1// SPDX-License-Identifier: GPL-2.0-only
2/* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
3 *  linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
4 *
5 *  Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
6 *  Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
7 *
8 *                Ani Joshi / Jeff Garzik
9 *                      - Code cleanup
10 *
11 *                Michel Danzer <michdaen@iiic.ethz.ch>
12 *                      - 15/16 bit cleanup
13 *                      - fix panning
14 *
15 *                Benjamin Herrenschmidt
16 *                      - pmac-specific PM stuff
17 *			- various fixes & cleanups
18 *
19 *                Andreas Hundt <andi@convergence.de>
20 *                      - FB_ACTIVATE fixes
21 *
22 *		  Paul Mackerras <paulus@samba.org>
23 *			- Convert to new framebuffer API,
24 *			  fix colormap setting at 16 bits/pixel (565)
25 *
26 *		  Paul Mundt
27 *		  	- PCI hotplug
28 *
29 *		  Jon Smirl <jonsmirl@yahoo.com>
30 * 			- PCI ID update
31 * 			- replace ROM BIOS search
32 *
33 *  Based off of Geert's atyfb.c and vfb.c.
34 *
35 *  TODO:
36 *		- monitor sensing (DDC)
37 *              - virtual display
38 *		- other platform support (only ppc/x86 supported)
39 *		- hardware cursor support
40 *
41 *    Please cc: your patches to brad@neruo.com.
42 */
43
44/*
45 * A special note of gratitude to ATI's devrel for providing documentation,
46 * example code and hardware. Thanks Nitya.	-atong and brad
47 */
48
49
50#include <linux/module.h>
51#include <linux/moduleparam.h>
52#include <linux/kernel.h>
53#include <linux/errno.h>
54#include <linux/string.h>
55#include <linux/mm.h>
56#include <linux/vmalloc.h>
57#include <linux/delay.h>
58#include <linux/interrupt.h>
59#include <linux/uaccess.h>
60#include <linux/fb.h>
61#include <linux/init.h>
62#include <linux/pci.h>
63#include <linux/ioport.h>
64#include <linux/console.h>
65#include <linux/backlight.h>
66#include <asm/io.h>
67
68#ifdef CONFIG_PPC_PMAC
69#include <asm/machdep.h>
70#include <asm/pmac_feature.h>
71#include <asm/prom.h>
72#include "../macmodes.h"
73#endif
74
75#ifdef CONFIG_PMAC_BACKLIGHT
76#include <asm/backlight.h>
77#endif
78
79#ifdef CONFIG_BOOTX_TEXT
80#include <asm/btext.h>
81#endif /* CONFIG_BOOTX_TEXT */
82
83#include <video/aty128.h>
84
85/* Debug flag */
86#undef DEBUG
87
88#ifdef DEBUG
89#define DBG(fmt, args...) \
90	printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
91#else
92#define DBG(fmt, args...)
93#endif
94
95#ifndef CONFIG_PPC_PMAC
96/* default mode */
97static const struct fb_var_screeninfo default_var = {
98	/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
99	640, 480, 640, 480, 0, 0, 8, 0,
100	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
101	0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
102	0, FB_VMODE_NONINTERLACED
103};
104
105#else /* CONFIG_PPC_PMAC */
106/* default to 1024x768 at 75Hz on PPC - this will work
107 * on the iMac, the usual 640x480 @ 60Hz doesn't. */
108static const struct fb_var_screeninfo default_var = {
109	/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
110	1024, 768, 1024, 768, 0, 0, 8, 0,
111	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
112	0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
113	FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
114	FB_VMODE_NONINTERLACED
115};
116#endif /* CONFIG_PPC_PMAC */
117
118/* default modedb mode */
119/* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
120static const struct fb_videomode defaultmode = {
121	.refresh =	60,
122	.xres =		640,
123	.yres =		480,
124	.pixclock =	39722,
125	.left_margin =	48,
126	.right_margin =	16,
127	.upper_margin =	33,
128	.lower_margin =	10,
129	.hsync_len =	96,
130	.vsync_len =	2,
131	.sync =		0,
132	.vmode =	FB_VMODE_NONINTERLACED
133};
134
135/* Chip generations */
136enum {
137	rage_128,
138	rage_128_pci,
139	rage_128_pro,
140	rage_128_pro_pci,
141	rage_M3,
142	rage_M3_pci,
143	rage_M4,
144	rage_128_ultra,
145};
146
147/* Must match above enum */
148static char * const r128_family[] = {
149	"AGP",
150	"PCI",
151	"PRO AGP",
152	"PRO PCI",
153	"M3 AGP",
154	"M3 PCI",
155	"M4 AGP",
156	"Ultra AGP",
157};
158
159/*
160 * PCI driver prototypes
161 */
162static int aty128_probe(struct pci_dev *pdev,
163                               const struct pci_device_id *ent);
164static void aty128_remove(struct pci_dev *pdev);
165static int aty128_pci_suspend_late(struct device *dev, pm_message_t state);
166static int __maybe_unused aty128_pci_suspend(struct device *dev);
167static int __maybe_unused aty128_pci_hibernate(struct device *dev);
168static int __maybe_unused aty128_pci_freeze(struct device *dev);
169static int __maybe_unused aty128_pci_resume(struct device *dev);
170static int aty128_do_resume(struct pci_dev *pdev);
171
172static const struct dev_pm_ops aty128_pci_pm_ops = {
173	.suspend	= aty128_pci_suspend,
174	.resume		= aty128_pci_resume,
175	.freeze		= aty128_pci_freeze,
176	.thaw		= aty128_pci_resume,
177	.poweroff	= aty128_pci_hibernate,
178	.restore	= aty128_pci_resume,
179};
180
181/* supported Rage128 chipsets */
182static const struct pci_device_id aty128_pci_tbl[] = {
183	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
184	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
185	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
186	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
187	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
188	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
189	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
190	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
191	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
192	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
194	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
196	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
198	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
199	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
200	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
202	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
204	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
206	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
208	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
210	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
211	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
212	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
214	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
215	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
216	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
218	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
219	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
220	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
222	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
223	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
224	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
226	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
227	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
228	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
229	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
230	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
231	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
232	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
233	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
234	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
235	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
236	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
237	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
238	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
239	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
240	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
241	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
242	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
244	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
245	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
246	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
247	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
248	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
250	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
252	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
253	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
254	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
255	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
256	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
257	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
258	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
259	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
260	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
261	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
262	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
263	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
264	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
265	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
266	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
267	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
268	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
269	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
270	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
271	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
272	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
273	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
274	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
275	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
276	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
277	{ 0, }
278};
279
280MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
281
282static struct pci_driver aty128fb_driver = {
283	.name		= "aty128fb",
284	.id_table	= aty128_pci_tbl,
285	.probe		= aty128_probe,
286	.remove		= aty128_remove,
287	.driver.pm	= &aty128_pci_pm_ops,
288};
289
290/* packed BIOS settings */
291#ifndef CONFIG_PPC
292typedef struct {
293	u8 clock_chip_type;
294	u8 struct_size;
295	u8 accelerator_entry;
296	u8 VGA_entry;
297	u16 VGA_table_offset;
298	u16 POST_table_offset;
299	u16 XCLK;
300	u16 MCLK;
301	u8 num_PLL_blocks;
302	u8 size_PLL_blocks;
303	u16 PCLK_ref_freq;
304	u16 PCLK_ref_divider;
305	u32 PCLK_min_freq;
306	u32 PCLK_max_freq;
307	u16 MCLK_ref_freq;
308	u16 MCLK_ref_divider;
309	u32 MCLK_min_freq;
310	u32 MCLK_max_freq;
311	u16 XCLK_ref_freq;
312	u16 XCLK_ref_divider;
313	u32 XCLK_min_freq;
314	u32 XCLK_max_freq;
315} __attribute__ ((packed)) PLL_BLOCK;
316#endif /* !CONFIG_PPC */
317
318/* onboard memory information */
319struct aty128_meminfo {
320	u8 ML;
321	u8 MB;
322	u8 Trcd;
323	u8 Trp;
324	u8 Twr;
325	u8 CL;
326	u8 Tr2w;
327	u8 LoopLatency;
328	u8 DspOn;
329	u8 Rloop;
330	const char *name;
331};
332
333/* various memory configurations */
334static const struct aty128_meminfo sdr_128 = {
335	.ML = 4,
336	.MB = 4,
337	.Trcd = 3,
338	.Trp = 3,
339	.Twr = 1,
340	.CL = 3,
341	.Tr2w = 1,
342	.LoopLatency = 16,
343	.DspOn = 30,
344	.Rloop = 16,
345	.name = "128-bit SDR SGRAM (1:1)",
346};
347
348static const struct aty128_meminfo sdr_sgram = {
349	.ML = 4,
350	.MB = 4,
351	.Trcd = 1,
352	.Trp = 2,
353	.Twr = 1,
354	.CL = 2,
355	.Tr2w = 1,
356	.LoopLatency = 16,
357	.DspOn = 24,
358	.Rloop = 16,
359	.name = "64-bit SDR SGRAM (2:1)",
360};
361
362static const struct aty128_meminfo ddr_sgram = {
363	.ML = 4,
364	.MB = 4,
365	.Trcd = 3,
366	.Trp = 3,
367	.Twr = 2,
368	.CL = 3,
369	.Tr2w = 1,
370	.LoopLatency = 16,
371	.DspOn = 31,
372	.Rloop = 16,
373	.name = "64-bit DDR SGRAM",
374};
375
376static const struct fb_fix_screeninfo aty128fb_fix = {
377	.id		= "ATY Rage128",
378	.type		= FB_TYPE_PACKED_PIXELS,
379	.visual		= FB_VISUAL_PSEUDOCOLOR,
380	.xpanstep	= 8,
381	.ypanstep	= 1,
382	.mmio_len	= 0x2000,
383	.accel		= FB_ACCEL_ATI_RAGE128,
384};
385
386static char *mode_option = NULL;
387
388#ifdef CONFIG_PPC_PMAC
389static int default_vmode = VMODE_1024_768_60;
390static int default_cmode = CMODE_8;
391#endif
392
393static int default_crt_on = 0;
394static int default_lcd_on = 1;
395static bool mtrr = true;
396
397#ifdef CONFIG_FB_ATY128_BACKLIGHT
398static int backlight = IS_BUILTIN(CONFIG_PMAC_BACKLIGHT);
399#endif
400
401/* PLL constants */
402struct aty128_constants {
403	u32 ref_clk;
404	u32 ppll_min;
405	u32 ppll_max;
406	u32 ref_divider;
407	u32 xclk;
408	u32 fifo_width;
409	u32 fifo_depth;
410};
411
412struct aty128_crtc {
413	u32 gen_cntl;
414	u32 h_total, h_sync_strt_wid;
415	u32 v_total, v_sync_strt_wid;
416	u32 pitch;
417	u32 offset, offset_cntl;
418	u32 xoffset, yoffset;
419	u32 vxres, vyres;
420	u32 depth, bpp;
421};
422
423struct aty128_pll {
424	u32 post_divider;
425	u32 feedback_divider;
426	u32 vclk;
427};
428
429struct aty128_ddafifo {
430	u32 dda_config;
431	u32 dda_on_off;
432};
433
434/* register values for a specific mode */
435struct aty128fb_par {
436	struct aty128_crtc crtc;
437	struct aty128_pll pll;
438	struct aty128_ddafifo fifo_reg;
439	u32 accel_flags;
440	struct aty128_constants constants;  /* PLL and others      */
441	void __iomem *regbase;              /* remapped mmio       */
442	u32 vram_size;                      /* onboard video ram   */
443	int chip_gen;
444	const struct aty128_meminfo *mem;   /* onboard mem info    */
445	int wc_cookie;
446	int blitter_may_be_busy;
447	int fifo_slots;                 /* free slots in FIFO (64 max) */
448
449	int crt_on, lcd_on;
450	struct pci_dev *pdev;
451	struct fb_info *next;
452	int	asleep;
453	int	lock_blank;
454
455	u8	red[32];		/* see aty128fb_setcolreg */
456	u8	green[64];
457	u8	blue[32];
458	u32	pseudo_palette[16];	/* used for TRUECOLOR */
459};
460
461
462#define round_div(n, d) ((n+(d/2))/d)
463
464static int aty128fb_check_var(struct fb_var_screeninfo *var,
465			      struct fb_info *info);
466static int aty128fb_set_par(struct fb_info *info);
467static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
468			      u_int transp, struct fb_info *info);
469static int aty128fb_pan_display(struct fb_var_screeninfo *var,
470			   struct fb_info *fb);
471static int aty128fb_blank(int blank, struct fb_info *fb);
472static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
473static int aty128fb_sync(struct fb_info *info);
474
475    /*
476     *  Internal routines
477     */
478
479static int aty128_encode_var(struct fb_var_screeninfo *var,
480                             const struct aty128fb_par *par);
481static int aty128_decode_var(struct fb_var_screeninfo *var,
482                             struct aty128fb_par *par);
483static void aty128_timings(struct aty128fb_par *par);
484static void aty128_init_engine(struct aty128fb_par *par);
485static void aty128_reset_engine(const struct aty128fb_par *par);
486static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
487static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
488static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
489static void wait_for_idle(struct aty128fb_par *par);
490static u32 depth_to_dst(u32 depth);
491
492#ifdef CONFIG_FB_ATY128_BACKLIGHT
493static void aty128_bl_set_power(struct fb_info *info, int power);
494#endif
495
496#define BIOS_IN8(v)  	(readb(bios + (v)))
497#define BIOS_IN16(v) 	(readb(bios + (v)) | \
498			  (readb(bios + (v) + 1) << 8))
499#define BIOS_IN32(v) 	(readb(bios + (v)) | \
500			  (readb(bios + (v) + 1) << 8) | \
501			  (readb(bios + (v) + 2) << 16) | \
502			  (readb(bios + (v) + 3) << 24))
503
504
505static const struct fb_ops aty128fb_ops = {
506	.owner		= THIS_MODULE,
507	.fb_check_var	= aty128fb_check_var,
508	.fb_set_par	= aty128fb_set_par,
509	.fb_setcolreg	= aty128fb_setcolreg,
510	.fb_pan_display = aty128fb_pan_display,
511	.fb_blank	= aty128fb_blank,
512	.fb_ioctl	= aty128fb_ioctl,
513	.fb_sync	= aty128fb_sync,
514	.fb_fillrect	= cfb_fillrect,
515	.fb_copyarea	= cfb_copyarea,
516	.fb_imageblit	= cfb_imageblit,
517};
518
519    /*
520     * Functions to read from/write to the mmio registers
521     *	- endian conversions may possibly be avoided by
522     *    using the other register aperture. TODO.
523     */
524static inline u32 _aty_ld_le32(volatile unsigned int regindex,
525			       const struct aty128fb_par *par)
526{
527	return readl (par->regbase + regindex);
528}
529
530static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
531				const struct aty128fb_par *par)
532{
533	writel (val, par->regbase + regindex);
534}
535
536static inline u8 _aty_ld_8(unsigned int regindex,
537			   const struct aty128fb_par *par)
538{
539	return readb (par->regbase + regindex);
540}
541
542static inline void _aty_st_8(unsigned int regindex, u8 val,
543			     const struct aty128fb_par *par)
544{
545	writeb (val, par->regbase + regindex);
546}
547
548#define aty_ld_le32(regindex)		_aty_ld_le32(regindex, par)
549#define aty_st_le32(regindex, val)	_aty_st_le32(regindex, val, par)
550#define aty_ld_8(regindex)		_aty_ld_8(regindex, par)
551#define aty_st_8(regindex, val)		_aty_st_8(regindex, val, par)
552
553    /*
554     * Functions to read from/write to the pll registers
555     */
556
557#define aty_ld_pll(pll_index)		_aty_ld_pll(pll_index, par)
558#define aty_st_pll(pll_index, val)	_aty_st_pll(pll_index, val, par)
559
560
561static u32 _aty_ld_pll(unsigned int pll_index,
562		       const struct aty128fb_par *par)
563{
564	aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
565	return aty_ld_le32(CLOCK_CNTL_DATA);
566}
567
568
569static void _aty_st_pll(unsigned int pll_index, u32 val,
570			const struct aty128fb_par *par)
571{
572	aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
573	aty_st_le32(CLOCK_CNTL_DATA, val);
574}
575
576
577/* return true when the PLL has completed an atomic update */
578static int aty_pll_readupdate(const struct aty128fb_par *par)
579{
580	return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
581}
582
583
584static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
585{
586	unsigned long timeout = jiffies + HZ/100; // should be more than enough
587	int reset = 1;
588
589	while (time_before(jiffies, timeout))
590		if (aty_pll_readupdate(par)) {
591			reset = 0;
592			break;
593		}
594
595	if (reset)	/* reset engine?? */
596		printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
597}
598
599
600/* tell PLL to update */
601static void aty_pll_writeupdate(const struct aty128fb_par *par)
602{
603	aty_pll_wait_readupdate(par);
604
605	aty_st_pll(PPLL_REF_DIV,
606		   aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
607}
608
609
610/* write to the scratch register to test r/w functionality */
611static int register_test(const struct aty128fb_par *par)
612{
613	u32 val;
614	int flag = 0;
615
616	val = aty_ld_le32(BIOS_0_SCRATCH);
617
618	aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
619	if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
620		aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
621
622		if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
623			flag = 1;
624	}
625
626	aty_st_le32(BIOS_0_SCRATCH, val);	// restore value
627	return flag;
628}
629
630
631/*
632 * Accelerator engine functions
633 */
634static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
635{
636	int i;
637
638	for (;;) {
639		for (i = 0; i < 2000000; i++) {
640			par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
641			if (par->fifo_slots >= entries)
642				return;
643		}
644		aty128_reset_engine(par);
645	}
646}
647
648
649static void wait_for_idle(struct aty128fb_par *par)
650{
651	int i;
652
653	do_wait_for_fifo(64, par);
654
655	for (;;) {
656		for (i = 0; i < 2000000; i++) {
657			if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
658				aty128_flush_pixel_cache(par);
659				par->blitter_may_be_busy = 0;
660				return;
661			}
662		}
663		aty128_reset_engine(par);
664	}
665}
666
667
668static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
669{
670	if (par->fifo_slots < entries)
671		do_wait_for_fifo(64, par);
672	par->fifo_slots -= entries;
673}
674
675
676static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
677{
678	int i;
679	u32 tmp;
680
681	tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
682	tmp &= ~(0x00ff);
683	tmp |= 0x00ff;
684	aty_st_le32(PC_NGUI_CTLSTAT, tmp);
685
686	for (i = 0; i < 2000000; i++)
687		if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
688			break;
689}
690
691
692static void aty128_reset_engine(const struct aty128fb_par *par)
693{
694	u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
695
696	aty128_flush_pixel_cache(par);
697
698	clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
699	mclk_cntl = aty_ld_pll(MCLK_CNTL);
700
701	aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
702
703	gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
704	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
705	aty_ld_le32(GEN_RESET_CNTL);
706	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
707	aty_ld_le32(GEN_RESET_CNTL);
708
709	aty_st_pll(MCLK_CNTL, mclk_cntl);
710	aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
711	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
712
713	/* use old pio mode */
714	aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
715
716	DBG("engine reset");
717}
718
719
720static void aty128_init_engine(struct aty128fb_par *par)
721{
722	u32 pitch_value;
723
724	wait_for_idle(par);
725
726	/* 3D scaler not spoken here */
727	wait_for_fifo(1, par);
728	aty_st_le32(SCALE_3D_CNTL, 0x00000000);
729
730	aty128_reset_engine(par);
731
732	pitch_value = par->crtc.pitch;
733	if (par->crtc.bpp == 24) {
734		pitch_value = pitch_value * 3;
735	}
736
737	wait_for_fifo(4, par);
738	/* setup engine offset registers */
739	aty_st_le32(DEFAULT_OFFSET, 0x00000000);
740
741	/* setup engine pitch registers */
742	aty_st_le32(DEFAULT_PITCH, pitch_value);
743
744	/* set the default scissor register to max dimensions */
745	aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
746
747	/* set the drawing controls registers */
748	aty_st_le32(DP_GUI_MASTER_CNTL,
749		    GMC_SRC_PITCH_OFFSET_DEFAULT		|
750		    GMC_DST_PITCH_OFFSET_DEFAULT		|
751		    GMC_SRC_CLIP_DEFAULT			|
752		    GMC_DST_CLIP_DEFAULT			|
753		    GMC_BRUSH_SOLIDCOLOR			|
754		    (depth_to_dst(par->crtc.depth) << 8)	|
755		    GMC_SRC_DSTCOLOR			|
756		    GMC_BYTE_ORDER_MSB_TO_LSB		|
757		    GMC_DP_CONVERSION_TEMP_6500		|
758		    ROP3_PATCOPY				|
759		    GMC_DP_SRC_RECT				|
760		    GMC_3D_FCN_EN_CLR			|
761		    GMC_DST_CLR_CMP_FCN_CLEAR		|
762		    GMC_AUX_CLIP_CLEAR			|
763		    GMC_WRITE_MASK_SET);
764
765	wait_for_fifo(8, par);
766	/* clear the line drawing registers */
767	aty_st_le32(DST_BRES_ERR, 0);
768	aty_st_le32(DST_BRES_INC, 0);
769	aty_st_le32(DST_BRES_DEC, 0);
770
771	/* set brush color registers */
772	aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
773	aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
774
775	/* set source color registers */
776	aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF);   /* white */
777	aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000);   /* black */
778
779	/* default write mask */
780	aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
781
782	/* Wait for all the writes to be completed before returning */
783	wait_for_idle(par);
784}
785
786
787/* convert depth values to their register representation */
788static u32 depth_to_dst(u32 depth)
789{
790	if (depth <= 8)
791		return DST_8BPP;
792	else if (depth <= 15)
793		return DST_15BPP;
794	else if (depth == 16)
795		return DST_16BPP;
796	else if (depth <= 24)
797		return DST_24BPP;
798	else if (depth <= 32)
799		return DST_32BPP;
800
801	return -EINVAL;
802}
803
804/*
805 * PLL informations retreival
806 */
807
808
809#ifndef __sparc__
810static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
811				    struct pci_dev *dev)
812{
813	u16 dptr;
814	u8 rom_type;
815	void __iomem *bios;
816	size_t rom_size;
817
818    	/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
819    	unsigned int temp;
820	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
821	temp &= 0x00ffffffu;
822	temp |= 0x04 << 24;
823	aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
824	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
825
826	bios = pci_map_rom(dev, &rom_size);
827
828	if (!bios) {
829		printk(KERN_ERR "aty128fb: ROM failed to map\n");
830		return NULL;
831	}
832
833	/* Very simple test to make sure it appeared */
834	if (BIOS_IN16(0) != 0xaa55) {
835		printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
836			" be 0xaa55\n", BIOS_IN16(0));
837		goto failed;
838	}
839
840	/* Look for the PCI data to check the ROM type */
841	dptr = BIOS_IN16(0x18);
842
843	/* Check the PCI data signature. If it's wrong, we still assume a normal
844	 * x86 ROM for now, until I've verified this works everywhere.
845	 * The goal here is more to phase out Open Firmware images.
846	 *
847	 * Currently, we only look at the first PCI data, we could iteratre and
848	 * deal with them all, and we should use fb_bios_start relative to start
849	 * of image and not relative start of ROM, but so far, I never found a
850	 * dual-image ATI card.
851	 *
852	 * typedef struct {
853	 * 	u32	signature;	+ 0x00
854	 * 	u16	vendor;		+ 0x04
855	 * 	u16	device;		+ 0x06
856	 * 	u16	reserved_1;	+ 0x08
857	 * 	u16	dlen;		+ 0x0a
858	 * 	u8	drevision;	+ 0x0c
859	 * 	u8	class_hi;	+ 0x0d
860	 * 	u16	class_lo;	+ 0x0e
861	 * 	u16	ilen;		+ 0x10
862	 * 	u16	irevision;	+ 0x12
863	 * 	u8	type;		+ 0x14
864	 * 	u8	indicator;	+ 0x15
865	 * 	u16	reserved_2;	+ 0x16
866	 * } pci_data_t;
867	 */
868	if (BIOS_IN32(dptr) !=  (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
869		printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
870		       BIOS_IN32(dptr));
871		goto anyway;
872	}
873	rom_type = BIOS_IN8(dptr + 0x14);
874	switch(rom_type) {
875	case 0:
876		printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
877		break;
878	case 1:
879		printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
880		goto failed;
881	case 2:
882		printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
883		goto failed;
884	default:
885		printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
886		       rom_type);
887		goto failed;
888	}
889 anyway:
890	return bios;
891
892 failed:
893	pci_unmap_rom(dev, bios);
894	return NULL;
895}
896
897static void aty128_get_pllinfo(struct aty128fb_par *par,
898			       unsigned char __iomem *bios)
899{
900	unsigned int bios_hdr;
901	unsigned int bios_pll;
902
903	bios_hdr = BIOS_IN16(0x48);
904	bios_pll = BIOS_IN16(bios_hdr + 0x30);
905
906	par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
907	par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
908	par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
909	par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
910	par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
911
912	DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
913			par->constants.ppll_max, par->constants.ppll_min,
914			par->constants.xclk, par->constants.ref_divider,
915			par->constants.ref_clk);
916
917}
918
919#ifdef CONFIG_X86
920static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
921{
922	/* I simplified this code as we used to miss the signatures in
923	 * a lot of case. It's now closer to XFree, we just don't check
924	 * for signatures at all... Something better will have to be done
925	 * if we end up having conflicts
926	 */
927        u32  segstart;
928        unsigned char __iomem *rom_base = NULL;
929
930        for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
931                rom_base = ioremap(segstart, 0x10000);
932		if (rom_base == NULL)
933			return NULL;
934		if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
935	                break;
936                iounmap(rom_base);
937		rom_base = NULL;
938        }
939	return rom_base;
940}
941#endif
942#endif /* ndef(__sparc__) */
943
944/* fill in known card constants if pll_block is not available */
945static void aty128_timings(struct aty128fb_par *par)
946{
947#ifdef CONFIG_PPC
948	/* instead of a table lookup, assume OF has properly
949	 * setup the PLL registers and use their values
950	 * to set the XCLK values and reference divider values */
951
952	u32 x_mpll_ref_fb_div;
953	u32 xclk_cntl;
954	u32 Nx, M;
955	unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
956#endif
957
958	if (!par->constants.ref_clk)
959		par->constants.ref_clk = 2950;
960
961#ifdef CONFIG_PPC
962	x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
963	xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
964	Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
965	M  = x_mpll_ref_fb_div & 0x0000ff;
966
967	par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
968					(M * PostDivSet[xclk_cntl]));
969
970	par->constants.ref_divider =
971		aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
972#endif
973
974	if (!par->constants.ref_divider) {
975		par->constants.ref_divider = 0x3b;
976
977		aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
978		aty_pll_writeupdate(par);
979	}
980	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
981	aty_pll_writeupdate(par);
982
983	/* from documentation */
984	if (!par->constants.ppll_min)
985		par->constants.ppll_min = 12500;
986	if (!par->constants.ppll_max)
987		par->constants.ppll_max = 25000;    /* 23000 on some cards? */
988	if (!par->constants.xclk)
989		par->constants.xclk = 0x1d4d;	     /* same as mclk */
990
991	par->constants.fifo_width = 128;
992	par->constants.fifo_depth = 32;
993
994	switch (aty_ld_le32(MEM_CNTL) & 0x3) {
995	case 0:
996		par->mem = &sdr_128;
997		break;
998	case 1:
999		par->mem = &sdr_sgram;
1000		break;
1001	case 2:
1002		par->mem = &ddr_sgram;
1003		break;
1004	default:
1005		par->mem = &sdr_sgram;
1006	}
1007}
1008
1009
1010
1011/*
1012 * CRTC programming
1013 */
1014
1015/* Program the CRTC registers */
1016static void aty128_set_crtc(const struct aty128_crtc *crtc,
1017			    const struct aty128fb_par *par)
1018{
1019	aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1020	aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1021	aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1022	aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1023	aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1024	aty_st_le32(CRTC_PITCH, crtc->pitch);
1025	aty_st_le32(CRTC_OFFSET, crtc->offset);
1026	aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1027	/* Disable ATOMIC updating.  Is this the right place? */
1028	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1029}
1030
1031
1032static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1033			      struct aty128_crtc *crtc,
1034			      const struct aty128fb_par *par)
1035{
1036	u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1037	u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1038	u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1039	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1040	u32 depth, bytpp;
1041	u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1042
1043	/* input */
1044	xres = var->xres;
1045	yres = var->yres;
1046	vxres   = var->xres_virtual;
1047	vyres   = var->yres_virtual;
1048	xoffset = var->xoffset;
1049	yoffset = var->yoffset;
1050	bpp   = var->bits_per_pixel;
1051	left  = var->left_margin;
1052	right = var->right_margin;
1053	upper = var->upper_margin;
1054	lower = var->lower_margin;
1055	hslen = var->hsync_len;
1056	vslen = var->vsync_len;
1057	sync  = var->sync;
1058	vmode = var->vmode;
1059
1060	if (bpp != 16)
1061		depth = bpp;
1062	else
1063		depth = (var->green.length == 6) ? 16 : 15;
1064
1065	/* check for mode eligibility
1066	 * accept only non interlaced modes */
1067	if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1068		return -EINVAL;
1069
1070	/* convert (and round up) and validate */
1071	xres = (xres + 7) & ~7;
1072	xoffset = (xoffset + 7) & ~7;
1073
1074	if (vxres < xres + xoffset)
1075		vxres = xres + xoffset;
1076
1077	if (vyres < yres + yoffset)
1078		vyres = yres + yoffset;
1079
1080	/* convert depth into ATI register depth */
1081	dst = depth_to_dst(depth);
1082
1083	if (dst == -EINVAL) {
1084		printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1085		return -EINVAL;
1086	}
1087
1088	/* convert register depth to bytes per pixel */
1089	bytpp = mode_bytpp[dst];
1090
1091	/* make sure there is enough video ram for the mode */
1092	if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1093		printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1094		return -EINVAL;
1095	}
1096
1097	h_disp = (xres >> 3) - 1;
1098	h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1099
1100	v_disp = yres - 1;
1101	v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1102
1103	/* check to make sure h_total and v_total are in range */
1104	if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1105		printk(KERN_ERR "aty128fb: invalid width ranges\n");
1106		return -EINVAL;
1107	}
1108
1109	h_sync_wid = (hslen + 7) >> 3;
1110	if (h_sync_wid == 0)
1111		h_sync_wid = 1;
1112	else if (h_sync_wid > 0x3f)        /* 0x3f = max hwidth */
1113		h_sync_wid = 0x3f;
1114
1115	h_sync_strt = (h_disp << 3) + right;
1116
1117	v_sync_wid = vslen;
1118	if (v_sync_wid == 0)
1119		v_sync_wid = 1;
1120	else if (v_sync_wid > 0x1f)        /* 0x1f = max vwidth */
1121		v_sync_wid = 0x1f;
1122
1123	v_sync_strt = v_disp + lower;
1124
1125	h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1126	v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1127
1128	c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1129
1130	crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1131
1132	crtc->h_total = h_total | (h_disp << 16);
1133	crtc->v_total = v_total | (v_disp << 16);
1134
1135	crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1136	        (h_sync_pol << 23);
1137	crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1138                (v_sync_pol << 23);
1139
1140	crtc->pitch = vxres >> 3;
1141
1142	crtc->offset = 0;
1143
1144	if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1145		crtc->offset_cntl = 0x00010000;
1146	else
1147		crtc->offset_cntl = 0;
1148
1149	crtc->vxres = vxres;
1150	crtc->vyres = vyres;
1151	crtc->xoffset = xoffset;
1152	crtc->yoffset = yoffset;
1153	crtc->depth = depth;
1154	crtc->bpp = bpp;
1155
1156	return 0;
1157}
1158
1159
1160static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1161{
1162
1163	/* fill in pixel info */
1164	var->red.msb_right = 0;
1165	var->green.msb_right = 0;
1166	var->blue.offset = 0;
1167	var->blue.msb_right = 0;
1168	var->transp.offset = 0;
1169	var->transp.length = 0;
1170	var->transp.msb_right = 0;
1171	switch (pix_width) {
1172	case CRTC_PIX_WIDTH_8BPP:
1173		var->bits_per_pixel = 8;
1174		var->red.offset = 0;
1175		var->red.length = 8;
1176		var->green.offset = 0;
1177		var->green.length = 8;
1178		var->blue.length = 8;
1179		break;
1180	case CRTC_PIX_WIDTH_15BPP:
1181		var->bits_per_pixel = 16;
1182		var->red.offset = 10;
1183		var->red.length = 5;
1184		var->green.offset = 5;
1185		var->green.length = 5;
1186		var->blue.length = 5;
1187		break;
1188	case CRTC_PIX_WIDTH_16BPP:
1189		var->bits_per_pixel = 16;
1190		var->red.offset = 11;
1191		var->red.length = 5;
1192		var->green.offset = 5;
1193		var->green.length = 6;
1194		var->blue.length = 5;
1195		break;
1196	case CRTC_PIX_WIDTH_24BPP:
1197		var->bits_per_pixel = 24;
1198		var->red.offset = 16;
1199		var->red.length = 8;
1200		var->green.offset = 8;
1201		var->green.length = 8;
1202		var->blue.length = 8;
1203		break;
1204	case CRTC_PIX_WIDTH_32BPP:
1205		var->bits_per_pixel = 32;
1206		var->red.offset = 16;
1207		var->red.length = 8;
1208		var->green.offset = 8;
1209		var->green.length = 8;
1210		var->blue.length = 8;
1211		var->transp.offset = 24;
1212		var->transp.length = 8;
1213		break;
1214	default:
1215		printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1216		return -EINVAL;
1217	}
1218
1219	return 0;
1220}
1221
1222
1223static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1224			      struct fb_var_screeninfo *var)
1225{
1226	u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1227	u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1228	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1229	u32 pix_width;
1230
1231	/* fun with masking */
1232	h_total     = crtc->h_total & 0x1ff;
1233	h_disp      = (crtc->h_total >> 16) & 0xff;
1234	h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1235	h_sync_dly  = crtc->h_sync_strt_wid & 0x7;
1236	h_sync_wid  = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1237	h_sync_pol  = (crtc->h_sync_strt_wid >> 23) & 0x1;
1238	v_total     = crtc->v_total & 0x7ff;
1239	v_disp      = (crtc->v_total >> 16) & 0x7ff;
1240	v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1241	v_sync_wid  = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1242	v_sync_pol  = (crtc->v_sync_strt_wid >> 23) & 0x1;
1243	c_sync      = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1244	pix_width   = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1245
1246	/* do conversions */
1247	xres  = (h_disp + 1) << 3;
1248	yres  = v_disp + 1;
1249	left  = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1250	right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1251	hslen = h_sync_wid << 3;
1252	upper = v_total - v_sync_strt - v_sync_wid;
1253	lower = v_sync_strt - v_disp;
1254	vslen = v_sync_wid;
1255	sync  = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1256		(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1257		(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1258
1259	aty128_pix_width_to_var(pix_width, var);
1260
1261	var->xres = xres;
1262	var->yres = yres;
1263	var->xres_virtual = crtc->vxres;
1264	var->yres_virtual = crtc->vyres;
1265	var->xoffset = crtc->xoffset;
1266	var->yoffset = crtc->yoffset;
1267	var->left_margin  = left;
1268	var->right_margin = right;
1269	var->upper_margin = upper;
1270	var->lower_margin = lower;
1271	var->hsync_len = hslen;
1272	var->vsync_len = vslen;
1273	var->sync  = sync;
1274	var->vmode = FB_VMODE_NONINTERLACED;
1275
1276	return 0;
1277}
1278
1279static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1280{
1281	if (on) {
1282		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1283			    CRT_CRTC_ON);
1284		aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1285			    DAC_PALETTE2_SNOOP_EN));
1286	} else
1287		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1288			    ~CRT_CRTC_ON);
1289}
1290
1291static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1292{
1293	u32 reg;
1294#ifdef CONFIG_FB_ATY128_BACKLIGHT
1295	struct fb_info *info = pci_get_drvdata(par->pdev);
1296#endif
1297
1298	if (on) {
1299		reg = aty_ld_le32(LVDS_GEN_CNTL);
1300		reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1301		reg &= ~LVDS_DISPLAY_DIS;
1302		aty_st_le32(LVDS_GEN_CNTL, reg);
1303#ifdef CONFIG_FB_ATY128_BACKLIGHT
1304		aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1305#endif
1306	} else {
1307#ifdef CONFIG_FB_ATY128_BACKLIGHT
1308		aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1309#endif
1310		reg = aty_ld_le32(LVDS_GEN_CNTL);
1311		reg |= LVDS_DISPLAY_DIS;
1312		aty_st_le32(LVDS_GEN_CNTL, reg);
1313		mdelay(100);
1314		reg &= ~(LVDS_ON /*| LVDS_EN*/);
1315		aty_st_le32(LVDS_GEN_CNTL, reg);
1316	}
1317}
1318
1319static void aty128_set_pll(struct aty128_pll *pll,
1320			   const struct aty128fb_par *par)
1321{
1322	u32 div3;
1323
1324	unsigned char post_conv[] =	/* register values for post dividers */
1325        { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1326
1327	/* select PPLL_DIV_3 */
1328	aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1329
1330	/* reset PLL */
1331	aty_st_pll(PPLL_CNTL,
1332		   aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1333
1334	/* write the reference divider */
1335	aty_pll_wait_readupdate(par);
1336	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1337	aty_pll_writeupdate(par);
1338
1339	div3 = aty_ld_pll(PPLL_DIV_3);
1340	div3 &= ~PPLL_FB3_DIV_MASK;
1341	div3 |= pll->feedback_divider;
1342	div3 &= ~PPLL_POST3_DIV_MASK;
1343	div3 |= post_conv[pll->post_divider] << 16;
1344
1345	/* write feedback and post dividers */
1346	aty_pll_wait_readupdate(par);
1347	aty_st_pll(PPLL_DIV_3, div3);
1348	aty_pll_writeupdate(par);
1349
1350	aty_pll_wait_readupdate(par);
1351	aty_st_pll(HTOTAL_CNTL, 0);	/* no horiz crtc adjustment */
1352	aty_pll_writeupdate(par);
1353
1354	/* clear the reset, just in case */
1355	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1356}
1357
1358
1359static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1360			     const struct aty128fb_par *par)
1361{
1362	const struct aty128_constants c = par->constants;
1363	unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1364	u32 output_freq;
1365	u32 vclk;        /* in .01 MHz */
1366	int i = 0;
1367	u32 n, d;
1368
1369	vclk = 100000000 / period_in_ps;	/* convert units to 10 kHz */
1370
1371	/* adjust pixel clock if necessary */
1372	if (vclk > c.ppll_max)
1373		vclk = c.ppll_max;
1374	if (vclk * 12 < c.ppll_min)
1375		vclk = c.ppll_min/12;
1376
1377	/* now, find an acceptable divider */
1378	for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1379		output_freq = post_dividers[i] * vclk;
1380		if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1381			pll->post_divider = post_dividers[i];
1382			break;
1383		}
1384	}
1385
1386	if (i == ARRAY_SIZE(post_dividers))
1387		return -EINVAL;
1388
1389	/* calculate feedback divider */
1390	n = c.ref_divider * output_freq;
1391	d = c.ref_clk;
1392
1393	pll->feedback_divider = round_div(n, d);
1394	pll->vclk = vclk;
1395
1396	DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1397	    "vclk_per: %d\n", pll->post_divider,
1398	    pll->feedback_divider, vclk, output_freq,
1399	    c.ref_divider, period_in_ps);
1400
1401	return 0;
1402}
1403
1404
1405static int aty128_pll_to_var(const struct aty128_pll *pll,
1406			     struct fb_var_screeninfo *var)
1407{
1408	var->pixclock = 100000000 / pll->vclk;
1409
1410	return 0;
1411}
1412
1413
1414static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1415			    const struct aty128fb_par *par)
1416{
1417	aty_st_le32(DDA_CONFIG, dsp->dda_config);
1418	aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1419}
1420
1421
1422static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1423			  const struct aty128_pll *pll,
1424			  u32 depth,
1425			  const struct aty128fb_par *par)
1426{
1427	const struct aty128_meminfo *m = par->mem;
1428	u32 xclk = par->constants.xclk;
1429	u32 fifo_width = par->constants.fifo_width;
1430	u32 fifo_depth = par->constants.fifo_depth;
1431	s32 x, b, p, ron, roff;
1432	u32 n, d, bpp;
1433
1434	/* round up to multiple of 8 */
1435	bpp = (depth+7) & ~7;
1436
1437	n = xclk * fifo_width;
1438	d = pll->vclk * bpp;
1439	x = round_div(n, d);
1440
1441	ron = 4 * m->MB +
1442		3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1443		2 * m->Trp +
1444		m->Twr +
1445		m->CL +
1446		m->Tr2w +
1447		x;
1448
1449	DBG("x %x\n", x);
1450
1451	b = 0;
1452	while (x) {
1453		x >>= 1;
1454		b++;
1455	}
1456	p = b + 1;
1457
1458	ron <<= (11 - p);
1459
1460	n <<= (11 - p);
1461	x = round_div(n, d);
1462	roff = x * (fifo_depth - 4);
1463
1464	if ((ron + m->Rloop) >= roff) {
1465		printk(KERN_ERR "aty128fb: Mode out of range!\n");
1466		return -EINVAL;
1467	}
1468
1469	DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1470	    p, m->Rloop, x, ron, roff);
1471
1472	dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1473	dsp->dda_on_off = ron << 16 | roff;
1474
1475	return 0;
1476}
1477
1478
1479/*
1480 * This actually sets the video mode.
1481 */
1482static int aty128fb_set_par(struct fb_info *info)
1483{
1484	struct aty128fb_par *par = info->par;
1485	u32 config;
1486	int err;
1487
1488	if ((err = aty128_decode_var(&info->var, par)) != 0)
1489		return err;
1490
1491	if (par->blitter_may_be_busy)
1492		wait_for_idle(par);
1493
1494	/* clear all registers that may interfere with mode setting */
1495	aty_st_le32(OVR_CLR, 0);
1496	aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1497	aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1498	aty_st_le32(OV0_SCALE_CNTL, 0);
1499	aty_st_le32(MPP_TB_CONFIG, 0);
1500	aty_st_le32(MPP_GP_CONFIG, 0);
1501	aty_st_le32(SUBPIC_CNTL, 0);
1502	aty_st_le32(VIPH_CONTROL, 0);
1503	aty_st_le32(I2C_CNTL_1, 0);         /* turn off i2c */
1504	aty_st_le32(GEN_INT_CNTL, 0);	/* turn off interrupts */
1505	aty_st_le32(CAP0_TRIG_CNTL, 0);
1506	aty_st_le32(CAP1_TRIG_CNTL, 0);
1507
1508	aty_st_8(CRTC_EXT_CNTL + 1, 4);	/* turn video off */
1509
1510	aty128_set_crtc(&par->crtc, par);
1511	aty128_set_pll(&par->pll, par);
1512	aty128_set_fifo(&par->fifo_reg, par);
1513
1514	config = aty_ld_le32(CNFG_CNTL) & ~3;
1515
1516#if defined(__BIG_ENDIAN)
1517	if (par->crtc.bpp == 32)
1518		config |= 2;	/* make aperture do 32 bit swapping */
1519	else if (par->crtc.bpp == 16)
1520		config |= 1;	/* make aperture do 16 bit swapping */
1521#endif
1522
1523	aty_st_le32(CNFG_CNTL, config);
1524	aty_st_8(CRTC_EXT_CNTL + 1, 0);	/* turn the video back on */
1525
1526	info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1527	info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1528		: FB_VISUAL_DIRECTCOLOR;
1529
1530	if (par->chip_gen == rage_M3) {
1531		aty128_set_crt_enable(par, par->crt_on);
1532		aty128_set_lcd_enable(par, par->lcd_on);
1533	}
1534	if (par->accel_flags & FB_ACCELF_TEXT)
1535		aty128_init_engine(par);
1536
1537#ifdef CONFIG_BOOTX_TEXT
1538	btext_update_display(info->fix.smem_start,
1539			     (((par->crtc.h_total>>16) & 0xff)+1)*8,
1540			     ((par->crtc.v_total>>16) & 0x7ff)+1,
1541			     par->crtc.bpp,
1542			     par->crtc.vxres*par->crtc.bpp/8);
1543#endif /* CONFIG_BOOTX_TEXT */
1544
1545	return 0;
1546}
1547
1548/*
1549 *  encode/decode the User Defined Part of the Display
1550 */
1551
1552static int aty128_decode_var(struct fb_var_screeninfo *var,
1553			     struct aty128fb_par *par)
1554{
1555	int err;
1556	struct aty128_crtc crtc;
1557	struct aty128_pll pll;
1558	struct aty128_ddafifo fifo_reg;
1559
1560	if ((err = aty128_var_to_crtc(var, &crtc, par)))
1561		return err;
1562
1563	if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1564		return err;
1565
1566	if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1567		return err;
1568
1569	par->crtc = crtc;
1570	par->pll = pll;
1571	par->fifo_reg = fifo_reg;
1572	par->accel_flags = var->accel_flags;
1573
1574	return 0;
1575}
1576
1577
1578static int aty128_encode_var(struct fb_var_screeninfo *var,
1579			     const struct aty128fb_par *par)
1580{
1581	int err;
1582
1583	if ((err = aty128_crtc_to_var(&par->crtc, var)))
1584		return err;
1585
1586	if ((err = aty128_pll_to_var(&par->pll, var)))
1587		return err;
1588
1589	var->nonstd = 0;
1590	var->activate = 0;
1591
1592	var->height = -1;
1593	var->width = -1;
1594	var->accel_flags = par->accel_flags;
1595
1596	return 0;
1597}
1598
1599
1600static int aty128fb_check_var(struct fb_var_screeninfo *var,
1601			      struct fb_info *info)
1602{
1603	struct aty128fb_par par;
1604	int err;
1605
1606	par = *(struct aty128fb_par *)info->par;
1607	if ((err = aty128_decode_var(var, &par)) != 0)
1608		return err;
1609	aty128_encode_var(var, &par);
1610	return 0;
1611}
1612
1613
1614/*
1615 *  Pan or Wrap the Display
1616 */
1617static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1618				struct fb_info *fb)
1619{
1620	struct aty128fb_par *par = fb->par;
1621	u32 xoffset, yoffset;
1622	u32 offset;
1623	u32 xres, yres;
1624
1625	xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1626	yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1627
1628	xoffset = (var->xoffset +7) & ~7;
1629	yoffset = var->yoffset;
1630
1631	if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1632		return -EINVAL;
1633
1634	par->crtc.xoffset = xoffset;
1635	par->crtc.yoffset = yoffset;
1636
1637	offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1638									  & ~7;
1639
1640	if (par->crtc.bpp == 24)
1641		offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1642
1643	aty_st_le32(CRTC_OFFSET, offset);
1644
1645	return 0;
1646}
1647
1648
1649/*
1650 *  Helper function to store a single palette register
1651 */
1652static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1653			  struct aty128fb_par *par)
1654{
1655	if (par->chip_gen == rage_M3) {
1656		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1657			    ~DAC_PALETTE_ACCESS_CNTL);
1658	}
1659
1660	aty_st_8(PALETTE_INDEX, regno);
1661	aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1662}
1663
1664static int aty128fb_sync(struct fb_info *info)
1665{
1666	struct aty128fb_par *par = info->par;
1667
1668	if (par->blitter_may_be_busy)
1669		wait_for_idle(par);
1670	return 0;
1671}
1672
1673#ifndef MODULE
1674static int aty128fb_setup(char *options)
1675{
1676	char *this_opt;
1677
1678	if (!options || !*options)
1679		return 0;
1680
1681	while ((this_opt = strsep(&options, ",")) != NULL) {
1682		if (!strncmp(this_opt, "lcd:", 4)) {
1683			default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1684			continue;
1685		} else if (!strncmp(this_opt, "crt:", 4)) {
1686			default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1687			continue;
1688		} else if (!strncmp(this_opt, "backlight:", 10)) {
1689#ifdef CONFIG_FB_ATY128_BACKLIGHT
1690			backlight = simple_strtoul(this_opt+10, NULL, 0);
1691#endif
1692			continue;
1693		}
1694		if(!strncmp(this_opt, "nomtrr", 6)) {
1695			mtrr = false;
1696			continue;
1697		}
1698#ifdef CONFIG_PPC_PMAC
1699		/* vmode and cmode deprecated */
1700		if (!strncmp(this_opt, "vmode:", 6)) {
1701			unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1702			if (vmode > 0 && vmode <= VMODE_MAX)
1703				default_vmode = vmode;
1704			continue;
1705		} else if (!strncmp(this_opt, "cmode:", 6)) {
1706			unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1707			switch (cmode) {
1708			case 0:
1709			case 8:
1710				default_cmode = CMODE_8;
1711				break;
1712			case 15:
1713			case 16:
1714				default_cmode = CMODE_16;
1715				break;
1716			case 24:
1717			case 32:
1718				default_cmode = CMODE_32;
1719				break;
1720			}
1721			continue;
1722		}
1723#endif /* CONFIG_PPC_PMAC */
1724		mode_option = this_opt;
1725	}
1726	return 0;
1727}
1728#endif  /*  MODULE  */
1729
1730/* Backlight */
1731#ifdef CONFIG_FB_ATY128_BACKLIGHT
1732#define MAX_LEVEL 0xFF
1733
1734static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1735		int level)
1736{
1737	struct fb_info *info = pci_get_drvdata(par->pdev);
1738	int atylevel;
1739
1740	/* Get and convert the value */
1741	/* No locking of bl_curve since we read a single value */
1742	atylevel = MAX_LEVEL -
1743		(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1744
1745	if (atylevel < 0)
1746		atylevel = 0;
1747	else if (atylevel > MAX_LEVEL)
1748		atylevel = MAX_LEVEL;
1749
1750	return atylevel;
1751}
1752
1753/* We turn off the LCD completely instead of just dimming the backlight.
1754 * This provides greater power saving and the display is useless without
1755 * backlight anyway
1756 */
1757#define BACKLIGHT_LVDS_OFF
1758/* That one prevents proper CRT output with LCD off */
1759#undef BACKLIGHT_DAC_OFF
1760
1761static int aty128_bl_update_status(struct backlight_device *bd)
1762{
1763	struct aty128fb_par *par = bl_get_data(bd);
1764	unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1765	int level;
1766
1767	if (bd->props.power != FB_BLANK_UNBLANK ||
1768	    bd->props.fb_blank != FB_BLANK_UNBLANK ||
1769	    !par->lcd_on)
1770		level = 0;
1771	else
1772		level = bd->props.brightness;
1773
1774	reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1775	if (level > 0) {
1776		reg |= LVDS_DIGION;
1777		if (!(reg & LVDS_ON)) {
1778			reg &= ~LVDS_BLON;
1779			aty_st_le32(LVDS_GEN_CNTL, reg);
1780			aty_ld_le32(LVDS_GEN_CNTL);
1781			mdelay(10);
1782			reg |= LVDS_BLON;
1783			aty_st_le32(LVDS_GEN_CNTL, reg);
1784		}
1785		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1786		reg |= (aty128_bl_get_level_brightness(par, level) <<
1787			LVDS_BL_MOD_LEVEL_SHIFT);
1788#ifdef BACKLIGHT_LVDS_OFF
1789		reg |= LVDS_ON | LVDS_EN;
1790		reg &= ~LVDS_DISPLAY_DIS;
1791#endif
1792		aty_st_le32(LVDS_GEN_CNTL, reg);
1793#ifdef BACKLIGHT_DAC_OFF
1794		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1795#endif
1796	} else {
1797		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1798		reg |= (aty128_bl_get_level_brightness(par, 0) <<
1799			LVDS_BL_MOD_LEVEL_SHIFT);
1800#ifdef BACKLIGHT_LVDS_OFF
1801		reg |= LVDS_DISPLAY_DIS;
1802		aty_st_le32(LVDS_GEN_CNTL, reg);
1803		aty_ld_le32(LVDS_GEN_CNTL);
1804		udelay(10);
1805		reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1806#endif
1807		aty_st_le32(LVDS_GEN_CNTL, reg);
1808#ifdef BACKLIGHT_DAC_OFF
1809		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1810#endif
1811	}
1812
1813	return 0;
1814}
1815
1816static const struct backlight_ops aty128_bl_data = {
1817	.update_status	= aty128_bl_update_status,
1818};
1819
1820static void aty128_bl_set_power(struct fb_info *info, int power)
1821{
1822	if (info->bl_dev) {
1823		info->bl_dev->props.power = power;
1824		backlight_update_status(info->bl_dev);
1825	}
1826}
1827
1828static void aty128_bl_init(struct aty128fb_par *par)
1829{
1830	struct backlight_properties props;
1831	struct fb_info *info = pci_get_drvdata(par->pdev);
1832	struct backlight_device *bd;
1833	char name[12];
1834
1835	/* Could be extended to Rage128Pro LVDS output too */
1836	if (par->chip_gen != rage_M3)
1837		return;
1838
1839#ifdef CONFIG_PMAC_BACKLIGHT
1840	if (!pmac_has_backlight_type("ati"))
1841		return;
1842#endif
1843
1844	snprintf(name, sizeof(name), "aty128bl%d", info->node);
1845
1846	memset(&props, 0, sizeof(struct backlight_properties));
1847	props.type = BACKLIGHT_RAW;
1848	props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1849	bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1850				       &props);
1851	if (IS_ERR(bd)) {
1852		info->bl_dev = NULL;
1853		printk(KERN_WARNING "aty128: Backlight registration failed\n");
1854		goto error;
1855	}
1856
1857	info->bl_dev = bd;
1858	fb_bl_default_curve(info, 0,
1859		 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1860		219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1861
1862	bd->props.brightness = bd->props.max_brightness;
1863	bd->props.power = FB_BLANK_UNBLANK;
1864	backlight_update_status(bd);
1865
1866	printk("aty128: Backlight initialized (%s)\n", name);
1867
1868	return;
1869
1870error:
1871	return;
1872}
1873
1874static void aty128_bl_exit(struct backlight_device *bd)
1875{
1876	backlight_device_unregister(bd);
1877	printk("aty128: Backlight unloaded\n");
1878}
1879#endif /* CONFIG_FB_ATY128_BACKLIGHT */
1880
1881/*
1882 *  Initialisation
1883 */
1884
1885#ifdef CONFIG_PPC_PMAC__disabled
1886static void aty128_early_resume(void *data)
1887{
1888        struct aty128fb_par *par = data;
1889
1890	if (!console_trylock())
1891		return;
1892	pci_restore_state(par->pdev);
1893	aty128_do_resume(par->pdev);
1894	console_unlock();
1895}
1896#endif /* CONFIG_PPC_PMAC */
1897
1898static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1899{
1900	struct fb_info *info = pci_get_drvdata(pdev);
1901	struct aty128fb_par *par = info->par;
1902	struct fb_var_screeninfo var;
1903	char video_card[50];
1904	u8 chip_rev;
1905	u32 dac;
1906
1907	/* Get the chip revision */
1908	chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1909
1910	strcpy(video_card, "Rage128 XX ");
1911	video_card[8] = ent->device >> 8;
1912	video_card[9] = ent->device & 0xFF;
1913
1914	/* range check to make sure */
1915	if (ent->driver_data < ARRAY_SIZE(r128_family))
1916		strlcat(video_card, r128_family[ent->driver_data],
1917			sizeof(video_card));
1918
1919	printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1920
1921	if (par->vram_size % (1024 * 1024) == 0)
1922		printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1923	else
1924		printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1925
1926	par->chip_gen = ent->driver_data;
1927
1928	/* fill in info */
1929	info->fbops = &aty128fb_ops;
1930	info->flags = FBINFO_FLAG_DEFAULT;
1931
1932	par->lcd_on = default_lcd_on;
1933	par->crt_on = default_crt_on;
1934
1935	var = default_var;
1936#ifdef CONFIG_PPC_PMAC
1937	if (machine_is(powermac)) {
1938		/* Indicate sleep capability */
1939		if (par->chip_gen == rage_M3) {
1940			pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1941#if 0 /* Disable the early video resume hack for now as it's causing problems,
1942       * among others we now rely on the PCI core restoring the config space
1943       * for us, which isn't the case with that hack, and that code path causes
1944       * various things to be called with interrupts off while they shouldn't.
1945       * I'm leaving the code in as it can be useful for debugging purposes
1946       */
1947			pmac_set_early_video_resume(aty128_early_resume, par);
1948#endif
1949		}
1950
1951		/* Find default mode */
1952		if (mode_option) {
1953			if (!mac_find_mode(&var, info, mode_option, 8))
1954				var = default_var;
1955		} else {
1956			if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1957				default_vmode = VMODE_1024_768_60;
1958
1959			/* iMacs need that resolution
1960			 * PowerMac2,1 first r128 iMacs
1961			 * PowerMac2,2 summer 2000 iMacs
1962			 * PowerMac4,1 january 2001 iMacs "flower power"
1963			 */
1964			if (of_machine_is_compatible("PowerMac2,1") ||
1965			    of_machine_is_compatible("PowerMac2,2") ||
1966			    of_machine_is_compatible("PowerMac4,1"))
1967				default_vmode = VMODE_1024_768_75;
1968
1969			/* iBook SE */
1970			if (of_machine_is_compatible("PowerBook2,2"))
1971				default_vmode = VMODE_800_600_60;
1972
1973			/* PowerBook Firewire (Pismo), iBook Dual USB */
1974			if (of_machine_is_compatible("PowerBook3,1") ||
1975			    of_machine_is_compatible("PowerBook4,1"))
1976				default_vmode = VMODE_1024_768_60;
1977
1978			/* PowerBook Titanium */
1979			if (of_machine_is_compatible("PowerBook3,2"))
1980				default_vmode = VMODE_1152_768_60;
1981
1982			if (default_cmode > 16)
1983				default_cmode = CMODE_32;
1984			else if (default_cmode > 8)
1985				default_cmode = CMODE_16;
1986			else
1987				default_cmode = CMODE_8;
1988
1989			if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1990				var = default_var;
1991		}
1992	} else
1993#endif /* CONFIG_PPC_PMAC */
1994	{
1995		if (mode_option)
1996			if (fb_find_mode(&var, info, mode_option, NULL,
1997					 0, &defaultmode, 8) == 0)
1998				var = default_var;
1999	}
2000
2001	var.accel_flags &= ~FB_ACCELF_TEXT;
2002//	var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2003
2004	if (aty128fb_check_var(&var, info)) {
2005		printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2006		return 0;
2007	}
2008
2009	/* setup the DAC the way we like it */
2010	dac = aty_ld_le32(DAC_CNTL);
2011	dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2012	dac |= DAC_MASK;
2013	if (par->chip_gen == rage_M3)
2014		dac |= DAC_PALETTE2_SNOOP_EN;
2015	aty_st_le32(DAC_CNTL, dac);
2016
2017	/* turn off bus mastering, just in case */
2018	aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2019
2020	info->var = var;
2021	fb_alloc_cmap(&info->cmap, 256, 0);
2022
2023	var.activate = FB_ACTIVATE_NOW;
2024
2025	aty128_init_engine(par);
2026
2027	par->pdev = pdev;
2028	par->asleep = 0;
2029	par->lock_blank = 0;
2030
2031#ifdef CONFIG_FB_ATY128_BACKLIGHT
2032	if (backlight)
2033		aty128_bl_init(par);
2034#endif
2035
2036	if (register_framebuffer(info) < 0)
2037		return 0;
2038
2039	fb_info(info, "%s frame buffer device on %s\n",
2040		info->fix.id, video_card);
2041
2042	return 1;	/* success! */
2043}
2044
2045#ifdef CONFIG_PCI
2046/* register a card    ++ajoshi */
2047static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2048{
2049	unsigned long fb_addr, reg_addr;
2050	struct aty128fb_par *par;
2051	struct fb_info *info;
2052	int err;
2053#ifndef __sparc__
2054	void __iomem *bios = NULL;
2055#endif
2056
2057	/* Enable device in PCI config */
2058	if ((err = pci_enable_device(pdev))) {
2059		printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2060				err);
2061		return -ENODEV;
2062	}
2063
2064	fb_addr = pci_resource_start(pdev, 0);
2065	if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2066				"aty128fb FB")) {
2067		printk(KERN_ERR "aty128fb: cannot reserve frame "
2068				"buffer memory\n");
2069		return -ENODEV;
2070	}
2071
2072	reg_addr = pci_resource_start(pdev, 2);
2073	if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2074				"aty128fb MMIO")) {
2075		printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2076		goto err_free_fb;
2077	}
2078
2079	/* We have the resources. Now virtualize them */
2080	info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2081	if (!info)
2082		goto err_free_mmio;
2083
2084	par = info->par;
2085
2086	info->pseudo_palette = par->pseudo_palette;
2087
2088	/* Virtualize mmio region */
2089	info->fix.mmio_start = reg_addr;
2090	par->regbase = pci_ioremap_bar(pdev, 2);
2091	if (!par->regbase)
2092		goto err_free_info;
2093
2094	/* Grab memory size from the card */
2095	// How does this relate to the resource length from the PCI hardware?
2096	par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2097
2098	/* Virtualize the framebuffer */
2099	info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2100	if (!info->screen_base)
2101		goto err_unmap_out;
2102
2103	/* Set up info->fix */
2104	info->fix = aty128fb_fix;
2105	info->fix.smem_start = fb_addr;
2106	info->fix.smem_len = par->vram_size;
2107	info->fix.mmio_start = reg_addr;
2108
2109	/* If we can't test scratch registers, something is seriously wrong */
2110	if (!register_test(par)) {
2111		printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2112		goto err_out;
2113	}
2114
2115#ifndef __sparc__
2116	bios = aty128_map_ROM(par, pdev);
2117#ifdef CONFIG_X86
2118	if (bios == NULL)
2119		bios = aty128_find_mem_vbios(par);
2120#endif
2121	if (bios == NULL)
2122		printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2123	else {
2124		printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2125		aty128_get_pllinfo(par, bios);
2126		pci_unmap_rom(pdev, bios);
2127	}
2128#endif /* __sparc__ */
2129
2130	aty128_timings(par);
2131	pci_set_drvdata(pdev, info);
2132
2133	if (!aty128_init(pdev, ent))
2134		goto err_out;
2135
2136	if (mtrr)
2137		par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2138						  par->vram_size);
2139	return 0;
2140
2141err_out:
2142	iounmap(info->screen_base);
2143err_unmap_out:
2144	iounmap(par->regbase);
2145err_free_info:
2146	framebuffer_release(info);
2147err_free_mmio:
2148	release_mem_region(pci_resource_start(pdev, 2),
2149			pci_resource_len(pdev, 2));
2150err_free_fb:
2151	release_mem_region(pci_resource_start(pdev, 0),
2152			pci_resource_len(pdev, 0));
2153	return -ENODEV;
2154}
2155
2156static void aty128_remove(struct pci_dev *pdev)
2157{
2158	struct fb_info *info = pci_get_drvdata(pdev);
2159	struct aty128fb_par *par;
2160
2161	if (!info)
2162		return;
2163
2164	par = info->par;
2165
2166	unregister_framebuffer(info);
2167
2168#ifdef CONFIG_FB_ATY128_BACKLIGHT
2169	aty128_bl_exit(info->bl_dev);
2170#endif
2171
2172	arch_phys_wc_del(par->wc_cookie);
2173	iounmap(par->regbase);
2174	iounmap(info->screen_base);
2175
2176	release_mem_region(pci_resource_start(pdev, 0),
2177			   pci_resource_len(pdev, 0));
2178	release_mem_region(pci_resource_start(pdev, 2),
2179			   pci_resource_len(pdev, 2));
2180	framebuffer_release(info);
2181}
2182#endif /* CONFIG_PCI */
2183
2184
2185
2186    /*
2187     *  Blank the display.
2188     */
2189static int aty128fb_blank(int blank, struct fb_info *fb)
2190{
2191	struct aty128fb_par *par = fb->par;
2192	u8 state;
2193
2194	if (par->lock_blank || par->asleep)
2195		return 0;
2196
2197	switch (blank) {
2198	case FB_BLANK_NORMAL:
2199		state = 4;
2200		break;
2201	case FB_BLANK_VSYNC_SUSPEND:
2202		state = 6;
2203		break;
2204	case FB_BLANK_HSYNC_SUSPEND:
2205		state = 5;
2206		break;
2207	case FB_BLANK_POWERDOWN:
2208		state = 7;
2209		break;
2210	case FB_BLANK_UNBLANK:
2211	default:
2212		state = 0;
2213		break;
2214	}
2215	aty_st_8(CRTC_EXT_CNTL+1, state);
2216
2217	if (par->chip_gen == rage_M3) {
2218		aty128_set_crt_enable(par, par->crt_on && !blank);
2219		aty128_set_lcd_enable(par, par->lcd_on && !blank);
2220	}
2221
2222	return 0;
2223}
2224
2225/*
2226 *  Set a single color register. The values supplied are already
2227 *  rounded down to the hardware's capabilities (according to the
2228 *  entries in the var structure). Return != 0 for invalid regno.
2229 */
2230static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2231			      u_int transp, struct fb_info *info)
2232{
2233	struct aty128fb_par *par = info->par;
2234
2235	if (regno > 255
2236	    || (par->crtc.depth == 16 && regno > 63)
2237	    || (par->crtc.depth == 15 && regno > 31))
2238		return 1;
2239
2240	red >>= 8;
2241	green >>= 8;
2242	blue >>= 8;
2243
2244	if (regno < 16) {
2245		int i;
2246		u32 *pal = info->pseudo_palette;
2247
2248		switch (par->crtc.depth) {
2249		case 15:
2250			pal[regno] = (regno << 10) | (regno << 5) | regno;
2251			break;
2252		case 16:
2253			pal[regno] = (regno << 11) | (regno << 6) | regno;
2254			break;
2255		case 24:
2256			pal[regno] = (regno << 16) | (regno << 8) | regno;
2257			break;
2258		case 32:
2259			i = (regno << 8) | regno;
2260			pal[regno] = (i << 16) | i;
2261			break;
2262		}
2263	}
2264
2265	if (par->crtc.depth == 16 && regno > 0) {
2266		/*
2267		 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2268		 * have 32 slots for R and B values but 64 slots for G values.
2269		 * Thus the R and B values go in one slot but the G value
2270		 * goes in a different slot, and we have to avoid disturbing
2271		 * the other fields in the slots we touch.
2272		 */
2273		par->green[regno] = green;
2274		if (regno < 32) {
2275			par->red[regno] = red;
2276			par->blue[regno] = blue;
2277			aty128_st_pal(regno * 8, red, par->green[regno*2],
2278				      blue, par);
2279		}
2280		red = par->red[regno/2];
2281		blue = par->blue[regno/2];
2282		regno <<= 2;
2283	} else if (par->crtc.bpp == 16)
2284		regno <<= 3;
2285	aty128_st_pal(regno, red, green, blue, par);
2286
2287	return 0;
2288}
2289
2290#define ATY_MIRROR_LCD_ON	0x00000001
2291#define ATY_MIRROR_CRT_ON	0x00000002
2292
2293/* out param: u32*	backlight value: 0 to 15 */
2294#define FBIO_ATY128_GET_MIRROR	_IOR('@', 1, __u32)
2295/* in param: u32*	backlight value: 0 to 15 */
2296#define FBIO_ATY128_SET_MIRROR	_IOW('@', 2, __u32)
2297
2298static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2299{
2300	struct aty128fb_par *par = info->par;
2301	u32 value;
2302	int rc;
2303
2304	switch (cmd) {
2305	case FBIO_ATY128_SET_MIRROR:
2306		if (par->chip_gen != rage_M3)
2307			return -EINVAL;
2308		rc = get_user(value, (__u32 __user *)arg);
2309		if (rc)
2310			return rc;
2311		par->lcd_on = (value & 0x01) != 0;
2312		par->crt_on = (value & 0x02) != 0;
2313		if (!par->crt_on && !par->lcd_on)
2314			par->lcd_on = 1;
2315		aty128_set_crt_enable(par, par->crt_on);
2316		aty128_set_lcd_enable(par, par->lcd_on);
2317		return 0;
2318	case FBIO_ATY128_GET_MIRROR:
2319		if (par->chip_gen != rage_M3)
2320			return -EINVAL;
2321		value = (par->crt_on << 1) | par->lcd_on;
2322		return put_user(value, (__u32 __user *)arg);
2323	}
2324	return -EINVAL;
2325}
2326
2327static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2328{
2329	u32	pmgt;
2330
2331	if (!par->pdev->pm_cap)
2332		return;
2333
2334	/* Set the chip into the appropriate suspend mode (we use D2,
2335	 * D3 would require a complete re-initialisation of the chip,
2336	 * including PCI config registers, clocks, AGP configuration, ...)
2337	 *
2338	 * For resume, the core will have already brought us back to D0
2339	 */
2340	if (suspend) {
2341		/* Make sure CRTC2 is reset. Remove that the day we decide to
2342		 * actually use CRTC2 and replace it with real code for disabling
2343		 * the CRTC2 output during sleep
2344		 */
2345		aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2346			~(CRTC2_EN));
2347
2348		/* Set the power management mode to be PCI based */
2349		/* Use this magic value for now */
2350		pmgt = 0x0c005407;
2351		aty_st_pll(POWER_MANAGEMENT, pmgt);
2352		(void)aty_ld_pll(POWER_MANAGEMENT);
2353		aty_st_le32(BUS_CNTL1, 0x00000010);
2354		aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2355		msleep(100);
2356	}
2357}
2358
2359static int aty128_pci_suspend_late(struct device *dev, pm_message_t state)
2360{
2361	struct pci_dev *pdev = to_pci_dev(dev);
2362	struct fb_info *info = pci_get_drvdata(pdev);
2363	struct aty128fb_par *par = info->par;
2364
2365	/* We don't do anything but D2, for now we return 0, but
2366	 * we may want to change that. How do we know if the BIOS
2367	 * can properly take care of D3 ? Also, with swsusp, we
2368	 * know we'll be rebooted, ...
2369	 */
2370#ifndef CONFIG_PPC_PMAC
2371	/* HACK ALERT ! Once I find a proper way to say to each driver
2372	 * individually what will happen with it's PCI slot, I'll change
2373	 * that. On laptops, the AGP slot is just unclocked, so D2 is
2374	 * expected, while on desktops, the card is powered off
2375	 */
2376	return 0;
2377#endif /* CONFIG_PPC_PMAC */
2378
2379	if (state.event == pdev->dev.power.power_state.event)
2380		return 0;
2381
2382	printk(KERN_DEBUG "aty128fb: suspending...\n");
2383
2384	console_lock();
2385
2386	fb_set_suspend(info, 1);
2387
2388	/* Make sure engine is reset */
2389	wait_for_idle(par);
2390	aty128_reset_engine(par);
2391	wait_for_idle(par);
2392
2393	/* Blank display and LCD */
2394	aty128fb_blank(FB_BLANK_POWERDOWN, info);
2395
2396	/* Sleep */
2397	par->asleep = 1;
2398	par->lock_blank = 1;
2399
2400#ifdef CONFIG_PPC_PMAC
2401	/* On powermac, we have hooks to properly suspend/resume AGP now,
2402	 * use them here. We'll ultimately need some generic support here,
2403	 * but the generic code isn't quite ready for that yet
2404	 */
2405	pmac_suspend_agp_for_card(pdev);
2406#endif /* CONFIG_PPC_PMAC */
2407
2408	/* We need a way to make sure the fbdev layer will _not_ touch the
2409	 * framebuffer before we put the chip to suspend state. On 2.4, I
2410	 * used dummy fb ops, 2.5 need proper support for this at the
2411	 * fbdev level
2412	 */
2413	if (state.event != PM_EVENT_ON)
2414		aty128_set_suspend(par, 1);
2415
2416	console_unlock();
2417
2418	pdev->dev.power.power_state = state;
2419
2420	return 0;
2421}
2422
2423static int __maybe_unused aty128_pci_suspend(struct device *dev)
2424{
2425	return aty128_pci_suspend_late(dev, PMSG_SUSPEND);
2426}
2427
2428static int __maybe_unused aty128_pci_hibernate(struct device *dev)
2429{
2430	return aty128_pci_suspend_late(dev, PMSG_HIBERNATE);
2431}
2432
2433static int __maybe_unused aty128_pci_freeze(struct device *dev)
2434{
2435	return aty128_pci_suspend_late(dev, PMSG_FREEZE);
2436}
2437
2438static int aty128_do_resume(struct pci_dev *pdev)
2439{
2440	struct fb_info *info = pci_get_drvdata(pdev);
2441	struct aty128fb_par *par = info->par;
2442
2443	if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2444		return 0;
2445
2446	/* PCI state will have been restored by the core, so
2447	 * we should be in D0 now with our config space fully
2448	 * restored
2449	 */
2450
2451	/* Wakeup chip */
2452	aty128_set_suspend(par, 0);
2453	par->asleep = 0;
2454
2455	/* Restore display & engine */
2456	aty128_reset_engine(par);
2457	wait_for_idle(par);
2458	aty128fb_set_par(info);
2459	fb_pan_display(info, &info->var);
2460	fb_set_cmap(&info->cmap, info);
2461
2462	/* Refresh */
2463	fb_set_suspend(info, 0);
2464
2465	/* Unblank */
2466	par->lock_blank = 0;
2467	aty128fb_blank(0, info);
2468
2469#ifdef CONFIG_PPC_PMAC
2470	/* On powermac, we have hooks to properly suspend/resume AGP now,
2471	 * use them here. We'll ultimately need some generic support here,
2472	 * but the generic code isn't quite ready for that yet
2473	 */
2474	pmac_resume_agp_for_card(pdev);
2475#endif /* CONFIG_PPC_PMAC */
2476
2477	pdev->dev.power.power_state = PMSG_ON;
2478
2479	printk(KERN_DEBUG "aty128fb: resumed !\n");
2480
2481	return 0;
2482}
2483
2484static int __maybe_unused aty128_pci_resume(struct device *dev)
2485{
2486	int rc;
2487
2488	console_lock();
2489	rc = aty128_do_resume(to_pci_dev(dev));
2490	console_unlock();
2491
2492	return rc;
2493}
2494
2495
2496static int aty128fb_init(void)
2497{
2498#ifndef MODULE
2499	char *option = NULL;
2500
2501	if (fb_get_options("aty128fb", &option))
2502		return -ENODEV;
2503	aty128fb_setup(option);
2504#endif
2505
2506	return pci_register_driver(&aty128fb_driver);
2507}
2508
2509static void __exit aty128fb_exit(void)
2510{
2511	pci_unregister_driver(&aty128fb_driver);
2512}
2513
2514module_init(aty128fb_init);
2515
2516module_exit(aty128fb_exit);
2517
2518MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2519MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2520MODULE_LICENSE("GPL");
2521module_param(mode_option, charp, 0);
2522MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2523module_param_named(nomtrr, mtrr, invbool, 0);
2524MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2525