1/*
2 *  drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
3 *
4 *  This file is derived from the powermac console "imstt" driver:
5 *  Copyright (C) 1997 Sigurdur Asgeirsson
6 *  With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
7 *  Modified by Danilo Beuche 1998
8 *  Some register values added by Damien Doligez, INRIA Rocquencourt
9 *  Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
10 *
11 *  This file was written by Ryan Nielsen (ran@krazynet.com)
12 *  Most of the frame buffer device stuff was copied from atyfb.c
13 *
14 *  This file is subject to the terms and conditions of the GNU General Public
15 *  License. See the file COPYING in the main directory of this archive for
16 *  more details.
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/errno.h>
22#include <linux/string.h>
23#include <linux/mm.h>
24#include <linux/vmalloc.h>
25#include <linux/delay.h>
26#include <linux/interrupt.h>
27#include <linux/fb.h>
28#include <linux/init.h>
29#include <linux/pci.h>
30#include <asm/io.h>
31#include <linux/uaccess.h>
32
33#if defined(CONFIG_PPC_PMAC)
34#include <linux/nvram.h>
35#include "macmodes.h"
36#endif
37
38#ifndef __powerpc__
39#define eieio()		/* Enforce In-order Execution of I/O */
40#endif
41
42/* TwinTurbo (Cosmo) registers */
43enum {
44	S1SA	=  0, /* 0x00 */
45	S2SA	=  1, /* 0x04 */
46	SP	=  2, /* 0x08 */
47	DSA	=  3, /* 0x0C */
48	CNT	=  4, /* 0x10 */
49	DP_OCTL	=  5, /* 0x14 */
50	CLR	=  6, /* 0x18 */
51	BI	=  8, /* 0x20 */
52	MBC	=  9, /* 0x24 */
53	BLTCTL	= 10, /* 0x28 */
54
55	/* Scan Timing Generator Registers */
56	HES	= 12, /* 0x30 */
57	HEB	= 13, /* 0x34 */
58	HSB	= 14, /* 0x38 */
59	HT	= 15, /* 0x3C */
60	VES	= 16, /* 0x40 */
61	VEB	= 17, /* 0x44 */
62	VSB	= 18, /* 0x48 */
63	VT	= 19, /* 0x4C */
64	HCIV	= 20, /* 0x50 */
65	VCIV	= 21, /* 0x54 */
66	TCDR	= 22, /* 0x58 */
67	VIL	= 23, /* 0x5C */
68	STGCTL	= 24, /* 0x60 */
69
70	/* Screen Refresh Generator Registers */
71	SSR	= 25, /* 0x64 */
72	HRIR	= 26, /* 0x68 */
73	SPR	= 27, /* 0x6C */
74	CMR	= 28, /* 0x70 */
75	SRGCTL	= 29, /* 0x74 */
76
77	/* RAM Refresh Generator Registers */
78	RRCIV	= 30, /* 0x78 */
79	RRSC	= 31, /* 0x7C */
80	RRCR	= 34, /* 0x88 */
81
82	/* System Registers */
83	GIOE	= 32, /* 0x80 */
84	GIO	= 33, /* 0x84 */
85	SCR	= 35, /* 0x8C */
86	SSTATUS	= 36, /* 0x90 */
87	PRC	= 37, /* 0x94 */
88
89#if 0
90	/* PCI Registers */
91	DVID	= 0x00000000L,
92	SC	= 0x00000004L,
93	CCR	= 0x00000008L,
94	OG	= 0x0000000CL,
95	BARM	= 0x00000010L,
96	BARER	= 0x00000030L,
97#endif
98};
99
100/* IBM 624 RAMDAC Direct Registers */
101enum {
102	PADDRW	= 0x00,
103	PDATA	= 0x04,
104	PPMASK	= 0x08,
105	PADDRR	= 0x0c,
106	PIDXLO	= 0x10,
107	PIDXHI	= 0x14,
108	PIDXDATA= 0x18,
109	PIDXCTL	= 0x1c
110};
111
112/* IBM 624 RAMDAC Indirect Registers */
113enum {
114	CLKCTL		= 0x02,	/* (0x01) Miscellaneous Clock Control */
115	SYNCCTL		= 0x03,	/* (0x00) Sync Control */
116	HSYNCPOS	= 0x04,	/* (0x00) Horizontal Sync Position */
117	PWRMNGMT	= 0x05,	/* (0x00) Power Management */
118	DACOP		= 0x06,	/* (0x02) DAC Operation */
119	PALETCTL	= 0x07,	/* (0x00) Palette Control */
120	SYSCLKCTL	= 0x08,	/* (0x01) System Clock Control */
121	PIXFMT		= 0x0a,	/* () Pixel Format  [bpp >> 3 + 2] */
122	BPP8		= 0x0b,	/* () 8 Bits/Pixel Control */
123	BPP16		= 0x0c, /* () 16 Bits/Pixel Control  [bit 1=1 for 565] */
124	BPP24		= 0x0d,	/* () 24 Bits/Pixel Control */
125	BPP32		= 0x0e,	/* () 32 Bits/Pixel Control */
126	PIXCTL1		= 0x10, /* (0x05) Pixel PLL Control 1 */
127	PIXCTL2		= 0x11,	/* (0x00) Pixel PLL Control 2 */
128	SYSCLKN		= 0x15,	/* () System Clock N (System PLL Reference Divider) */
129	SYSCLKM		= 0x16,	/* () System Clock M (System PLL VCO Divider) */
130	SYSCLKP		= 0x17,	/* () System Clock P */
131	SYSCLKC		= 0x18,	/* () System Clock C */
132	/*
133	 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
134	 * c is charge pump bias which depends on the VCO frequency
135	 */
136	PIXM0		= 0x20,	/* () Pixel M 0 */
137	PIXN0		= 0x21,	/* () Pixel N 0 */
138	PIXP0		= 0x22,	/* () Pixel P 0 */
139	PIXC0		= 0x23,	/* () Pixel C 0 */
140	CURSCTL		= 0x30,	/* (0x00) Cursor Control */
141	CURSXLO		= 0x31,	/* () Cursor X position, low 8 bits */
142	CURSXHI		= 0x32,	/* () Cursor X position, high 8 bits */
143	CURSYLO		= 0x33,	/* () Cursor Y position, low 8 bits */
144	CURSYHI		= 0x34,	/* () Cursor Y position, high 8 bits */
145	CURSHOTX	= 0x35,	/* () Cursor Hot Spot X */
146	CURSHOTY	= 0x36,	/* () Cursor Hot Spot Y */
147	CURSACCTL	= 0x37,	/* () Advanced Cursor Control Enable */
148	CURSACATTR	= 0x38,	/* () Advanced Cursor Attribute */
149	CURS1R		= 0x40,	/* () Cursor 1 Red */
150	CURS1G		= 0x41,	/* () Cursor 1 Green */
151	CURS1B		= 0x42,	/* () Cursor 1 Blue */
152	CURS2R		= 0x43,	/* () Cursor 2 Red */
153	CURS2G		= 0x44,	/* () Cursor 2 Green */
154	CURS2B		= 0x45,	/* () Cursor 2 Blue */
155	CURS3R		= 0x46,	/* () Cursor 3 Red */
156	CURS3G		= 0x47,	/* () Cursor 3 Green */
157	CURS3B		= 0x48,	/* () Cursor 3 Blue */
158	BORDR		= 0x60,	/* () Border Color Red */
159	BORDG		= 0x61,	/* () Border Color Green */
160	BORDB		= 0x62,	/* () Border Color Blue */
161	MISCTL1		= 0x70,	/* (0x00) Miscellaneous Control 1 */
162	MISCTL2		= 0x71,	/* (0x00) Miscellaneous Control 2 */
163	MISCTL3		= 0x72,	/* (0x00) Miscellaneous Control 3 */
164	KEYCTL		= 0x78	/* (0x00) Key Control/DB Operation */
165};
166
167/* TI TVP 3030 RAMDAC Direct Registers */
168enum {
169	TVPADDRW = 0x00,	/* 0  Palette/Cursor RAM Write Address/Index */
170	TVPPDATA = 0x04,	/* 1  Palette Data RAM Data */
171	TVPPMASK = 0x08,	/* 2  Pixel Read-Mask */
172	TVPPADRR = 0x0c,	/* 3  Palette/Cursor RAM Read Address */
173	TVPCADRW = 0x10,	/* 4  Cursor/Overscan Color Write Address */
174	TVPCDATA = 0x14,	/* 5  Cursor/Overscan Color Data */
175				/* 6  reserved */
176	TVPCADRR = 0x1c,	/* 7  Cursor/Overscan Color Read Address */
177				/* 8  reserved */
178	TVPDCCTL = 0x24,	/* 9  Direct Cursor Control */
179	TVPIDATA = 0x28,	/* 10 Index Data */
180	TVPCRDAT = 0x2c,	/* 11 Cursor RAM Data */
181	TVPCXPOL = 0x30,	/* 12 Cursor-Position X LSB */
182	TVPCXPOH = 0x34,	/* 13 Cursor-Position X MSB */
183	TVPCYPOL = 0x38,	/* 14 Cursor-Position Y LSB */
184	TVPCYPOH = 0x3c,	/* 15 Cursor-Position Y MSB */
185};
186
187/* TI TVP 3030 RAMDAC Indirect Registers */
188enum {
189	TVPIRREV = 0x01,	/* Silicon Revision [RO] */
190	TVPIRICC = 0x06,	/* Indirect Cursor Control 	(0x00) */
191	TVPIRBRC = 0x07,	/* Byte Router Control 	(0xe4) */
192	TVPIRLAC = 0x0f,	/* Latch Control 		(0x06) */
193	TVPIRTCC = 0x18,	/* True Color Control  	(0x80) */
194	TVPIRMXC = 0x19,	/* Multiplex Control		(0x98) */
195	TVPIRCLS = 0x1a,	/* Clock Selection		(0x07) */
196	TVPIRPPG = 0x1c,	/* Palette Page		(0x00) */
197	TVPIRGEC = 0x1d,	/* General Control 		(0x00) */
198	TVPIRMIC = 0x1e,	/* Miscellaneous Control	(0x00) */
199	TVPIRPLA = 0x2c,	/* PLL Address */
200	TVPIRPPD = 0x2d,	/* Pixel Clock PLL Data */
201	TVPIRMPD = 0x2e,	/* Memory Clock PLL Data */
202	TVPIRLPD = 0x2f,	/* Loop Clock PLL Data */
203	TVPIRCKL = 0x30,	/* Color-Key Overlay Low */
204	TVPIRCKH = 0x31,	/* Color-Key Overlay High */
205	TVPIRCRL = 0x32,	/* Color-Key Red Low */
206	TVPIRCRH = 0x33,	/* Color-Key Red High */
207	TVPIRCGL = 0x34,	/* Color-Key Green Low */
208	TVPIRCGH = 0x35,	/* Color-Key Green High */
209	TVPIRCBL = 0x36,	/* Color-Key Blue Low */
210	TVPIRCBH = 0x37,	/* Color-Key Blue High */
211	TVPIRCKC = 0x38,	/* Color-Key Control 		(0x00) */
212	TVPIRMLC = 0x39,	/* MCLK/Loop Clock Control	(0x18) */
213	TVPIRSEN = 0x3a,	/* Sense Test			(0x00) */
214	TVPIRTMD = 0x3b,	/* Test Mode Data */
215	TVPIRRML = 0x3c,	/* CRC Remainder LSB [RO] */
216	TVPIRRMM = 0x3d,	/* CRC Remainder MSB [RO] */
217	TVPIRRMS = 0x3e,	/* CRC  Bit Select [WO] */
218	TVPIRDID = 0x3f,	/* Device ID [RO] 		(0x30) */
219	TVPIRRES = 0xff		/* Software Reset [WO] */
220};
221
222struct initvalues {
223	__u8 addr, value;
224};
225
226static struct initvalues ibm_initregs[] = {
227	{ CLKCTL,	0x21 },
228	{ SYNCCTL,	0x00 },
229	{ HSYNCPOS,	0x00 },
230	{ PWRMNGMT,	0x00 },
231	{ DACOP,	0x02 },
232	{ PALETCTL,	0x00 },
233	{ SYSCLKCTL,	0x01 },
234
235	/*
236	 * Note that colors in X are correct only if all video data is
237	 * passed through the palette in the DAC.  That is, "indirect
238	 * color" must be configured.  This is the case for the IBM DAC
239	 * used in the 2MB and 4MB cards, at least.
240	 */
241	{ BPP8,		0x00 },
242	{ BPP16,	0x01 },
243	{ BPP24,	0x00 },
244	{ BPP32,	0x00 },
245
246	{ PIXCTL1,	0x05 },
247	{ PIXCTL2,	0x00 },
248	{ SYSCLKN,	0x08 },
249	{ SYSCLKM,	0x4f },
250	{ SYSCLKP,	0x00 },
251	{ SYSCLKC,	0x00 },
252	{ CURSCTL,	0x00 },
253	{ CURSACCTL,	0x01 },
254	{ CURSACATTR,	0xa8 },
255	{ CURS1R,	0xff },
256	{ CURS1G,	0xff },
257	{ CURS1B,	0xff },
258	{ CURS2R,	0xff },
259	{ CURS2G,	0xff },
260	{ CURS2B,	0xff },
261	{ CURS3R,	0xff },
262	{ CURS3G,	0xff },
263	{ CURS3B,	0xff },
264	{ BORDR,	0xff },
265	{ BORDG,	0xff },
266	{ BORDB,	0xff },
267	{ MISCTL1,	0x01 },
268	{ MISCTL2,	0x45 },
269	{ MISCTL3,	0x00 },
270	{ KEYCTL,	0x00 }
271};
272
273static struct initvalues tvp_initregs[] = {
274	{ TVPIRICC,	0x00 },
275	{ TVPIRBRC,	0xe4 },
276	{ TVPIRLAC,	0x06 },
277	{ TVPIRTCC,	0x80 },
278	{ TVPIRMXC,	0x4d },
279	{ TVPIRCLS,	0x05 },
280	{ TVPIRPPG,	0x00 },
281	{ TVPIRGEC,	0x00 },
282	{ TVPIRMIC,	0x08 },
283	{ TVPIRCKL,	0xff },
284	{ TVPIRCKH,	0xff },
285	{ TVPIRCRL,	0xff },
286	{ TVPIRCRH,	0xff },
287	{ TVPIRCGL,	0xff },
288	{ TVPIRCGH,	0xff },
289	{ TVPIRCBL,	0xff },
290	{ TVPIRCBH,	0xff },
291	{ TVPIRCKC,	0x00 },
292	{ TVPIRPLA,	0x00 },
293	{ TVPIRPPD,	0xc0 },
294	{ TVPIRPPD,	0xd5 },
295	{ TVPIRPPD,	0xea },
296	{ TVPIRPLA,	0x00 },
297	{ TVPIRMPD,	0xb9 },
298	{ TVPIRMPD,	0x3a },
299	{ TVPIRMPD,	0xb1 },
300	{ TVPIRPLA,	0x00 },
301	{ TVPIRLPD,	0xc1 },
302	{ TVPIRLPD,	0x3d },
303	{ TVPIRLPD,	0xf3 },
304};
305
306struct imstt_regvals {
307	__u32 pitch;
308	__u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
309	__u8 pclk_m, pclk_n, pclk_p;
310	/* Values of the tvp which change depending on colormode x resolution */
311	__u8 mlc[3];	/* Memory Loop Config 0x39 */
312	__u8 lckl_p[3];	/* P value of LCKL PLL */
313};
314
315struct imstt_par {
316	struct imstt_regvals init;
317	__u32 __iomem *dc_regs;
318	unsigned long cmap_regs_phys;
319	__u8 *cmap_regs;
320	__u32 ramdac;
321	__u32 palette[16];
322};
323
324enum {
325	IBM = 0,
326	TVP = 1
327};
328
329#define INIT_BPP		8
330#define INIT_XRES		640
331#define INIT_YRES		480
332
333static int inverse = 0;
334static char fontname[40] __initdata = { 0 };
335#if defined(CONFIG_PPC_PMAC)
336static signed char init_vmode = -1, init_cmode = -1;
337#endif
338
339static struct imstt_regvals tvp_reg_init_2 = {
340	512,
341	0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
342	0xec, 0x2a, 0xf3,
343	{ 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
344};
345
346static struct imstt_regvals tvp_reg_init_6 = {
347	640,
348	0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
349	0xef, 0x2e, 0xb2,
350	{ 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
351};
352
353static struct imstt_regvals tvp_reg_init_12 = {
354	800,
355	0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
356	0xf6, 0x2e, 0xf2,
357	{ 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
358};
359
360static struct imstt_regvals tvp_reg_init_13 = {
361	832,
362	0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
363	0xfe, 0x3e, 0xf1,
364	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
365};
366
367static struct imstt_regvals tvp_reg_init_17 = {
368	1024,
369	0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
370	0xfc, 0x3a, 0xf1,
371	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
372};
373
374static struct imstt_regvals tvp_reg_init_18 = {
375	1152,
376  	0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
377	0xfd, 0x3a, 0xf1,
378	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
379};
380
381static struct imstt_regvals tvp_reg_init_19 = {
382	1280,
383	0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
384	0xf7, 0x36, 0xf0,
385	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
386};
387
388static struct imstt_regvals tvp_reg_init_20 = {
389	1280,
390	0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
391	0xf0, 0x2d, 0xf0,
392	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
393};
394
395/*
396 * PCI driver prototypes
397 */
398static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
399static void imsttfb_remove(struct pci_dev *pdev);
400
401/*
402 * Register access
403 */
404static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
405{
406#ifdef __powerpc__
407	return in_le32(base + regindex);
408#else
409	return readl(base + regindex);
410#endif
411}
412
413static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
414{
415#ifdef __powerpc__
416	out_le32(base + regindex, val);
417#else
418	writel(val, base + regindex);
419#endif
420}
421
422static __u32
423getclkMHz(struct imstt_par *par)
424{
425	__u32 clk_m, clk_n, clk_p;
426
427	clk_m = par->init.pclk_m;
428	clk_n = par->init.pclk_n;
429	clk_p = par->init.pclk_p;
430
431	return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
432}
433
434static void
435setclkMHz(struct imstt_par *par, __u32 MHz)
436{
437	__u32 clk_m, clk_n, x, stage, spilled;
438
439	clk_m = clk_n = 0;
440	stage = spilled = 0;
441	for (;;) {
442		switch (stage) {
443			case 0:
444				clk_m++;
445				break;
446			case 1:
447				clk_n++;
448				break;
449		}
450		x = 20 * (clk_m + 1) / (clk_n + 1);
451		if (x == MHz)
452			break;
453		if (x > MHz) {
454			spilled = 1;
455			stage = 1;
456		} else if (spilled && x < MHz) {
457			stage = 0;
458		}
459	}
460
461	par->init.pclk_m = clk_m;
462	par->init.pclk_n = clk_n;
463	par->init.pclk_p = 0;
464}
465
466static struct imstt_regvals *
467compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
468{
469	struct imstt_regvals *init = &par->init;
470	__u32 MHz, hes, heb, veb, htp, vtp;
471
472	switch (xres) {
473		case 640:
474			hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
475			MHz = 30 /* .25 */ ;
476			break;
477		case 832:
478			hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
479			MHz = 57 /* .27_ */ ;
480			break;
481		case 1024:
482			hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
483			MHz = 80;
484			break;
485		case 1152:
486			hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
487			MHz = 101 /* .6_ */ ;
488			break;
489		case 1280:
490			hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
491			MHz = yres == 960 ? 126 : 135;
492			break;
493		case 1600:
494			hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
495			MHz = 200;
496			break;
497		default:
498			return NULL;
499	}
500
501	setclkMHz(par, MHz);
502
503	init->hes = hes;
504	init->heb = heb;
505	init->hsb = init->heb + (xres >> 3);
506	init->ht = init->hsb + htp;
507	init->ves = 0x0003;
508	init->veb = veb;
509	init->vsb = init->veb + yres;
510	init->vt = init->vsb + vtp;
511	init->vil = init->vsb;
512
513	init->pitch = xres;
514	return init;
515}
516
517static struct imstt_regvals *
518compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
519{
520	struct imstt_regvals *init;
521
522	switch (xres) {
523		case 512:
524			init = &tvp_reg_init_2;
525			break;
526		case 640:
527			init = &tvp_reg_init_6;
528			break;
529		case 800:
530			init = &tvp_reg_init_12;
531			break;
532		case 832:
533			init = &tvp_reg_init_13;
534			break;
535		case 1024:
536			init = &tvp_reg_init_17;
537			break;
538		case 1152:
539			init = &tvp_reg_init_18;
540			break;
541		case 1280:
542			init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
543			break;
544		default:
545			return NULL;
546	}
547	par->init = *init;
548	return init;
549}
550
551static struct imstt_regvals *
552compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
553{
554	if (par->ramdac == IBM)
555		return compute_imstt_regvals_ibm(par, xres, yres);
556	else
557		return compute_imstt_regvals_tvp(par, xres, yres);
558}
559
560static void
561set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
562{
563	struct imstt_regvals *init = &par->init;
564	__u8 pformat = (bpp >> 3) + 2;
565
566	par->cmap_regs[PIDXHI] = 0;		eieio();
567	par->cmap_regs[PIDXLO] = PIXM0;		eieio();
568	par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
569	par->cmap_regs[PIDXLO] = PIXN0;		eieio();
570	par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
571	par->cmap_regs[PIDXLO] = PIXP0;		eieio();
572	par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
573	par->cmap_regs[PIDXLO] = PIXC0;		eieio();
574	par->cmap_regs[PIDXDATA] = 0x02;	eieio();
575
576	par->cmap_regs[PIDXLO] = PIXFMT;	eieio();
577	par->cmap_regs[PIDXDATA] = pformat;	eieio();
578}
579
580static void
581set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
582{
583	struct imstt_regvals *init = &par->init;
584	__u8 tcc, mxc, lckl_n, mic;
585	__u8 mlc, lckl_p;
586
587	switch (bpp) {
588		default:
589		case 8:
590			tcc = 0x80;
591			mxc = 0x4d;
592			lckl_n = 0xc1;
593			mlc = init->mlc[0];
594			lckl_p = init->lckl_p[0];
595			break;
596		case 16:
597			tcc = 0x44;
598			mxc = 0x55;
599			lckl_n = 0xe1;
600			mlc = init->mlc[1];
601			lckl_p = init->lckl_p[1];
602			break;
603		case 24:
604			tcc = 0x5e;
605			mxc = 0x5d;
606			lckl_n = 0xf1;
607			mlc = init->mlc[2];
608			lckl_p = init->lckl_p[2];
609			break;
610		case 32:
611			tcc = 0x46;
612			mxc = 0x5d;
613			lckl_n = 0xf1;
614			mlc = init->mlc[2];
615			lckl_p = init->lckl_p[2];
616			break;
617	}
618	mic = 0x08;
619
620	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
621	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
622	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
623	par->cmap_regs[TVPIDATA] = init->pclk_m;	eieio();
624	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
625	par->cmap_regs[TVPIDATA] = init->pclk_n;	eieio();
626	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
627	par->cmap_regs[TVPIDATA] = init->pclk_p;	eieio();
628
629	par->cmap_regs[TVPADDRW] = TVPIRTCC;		eieio();
630	par->cmap_regs[TVPIDATA] = tcc;			eieio();
631	par->cmap_regs[TVPADDRW] = TVPIRMXC;		eieio();
632	par->cmap_regs[TVPIDATA] = mxc;			eieio();
633	par->cmap_regs[TVPADDRW] = TVPIRMIC;		eieio();
634	par->cmap_regs[TVPIDATA] = mic;			eieio();
635
636	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
637	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
638	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
639	par->cmap_regs[TVPIDATA] = lckl_n;		eieio();
640
641	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
642	par->cmap_regs[TVPIDATA] = 0x15;		eieio();
643	par->cmap_regs[TVPADDRW] = TVPIRMLC;		eieio();
644	par->cmap_regs[TVPIDATA] = mlc;			eieio();
645
646	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
647	par->cmap_regs[TVPIDATA] = 0x2a;		eieio();
648	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
649	par->cmap_regs[TVPIDATA] = lckl_p;		eieio();
650}
651
652static void
653set_imstt_regvals (struct fb_info *info, u_int bpp)
654{
655	struct imstt_par *par = info->par;
656	struct imstt_regvals *init = &par->init;
657	__u32 ctl, pitch, byteswap, scr;
658
659	if (par->ramdac == IBM)
660		set_imstt_regvals_ibm(par, bpp);
661	else
662		set_imstt_regvals_tvp(par, bpp);
663
664  /*
665   * From what I (jsk) can gather poking around with MacsBug,
666   * bits 8 and 9 in the SCR register control endianness
667   * correction (byte swapping).  These bits must be set according
668   * to the color depth as follows:
669   *     Color depth    Bit 9   Bit 8
670   *     ==========     =====   =====
671   *        8bpp          0       0
672   *       16bpp          0       1
673   *       32bpp          1       1
674   */
675	switch (bpp) {
676		default:
677		case 8:
678			ctl = 0x17b1;
679			pitch = init->pitch >> 2;
680			byteswap = 0x000;
681			break;
682		case 16:
683			ctl = 0x17b3;
684			pitch = init->pitch >> 1;
685			byteswap = 0x100;
686			break;
687		case 24:
688			ctl = 0x17b9;
689			pitch = init->pitch - (init->pitch >> 2);
690			byteswap = 0x200;
691			break;
692		case 32:
693			ctl = 0x17b5;
694			pitch = init->pitch;
695			byteswap = 0x300;
696			break;
697	}
698	if (par->ramdac == TVP)
699		ctl -= 0x30;
700
701	write_reg_le32(par->dc_regs, HES, init->hes);
702	write_reg_le32(par->dc_regs, HEB, init->heb);
703	write_reg_le32(par->dc_regs, HSB, init->hsb);
704	write_reg_le32(par->dc_regs, HT, init->ht);
705	write_reg_le32(par->dc_regs, VES, init->ves);
706	write_reg_le32(par->dc_regs, VEB, init->veb);
707	write_reg_le32(par->dc_regs, VSB, init->vsb);
708	write_reg_le32(par->dc_regs, VT, init->vt);
709	write_reg_le32(par->dc_regs, VIL, init->vil);
710	write_reg_le32(par->dc_regs, HCIV, 1);
711	write_reg_le32(par->dc_regs, VCIV, 1);
712	write_reg_le32(par->dc_regs, TCDR, 4);
713	write_reg_le32(par->dc_regs, RRCIV, 1);
714	write_reg_le32(par->dc_regs, RRSC, 0x980);
715	write_reg_le32(par->dc_regs, RRCR, 0x11);
716
717	if (par->ramdac == IBM) {
718		write_reg_le32(par->dc_regs, HRIR, 0x0100);
719		write_reg_le32(par->dc_regs, CMR, 0x00ff);
720		write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
721	} else {
722		write_reg_le32(par->dc_regs, HRIR, 0x0200);
723		write_reg_le32(par->dc_regs, CMR, 0x01ff);
724		write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
725	}
726
727	switch (info->fix.smem_len) {
728		case 0x200000:
729			scr = 0x059d | byteswap;
730			break;
731		/* case 0x400000:
732		   case 0x800000: */
733		default:
734			pitch >>= 1;
735			scr = 0x150dd | byteswap;
736			break;
737	}
738
739	write_reg_le32(par->dc_regs, SCR, scr);
740	write_reg_le32(par->dc_regs, SPR, pitch);
741	write_reg_le32(par->dc_regs, STGCTL, ctl);
742}
743
744static inline void
745set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
746{
747	struct imstt_par *par = info->par;
748	__u32 off = var->yoffset * (info->fix.line_length >> 3)
749		    + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3);
750	write_reg_le32(par->dc_regs, SSR, off);
751}
752
753static inline void
754set_555 (struct imstt_par *par)
755{
756	if (par->ramdac == IBM) {
757		par->cmap_regs[PIDXHI] = 0;		eieio();
758		par->cmap_regs[PIDXLO] = BPP16;		eieio();
759		par->cmap_regs[PIDXDATA] = 0x01;	eieio();
760	} else {
761		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
762		par->cmap_regs[TVPIDATA] = 0x44;	eieio();
763	}
764}
765
766static inline void
767set_565 (struct imstt_par *par)
768{
769	if (par->ramdac == IBM) {
770		par->cmap_regs[PIDXHI] = 0;		eieio();
771		par->cmap_regs[PIDXLO] = BPP16;		eieio();
772		par->cmap_regs[PIDXDATA] = 0x03;	eieio();
773	} else {
774		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
775		par->cmap_regs[TVPIDATA] = 0x45;	eieio();
776	}
777}
778
779static int
780imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
781{
782	if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
783	    && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
784	    || var->xres_virtual < var->xres || var->yres_virtual < var->yres
785	    || var->nonstd
786	    || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
787		return -EINVAL;
788
789	if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
790	    || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
791		return -EINVAL;
792
793	switch (var->bits_per_pixel) {
794		case 8:
795			var->red.offset = 0;
796			var->red.length = 8;
797			var->green.offset = 0;
798			var->green.length = 8;
799			var->blue.offset = 0;
800			var->blue.length = 8;
801			var->transp.offset = 0;
802			var->transp.length = 0;
803			break;
804		case 16:	/* RGB 555 or 565 */
805			if (var->green.length != 6)
806				var->red.offset = 10;
807			var->red.length = 5;
808			var->green.offset = 5;
809			if (var->green.length != 6)
810				var->green.length = 5;
811			var->blue.offset = 0;
812			var->blue.length = 5;
813			var->transp.offset = 0;
814			var->transp.length = 0;
815			break;
816		case 24:	/* RGB 888 */
817			var->red.offset = 16;
818			var->red.length = 8;
819			var->green.offset = 8;
820			var->green.length = 8;
821			var->blue.offset = 0;
822			var->blue.length = 8;
823			var->transp.offset = 0;
824			var->transp.length = 0;
825			break;
826		case 32:	/* RGBA 8888 */
827			var->red.offset = 16;
828			var->red.length = 8;
829			var->green.offset = 8;
830			var->green.length = 8;
831			var->blue.offset = 0;
832			var->blue.length = 8;
833			var->transp.offset = 24;
834			var->transp.length = 8;
835			break;
836	}
837
838	if (var->yres == var->yres_virtual) {
839		__u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
840		var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
841		if (var->yres_virtual < var->yres)
842			var->yres_virtual = var->yres;
843	}
844
845	var->red.msb_right = 0;
846	var->green.msb_right = 0;
847	var->blue.msb_right = 0;
848	var->transp.msb_right = 0;
849	var->height = -1;
850	var->width = -1;
851	var->vmode = FB_VMODE_NONINTERLACED;
852	var->left_margin = var->right_margin = 16;
853	var->upper_margin = var->lower_margin = 16;
854	var->hsync_len = var->vsync_len = 8;
855	return 0;
856}
857
858static int
859imsttfb_set_par(struct fb_info *info)
860{
861	struct imstt_par *par = info->par;
862
863	if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
864		return -EINVAL;
865
866	if (info->var.green.length == 6)
867		set_565(par);
868	else
869		set_555(par);
870	set_imstt_regvals(info, info->var.bits_per_pixel);
871	info->var.pixclock = 1000000 / getclkMHz(par);
872	return 0;
873}
874
875static int
876imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
877		   u_int transp, struct fb_info *info)
878{
879	struct imstt_par *par = info->par;
880	u_int bpp = info->var.bits_per_pixel;
881
882	if (regno > 255)
883		return 1;
884
885	red >>= 8;
886	green >>= 8;
887	blue >>= 8;
888
889	/* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
890	if (0 && bpp == 16)	/* screws up X */
891		par->cmap_regs[PADDRW] = regno << 3;
892	else
893		par->cmap_regs[PADDRW] = regno;
894	eieio();
895
896	par->cmap_regs[PDATA] = red;	eieio();
897	par->cmap_regs[PDATA] = green;	eieio();
898	par->cmap_regs[PDATA] = blue;	eieio();
899
900	if (regno < 16)
901		switch (bpp) {
902			case 16:
903				par->palette[regno] =
904					(regno << (info->var.green.length ==
905					5 ? 10 : 11)) | (regno << 5) | regno;
906				break;
907			case 24:
908				par->palette[regno] =
909					(regno << 16) | (regno << 8) | regno;
910				break;
911			case 32: {
912				int i = (regno << 8) | regno;
913				par->palette[regno] = (i << 16) |i;
914				break;
915			}
916		}
917	return 0;
918}
919
920static int
921imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
922{
923	if (var->xoffset + info->var.xres > info->var.xres_virtual
924	    || var->yoffset + info->var.yres > info->var.yres_virtual)
925		return -EINVAL;
926
927	info->var.xoffset = var->xoffset;
928	info->var.yoffset = var->yoffset;
929	set_offset(var, info);
930	return 0;
931}
932
933static int
934imsttfb_blank(int blank, struct fb_info *info)
935{
936	struct imstt_par *par = info->par;
937	__u32 ctrl;
938
939	ctrl = read_reg_le32(par->dc_regs, STGCTL);
940	if (blank > 0) {
941		switch (blank) {
942		case FB_BLANK_NORMAL:
943		case FB_BLANK_POWERDOWN:
944			ctrl &= ~0x00000380;
945			if (par->ramdac == IBM) {
946				par->cmap_regs[PIDXHI] = 0;		eieio();
947				par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
948				par->cmap_regs[PIDXDATA] = 0x55;	eieio();
949				par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
950				par->cmap_regs[PIDXDATA] = 0x11;	eieio();
951				par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
952				par->cmap_regs[PIDXDATA] = 0x0f;	eieio();
953				par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
954				par->cmap_regs[PIDXDATA] = 0x1f;	eieio();
955				par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
956				par->cmap_regs[PIDXDATA] = 0xc0;
957			}
958			break;
959		case FB_BLANK_VSYNC_SUSPEND:
960			ctrl &= ~0x00000020;
961			break;
962		case FB_BLANK_HSYNC_SUSPEND:
963			ctrl &= ~0x00000010;
964			break;
965		}
966	} else {
967		if (par->ramdac == IBM) {
968			ctrl |= 0x000017b0;
969			par->cmap_regs[PIDXHI] = 0;		eieio();
970			par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
971			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
972			par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
973			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
974			par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
975			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
976			par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
977			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
978			par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
979			par->cmap_regs[PIDXDATA] = 0x45;	eieio();
980		} else
981			ctrl |= 0x00001780;
982	}
983	write_reg_le32(par->dc_regs, STGCTL, ctrl);
984	return 0;
985}
986
987static void
988imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
989{
990	struct imstt_par *par = info->par;
991	__u32 Bpp, line_pitch, bgc, dx, dy, width, height;
992
993	bgc = rect->color;
994	bgc |= (bgc << 8);
995	bgc |= (bgc << 16);
996
997	Bpp = info->var.bits_per_pixel >> 3,
998	line_pitch = info->fix.line_length;
999
1000	dy = rect->dy * line_pitch;
1001	dx = rect->dx * Bpp;
1002	height = rect->height;
1003	height--;
1004	width = rect->width * Bpp;
1005	width--;
1006
1007	if (rect->rop == ROP_COPY) {
1008		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1009		write_reg_le32(par->dc_regs, DSA, dy + dx);
1010		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1011		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1012		write_reg_le32(par->dc_regs, BI, 0xffffffff);
1013		write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1014		write_reg_le32(par->dc_regs, CLR, bgc);
1015		write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1016		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1017		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1018	} else {
1019		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1020		write_reg_le32(par->dc_regs, DSA, dy + dx);
1021		write_reg_le32(par->dc_regs, S1SA, dy + dx);
1022		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1023		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1024		write_reg_le32(par->dc_regs, SP, line_pitch);
1025		write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1026		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1027		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1028	}
1029}
1030
1031static void
1032imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1033{
1034	struct imstt_par *par = info->par;
1035	__u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1036 	__u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1037
1038	Bpp = info->var.bits_per_pixel >> 3,
1039
1040	sx = area->sx * Bpp;
1041	sy = area->sy;
1042	dx = area->dx * Bpp;
1043	dy = area->dy;
1044	height = area->height;
1045	height--;
1046	width = area->width * Bpp;
1047	width--;
1048
1049	line_pitch = info->fix.line_length;
1050	bltctl = 0x05;
1051	sp = line_pitch << 16;
1052	cnt = height << 16;
1053
1054	if (sy < dy) {
1055		sy += height;
1056		dy += height;
1057		sp |= -(line_pitch) & 0xffff;
1058		dp_octl = -(line_pitch) & 0xffff;
1059	} else {
1060		sp |= line_pitch;
1061		dp_octl = line_pitch;
1062	}
1063	if (sx < dx) {
1064		sx += width;
1065		dx += width;
1066		bltctl |= 0x80;
1067		cnt |= -(width) & 0xffff;
1068	} else {
1069		cnt |= width;
1070	}
1071	fb_offset_old = sy * line_pitch + sx;
1072	fb_offset_new = dy * line_pitch + dx;
1073
1074	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1075	write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1076	write_reg_le32(par->dc_regs, SP, sp);
1077	write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1078	write_reg_le32(par->dc_regs, CNT, cnt);
1079	write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1080	write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1081	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1082	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1083}
1084
1085#if 0
1086static int
1087imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1088{
1089	u_int x, y;
1090
1091	if (width > 32 || height > 32)
1092		return -EINVAL;
1093
1094	if (par->ramdac == IBM) {
1095		par->cmap_regs[PIDXHI] = 1;	eieio();
1096		for (x = 0; x < 0x100; x++) {
1097			par->cmap_regs[PIDXLO] = x;		eieio();
1098			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1099		}
1100		par->cmap_regs[PIDXHI] = 1;	eieio();
1101		for (y = 0; y < height; y++)
1102			for (x = 0; x < width >> 2; x++) {
1103				par->cmap_regs[PIDXLO] = x + y * 8;	eieio();
1104				par->cmap_regs[PIDXDATA] = 0xff;	eieio();
1105			}
1106		par->cmap_regs[PIDXHI] = 0;		eieio();
1107		par->cmap_regs[PIDXLO] = CURS1R;	eieio();
1108		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1109		par->cmap_regs[PIDXLO] = CURS1G;	eieio();
1110		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1111		par->cmap_regs[PIDXLO] = CURS1B;	eieio();
1112		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1113		par->cmap_regs[PIDXLO] = CURS2R;	eieio();
1114		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1115		par->cmap_regs[PIDXLO] = CURS2G;	eieio();
1116		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1117		par->cmap_regs[PIDXLO] = CURS2B;	eieio();
1118		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1119		par->cmap_regs[PIDXLO] = CURS3R;	eieio();
1120		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1121		par->cmap_regs[PIDXLO] = CURS3G;	eieio();
1122		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1123		par->cmap_regs[PIDXLO] = CURS3B;	eieio();
1124		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1125	} else {
1126		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1127		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1128		par->cmap_regs[TVPADDRW] = 0;		eieio();
1129		for (x = 0; x < 0x200; x++) {
1130			par->cmap_regs[TVPCRDAT] = 0x00;	eieio();
1131		}
1132		for (x = 0; x < 0x200; x++) {
1133			par->cmap_regs[TVPCRDAT] = 0xff;	eieio();
1134		}
1135		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1136		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1137		for (y = 0; y < height; y++)
1138			for (x = 0; x < width >> 3; x++) {
1139				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1140				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1141			}
1142		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1143		par->cmap_regs[TVPIDATA] |= 0x08;	eieio();
1144		for (y = 0; y < height; y++)
1145			for (x = 0; x < width >> 3; x++) {
1146				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1147				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1148			}
1149		par->cmap_regs[TVPCADRW] = 0x00;	eieio();
1150		for (x = 0; x < 12; x++) {
1151			par->cmap_regs[TVPCDATA] = fgc;
1152			eieio();
1153		}
1154	}
1155	return 1;
1156}
1157
1158static void
1159imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1160{
1161	if (par->ramdac == IBM) {
1162		par->cmap_regs[PIDXHI] = 0;	eieio();
1163		if (!on) {
1164			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1165			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1166		} else {
1167			par->cmap_regs[PIDXLO] = CURSXHI;	eieio();
1168			par->cmap_regs[PIDXDATA] = d->dx >> 8;	eieio();
1169			par->cmap_regs[PIDXLO] = CURSXLO;	eieio();
1170			par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1171			par->cmap_regs[PIDXLO] = CURSYHI;	eieio();
1172			par->cmap_regs[PIDXDATA] = d->dy >> 8;	eieio();
1173			par->cmap_regs[PIDXLO] = CURSYLO;	eieio();
1174			par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1175			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1176			par->cmap_regs[PIDXDATA] = 0x02;	eieio();
1177		}
1178	} else {
1179		if (!on) {
1180			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1181			par->cmap_regs[TVPIDATA] = 0x00;	eieio();
1182		} else {
1183			__u16 x = d->dx + 0x40, y = d->dy + 0x40;
1184
1185			par->cmap_regs[TVPCXPOH] = x >> 8;	eieio();
1186			par->cmap_regs[TVPCXPOL] = x & 0xff;	eieio();
1187			par->cmap_regs[TVPCYPOH] = y >> 8;	eieio();
1188			par->cmap_regs[TVPCYPOL] = y & 0xff;	eieio();
1189			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1190			par->cmap_regs[TVPIDATA] = 0x02;	eieio();
1191		}
1192	}
1193}
1194
1195static int
1196imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1197{
1198	struct imstt_par *par = info->par;
1199        u32 flags = cursor->set, fg, bg, xx, yy;
1200
1201	if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1202		return 1;
1203
1204	imstt_set_cursor(info, cursor, 0);
1205
1206	if (flags & FB_CUR_SETPOS) {
1207		xx = cursor->image.dx - info->var.xoffset;
1208		yy = cursor->image.dy - info->var.yoffset;
1209	}
1210
1211	if (flags & FB_CUR_SETSIZE) {
1212        }
1213
1214        if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1215                int fg_idx = cursor->image.fg_color;
1216                int width = (cursor->image.width+7)/8;
1217                u8 *dat = (u8 *) cursor->image.data;
1218                u8 *dst = (u8 *) cursor->dest;
1219                u8 *msk = (u8 *) cursor->mask;
1220
1221                switch (cursor->rop) {
1222                case ROP_XOR:
1223                        for (i = 0; i < cursor->image.height; i++) {
1224                                for (j = 0; j < width; j++) {
1225                                        d_idx = i * MAX_CURS/8  + j;
1226                                        data[d_idx] =  byte_rev[dat[s_idx] ^
1227                                                                dst[s_idx]];
1228                                        mask[d_idx] = byte_rev[msk[s_idx]];
1229                                        s_idx++;
1230                                }
1231                        }
1232                        break;
1233                case ROP_COPY:
1234                default:
1235                        for (i = 0; i < cursor->image.height; i++) {
1236                                for (j = 0; j < width; j++) {
1237                                        d_idx = i * MAX_CURS/8 + j;
1238                                        data[d_idx] = byte_rev[dat[s_idx]];
1239                                        mask[d_idx] = byte_rev[msk[s_idx]];
1240                                        s_idx++;
1241                                }
1242			}
1243			break;
1244		}
1245
1246		fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1247                     ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1248                     ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1249
1250		imsttfb_load_cursor_image(par, xx, yy, fgc);
1251	}
1252	if (cursor->enable)
1253		imstt_set_cursor(info, cursor, 1);
1254	return 0;
1255}
1256#endif
1257
1258#define FBIMSTT_SETREG		0x545401
1259#define FBIMSTT_GETREG		0x545402
1260#define FBIMSTT_SETCMAPREG	0x545403
1261#define FBIMSTT_GETCMAPREG	0x545404
1262#define FBIMSTT_SETIDXREG	0x545405
1263#define FBIMSTT_GETIDXREG	0x545406
1264
1265static int
1266imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1267{
1268	struct imstt_par *par = info->par;
1269	void __user *argp = (void __user *)arg;
1270	__u32 reg[2];
1271	__u8 idx[2];
1272
1273	switch (cmd) {
1274		case FBIMSTT_SETREG:
1275			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1276				return -EFAULT;
1277			write_reg_le32(par->dc_regs, reg[0], reg[1]);
1278			return 0;
1279		case FBIMSTT_GETREG:
1280			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1281				return -EFAULT;
1282			reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1283			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1284				return -EFAULT;
1285			return 0;
1286		case FBIMSTT_SETCMAPREG:
1287			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1288				return -EFAULT;
1289			write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1290			return 0;
1291		case FBIMSTT_GETCMAPREG:
1292			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1293				return -EFAULT;
1294			reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1295			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1296				return -EFAULT;
1297			return 0;
1298		case FBIMSTT_SETIDXREG:
1299			if (copy_from_user(idx, argp, 2))
1300				return -EFAULT;
1301			par->cmap_regs[PIDXHI] = 0;		eieio();
1302			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1303			par->cmap_regs[PIDXDATA] = idx[1];	eieio();
1304			return 0;
1305		case FBIMSTT_GETIDXREG:
1306			if (copy_from_user(idx, argp, 1))
1307				return -EFAULT;
1308			par->cmap_regs[PIDXHI] = 0;		eieio();
1309			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1310			idx[1] = par->cmap_regs[PIDXDATA];
1311			if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1312				return -EFAULT;
1313			return 0;
1314		default:
1315			return -ENOIOCTLCMD;
1316	}
1317}
1318
1319static const struct pci_device_id imsttfb_pci_tbl[] = {
1320	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
1321	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1322	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
1323	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1324	{ 0, }
1325};
1326
1327MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1328
1329static struct pci_driver imsttfb_pci_driver = {
1330	.name =		"imsttfb",
1331	.id_table =	imsttfb_pci_tbl,
1332	.probe =	imsttfb_probe,
1333	.remove =	imsttfb_remove,
1334};
1335
1336static const struct fb_ops imsttfb_ops = {
1337	.owner 		= THIS_MODULE,
1338	.fb_check_var	= imsttfb_check_var,
1339	.fb_set_par 	= imsttfb_set_par,
1340	.fb_setcolreg 	= imsttfb_setcolreg,
1341	.fb_pan_display = imsttfb_pan_display,
1342	.fb_blank 	= imsttfb_blank,
1343	.fb_fillrect	= imsttfb_fillrect,
1344	.fb_copyarea	= imsttfb_copyarea,
1345	.fb_imageblit	= cfb_imageblit,
1346	.fb_ioctl 	= imsttfb_ioctl,
1347};
1348
1349static int init_imstt(struct fb_info *info)
1350{
1351	struct imstt_par *par = info->par;
1352	__u32 i, tmp, *ip, *end;
1353
1354	tmp = read_reg_le32(par->dc_regs, PRC);
1355	if (par->ramdac == IBM)
1356		info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1357	else
1358		info->fix.smem_len = 0x800000;
1359
1360	ip = (__u32 *)info->screen_base;
1361	end = (__u32 *)(info->screen_base + info->fix.smem_len);
1362	while (ip < end)
1363		*ip++ = 0;
1364
1365	/* initialize the card */
1366	tmp = read_reg_le32(par->dc_regs, STGCTL);
1367	write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1368	write_reg_le32(par->dc_regs, SSR, 0);
1369
1370	/* set default values for DAC registers */
1371	if (par->ramdac == IBM) {
1372		par->cmap_regs[PPMASK] = 0xff;
1373		eieio();
1374		par->cmap_regs[PIDXHI] = 0;
1375		eieio();
1376		for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1377			par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1378			eieio();
1379			par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1380			eieio();
1381		}
1382	} else {
1383		for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1384			par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1385			eieio();
1386			par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1387			eieio();
1388		}
1389	}
1390
1391#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
1392	if (IS_REACHABLE(CONFIG_NVRAM) && machine_is(powermac)) {
1393		int vmode = init_vmode, cmode = init_cmode;
1394
1395		if (vmode == -1) {
1396			vmode = nvram_read_byte(NV_VMODE);
1397			if (vmode <= 0 || vmode > VMODE_MAX)
1398				vmode = VMODE_640_480_67;
1399		}
1400		if (cmode == -1) {
1401			cmode = nvram_read_byte(NV_CMODE);
1402			if (cmode < CMODE_8 || cmode > CMODE_32)
1403				cmode = CMODE_8;
1404		}
1405		if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1406			info->var.xres = info->var.xres_virtual = INIT_XRES;
1407			info->var.yres = info->var.yres_virtual = INIT_YRES;
1408			info->var.bits_per_pixel = INIT_BPP;
1409		}
1410	} else
1411#endif
1412	{
1413		info->var.xres = info->var.xres_virtual = INIT_XRES;
1414		info->var.yres = info->var.yres_virtual = INIT_YRES;
1415		info->var.bits_per_pixel = INIT_BPP;
1416	}
1417
1418	if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1419	    || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1420		printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1421		framebuffer_release(info);
1422		return -ENODEV;
1423	}
1424
1425	sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1426	info->fix.mmio_len = 0x1000;
1427	info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1428	info->fix.type = FB_TYPE_PACKED_PIXELS;
1429	info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1430							: FB_VISUAL_DIRECTCOLOR;
1431	info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1432	info->fix.xpanstep = 8;
1433	info->fix.ypanstep = 1;
1434	info->fix.ywrapstep = 0;
1435
1436	info->var.accel_flags = FB_ACCELF_TEXT;
1437
1438//	if (par->ramdac == IBM)
1439//		imstt_cursor_init(info);
1440	if (info->var.green.length == 6)
1441		set_565(par);
1442	else
1443		set_555(par);
1444	set_imstt_regvals(info, info->var.bits_per_pixel);
1445
1446	info->var.pixclock = 1000000 / getclkMHz(par);
1447
1448	info->fbops = &imsttfb_ops;
1449	info->flags = FBINFO_DEFAULT |
1450                      FBINFO_HWACCEL_COPYAREA |
1451	              FBINFO_HWACCEL_FILLRECT |
1452	              FBINFO_HWACCEL_YPAN;
1453
1454	fb_alloc_cmap(&info->cmap, 0, 0);
1455
1456	if (register_framebuffer(info) < 0) {
1457		framebuffer_release(info);
1458		return -ENODEV;
1459	}
1460
1461	tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1462	fb_info(info, "%s frame buffer; %uMB vram; chip version %u\n",
1463		info->fix.id, info->fix.smem_len >> 20, tmp);
1464	return 0;
1465}
1466
1467static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1468{
1469	unsigned long addr, size;
1470	struct imstt_par *par;
1471	struct fb_info *info;
1472	struct device_node *dp;
1473	int ret = -ENOMEM;
1474
1475	dp = pci_device_to_OF_node(pdev);
1476	if(dp)
1477		printk(KERN_INFO "%s: OF name %pOFn\n",__func__, dp);
1478	else if (IS_ENABLED(CONFIG_OF))
1479		printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1480
1481	info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1482	if (!info)
1483		return -ENOMEM;
1484
1485	par = info->par;
1486
1487	addr = pci_resource_start (pdev, 0);
1488	size = pci_resource_len (pdev, 0);
1489
1490	if (!request_mem_region(addr, size, "imsttfb")) {
1491		printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1492		ret = -ENODEV;
1493		goto release_info;
1494	}
1495
1496	switch (pdev->device) {
1497		case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1498			par->ramdac = IBM;
1499			if (of_node_name_eq(dp, "IMS,tt128mb8") ||
1500			    of_node_name_eq(dp, "IMS,tt128mb8A"))
1501				par->ramdac = TVP;
1502			break;
1503		case PCI_DEVICE_ID_IMS_TT3D:  /* IMS,tt3d */
1504			par->ramdac = TVP;
1505			break;
1506		default:
1507			printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1508					 "contact maintainer.\n", pdev->device);
1509			ret = -ENODEV;
1510			goto release_mem_region;
1511	}
1512
1513	info->fix.smem_start = addr;
1514	info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1515					    0x400000 : 0x800000);
1516	if (!info->screen_base)
1517		goto release_mem_region;
1518	info->fix.mmio_start = addr + 0x800000;
1519	par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1520	if (!par->dc_regs)
1521		goto unmap_screen_base;
1522	par->cmap_regs_phys = addr + 0x840000;
1523	par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1524	if (!par->cmap_regs)
1525		goto unmap_dc_regs;
1526	info->pseudo_palette = par->palette;
1527	ret = init_imstt(info);
1528	if (ret)
1529		goto unmap_cmap_regs;
1530
1531	pci_set_drvdata(pdev, info);
1532	return 0;
1533
1534unmap_cmap_regs:
1535	iounmap(par->cmap_regs);
1536unmap_dc_regs:
1537	iounmap(par->dc_regs);
1538unmap_screen_base:
1539	iounmap(info->screen_base);
1540release_mem_region:
1541	release_mem_region(addr, size);
1542release_info:
1543	framebuffer_release(info);
1544	return ret;
1545}
1546
1547static void imsttfb_remove(struct pci_dev *pdev)
1548{
1549	struct fb_info *info = pci_get_drvdata(pdev);
1550	struct imstt_par *par = info->par;
1551	int size = pci_resource_len(pdev, 0);
1552
1553	unregister_framebuffer(info);
1554	iounmap(par->cmap_regs);
1555	iounmap(par->dc_regs);
1556	iounmap(info->screen_base);
1557	release_mem_region(info->fix.smem_start, size);
1558	framebuffer_release(info);
1559}
1560
1561#ifndef MODULE
1562static int __init
1563imsttfb_setup(char *options)
1564{
1565	char *this_opt;
1566
1567	if (!options || !*options)
1568		return 0;
1569
1570	while ((this_opt = strsep(&options, ",")) != NULL) {
1571		if (!strncmp(this_opt, "font:", 5)) {
1572			char *p;
1573			int i;
1574
1575			p = this_opt + 5;
1576			for (i = 0; i < sizeof(fontname) - 1; i++)
1577				if (!*p || *p == ' ' || *p == ',')
1578					break;
1579			memcpy(fontname, this_opt + 5, i);
1580			fontname[i] = 0;
1581		} else if (!strncmp(this_opt, "inverse", 7)) {
1582			inverse = 1;
1583			fb_invert_cmaps();
1584		}
1585#if defined(CONFIG_PPC_PMAC)
1586		else if (!strncmp(this_opt, "vmode:", 6)) {
1587			int vmode = simple_strtoul(this_opt+6, NULL, 0);
1588			if (vmode > 0 && vmode <= VMODE_MAX)
1589				init_vmode = vmode;
1590		} else if (!strncmp(this_opt, "cmode:", 6)) {
1591			int cmode = simple_strtoul(this_opt+6, NULL, 0);
1592			switch (cmode) {
1593				case CMODE_8:
1594				case 8:
1595					init_cmode = CMODE_8;
1596					break;
1597				case CMODE_16:
1598				case 15:
1599				case 16:
1600					init_cmode = CMODE_16;
1601					break;
1602				case CMODE_32:
1603				case 24:
1604				case 32:
1605					init_cmode = CMODE_32;
1606					break;
1607			}
1608		}
1609#endif
1610	}
1611	return 0;
1612}
1613
1614#endif /* MODULE */
1615
1616static int __init imsttfb_init(void)
1617{
1618#ifndef MODULE
1619	char *option = NULL;
1620
1621	if (fb_get_options("imsttfb", &option))
1622		return -ENODEV;
1623
1624	imsttfb_setup(option);
1625#endif
1626	return pci_register_driver(&imsttfb_pci_driver);
1627}
1628
1629static void __exit imsttfb_exit(void)
1630{
1631	pci_unregister_driver(&imsttfb_pci_driver);
1632}
1633
1634MODULE_LICENSE("GPL");
1635
1636module_init(imsttfb_init);
1637module_exit(imsttfb_exit);
1638
1639