, hw->palette_b[i]);
784#endif
785
786	printk("	HTOTAL_A:		0x%08x\n", hw->htotal_a);
787	printk("	HBLANK_A:		0x%08x\n", hw->hblank_a);
788	printk("	HSYNC_A:		0x%08x\n", hw->hsync_a);
789	printk("	VTOTAL_A:		0x%08x\n", hw->vtotal_a);
790	printk("	VBLANK_A:		0x%08x\n", hw->vblank_a);
791	printk("	VSYNC_A:		0x%08x\n", hw->vsync_a);
792	printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a);
793	printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a);
794	printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b);
795	printk("	HBLANK_B:		0x%08x\n", hw->hblank_b);
796	printk("	HSYNC_B:		0x%08x\n", hw->hsync_b);
797	printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b);
798	printk("	VBLANK_B:		0x%08x\n", hw->vblank_b);
799	printk("	VSYNC_B:		0x%08x\n", hw->vsync_b);
800	printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b);
801	printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b);
802
803	printk("	ADPA:			0x%08x\n", hw->adpa);
804	printk("	DVOA:			0x%08x\n", hw->dvoa);
805	printk("	DVOB:			0x%08x\n", hw->dvob);
806	printk("	DVOC:			0x%08x\n", hw->dvoc);
807	printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim);
808	printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim);
809	printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim);
810	printk("	LVDS:			0x%08x\n", hw->lvds);
811
812	printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf);
813	printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf);
814	printk("	DISPARB:		0x%08x\n", hw->disp_arb);
815
816	printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control);
817	printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control);
818	printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base);
819	printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base);
820
821	printk("	CURSOR_A_PALETTE:	");
822	for (i = 0; i < 4; i++) {
823		printk("0x%08x", hw->cursor_a_palette[i]);
824		if (i < 3)
825			printk(", ");
826	}
827	printk("\n");
828	printk("	CURSOR_B_PALETTE:	");
829	for (i = 0; i < 4; i++) {
830		printk("0x%08x", hw->cursor_b_palette[i]);
831		if (i < 3)
832			printk(", ");
833	}
834	printk("\n");
835
836	printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size);
837
838	printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl);
839	printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl);
840	printk("	DSPABASE:		0x%08x\n", hw->disp_a_base);
841	printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base);
842	printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride);
843	printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride);
844
845	printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl);
846	printk("	ADD_ID:			0x%08x\n", hw->add_id);
847
848	for (i = 0; i < 7; i++) {
849		printk("	SWF0%d			0x%08x\n", i,
850			hw->swf0x[i]);
851	}
852	for (i = 0; i < 7; i++) {
853		printk("	SWF1%d			0x%08x\n", i,
854			hw->swf1x[i]);
855	}
856	for (i = 0; i < 3; i++) {
857		printk("	SWF3%d			0x%08x\n", i,
858		       hw->swf3x[i]);
859	}
860	for (i = 0; i < 8; i++)
861		printk("	FENCE%d			0x%08x\n", i,
862		       hw->fence[i]);
863
864	printk("	INSTPM			0x%08x\n", hw->instpm);
865	printk("	MEM_MODE		0x%08x\n", hw->mem_mode);
866	printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0);
867	printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1);
868
869	printk("	HWSTAM			0x%04x\n", hw->hwstam);
870	printk("	IER			0x%04x\n", hw->ier);
871	printk("	IIR			0x%04x\n", hw->iir);
872	printk("	IMR			0x%04x\n", hw->imr);
873	printk("hw state dump end\n");
874#endif
875}
876
877
878
879/* Split the M parameter into M1 and M2. */
880static int splitm(int index, unsigned int m, unsigned int *retm1,
881		  unsigned int *retm2)
882{
883	int m1, m2;
884	int testm;
885	struct pll_min_max *pll = &plls[index];
886
887	/* no point optimising too much - brute force m */
888	for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
889		for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
890			testm = (5 * (m1 + 2)) + (m2 + 2);
891			if (testm == m) {
892				*retm1 = (unsigned int)m1;
893				*retm2 = (unsigned int)m2;
894				return 0;
895			}
896		}
897	}
898	return 1;
899}
900
901/* Split the P parameter into P1 and P2. */
902static int splitp(int index, unsigned int p, unsigned int *retp1,
903		  unsigned int *retp2)
904{
905	int p1, p2;
906	struct pll_min_max *pll = &plls[index];
907
908	if (index == PLLS_I9xx) {
909		p2 = (p % 10) ? 1 : 0;
910
911		p1 = p / (p2 ? 5 : 10);
912
913		*retp1 = (unsigned int)p1;
914		*retp2 = (unsigned int)p2;
915		return 0;
916	}
917
918	if (p % 4 == 0)
919		p2 = 1;
920	else
921		p2 = 0;
922	p1 = (p / (1 << (p2 + 1))) - 2;
923	if (p % 4 == 0 && p1 < pll->min_p1) {
924		p2 = 0;
925		p1 = (p / (1 << (p2 + 1))) - 2;
926	}
927	if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
928	    (p1 + 2) * (1 << (p2 + 1)) != p) {
929		return 1;
930	} else {
931		*retp1 = (unsigned int)p1;
932		*retp2 = (unsigned int)p2;
933		return 0;
934	}
935}
936
937static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
938			   u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
939{
940	u32 m1, m2, n, p1, p2, n1, testm;
941	u32 f_vco, p, p_best = 0, m, f_out = 0;
942	u32 err_best = 10000000;
943	u32 n_best = 0, m_best = 0, f_err;
944	u32 p_min, p_max, p_inc, div_max;
945	struct pll_min_max *pll = &plls[index];
946
947	DBG_MSG("Clock is %d\n", clock);
948
949	div_max = pll->max_vco / clock;
950
951	p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
952	p_min = p_inc;
953	p_max = ROUND_DOWN_TO(div_max, p_inc);
954	if (p_min < pll->min_p)
955		p_min = pll->min_p;
956	if (p_max > pll->max_p)
957		p_max = pll->max_p;
958
959	DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
960
961	p = p_min;
962	do {
963		if (splitp(index, p, &p1, &p2)) {
964			WRN_MSG("cannot split p = %d\n", p);
965			p += p_inc;
966			continue;
967		}
968		n = pll->min_n;
969		f_vco = clock * p;
970
971		do {
972			m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
973			if (m < pll->min_m)
974				m = pll->min_m + 1;
975			if (m > pll->max_m)
976				m = pll->max_m - 1;
977			for (testm = m - 1; testm <= m; testm++) {
978				f_out = calc_vclock3(index, testm, n, p);
979				if (splitm(index, testm, &m1, &m2)) {
980					WRN_MSG("cannot split m = %d\n",
981						testm);
982					continue;
983				}
984				if (clock > f_out)
985					f_err = clock - f_out;
986				else/* slightly bias the error for bigger clocks */
987					f_err = f_out - clock + 1;
988
989				if (f_err < err_best) {
990					m_best = testm;
991					n_best = n;
992					p_best = p;
993					err_best = f_err;
994				}
995			}
996			n++;
997		} while ((n <= pll->max_n) && (f_out >= clock));
998		p += p_inc;
999	} while ((p <= p_max));
1000
1001	if (!m_best) {
1002		WRN_MSG("cannot find parameters for clock %d\n", clock);
1003		return 1;
1004	}
1005	m = m_best;
1006	n = n_best;
1007	p = p_best;
1008	splitm(index, m, &m1, &m2);
1009	splitp(index, p, &p1, &p2);
1010	n1 = n - 2;
1011
1012	DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1013		"f: %d (%d), VCO: %d\n",
1014		m, m1, m2, n, n1, p, p1, p2,
1015		calc_vclock3(index, m, n, p),
1016		calc_vclock(index, m1, m2, n1, p1, p2, 0),
1017		calc_vclock3(index, m, n, p) * p);
1018	*retm1 = m1;
1019	*retm2 = m2;
1020	*retn = n1;
1021	*retp1 = p1;
1022	*retp2 = p2;
1023	*retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1024
1025	return 0;
1026}
1027
1028static __inline__ int check_overflow(u32 value, u32 limit,
1029				     const char *description)
1030{
1031	if (value > limit) {
1032		WRN_MSG("%s value %d exceeds limit %d\n",
1033			description, value, limit);
1034		return 1;
1035	}
1036	return 0;
1037}
1038
1039/* It is assumed that hw is filled in with the initial state information. */
1040int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1041			 struct intelfb_hwstate *hw,
1042			 struct fb_var_screeninfo *var)
1043{
1044	int pipe = intelfbhw_active_pipe(hw);
1045	u32 *dpll, *fp0, *fp1;
1046	u32 m1, m2, n, p1, p2, clock_target, clock;
1047	u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1048	u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1049	u32 vsync_pol, hsync_pol;
1050	u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1051	u32 stride_alignment;
1052
1053	DBG_MSG("intelfbhw_mode_to_hw\n");
1054
1055	/* Disable VGA */
1056	hw->vgacntrl |= VGA_DISABLE;
1057
1058	/* Set which pipe's registers will be set. */
1059	if (pipe == PIPE_B) {
1060		dpll = &hw->dpll_b;
1061		fp0 = &hw->fpb0;
1062		fp1 = &hw->fpb1;
1063		hs = &hw->hsync_b;
1064		hb = &hw->hblank_b;
1065		ht = &hw->htotal_b;
1066		vs = &hw->vsync_b;
1067		vb = &hw->vblank_b;
1068		vt = &hw->vtotal_b;
1069		ss = &hw->src_size_b;
1070		pipe_conf = &hw->pipe_b_conf;
1071	} else {
1072		dpll = &hw->dpll_a;
1073		fp0 = &hw->fpa0;
1074		fp1 = &hw->fpa1;
1075		hs = &hw->hsync_a;
1076		hb = &hw->hblank_a;
1077		ht = &hw->htotal_a;
1078		vs = &hw->vsync_a;
1079		vb = &hw->vblank_a;
1080		vt = &hw->vtotal_a;
1081		ss = &hw->src_size_a;
1082		pipe_conf = &hw->pipe_a_conf;
1083	}
1084
1085	/* Use ADPA register for sync control. */
1086	hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1087
1088	/* sync polarity */
1089	hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1090			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1091	vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1092			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1093	hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1094		      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1095	hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1096		    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1097
1098	/* Connect correct pipe to the analog port DAC */
1099	hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1100	hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1101
1102	/* Set DPMS state to D0 (on) */
1103	hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1104	hw->adpa |= ADPA_DPMS_D0;
1105
1106	hw->adpa |= ADPA_DAC_ENABLE;
1107
1108	*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1109	*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1110	*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1111
1112	/* Desired clock in kHz */
1113	clock_target = 1000000000 / var->pixclock;
1114
1115	if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1116			    &n, &p1, &p2, &clock)) {
1117		WRN_MSG("calc_pll_params failed\n");
1118		return 1;
1119	}
1120
1121	/* Check for overflow. */
1122	if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1123		return 1;
1124	if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1125		return 1;
1126	if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1127		return 1;
1128	if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1129		return 1;
1130	if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1131		return 1;
1132
1133	*dpll &= ~DPLL_P1_FORCE_DIV2;
1134	*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1135		   (DPLL_P1_MASK << DPLL_P1_SHIFT));
1136
1137	if (IS_I9XX(dinfo)) {
1138		*dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1139		*dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1140	} else
1141		*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1142
1143	*fp0 = (n << FP_N_DIVISOR_SHIFT) |
1144	       (m1 << FP_M1_DIVISOR_SHIFT) |
1145	       (m2 << FP_M2_DIVISOR_SHIFT);
1146	*fp1 = *fp0;
1147
1148	hw->dvob &= ~PORT_ENABLE;
1149	hw->dvoc &= ~PORT_ENABLE;
1150
1151	/* Use display plane A. */
1152	hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1153	hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1154	hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1155	switch (intelfb_var_to_depth(var)) {
1156	case 8:
1157		hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1158		break;
1159	case 15:
1160		hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1161		break;
1162	case 16:
1163		hw->disp_a_ctrl |= DISPPLANE_16BPP;
1164		break;
1165	case 24:
1166		hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1167		break;
1168	}
1169	hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1170	hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1171
1172	/* Set CRTC registers. */
1173	hactive = var->xres;
1174	hsync_start = hactive + var->right_margin;
1175	hsync_end = hsync_start + var->hsync_len;
1176	htotal = hsync_end + var->left_margin;
1177	hblank_start = hactive;
1178	hblank_end = htotal;
1179
1180	DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1181		hactive, hsync_start, hsync_end, htotal, hblank_start,
1182		hblank_end);
1183
1184	vactive = var->yres;
1185	if (var->vmode & FB_VMODE_INTERLACED)
1186		vactive--; /* the chip adds 2 halflines automatically */
1187	vsync_start = vactive + var->lower_margin;
1188	vsync_end = vsync_start + var->vsync_len;
1189	vtotal = vsync_end + var->upper_margin;
1190	vblank_start = vactive;
1191	vblank_end = vsync_end + 1;
1192
1193	DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1194		vactive, vsync_start, vsync_end, vtotal, vblank_start,
1195		vblank_end);
1196
1197	/* Adjust for register values, and check for overflow. */
1198	hactive--;
1199	if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1200		return 1;
1201	hsync_start--;
1202	if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1203		return 1;
1204	hsync_end--;
1205	if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1206		return 1;
1207	htotal--;
1208	if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1209		return 1;
1210	hblank_start--;
1211	if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1212		return 1;
1213	hblank_end--;
1214	if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1215		return 1;
1216
1217	vactive--;
1218	if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1219		return 1;
1220	vsync_start--;
1221	if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1222		return 1;
1223	vsync_end--;
1224	if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1225		return 1;
1226	vtotal--;
1227	if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1228		return 1;
1229	vblank_start--;
1230	if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1231		return 1;
1232	vblank_end--;
1233	if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1234		return 1;
1235
1236	*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1237	*hb = (hblank_start << HBLANKSTART_SHIFT) |
1238	      (hblank_end << HSYNCEND_SHIFT);
1239	*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1240
1241	*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1242	*vb = (vblank_start << VBLANKSTART_SHIFT) |
1243	      (vblank_end << VSYNCEND_SHIFT);
1244	*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1245	*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1246	      (vactive << SRC_SIZE_VERT_SHIFT);
1247
1248	hw->disp_a_stride = dinfo->pitch;
1249	DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1250
1251	hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1252			  var->xoffset * var->bits_per_pixel / 8;
1253
1254	hw->disp_a_base += dinfo->fb.offset << 12;
1255
1256	/* Check stride alignment. */
1257	stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1258					    STRIDE_ALIGNMENT;
1259	if (hw->disp_a_stride % stride_alignment != 0) {
1260		WRN_MSG("display stride %d has bad alignment %d\n",
1261			hw->disp_a_stride, stride_alignment);
1262		return 1;
1263	}
1264
1265	/* Set the palette to 8-bit mode. */
1266	*pipe_conf &= ~PIPECONF_GAMMA;
1267
1268	if (var->vmode & FB_VMODE_INTERLACED)
1269		*pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1270	else
1271		*pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1272
1273	return 0;
1274}
1275
1276/* Program a (non-VGA) video mode. */
1277int intelfbhw_program_mode(struct intelfb_info *dinfo,
1278			   const struct intelfb_hwstate *hw, int blank)
1279{
1280	u32 tmp;
1281	const u32 *dpll, *fp0, *fp1, *pipe_conf;
1282	const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1283	u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1284	u32 hsync_reg, htotal_reg, hblank_reg;
1285	u32 vsync_reg, vtotal_reg, vblank_reg;
1286	u32 src_size_reg;
1287	u32 count, tmp_val[3];
1288
1289	/* Assume single pipe */
1290
1291#if VERBOSE > 0
1292	DBG_MSG("intelfbhw_program_mode\n");
1293#endif
1294
1295	/* Disable VGA */
1296	tmp = INREG(VGACNTRL);
1297	tmp |= VGA_DISABLE;
1298	OUTREG(VGACNTRL, tmp);
1299
1300	dinfo->pipe = intelfbhw_active_pipe(hw);
1301
1302	if (dinfo->pipe == PIPE_B) {
1303		dpll = &hw->dpll_b;
1304		fp0 = &hw->fpb0;
1305		fp1 = &hw->fpb1;
1306		pipe_conf = &hw->pipe_b_conf;
1307		hs = &hw->hsync_b;
1308		hb = &hw->hblank_b;
1309		ht = &hw->htotal_b;
1310		vs = &hw->vsync_b;
1311		vb = &hw->vblank_b;
1312		vt = &hw->vtotal_b;
1313		ss = &hw->src_size_b;
1314		dpll_reg = DPLL_B;
1315		fp0_reg = FPB0;
1316		fp1_reg = FPB1;
1317		pipe_conf_reg = PIPEBCONF;
1318		pipe_stat_reg = PIPEBSTAT;
1319		hsync_reg = HSYNC_B;
1320		htotal_reg = HTOTAL_B;
1321		hblank_reg = HBLANK_B;
1322		vsync_reg = VSYNC_B;
1323		vtotal_reg = VTOTAL_B;
1324		vblank_reg = VBLANK_B;
1325		src_size_reg = SRC_SIZE_B;
1326	} else {
1327		dpll = &hw->dpll_a;
1328		fp0 = &hw->fpa0;
1329		fp1 = &hw->fpa1;
1330		pipe_conf = &hw->pipe_a_conf;
1331		hs = &hw->hsync_a;
1332		hb = &hw->hblank_a;
1333		ht = &hw->htotal_a;
1334		vs = &hw->vsync_a;
1335		vb = &hw->vblank_a;
1336		vt = &hw->vtotal_a;
1337		ss = &hw->src_size_a;
1338		dpll_reg = DPLL_A;
1339		fp0_reg = FPA0;
1340		fp1_reg = FPA1;
1341		pipe_conf_reg = PIPEACONF;
1342		pipe_stat_reg = PIPEASTAT;
1343		hsync_reg = HSYNC_A;
1344		htotal_reg = HTOTAL_A;
1345		hblank_reg = HBLANK_A;
1346		vsync_reg = VSYNC_A;
1347		vtotal_reg = VTOTAL_A;
1348		vblank_reg = VBLANK_A;
1349		src_size_reg = SRC_SIZE_A;
1350	}
1351
1352	/* turn off pipe */
1353	tmp = INREG(pipe_conf_reg);
1354	tmp &= ~PIPECONF_ENABLE;
1355	OUTREG(pipe_conf_reg, tmp);
1356
1357	count = 0;
1358	do {
1359		tmp_val[count % 3] = INREG(PIPEA_DSL);
1360		if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1361			break;
1362		count++;
1363		udelay(1);
1364		if (count % 200 == 0) {
1365			tmp = INREG(pipe_conf_reg);
1366			tmp &= ~PIPECONF_ENABLE;
1367			OUTREG(pipe_conf_reg, tmp);
1368		}
1369	} while (count < 2000);
1370
1371	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1372
1373	/* Disable planes A and B. */
1374	tmp = INREG(DSPACNTR);
1375	tmp &= ~DISPPLANE_PLANE_ENABLE;
1376	OUTREG(DSPACNTR, tmp);
1377	tmp = INREG(DSPBCNTR);
1378	tmp &= ~DISPPLANE_PLANE_ENABLE;
1379	OUTREG(DSPBCNTR, tmp);
1380
1381	/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1382	mdelay(20);
1383
1384	OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1385	OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1386	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1387
1388	/* Disable Sync */
1389	tmp = INREG(ADPA);
1390	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1391	tmp |= ADPA_DPMS_D3;
1392	OUTREG(ADPA, tmp);
1393
1394	/* do some funky magic - xyzzy */
1395	OUTREG(0x61204, 0xabcd0000);
1396
1397	/* turn off PLL */
1398	tmp = INREG(dpll_reg);
1399	tmp &= ~DPLL_VCO_ENABLE;
1400	OUTREG(dpll_reg, tmp);
1401
1402	/* Set PLL parameters */
1403	OUTREG(fp0_reg, *fp0);
1404	OUTREG(fp1_reg, *fp1);
1405
1406	/* Enable PLL */
1407	OUTREG(dpll_reg, *dpll);
1408
1409	/* Set DVOs B/C */
1410	OUTREG(DVOB, hw->dvob);
1411	OUTREG(DVOC, hw->dvoc);
1412
1413	/* undo funky magic */
1414	OUTREG(0x61204, 0x00000000);
1415
1416	/* Set ADPA */
1417	OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1418	OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1419
1420	/* Set pipe parameters */
1421	OUTREG(hsync_reg, *hs);
1422	OUTREG(hblank_reg, *hb);
1423	OUTREG(htotal_reg, *ht);
1424	OUTREG(vsync_reg, *vs);
1425	OUTREG(vblank_reg, *vb);
1426	OUTREG(vtotal_reg, *vt);
1427	OUTREG(src_size_reg, *ss);
1428
1429	switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1430					  FB_VMODE_ODD_FLD_FIRST)) {
1431	case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1432		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1433		break;
1434	case FB_VMODE_INTERLACED: /* even lines first */
1435		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1436		break;
1437	default:		/* non-interlaced */
1438		OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1439	}
1440	/* Enable pipe */
1441	OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1442
1443	/* Enable sync */
1444	tmp = INREG(ADPA);
1445	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1446	tmp |= ADPA_DPMS_D0;
1447	OUTREG(ADPA, tmp);
1448
1449	/* setup display plane */
1450	if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1451		/*
1452		 *      i830M errata: the display plane must be enabled
1453		 *      to allow writes to the other bits in the plane
1454		 *      control register.
1455		 */
1456		tmp = INREG(DSPACNTR);
1457		if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1458			tmp |= DISPPLANE_PLANE_ENABLE;
1459			OUTREG(DSPACNTR, tmp);
1460			OUTREG(DSPACNTR,
1461			       hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1462			mdelay(1);
1463		}
1464	}
1465
1466	OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1467	OUTREG(DSPASTRIDE, hw->disp_a_stride);
1468	OUTREG(DSPABASE, hw->disp_a_base);
1469
1470	/* Enable plane */
1471	if (!blank) {
1472		tmp = INREG(DSPACNTR);
1473		tmp |= DISPPLANE_PLANE_ENABLE;
1474		OUTREG(DSPACNTR, tmp);
1475		OUTREG(DSPABASE, hw->disp_a_base);
1476	}
1477
1478	return 0;
1479}
1480
1481/* forward declarations */
1482static void refresh_ring(struct intelfb_info *dinfo);
1483static void reset_state(struct intelfb_info *dinfo);
1484static void do_flush(struct intelfb_info *dinfo);
1485
1486static  u32 get_ring_space(struct intelfb_info *dinfo)
1487{
1488	u32 ring_space;
1489
1490	if (dinfo->ring_tail >= dinfo->ring_head)
1491		ring_space = dinfo->ring.size -
1492			(dinfo->ring_tail - dinfo->ring_head);
1493	else
1494		ring_space = dinfo->ring_head - dinfo->ring_tail;
1495
1496	if (ring_space > RING_MIN_FREE)
1497		ring_space -= RING_MIN_FREE;
1498	else
1499		ring_space = 0;
1500
1501	return ring_space;
1502}
1503
1504static int wait_ring(struct intelfb_info *dinfo, int n)
1505{
1506	int i = 0;
1507	unsigned long end;
1508	u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1509
1510#if VERBOSE > 0
1511	DBG_MSG("wait_ring: %d\n", n);
1512#endif
1513
1514	end = jiffies + (HZ * 3);
1515	while (dinfo->ring_space < n) {
1516		dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1517		dinfo->ring_space = get_ring_space(dinfo);
1518
1519		if (dinfo->ring_head != last_head) {
1520			end = jiffies + (HZ * 3);
1521			last_head = dinfo->ring_head;
1522		}
1523		i++;
1524		if (time_before(end, jiffies)) {
1525			if (!i) {
1526				/* Try again */
1527				reset_state(dinfo);
1528				refresh_ring(dinfo);
1529				do_flush(dinfo);
1530				end = jiffies + (HZ * 3);
1531				i = 1;
1532			} else {
1533				WRN_MSG("ring buffer : space: %d wanted %d\n",
1534					dinfo->ring_space, n);
1535				WRN_MSG("lockup - turning off hardware "
1536					"acceleration\n");
1537				dinfo->ring_lockup = 1;
1538				break;
1539			}
1540		}
1541		udelay(1);
1542	}
1543	return i;
1544}
1545
1546static void do_flush(struct intelfb_info *dinfo)
1547{
1548	START_RING(2);
1549	OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1550	OUT_RING(MI_NOOP);
1551	ADVANCE_RING();
1552}
1553
1554void intelfbhw_do_sync(struct intelfb_info *dinfo)
1555{
1556#if VERBOSE > 0
1557	DBG_MSG("intelfbhw_do_sync\n");
1558#endif
1559
1560	if (!dinfo->accel)
1561		return;
1562
1563	/*
1564	 * Send a flush, then wait until the ring is empty.  This is what
1565	 * the XFree86 driver does, and actually it doesn't seem a lot worse
1566	 * than the recommended method (both have problems).
1567	 */
1568	do_flush(dinfo);
1569	wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1570	dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1571}
1572
1573static void refresh_ring(struct intelfb_info *dinfo)
1574{
1575#if VERBOSE > 0
1576	DBG_MSG("refresh_ring\n");
1577#endif
1578
1579	dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1580	dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1581	dinfo->ring_space = get_ring_space(dinfo);
1582}
1583
1584static void reset_state(struct intelfb_info *dinfo)
1585{
1586	int i;
1587	u32 tmp;
1588
1589#if VERBOSE > 0
1590	DBG_MSG("reset_state\n");
1591#endif
1592
1593	for (i = 0; i < FENCE_NUM; i++)
1594		OUTREG(FENCE + (i << 2), 0);
1595
1596	/* Flush the ring buffer if it's enabled. */
1597	tmp = INREG(PRI_RING_LENGTH);
1598	if (tmp & RING_ENABLE) {
1599#if VERBOSE > 0
1600		DBG_MSG("reset_state: ring was enabled\n");
1601#endif
1602		refresh_ring(dinfo);
1603		intelfbhw_do_sync(dinfo);
1604		DO_RING_IDLE();
1605	}
1606
1607	OUTREG(PRI_RING_LENGTH, 0);
1608	OUTREG(PRI_RING_HEAD, 0);
1609	OUTREG(PRI_RING_TAIL, 0);
1610	OUTREG(PRI_RING_START, 0);
1611}
1612
1613/* Stop the 2D engine, and turn off the ring buffer. */
1614void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1615{
1616#if VERBOSE > 0
1617	DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1618		dinfo->accel, dinfo->ring_active);
1619#endif
1620
1621	if (!dinfo->accel)
1622		return;
1623
1624	dinfo->ring_active = 0;
1625	reset_state(dinfo);
1626}
1627
1628/*
1629 * Enable the ring buffer, and initialise the 2D engine.
1630 * It is assumed that the graphics engine has been stopped by previously
1631 * calling intelfb_2d_stop().
1632 */
1633void intelfbhw_2d_start(struct intelfb_info *dinfo)
1634{
1635#if VERBOSE > 0
1636	DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1637		dinfo->accel, dinfo->ring_active);
1638#endif
1639
1640	if (!dinfo->accel)
1641		return;
1642
1643	/* Initialise the primary ring buffer. */
1644	OUTREG(PRI_RING_LENGTH, 0);
1645	OUTREG(PRI_RING_TAIL, 0);
1646	OUTREG(PRI_RING_HEAD, 0);
1647
1648	OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1649	OUTREG(PRI_RING_LENGTH,
1650		((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1651		RING_NO_REPORT | RING_ENABLE);
1652	refresh_ring(dinfo);
1653	dinfo->ring_active = 1;
1654}
1655
1656/* 2D fillrect (solid fill or invert) */
1657void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1658			   u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1659{
1660	u32 br00, br09, br13, br14, br16;
1661
1662#if VERBOSE > 0
1663	DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1664		"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1665#endif
1666
1667	br00 = COLOR_BLT_CMD;
1668	br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1669	br13 = (rop << ROP_SHIFT) | pitch;
1670	br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1671	br16 = color;
1672
1673	switch (bpp) {
1674	case 8:
1675		br13 |= COLOR_DEPTH_8;
1676		break;
1677	case 16:
1678		br13 |= COLOR_DEPTH_16;
1679		break;
1680	case 32:
1681		br13 |= COLOR_DEPTH_32;
1682		br00 |= WRITE_ALPHA | WRITE_RGB;
1683		break;
1684	}
1685
1686	START_RING(6);
1687	OUT_RING(br00);
1688	OUT_RING(br13);
1689	OUT_RING(br14);
1690	OUT_RING(br09);
1691	OUT_RING(br16);
1692	OUT_RING(MI_NOOP);
1693	ADVANCE_RING();
1694
1695#if VERBOSE > 0
1696	DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1697		dinfo->ring_tail, dinfo->ring_space);
1698#endif
1699}
1700
1701void
1702intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1703		    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1704{
1705	u32 br00, br09, br11, br12, br13, br22, br23, br26;
1706
1707#if VERBOSE > 0
1708	DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1709		curx, cury, dstx, dsty, w, h, pitch, bpp);
1710#endif
1711
1712	br00 = XY_SRC_COPY_BLT_CMD;
1713	br09 = dinfo->fb_start;
1714	br11 = (pitch << PITCH_SHIFT);
1715	br12 = dinfo->fb_start;
1716	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1717	br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1718	br23 = ((dstx + w) << WIDTH_SHIFT) |
1719	       ((dsty + h) << HEIGHT_SHIFT);
1720	br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1721
1722	switch (bpp) {
1723	case 8:
1724		br13 |= COLOR_DEPTH_8;
1725		break;
1726	case 16:
1727		br13 |= COLOR_DEPTH_16;
1728		break;
1729	case 32:
1730		br13 |= COLOR_DEPTH_32;
1731		br00 |= WRITE_ALPHA | WRITE_RGB;
1732		break;
1733	}
1734
1735	START_RING(8);
1736	OUT_RING(br00);
1737	OUT_RING(br13);
1738	OUT_RING(br22);
1739	OUT_RING(br23);
1740	OUT_RING(br09);
1741	OUT_RING(br26);
1742	OUT_RING(br11);
1743	OUT_RING(br12);
1744	ADVANCE_RING();
1745}
1746
1747int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1748			   u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1749			   u32 bpp)
1750{
1751	int nbytes, ndwords, pad, tmp;
1752	u32 br00, br09, br13, br18, br19, br22, br23;
1753	int dat, ix, iy, iw;
1754	int i, j;
1755
1756#if VERBOSE > 0
1757	DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1758#endif
1759
1760	/* size in bytes of a padded scanline */
1761	nbytes = ROUND_UP_TO(w, 16) / 8;
1762
1763	/* Total bytes of padded scanline data to write out. */
1764	nbytes = nbytes * h;
1765
1766	/*
1767	 * Check if the glyph data exceeds the immediate mode limit.
1768	 * It would take a large font (1K pixels) to hit this limit.
1769	 */
1770	if (nbytes > MAX_MONO_IMM_SIZE)
1771		return 0;
1772
1773	/* Src data is packaged a dword (32-bit) at a time. */
1774	ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1775
1776	/*
1777	 * Ring has to be padded to a quad word. But because the command starts
1778	   with 7 bytes, pad only if there is an even number of ndwords
1779	 */
1780	pad = !(ndwords % 2);
1781
1782	tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1783	br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1784	br09 = dinfo->fb_start;
1785	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1786	br18 = bg;
1787	br19 = fg;
1788	br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1789	br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1790
1791	switch (bpp) {
1792	case 8:
1793		br13 |= COLOR_DEPTH_8;
1794		break;
1795	case 16:
1796		br13 |= COLOR_DEPTH_16;
1797		break;
1798	case 32:
1799		br13 |= COLOR_DEPTH_32;
1800		br00 |= WRITE_ALPHA | WRITE_RGB;
1801		break;
1802	}
1803
1804	START_RING(8 + ndwords);
1805	OUT_RING(br00);
1806	OUT_RING(br13);
1807	OUT_RING(br22);
1808	OUT_RING(br23);
1809	OUT_RING(br09);
1810	OUT_RING(br18);
1811	OUT_RING(br19);
1812	ix = iy = 0;
1813	iw = ROUND_UP_TO(w, 8) / 8;
1814	while (ndwords--) {
1815		dat = 0;
1816		for (j = 0; j < 2; ++j) {
1817			for (i = 0; i < 2; ++i) {
1818				if (ix != iw || i == 0)
1819					dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1820			}
1821			if (ix == iw && iy != (h-1)) {
1822				ix = 0;
1823				++iy;
1824			}
1825		}
1826		OUT_RING(dat);
1827	}
1828	if (pad)
1829		OUT_RING(MI_NOOP);
1830	ADVANCE_RING();
1831
1832	return 1;
1833}
1834
1835/* HW cursor functions. */
1836void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1837{
1838	u32 tmp;
1839
1840#if VERBOSE > 0
1841	DBG_MSG("intelfbhw_cursor_init\n");
1842#endif
1843
1844	if (dinfo->mobile || IS_I9XX(dinfo)) {
1845		if (!dinfo->cursor.physical)
1846			return;
1847		tmp = INREG(CURSOR_A_CONTROL);
1848		tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1849			 CURSOR_MEM_TYPE_LOCAL |
1850			 (1 << CURSOR_PIPE_SELECT_SHIFT));
1851		tmp |= CURSOR_MODE_DISABLE;
1852		OUTREG(CURSOR_A_CONTROL, tmp);
1853		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1854	} else {
1855		tmp = INREG(CURSOR_CONTROL);
1856		tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1857			 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1858		tmp |= CURSOR_FORMAT_3C;
1859		OUTREG(CURSOR_CONTROL, tmp);
1860		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1861		tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1862		      (64 << CURSOR_SIZE_V_SHIFT);
1863		OUTREG(CURSOR_SIZE, tmp);
1864	}
1865}
1866
1867void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1868{
1869	u32 tmp;
1870
1871#if VERBOSE > 0
1872	DBG_MSG("intelfbhw_cursor_hide\n");
1873#endif
1874
1875	dinfo->cursor_on = 0;
1876	if (dinfo->mobile || IS_I9XX(dinfo)) {
1877		if (!dinfo->cursor.physical)
1878			return;
1879		tmp = INREG(CURSOR_A_CONTROL);
1880		tmp &= ~CURSOR_MODE_MASK;
1881		tmp |= CURSOR_MODE_DISABLE;
1882		OUTREG(CURSOR_A_CONTROL, tmp);
1883		/* Flush changes */
1884		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1885	} else {
1886		tmp = INREG(CURSOR_CONTROL);
1887		tmp &= ~CURSOR_ENABLE;
1888		OUTREG(CURSOR_CONTROL, tmp);
1889	}
1890}
1891
1892void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1893{
1894	u32 tmp;
1895
1896#if VERBOSE > 0
1897	DBG_MSG("intelfbhw_cursor_show\n");
1898#endif
1899
1900	dinfo->cursor_on = 1;
1901
1902	if (dinfo->cursor_blanked)
1903		return;
1904
1905	if (dinfo->mobile || IS_I9XX(dinfo)) {
1906		if (!dinfo->cursor.physical)
1907			return;
1908		tmp = INREG(CURSOR_A_CONTROL);
1909		tmp &= ~CURSOR_MODE_MASK;
1910		tmp |= CURSOR_MODE_64_4C_AX;
1911		OUTREG(CURSOR_A_CONTROL, tmp);
1912		/* Flush changes */
1913		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1914	} else {
1915		tmp = INREG(CURSOR_CONTROL);
1916		tmp |= CURSOR_ENABLE;
1917		OUTREG(CURSOR_CONTROL, tmp);
1918	}
1919}
1920
1921void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1922{
1923	u32 tmp;
1924
1925#if VERBOSE > 0
1926	DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1927#endif
1928
1929	/*
1930	 * Sets the position. The coordinates are assumed to already
1931	 * have any offset adjusted. Assume that the cursor is never
1932	 * completely off-screen, and that x, y are always >= 0.
1933	 */
1934
1935	tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1936	      ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1937	OUTREG(CURSOR_A_POSITION, tmp);
1938
1939	if (IS_I9XX(dinfo))
1940		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1941}
1942
1943void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1944{
1945#if VERBOSE > 0
1946	DBG_MSG("intelfbhw_cursor_setcolor\n");
1947#endif
1948
1949	OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1950	OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1951	OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1952	OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1953}
1954
1955void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1956			   u8 *data)
1957{
1958	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1959	int i, j, w = width / 8;
1960	int mod = width % 8, t_mask, d_mask;
1961
1962#if VERBOSE > 0
1963	DBG_MSG("intelfbhw_cursor_load\n");
1964#endif
1965
1966	if (!dinfo->cursor.virtual)
1967		return;
1968
1969	t_mask = 0xff >> mod;
1970	d_mask = ~(0xff >> mod);
1971	for (i = height; i--; ) {
1972		for (j = 0; j < w; j++) {
1973			writeb(0x00, addr + j);
1974			writeb(*(data++), addr + j+8);
1975		}
1976		if (mod) {
1977			writeb(t_mask, addr + j);
1978			writeb(*(data++) & d_mask, addr + j+8);
1979		}
1980		addr += 16;
1981	}
1982}
1983
1984void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1985{
1986	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1987	int i, j;
1988
1989#if VERBOSE > 0
1990	DBG_MSG("intelfbhw_cursor_reset\n");
1991#endif
1992
1993	if (!dinfo->cursor.virtual)
1994		return;
1995
1996	for (i = 64; i--; ) {
1997		for (j = 0; j < 8; j++) {
1998			writeb(0xff, addr + j+0);
1999			writeb(0x00, addr + j+8);
2000		}
2001		addr += 16;
2002	}
2003}
2004
2005static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
2006{
2007	u16 tmp;
2008	struct intelfb_info *dinfo = dev_id;
2009
2010	spin_lock(&dinfo->int_lock);
2011
2012	tmp = INREG16(IIR);
2013	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2014		tmp &= PIPE_A_EVENT_INTERRUPT;
2015	else
2016		tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2017
2018	if (tmp == 0) {
2019		spin_unlock(&dinfo->int_lock);
2020		return IRQ_RETVAL(0); /* not us */
2021	}
2022
2023	/* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2024	OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2025
2026	OUTREG16(IIR, tmp);
2027	if (dinfo->vsync.pan_display) {
2028		dinfo->vsync.pan_display = 0;
2029		OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2030	}
2031
2032	dinfo->vsync.count++;
2033	wake_up_interruptible(&dinfo->vsync.wait);
2034
2035	spin_unlock(&dinfo->int_lock);
2036
2037	return IRQ_RETVAL(1);
2038}
2039
2040int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2041{
2042	u16 tmp;
2043	if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2044		if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2045				"intelfb", dinfo)) {
2046			clear_bit(0, &dinfo->irq_flags);
2047			return -EINVAL;
2048		}
2049
2050		spin_lock_irq(&dinfo->int_lock);
2051		OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2052		OUTREG16(IMR, 0);
2053	} else
2054		spin_lock_irq(&dinfo->int_lock);
2055
2056	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2057		tmp = PIPE_A_EVENT_INTERRUPT;
2058	else
2059		tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2060	if (tmp != INREG16(IER)) {
2061		DBG_MSG("changing IER to 0x%X\n", tmp);
2062		OUTREG16(IER, tmp);
2063	}
2064
2065	spin_unlock_irq(&dinfo->int_lock);
2066	return 0;
2067}
2068
2069void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2070{
2071	if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2072		if (dinfo->vsync.pan_display) {
2073			dinfo->vsync.pan_display = 0;
2074			OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2075		}
2076		spin_lock_irq(&dinfo->int_lock);
2077		OUTREG16(HWSTAM, 0xffff);
2078		OUTREG16(IMR, 0xffff);
2079		OUTREG16(IER, 0x0);
2080
2081		OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2082		spin_unlock_irq(&dinfo->int_lock);
2083
2084		free_irq(dinfo->pdev->irq, dinfo);
2085	}
2086}
2087
2088int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2089{
2090	struct intelfb_vsync *vsync;
2091	unsigned int count;
2092	int ret;
2093
2094	switch (pipe) {
2095		case 0:
2096			vsync = &dinfo->vsync;
2097			break;
2098		default:
2099			return -ENODEV;
2100	}
2101
2102	ret = intelfbhw_enable_irq(dinfo);
2103	if (ret)
2104		return ret;
2105
2106	count = vsync->count;
2107	ret = wait_event_interruptible_timeout(vsync->wait,
2108					       count != vsync->count, HZ / 10);
2109	if (ret < 0)
2110		return ret;
2111	if (ret == 0) {
2112		DBG_MSG("wait_for_vsync timed out!\n");
2113		return -ETIMEDOUT;
2114	}
2115
2116	return 0;
2117}
2118