1// SPDX-License-Identifier: GPL-2.0 2/* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11#include <linux/usb.h> 12#include <linux/pci.h> 13#include <linux/slab.h> 14#include <linux/dmapool.h> 15#include <linux/dma-mapping.h> 16 17#include "xhci.h" 18#include "xhci-trace.h" 19#include "xhci-debugfs.h" 20 21/* 22 * Allocates a generic ring segment from the ring pool, sets the dma address, 23 * initializes the segment to zero, and sets the private next pointer to NULL. 24 * 25 * Section 4.11.1.1: 26 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 27 */ 28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 29 unsigned int cycle_state, 30 unsigned int max_packet, 31 gfp_t flags) 32{ 33 struct xhci_segment *seg; 34 dma_addr_t dma; 35 int i; 36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 37 38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); 39 if (!seg) 40 return NULL; 41 42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 43 if (!seg->trbs) { 44 kfree(seg); 45 return NULL; 46 } 47 48 if (max_packet) { 49 seg->bounce_buf = kzalloc_node(max_packet, flags, 50 dev_to_node(dev)); 51 if (!seg->bounce_buf) { 52 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 53 kfree(seg); 54 return NULL; 55 } 56 } 57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 58 if (cycle_state == 0) { 59 for (i = 0; i < TRBS_PER_SEGMENT; i++) 60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); 61 } 62 seg->dma = dma; 63 seg->next = NULL; 64 65 return seg; 66} 67 68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 69{ 70 if (seg->trbs) { 71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 72 seg->trbs = NULL; 73 } 74 kfree(seg->bounce_buf); 75 kfree(seg); 76} 77 78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 79 struct xhci_segment *first) 80{ 81 struct xhci_segment *seg; 82 83 seg = first->next; 84 while (seg != first) { 85 struct xhci_segment *next = seg->next; 86 xhci_segment_free(xhci, seg); 87 seg = next; 88 } 89 xhci_segment_free(xhci, first); 90} 91 92/* 93 * Make the prev segment point to the next segment. 94 * 95 * Change the last TRB in the prev segment to be a Link TRB which points to the 96 * DMA address of the next segment. The caller needs to set any Link TRB 97 * related flags, such as End TRB, Toggle Cycle, and no snoop. 98 */ 99static void xhci_link_segments(struct xhci_segment *prev, 100 struct xhci_segment *next, 101 enum xhci_ring_type type, bool chain_links) 102{ 103 u32 val; 104 105 if (!prev || !next) 106 return; 107 prev->next = next; 108 if (type != TYPE_EVENT) { 109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 110 cpu_to_le64(next->dma); 111 112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 114 val &= ~TRB_TYPE_BITMASK; 115 val |= TRB_TYPE(TRB_LINK); 116 if (chain_links) 117 val |= TRB_CHAIN; 118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 119 } 120} 121 122/* 123 * Link the ring to the new segments. 124 * Set Toggle Cycle for the new ring if needed. 125 */ 126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 127 struct xhci_segment *first, struct xhci_segment *last, 128 unsigned int num_segs) 129{ 130 struct xhci_segment *next; 131 bool chain_links; 132 133 if (!ring || !first || !last) 134 return; 135 136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 137 chain_links = !!(xhci_link_trb_quirk(xhci) || 138 (ring->type == TYPE_ISOC && 139 (xhci->quirks & XHCI_AMD_0x96_HOST))); 140 141 next = ring->enq_seg->next; 142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links); 143 xhci_link_segments(last, next, ring->type, chain_links); 144 ring->num_segs += num_segs; 145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 146 147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 149 &= ~cpu_to_le32(LINK_TOGGLE); 150 last->trbs[TRBS_PER_SEGMENT-1].link.control 151 |= cpu_to_le32(LINK_TOGGLE); 152 ring->last_seg = last; 153 } 154} 155 156/* 157 * We need a radix tree for mapping physical addresses of TRBs to which stream 158 * ID they belong to. We need to do this because the host controller won't tell 159 * us which stream ring the TRB came from. We could store the stream ID in an 160 * event data TRB, but that doesn't help us for the cancellation case, since the 161 * endpoint may stop before it reaches that event data TRB. 162 * 163 * The radix tree maps the upper portion of the TRB DMA address to a ring 164 * segment that has the same upper portion of DMA addresses. For example, say I 165 * have segments of size 1KB, that are always 1KB aligned. A segment may 166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 168 * pass the radix tree a key to get the right stream ID: 169 * 170 * 0x10c90fff >> 10 = 0x43243 171 * 0x10c912c0 >> 10 = 0x43244 172 * 0x10c91400 >> 10 = 0x43245 173 * 174 * Obviously, only those TRBs with DMA addresses that are within the segment 175 * will make the radix tree return the stream ID for that ring. 176 * 177 * Caveats for the radix tree: 178 * 179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 184 * extended systems (where the DMA address can be bigger than 32-bits), 185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 186 */ 187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 188 struct xhci_ring *ring, 189 struct xhci_segment *seg, 190 gfp_t mem_flags) 191{ 192 unsigned long key; 193 int ret; 194 195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 196 /* Skip any segments that were already added. */ 197 if (radix_tree_lookup(trb_address_map, key)) 198 return 0; 199 200 ret = radix_tree_maybe_preload(mem_flags); 201 if (ret) 202 return ret; 203 ret = radix_tree_insert(trb_address_map, 204 key, ring); 205 radix_tree_preload_end(); 206 return ret; 207} 208 209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 210 struct xhci_segment *seg) 211{ 212 unsigned long key; 213 214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 215 if (radix_tree_lookup(trb_address_map, key)) 216 radix_tree_delete(trb_address_map, key); 217} 218 219static int xhci_update_stream_segment_mapping( 220 struct radix_tree_root *trb_address_map, 221 struct xhci_ring *ring, 222 struct xhci_segment *first_seg, 223 struct xhci_segment *last_seg, 224 gfp_t mem_flags) 225{ 226 struct xhci_segment *seg; 227 struct xhci_segment *failed_seg; 228 int ret; 229 230 if (WARN_ON_ONCE(trb_address_map == NULL)) 231 return 0; 232 233 seg = first_seg; 234 do { 235 ret = xhci_insert_segment_mapping(trb_address_map, 236 ring, seg, mem_flags); 237 if (ret) 238 goto remove_streams; 239 if (seg == last_seg) 240 return 0; 241 seg = seg->next; 242 } while (seg != first_seg); 243 244 return 0; 245 246remove_streams: 247 failed_seg = seg; 248 seg = first_seg; 249 do { 250 xhci_remove_segment_mapping(trb_address_map, seg); 251 if (seg == failed_seg) 252 return ret; 253 seg = seg->next; 254 } while (seg != first_seg); 255 256 return ret; 257} 258 259static void xhci_remove_stream_mapping(struct xhci_ring *ring) 260{ 261 struct xhci_segment *seg; 262 263 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 264 return; 265 266 seg = ring->first_seg; 267 do { 268 xhci_remove_segment_mapping(ring->trb_address_map, seg); 269 seg = seg->next; 270 } while (seg != ring->first_seg); 271} 272 273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 274{ 275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 276 ring->first_seg, ring->last_seg, mem_flags); 277} 278 279/* XXX: Do we need the hcd structure in all these functions? */ 280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 281{ 282 if (!ring) 283 return; 284 285 trace_xhci_ring_free(ring); 286 287 if (ring->first_seg) { 288 if (ring->type == TYPE_STREAM) 289 xhci_remove_stream_mapping(ring); 290 xhci_free_segments_for_ring(xhci, ring->first_seg); 291 } 292 293 kfree(ring); 294} 295 296void xhci_initialize_ring_info(struct xhci_ring *ring, 297 unsigned int cycle_state) 298{ 299 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 300 ring->enqueue = ring->first_seg->trbs; 301 ring->enq_seg = ring->first_seg; 302 ring->dequeue = ring->enqueue; 303 ring->deq_seg = ring->first_seg; 304 /* The ring is initialized to 0. The producer must write 1 to the cycle 305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 306 * compare CCS to the cycle bit to check ownership, so CCS = 1. 307 * 308 * New rings are initialized with cycle state equal to 1; if we are 309 * handling ring expansion, set the cycle state equal to the old ring. 310 */ 311 ring->cycle_state = cycle_state; 312 313 /* 314 * Each segment has a link TRB, and leave an extra TRB for SW 315 * accounting purpose 316 */ 317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 318} 319 320/* Allocate segments and link them for a ring */ 321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 322 struct xhci_segment **first, struct xhci_segment **last, 323 unsigned int num_segs, unsigned int cycle_state, 324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 325{ 326 struct xhci_segment *prev; 327 bool chain_links; 328 329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 330 chain_links = !!(xhci_link_trb_quirk(xhci) || 331 (type == TYPE_ISOC && 332 (xhci->quirks & XHCI_AMD_0x96_HOST))); 333 334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 335 if (!prev) 336 return -ENOMEM; 337 num_segs--; 338 339 *first = prev; 340 while (num_segs > 0) { 341 struct xhci_segment *next; 342 343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 344 if (!next) { 345 prev = *first; 346 while (prev) { 347 next = prev->next; 348 xhci_segment_free(xhci, prev); 349 prev = next; 350 } 351 return -ENOMEM; 352 } 353 xhci_link_segments(prev, next, type, chain_links); 354 355 prev = next; 356 num_segs--; 357 } 358 xhci_link_segments(prev, *first, type, chain_links); 359 *last = prev; 360 361 return 0; 362} 363 364/* 365 * Create a new ring with zero or more segments. 366 * 367 * Link each segment together into a ring. 368 * Set the end flag and the cycle toggle bit on the last segment. 369 * See section 4.9.1 and figures 15 and 16. 370 */ 371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 372 unsigned int num_segs, unsigned int cycle_state, 373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 374{ 375 struct xhci_ring *ring; 376 int ret; 377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 378 379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); 380 if (!ring) 381 return NULL; 382 383 ring->num_segs = num_segs; 384 ring->bounce_buf_len = max_packet; 385 INIT_LIST_HEAD(&ring->td_list); 386 ring->type = type; 387 if (num_segs == 0) 388 return ring; 389 390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 391 &ring->last_seg, num_segs, cycle_state, type, 392 max_packet, flags); 393 if (ret) 394 goto fail; 395 396 /* Only event ring does not use link TRB */ 397 if (type != TYPE_EVENT) { 398 /* See section 4.9.2.1 and 6.4.4.1 */ 399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 400 cpu_to_le32(LINK_TOGGLE); 401 } 402 xhci_initialize_ring_info(ring, cycle_state); 403 trace_xhci_ring_alloc(ring); 404 return ring; 405 406fail: 407 kfree(ring); 408 return NULL; 409} 410 411void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 412 struct xhci_virt_device *virt_dev, 413 unsigned int ep_index) 414{ 415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 416 virt_dev->eps[ep_index].ring = NULL; 417} 418 419/* 420 * Expand an existing ring. 421 * Allocate a new ring which has same segment numbers and link the two rings. 422 */ 423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 424 unsigned int num_trbs, gfp_t flags) 425{ 426 struct xhci_segment *first; 427 struct xhci_segment *last; 428 unsigned int num_segs; 429 unsigned int num_segs_needed; 430 int ret; 431 432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 433 (TRBS_PER_SEGMENT - 1); 434 435 /* Allocate number of segments we needed, or double the ring size */ 436 num_segs = ring->num_segs > num_segs_needed ? 437 ring->num_segs : num_segs_needed; 438 439 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 440 num_segs, ring->cycle_state, ring->type, 441 ring->bounce_buf_len, flags); 442 if (ret) 443 return -ENOMEM; 444 445 if (ring->type == TYPE_STREAM) 446 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 447 ring, first, last, flags); 448 if (ret) { 449 struct xhci_segment *next; 450 do { 451 next = first->next; 452 xhci_segment_free(xhci, first); 453 if (first == last) 454 break; 455 first = next; 456 } while (true); 457 return ret; 458 } 459 460 xhci_link_rings(xhci, ring, first, last, num_segs); 461 trace_xhci_ring_expansion(ring); 462 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 463 "ring expansion succeed, now has %d segments", 464 ring->num_segs); 465 466 return 0; 467} 468 469struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 470 int type, gfp_t flags) 471{ 472 struct xhci_container_ctx *ctx; 473 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 474 475 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 476 return NULL; 477 478 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 479 if (!ctx) 480 return NULL; 481 482 ctx->type = type; 483 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 484 if (type == XHCI_CTX_TYPE_INPUT) 485 ctx->size += CTX_SIZE(xhci->hcc_params); 486 487 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 488 if (!ctx->bytes) { 489 kfree(ctx); 490 return NULL; 491 } 492 return ctx; 493} 494 495void xhci_free_container_ctx(struct xhci_hcd *xhci, 496 struct xhci_container_ctx *ctx) 497{ 498 if (!ctx) 499 return; 500 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 501 kfree(ctx); 502} 503 504struct xhci_input_control_ctx *xhci_get_input_control_ctx( 505 struct xhci_container_ctx *ctx) 506{ 507 if (ctx->type != XHCI_CTX_TYPE_INPUT) 508 return NULL; 509 510 return (struct xhci_input_control_ctx *)ctx->bytes; 511} 512 513struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 514 struct xhci_container_ctx *ctx) 515{ 516 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 517 return (struct xhci_slot_ctx *)ctx->bytes; 518 519 return (struct xhci_slot_ctx *) 520 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 521} 522 523struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 524 struct xhci_container_ctx *ctx, 525 unsigned int ep_index) 526{ 527 /* increment ep index by offset of start of ep ctx array */ 528 ep_index++; 529 if (ctx->type == XHCI_CTX_TYPE_INPUT) 530 ep_index++; 531 532 return (struct xhci_ep_ctx *) 533 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 534} 535 536 537/***************** Streams structures manipulation *************************/ 538 539static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 540 unsigned int num_stream_ctxs, 541 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 542{ 543 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 544 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 545 546 if (size > MEDIUM_STREAM_ARRAY_SIZE) 547 dma_free_coherent(dev, size, 548 stream_ctx, dma); 549 else if (size <= SMALL_STREAM_ARRAY_SIZE) 550 return dma_pool_free(xhci->small_streams_pool, 551 stream_ctx, dma); 552 else 553 return dma_pool_free(xhci->medium_streams_pool, 554 stream_ctx, dma); 555} 556 557/* 558 * The stream context array for each endpoint with bulk streams enabled can 559 * vary in size, based on: 560 * - how many streams the endpoint supports, 561 * - the maximum primary stream array size the host controller supports, 562 * - and how many streams the device driver asks for. 563 * 564 * The stream context array must be a power of 2, and can be as small as 565 * 64 bytes or as large as 1MB. 566 */ 567static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 568 unsigned int num_stream_ctxs, dma_addr_t *dma, 569 gfp_t mem_flags) 570{ 571 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 572 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 573 574 if (size > MEDIUM_STREAM_ARRAY_SIZE) 575 return dma_alloc_coherent(dev, size, 576 dma, mem_flags); 577 else if (size <= SMALL_STREAM_ARRAY_SIZE) 578 return dma_pool_alloc(xhci->small_streams_pool, 579 mem_flags, dma); 580 else 581 return dma_pool_alloc(xhci->medium_streams_pool, 582 mem_flags, dma); 583} 584 585struct xhci_ring *xhci_dma_to_transfer_ring( 586 struct xhci_virt_ep *ep, 587 u64 address) 588{ 589 if (ep->ep_state & EP_HAS_STREAMS) 590 return radix_tree_lookup(&ep->stream_info->trb_address_map, 591 address >> TRB_SEGMENT_SHIFT); 592 return ep->ring; 593} 594 595struct xhci_ring *xhci_stream_id_to_ring( 596 struct xhci_virt_device *dev, 597 unsigned int ep_index, 598 unsigned int stream_id) 599{ 600 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 601 602 if (stream_id == 0) 603 return ep->ring; 604 if (!ep->stream_info) 605 return NULL; 606 607 if (stream_id >= ep->stream_info->num_streams) 608 return NULL; 609 return ep->stream_info->stream_rings[stream_id]; 610} 611 612/* 613 * Change an endpoint's internal structure so it supports stream IDs. The 614 * number of requested streams includes stream 0, which cannot be used by device 615 * drivers. 616 * 617 * The number of stream contexts in the stream context array may be bigger than 618 * the number of streams the driver wants to use. This is because the number of 619 * stream context array entries must be a power of two. 620 */ 621struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 622 unsigned int num_stream_ctxs, 623 unsigned int num_streams, 624 unsigned int max_packet, gfp_t mem_flags) 625{ 626 struct xhci_stream_info *stream_info; 627 u32 cur_stream; 628 struct xhci_ring *cur_ring; 629 u64 addr; 630 int ret; 631 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 632 633 xhci_dbg(xhci, "Allocating %u streams and %u " 634 "stream context array entries.\n", 635 num_streams, num_stream_ctxs); 636 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 637 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 638 return NULL; 639 } 640 xhci->cmd_ring_reserved_trbs++; 641 642 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, 643 dev_to_node(dev)); 644 if (!stream_info) 645 goto cleanup_trbs; 646 647 stream_info->num_streams = num_streams; 648 stream_info->num_stream_ctxs = num_stream_ctxs; 649 650 /* Initialize the array of virtual pointers to stream rings. */ 651 stream_info->stream_rings = kcalloc_node( 652 num_streams, sizeof(struct xhci_ring *), mem_flags, 653 dev_to_node(dev)); 654 if (!stream_info->stream_rings) 655 goto cleanup_info; 656 657 /* Initialize the array of DMA addresses for stream rings for the HW. */ 658 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 659 num_stream_ctxs, &stream_info->ctx_array_dma, 660 mem_flags); 661 if (!stream_info->stream_ctx_array) 662 goto cleanup_ring_array; 663 memset(stream_info->stream_ctx_array, 0, 664 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 665 666 /* Allocate everything needed to free the stream rings later */ 667 stream_info->free_streams_command = 668 xhci_alloc_command_with_ctx(xhci, true, mem_flags); 669 if (!stream_info->free_streams_command) 670 goto cleanup_ctx; 671 672 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 673 674 /* Allocate rings for all the streams that the driver will use, 675 * and add their segment DMA addresses to the radix tree. 676 * Stream 0 is reserved. 677 */ 678 679 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 680 stream_info->stream_rings[cur_stream] = 681 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 682 mem_flags); 683 cur_ring = stream_info->stream_rings[cur_stream]; 684 if (!cur_ring) 685 goto cleanup_rings; 686 cur_ring->stream_id = cur_stream; 687 cur_ring->trb_address_map = &stream_info->trb_address_map; 688 /* Set deq ptr, cycle bit, and stream context type */ 689 addr = cur_ring->first_seg->dma | 690 SCT_FOR_CTX(SCT_PRI_TR) | 691 cur_ring->cycle_state; 692 stream_info->stream_ctx_array[cur_stream].stream_ring = 693 cpu_to_le64(addr); 694 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 695 cur_stream, (unsigned long long) addr); 696 697 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 698 if (ret) { 699 xhci_ring_free(xhci, cur_ring); 700 stream_info->stream_rings[cur_stream] = NULL; 701 goto cleanup_rings; 702 } 703 } 704 /* Leave the other unused stream ring pointers in the stream context 705 * array initialized to zero. This will cause the xHC to give us an 706 * error if the device asks for a stream ID we don't have setup (if it 707 * was any other way, the host controller would assume the ring is 708 * "empty" and wait forever for data to be queued to that stream ID). 709 */ 710 711 return stream_info; 712 713cleanup_rings: 714 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 715 cur_ring = stream_info->stream_rings[cur_stream]; 716 if (cur_ring) { 717 xhci_ring_free(xhci, cur_ring); 718 stream_info->stream_rings[cur_stream] = NULL; 719 } 720 } 721 xhci_free_command(xhci, stream_info->free_streams_command); 722cleanup_ctx: 723 xhci_free_stream_ctx(xhci, 724 stream_info->num_stream_ctxs, 725 stream_info->stream_ctx_array, 726 stream_info->ctx_array_dma); 727cleanup_ring_array: 728 kfree(stream_info->stream_rings); 729cleanup_info: 730 kfree(stream_info); 731cleanup_trbs: 732 xhci->cmd_ring_reserved_trbs--; 733 return NULL; 734} 735/* 736 * Sets the MaxPStreams field and the Linear Stream Array field. 737 * Sets the dequeue pointer to the stream context array. 738 */ 739void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 740 struct xhci_ep_ctx *ep_ctx, 741 struct xhci_stream_info *stream_info) 742{ 743 u32 max_primary_streams; 744 /* MaxPStreams is the number of stream context array entries, not the 745 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 746 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 747 */ 748 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 749 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 750 "Setting number of stream ctx array entries to %u", 751 1 << (max_primary_streams + 1)); 752 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 753 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 754 | EP_HAS_LSA); 755 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 756} 757 758/* 759 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 760 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 761 * not at the beginning of the ring). 762 */ 763void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 764 struct xhci_virt_ep *ep) 765{ 766 dma_addr_t addr; 767 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 768 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 769 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 770} 771 772/* Frees all stream contexts associated with the endpoint, 773 * 774 * Caller should fix the endpoint context streams fields. 775 */ 776void xhci_free_stream_info(struct xhci_hcd *xhci, 777 struct xhci_stream_info *stream_info) 778{ 779 int cur_stream; 780 struct xhci_ring *cur_ring; 781 782 if (!stream_info) 783 return; 784 785 for (cur_stream = 1; cur_stream < stream_info->num_streams; 786 cur_stream++) { 787 cur_ring = stream_info->stream_rings[cur_stream]; 788 if (cur_ring) { 789 xhci_ring_free(xhci, cur_ring); 790 stream_info->stream_rings[cur_stream] = NULL; 791 } 792 } 793 xhci_free_command(xhci, stream_info->free_streams_command); 794 xhci->cmd_ring_reserved_trbs--; 795 if (stream_info->stream_ctx_array) 796 xhci_free_stream_ctx(xhci, 797 stream_info->num_stream_ctxs, 798 stream_info->stream_ctx_array, 799 stream_info->ctx_array_dma); 800 801 kfree(stream_info->stream_rings); 802 kfree(stream_info); 803} 804 805 806/***************** Device context manipulation *************************/ 807 808static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 809 struct xhci_virt_ep *ep) 810{ 811 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog, 812 0); 813 ep->xhci = xhci; 814} 815 816static void xhci_free_tt_info(struct xhci_hcd *xhci, 817 struct xhci_virt_device *virt_dev, 818 int slot_id) 819{ 820 struct list_head *tt_list_head; 821 struct xhci_tt_bw_info *tt_info, *next; 822 bool slot_found = false; 823 824 /* If the device never made it past the Set Address stage, 825 * it may not have the real_port set correctly. 826 */ 827 if (virt_dev->real_port == 0 || 828 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 829 xhci_dbg(xhci, "Bad real port.\n"); 830 return; 831 } 832 833 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 834 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 835 /* Multi-TT hubs will have more than one entry */ 836 if (tt_info->slot_id == slot_id) { 837 slot_found = true; 838 list_del(&tt_info->tt_list); 839 kfree(tt_info); 840 } else if (slot_found) { 841 break; 842 } 843 } 844} 845 846int xhci_alloc_tt_info(struct xhci_hcd *xhci, 847 struct xhci_virt_device *virt_dev, 848 struct usb_device *hdev, 849 struct usb_tt *tt, gfp_t mem_flags) 850{ 851 struct xhci_tt_bw_info *tt_info; 852 unsigned int num_ports; 853 int i, j; 854 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 855 856 if (!tt->multi) 857 num_ports = 1; 858 else 859 num_ports = hdev->maxchild; 860 861 for (i = 0; i < num_ports; i++, tt_info++) { 862 struct xhci_interval_bw_table *bw_table; 863 864 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, 865 dev_to_node(dev)); 866 if (!tt_info) 867 goto free_tts; 868 INIT_LIST_HEAD(&tt_info->tt_list); 869 list_add(&tt_info->tt_list, 870 &xhci->rh_bw[virt_dev->real_port - 1].tts); 871 tt_info->slot_id = virt_dev->udev->slot_id; 872 if (tt->multi) 873 tt_info->ttport = i+1; 874 bw_table = &tt_info->bw_table; 875 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 876 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 877 } 878 return 0; 879 880free_tts: 881 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 882 return -ENOMEM; 883} 884 885 886/* All the xhci_tds in the ring's TD list should be freed at this point. 887 * Should be called with xhci->lock held if there is any chance the TT lists 888 * will be manipulated by the configure endpoint, allocate device, or update 889 * hub functions while this function is removing the TT entries from the list. 890 */ 891void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 892{ 893 struct xhci_virt_device *dev; 894 int i; 895 int old_active_eps = 0; 896 897 /* Slot ID 0 is reserved */ 898 if (slot_id == 0 || !xhci->devs[slot_id]) 899 return; 900 901 dev = xhci->devs[slot_id]; 902 903 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 904 if (!dev) 905 return; 906 907 trace_xhci_free_virt_device(dev); 908 909 if (dev->tt_info) 910 old_active_eps = dev->tt_info->active_eps; 911 912 for (i = 0; i < 31; i++) { 913 if (dev->eps[i].ring) 914 xhci_ring_free(xhci, dev->eps[i].ring); 915 if (dev->eps[i].stream_info) 916 xhci_free_stream_info(xhci, 917 dev->eps[i].stream_info); 918 /* 919 * Endpoints are normally deleted from the bandwidth list when 920 * endpoints are dropped, before device is freed. 921 * If host is dying or being removed then endpoints aren't 922 * dropped cleanly, so delete the endpoint from list here. 923 * Only applicable for hosts with software bandwidth checking. 924 */ 925 926 if (!list_empty(&dev->eps[i].bw_endpoint_list)) { 927 list_del_init(&dev->eps[i].bw_endpoint_list); 928 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n", 929 slot_id, i); 930 } 931 } 932 /* If this is a hub, free the TT(s) from the TT list */ 933 xhci_free_tt_info(xhci, dev, slot_id); 934 /* If necessary, update the number of active TTs on this root port */ 935 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 936 937 if (dev->in_ctx) 938 xhci_free_container_ctx(xhci, dev->in_ctx); 939 if (dev->out_ctx) 940 xhci_free_container_ctx(xhci, dev->out_ctx); 941 942 if (dev->udev && dev->udev->slot_id) 943 dev->udev->slot_id = 0; 944 kfree(xhci->devs[slot_id]); 945 xhci->devs[slot_id] = NULL; 946} 947 948/* 949 * Free a virt_device structure. 950 * If the virt_device added a tt_info (a hub) and has children pointing to 951 * that tt_info, then free the child first. Recursive. 952 * We can't rely on udev at this point to find child-parent relationships. 953 */ 954static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 955{ 956 struct xhci_virt_device *vdev; 957 struct list_head *tt_list_head; 958 struct xhci_tt_bw_info *tt_info, *next; 959 int i; 960 961 vdev = xhci->devs[slot_id]; 962 if (!vdev) 963 return; 964 965 if (vdev->real_port == 0 || 966 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 967 xhci_dbg(xhci, "Bad vdev->real_port.\n"); 968 goto out; 969 } 970 971 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 972 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 973 /* is this a hub device that added a tt_info to the tts list */ 974 if (tt_info->slot_id == slot_id) { 975 /* are any devices using this tt_info? */ 976 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 977 vdev = xhci->devs[i]; 978 if (vdev && (vdev->tt_info == tt_info)) 979 xhci_free_virt_devices_depth_first( 980 xhci, i); 981 } 982 } 983 } 984out: 985 /* we are now at a leaf device */ 986 xhci_debugfs_remove_slot(xhci, slot_id); 987 xhci_free_virt_device(xhci, slot_id); 988} 989 990int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 991 struct usb_device *udev, gfp_t flags) 992{ 993 struct xhci_virt_device *dev; 994 int i; 995 996 /* Slot ID 0 is reserved */ 997 if (slot_id == 0 || xhci->devs[slot_id]) { 998 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 999 return 0; 1000 } 1001 1002 dev = kzalloc(sizeof(*dev), flags); 1003 if (!dev) 1004 return 0; 1005 1006 dev->slot_id = slot_id; 1007 1008 /* Allocate the (output) device context that will be used in the HC. */ 1009 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 1010 if (!dev->out_ctx) 1011 goto fail; 1012 1013 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 1014 (unsigned long long)dev->out_ctx->dma); 1015 1016 /* Allocate the (input) device context for address device command */ 1017 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 1018 if (!dev->in_ctx) 1019 goto fail; 1020 1021 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 1022 (unsigned long long)dev->in_ctx->dma); 1023 1024 /* Initialize the cancellation list and watchdog timers for each ep */ 1025 for (i = 0; i < 31; i++) { 1026 dev->eps[i].ep_index = i; 1027 dev->eps[i].vdev = dev; 1028 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 1029 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 1030 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 1031 } 1032 1033 /* Allocate endpoint 0 ring */ 1034 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 1035 if (!dev->eps[0].ring) 1036 goto fail; 1037 1038 dev->udev = udev; 1039 1040 /* Point to output device context in dcbaa. */ 1041 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1042 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1043 slot_id, 1044 &xhci->dcbaa->dev_context_ptrs[slot_id], 1045 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1046 1047 trace_xhci_alloc_virt_device(dev); 1048 1049 xhci->devs[slot_id] = dev; 1050 1051 return 1; 1052fail: 1053 1054 if (dev->in_ctx) 1055 xhci_free_container_ctx(xhci, dev->in_ctx); 1056 if (dev->out_ctx) 1057 xhci_free_container_ctx(xhci, dev->out_ctx); 1058 kfree(dev); 1059 1060 return 0; 1061} 1062 1063void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1064 struct usb_device *udev) 1065{ 1066 struct xhci_virt_device *virt_dev; 1067 struct xhci_ep_ctx *ep0_ctx; 1068 struct xhci_ring *ep_ring; 1069 1070 virt_dev = xhci->devs[udev->slot_id]; 1071 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1072 ep_ring = virt_dev->eps[0].ring; 1073 /* 1074 * FIXME we don't keep track of the dequeue pointer very well after a 1075 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1076 * host to our enqueue pointer. This should only be called after a 1077 * configured device has reset, so all control transfers should have 1078 * been completed or cancelled before the reset. 1079 */ 1080 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1081 ep_ring->enqueue) 1082 | ep_ring->cycle_state); 1083} 1084 1085/* 1086 * The xHCI roothub may have ports of differing speeds in any order in the port 1087 * status registers. 1088 * 1089 * The xHCI hardware wants to know the roothub port number that the USB device 1090 * is attached to (or the roothub port its ancestor hub is attached to). All we 1091 * know is the index of that port under either the USB 2.0 or the USB 3.0 1092 * roothub, but that doesn't give us the real index into the HW port status 1093 * registers. Call xhci_find_raw_port_number() to get real index. 1094 */ 1095static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1096 struct usb_device *udev) 1097{ 1098 struct usb_device *top_dev; 1099 struct usb_hcd *hcd; 1100 1101 if (udev->speed >= USB_SPEED_SUPER) 1102 hcd = xhci->shared_hcd; 1103 else 1104 hcd = xhci->main_hcd; 1105 1106 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1107 top_dev = top_dev->parent) 1108 /* Found device below root hub */; 1109 1110 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1111} 1112 1113/* Setup an xHCI virtual device for a Set Address command */ 1114int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1115{ 1116 struct xhci_virt_device *dev; 1117 struct xhci_ep_ctx *ep0_ctx; 1118 struct xhci_slot_ctx *slot_ctx; 1119 u32 port_num; 1120 u32 max_packets; 1121 struct usb_device *top_dev; 1122 1123 dev = xhci->devs[udev->slot_id]; 1124 /* Slot ID 0 is reserved */ 1125 if (udev->slot_id == 0 || !dev) { 1126 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1127 udev->slot_id); 1128 return -EINVAL; 1129 } 1130 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1131 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1132 1133 /* 3) Only the control endpoint is valid - one endpoint context */ 1134 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1135 switch (udev->speed) { 1136 case USB_SPEED_SUPER_PLUS: 1137 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1138 max_packets = MAX_PACKET(512); 1139 break; 1140 case USB_SPEED_SUPER: 1141 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1142 max_packets = MAX_PACKET(512); 1143 break; 1144 case USB_SPEED_HIGH: 1145 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1146 max_packets = MAX_PACKET(64); 1147 break; 1148 /* USB core guesses at a 64-byte max packet first for FS devices */ 1149 case USB_SPEED_FULL: 1150 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1151 max_packets = MAX_PACKET(64); 1152 break; 1153 case USB_SPEED_LOW: 1154 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1155 max_packets = MAX_PACKET(8); 1156 break; 1157 case USB_SPEED_WIRELESS: 1158 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1159 return -EINVAL; 1160 break; 1161 default: 1162 /* Speed was set earlier, this shouldn't happen. */ 1163 return -EINVAL; 1164 } 1165 /* Find the root hub port this device is under */ 1166 port_num = xhci_find_real_port_number(xhci, udev); 1167 if (!port_num) 1168 return -EINVAL; 1169 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1170 /* Set the port number in the virtual_device to the faked port number */ 1171 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1172 top_dev = top_dev->parent) 1173 /* Found device below root hub */; 1174 dev->fake_port = top_dev->portnum; 1175 dev->real_port = port_num; 1176 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1177 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1178 1179 /* Find the right bandwidth table that this device will be a part of. 1180 * If this is a full speed device attached directly to a root port (or a 1181 * decendent of one), it counts as a primary bandwidth domain, not a 1182 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1183 * will never be created for the HS root hub. 1184 */ 1185 if (!udev->tt || !udev->tt->hub->parent) { 1186 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1187 } else { 1188 struct xhci_root_port_bw_info *rh_bw; 1189 struct xhci_tt_bw_info *tt_bw; 1190 1191 rh_bw = &xhci->rh_bw[port_num - 1]; 1192 /* Find the right TT. */ 1193 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1194 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1195 continue; 1196 1197 if (!dev->udev->tt->multi || 1198 (udev->tt->multi && 1199 tt_bw->ttport == dev->udev->ttport)) { 1200 dev->bw_table = &tt_bw->bw_table; 1201 dev->tt_info = tt_bw; 1202 break; 1203 } 1204 } 1205 if (!dev->tt_info) 1206 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1207 } 1208 1209 /* Is this a LS/FS device under an external HS hub? */ 1210 if (udev->tt && udev->tt->hub->parent) { 1211 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1212 (udev->ttport << 8)); 1213 if (udev->tt->multi) 1214 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1215 } 1216 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1217 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1218 1219 /* Step 4 - ring already allocated */ 1220 /* Step 5 */ 1221 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1222 1223 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1224 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1225 max_packets); 1226 1227 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1228 dev->eps[0].ring->cycle_state); 1229 1230 trace_xhci_setup_addressable_virt_device(dev); 1231 1232 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1233 1234 return 0; 1235} 1236 1237/* 1238 * Convert interval expressed as 2^(bInterval - 1) == interval into 1239 * straight exponent value 2^n == interval. 1240 * 1241 */ 1242static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1243 struct usb_host_endpoint *ep) 1244{ 1245 unsigned int interval; 1246 1247 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1248 if (interval != ep->desc.bInterval - 1) 1249 dev_warn(&udev->dev, 1250 "ep %#x - rounding interval to %d %sframes\n", 1251 ep->desc.bEndpointAddress, 1252 1 << interval, 1253 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1254 1255 if (udev->speed == USB_SPEED_FULL) { 1256 /* 1257 * Full speed isoc endpoints specify interval in frames, 1258 * not microframes. We are using microframes everywhere, 1259 * so adjust accordingly. 1260 */ 1261 interval += 3; /* 1 frame = 2^3 uframes */ 1262 } 1263 1264 return interval; 1265} 1266 1267/* 1268 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1269 * microframes, rounded down to nearest power of 2. 1270 */ 1271static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1272 struct usb_host_endpoint *ep, unsigned int desc_interval, 1273 unsigned int min_exponent, unsigned int max_exponent) 1274{ 1275 unsigned int interval; 1276 1277 interval = fls(desc_interval) - 1; 1278 interval = clamp_val(interval, min_exponent, max_exponent); 1279 if ((1 << interval) != desc_interval) 1280 dev_dbg(&udev->dev, 1281 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1282 ep->desc.bEndpointAddress, 1283 1 << interval, 1284 desc_interval); 1285 1286 return interval; 1287} 1288 1289static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1290 struct usb_host_endpoint *ep) 1291{ 1292 if (ep->desc.bInterval == 0) 1293 return 0; 1294 return xhci_microframes_to_exponent(udev, ep, 1295 ep->desc.bInterval, 0, 15); 1296} 1297 1298 1299static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1300 struct usb_host_endpoint *ep) 1301{ 1302 return xhci_microframes_to_exponent(udev, ep, 1303 ep->desc.bInterval * 8, 3, 10); 1304} 1305 1306/* Return the polling or NAK interval. 1307 * 1308 * The polling interval is expressed in "microframes". If xHCI's Interval field 1309 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1310 * 1311 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1312 * is set to 0. 1313 */ 1314static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1315 struct usb_host_endpoint *ep) 1316{ 1317 unsigned int interval = 0; 1318 1319 switch (udev->speed) { 1320 case USB_SPEED_HIGH: 1321 /* Max NAK rate */ 1322 if (usb_endpoint_xfer_control(&ep->desc) || 1323 usb_endpoint_xfer_bulk(&ep->desc)) { 1324 interval = xhci_parse_microframe_interval(udev, ep); 1325 break; 1326 } 1327 fallthrough; /* SS and HS isoc/int have same decoding */ 1328 1329 case USB_SPEED_SUPER_PLUS: 1330 case USB_SPEED_SUPER: 1331 if (usb_endpoint_xfer_int(&ep->desc) || 1332 usb_endpoint_xfer_isoc(&ep->desc)) { 1333 interval = xhci_parse_exponent_interval(udev, ep); 1334 } 1335 break; 1336 1337 case USB_SPEED_FULL: 1338 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1339 interval = xhci_parse_exponent_interval(udev, ep); 1340 break; 1341 } 1342 /* 1343 * Fall through for interrupt endpoint interval decoding 1344 * since it uses the same rules as low speed interrupt 1345 * endpoints. 1346 */ 1347 fallthrough; 1348 1349 case USB_SPEED_LOW: 1350 if (usb_endpoint_xfer_int(&ep->desc) || 1351 usb_endpoint_xfer_isoc(&ep->desc)) { 1352 1353 interval = xhci_parse_frame_interval(udev, ep); 1354 } 1355 break; 1356 1357 default: 1358 BUG(); 1359 } 1360 return interval; 1361} 1362 1363/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1364 * High speed endpoint descriptors can define "the number of additional 1365 * transaction opportunities per microframe", but that goes in the Max Burst 1366 * endpoint context field. 1367 */ 1368static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1369 struct usb_host_endpoint *ep) 1370{ 1371 if (udev->speed < USB_SPEED_SUPER || 1372 !usb_endpoint_xfer_isoc(&ep->desc)) 1373 return 0; 1374 return ep->ss_ep_comp.bmAttributes; 1375} 1376 1377static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1378 struct usb_host_endpoint *ep) 1379{ 1380 /* Super speed and Plus have max burst in ep companion desc */ 1381 if (udev->speed >= USB_SPEED_SUPER) 1382 return ep->ss_ep_comp.bMaxBurst; 1383 1384 if (udev->speed == USB_SPEED_HIGH && 1385 (usb_endpoint_xfer_isoc(&ep->desc) || 1386 usb_endpoint_xfer_int(&ep->desc))) 1387 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1388 1389 return 0; 1390} 1391 1392static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1393{ 1394 int in; 1395 1396 in = usb_endpoint_dir_in(&ep->desc); 1397 1398 switch (usb_endpoint_type(&ep->desc)) { 1399 case USB_ENDPOINT_XFER_CONTROL: 1400 return CTRL_EP; 1401 case USB_ENDPOINT_XFER_BULK: 1402 return in ? BULK_IN_EP : BULK_OUT_EP; 1403 case USB_ENDPOINT_XFER_ISOC: 1404 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1405 case USB_ENDPOINT_XFER_INT: 1406 return in ? INT_IN_EP : INT_OUT_EP; 1407 } 1408 return 0; 1409} 1410 1411/* Return the maximum endpoint service interval time (ESIT) payload. 1412 * Basically, this is the maxpacket size, multiplied by the burst size 1413 * and mult size. 1414 */ 1415static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1416 struct usb_host_endpoint *ep) 1417{ 1418 int max_burst; 1419 int max_packet; 1420 1421 /* Only applies for interrupt or isochronous endpoints */ 1422 if (usb_endpoint_xfer_control(&ep->desc) || 1423 usb_endpoint_xfer_bulk(&ep->desc)) 1424 return 0; 1425 1426 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1427 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1428 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1429 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1430 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1431 else if (udev->speed >= USB_SPEED_SUPER) 1432 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1433 1434 max_packet = usb_endpoint_maxp(&ep->desc); 1435 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1436 /* A 0 in max burst means 1 transfer per ESIT */ 1437 return max_packet * max_burst; 1438} 1439 1440/* Set up an endpoint with one ring segment. Do not allocate stream rings. 1441 * Drivers will have to call usb_alloc_streams() to do that. 1442 */ 1443int xhci_endpoint_init(struct xhci_hcd *xhci, 1444 struct xhci_virt_device *virt_dev, 1445 struct usb_device *udev, 1446 struct usb_host_endpoint *ep, 1447 gfp_t mem_flags) 1448{ 1449 unsigned int ep_index; 1450 struct xhci_ep_ctx *ep_ctx; 1451 struct xhci_ring *ep_ring; 1452 unsigned int max_packet; 1453 enum xhci_ring_type ring_type; 1454 u32 max_esit_payload; 1455 u32 endpoint_type; 1456 unsigned int max_burst; 1457 unsigned int interval; 1458 unsigned int mult; 1459 unsigned int avg_trb_len; 1460 unsigned int err_count = 0; 1461 1462 ep_index = xhci_get_endpoint_index(&ep->desc); 1463 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1464 1465 endpoint_type = xhci_get_endpoint_type(ep); 1466 if (!endpoint_type) 1467 return -EINVAL; 1468 1469 ring_type = usb_endpoint_type(&ep->desc); 1470 1471 /* 1472 * Get values to fill the endpoint context, mostly from ep descriptor. 1473 * The average TRB buffer lengt for bulk endpoints is unclear as we 1474 * have no clue on scatter gather list entry size. For Isoc and Int, 1475 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1476 */ 1477 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1478 interval = xhci_get_endpoint_interval(udev, ep); 1479 1480 /* Periodic endpoint bInterval limit quirk */ 1481 if (usb_endpoint_xfer_int(&ep->desc) || 1482 usb_endpoint_xfer_isoc(&ep->desc)) { 1483 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1484 udev->speed >= USB_SPEED_HIGH && 1485 interval >= 7) { 1486 interval = 6; 1487 } 1488 } 1489 1490 mult = xhci_get_endpoint_mult(udev, ep); 1491 max_packet = usb_endpoint_maxp(&ep->desc); 1492 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1493 avg_trb_len = max_esit_payload; 1494 1495 /* FIXME dig Mult and streams info out of ep companion desc */ 1496 1497 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1498 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1499 err_count = 3; 1500 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ 1501 if (usb_endpoint_xfer_bulk(&ep->desc)) { 1502 if (udev->speed == USB_SPEED_HIGH) 1503 max_packet = 512; 1504 if (udev->speed == USB_SPEED_FULL) { 1505 max_packet = rounddown_pow_of_two(max_packet); 1506 max_packet = clamp_val(max_packet, 8, 64); 1507 } 1508 } 1509 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1510 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1511 avg_trb_len = 8; 1512 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1513 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1514 mult = 0; 1515 1516 /* Set up the endpoint ring */ 1517 virt_dev->eps[ep_index].new_ring = 1518 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1519 if (!virt_dev->eps[ep_index].new_ring) 1520 return -ENOMEM; 1521 1522 virt_dev->eps[ep_index].skip = false; 1523 ep_ring = virt_dev->eps[ep_index].new_ring; 1524 1525 /* Fill the endpoint context */ 1526 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1527 EP_INTERVAL(interval) | 1528 EP_MULT(mult)); 1529 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1530 MAX_PACKET(max_packet) | 1531 MAX_BURST(max_burst) | 1532 ERROR_COUNT(err_count)); 1533 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1534 ep_ring->cycle_state); 1535 1536 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1537 EP_AVG_TRB_LENGTH(avg_trb_len)); 1538 1539 return 0; 1540} 1541 1542void xhci_endpoint_zero(struct xhci_hcd *xhci, 1543 struct xhci_virt_device *virt_dev, 1544 struct usb_host_endpoint *ep) 1545{ 1546 unsigned int ep_index; 1547 struct xhci_ep_ctx *ep_ctx; 1548 1549 ep_index = xhci_get_endpoint_index(&ep->desc); 1550 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1551 1552 ep_ctx->ep_info = 0; 1553 ep_ctx->ep_info2 = 0; 1554 ep_ctx->deq = 0; 1555 ep_ctx->tx_info = 0; 1556 /* Don't free the endpoint ring until the set interface or configuration 1557 * request succeeds. 1558 */ 1559} 1560 1561void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1562{ 1563 bw_info->ep_interval = 0; 1564 bw_info->mult = 0; 1565 bw_info->num_packets = 0; 1566 bw_info->max_packet_size = 0; 1567 bw_info->type = 0; 1568 bw_info->max_esit_payload = 0; 1569} 1570 1571void xhci_update_bw_info(struct xhci_hcd *xhci, 1572 struct xhci_container_ctx *in_ctx, 1573 struct xhci_input_control_ctx *ctrl_ctx, 1574 struct xhci_virt_device *virt_dev) 1575{ 1576 struct xhci_bw_info *bw_info; 1577 struct xhci_ep_ctx *ep_ctx; 1578 unsigned int ep_type; 1579 int i; 1580 1581 for (i = 1; i < 31; i++) { 1582 bw_info = &virt_dev->eps[i].bw_info; 1583 1584 /* We can't tell what endpoint type is being dropped, but 1585 * unconditionally clearing the bandwidth info for non-periodic 1586 * endpoints should be harmless because the info will never be 1587 * set in the first place. 1588 */ 1589 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1590 /* Dropped endpoint */ 1591 xhci_clear_endpoint_bw_info(bw_info); 1592 continue; 1593 } 1594 1595 if (EP_IS_ADDED(ctrl_ctx, i)) { 1596 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1597 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1598 1599 /* Ignore non-periodic endpoints */ 1600 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1601 ep_type != ISOC_IN_EP && 1602 ep_type != INT_IN_EP) 1603 continue; 1604 1605 /* Added or changed endpoint */ 1606 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1607 le32_to_cpu(ep_ctx->ep_info)); 1608 /* Number of packets and mult are zero-based in the 1609 * input context, but we want one-based for the 1610 * interval table. 1611 */ 1612 bw_info->mult = CTX_TO_EP_MULT( 1613 le32_to_cpu(ep_ctx->ep_info)) + 1; 1614 bw_info->num_packets = CTX_TO_MAX_BURST( 1615 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1616 bw_info->max_packet_size = MAX_PACKET_DECODED( 1617 le32_to_cpu(ep_ctx->ep_info2)); 1618 bw_info->type = ep_type; 1619 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1620 le32_to_cpu(ep_ctx->tx_info)); 1621 } 1622 } 1623} 1624 1625/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1626 * Useful when you want to change one particular aspect of the endpoint and then 1627 * issue a configure endpoint command. 1628 */ 1629void xhci_endpoint_copy(struct xhci_hcd *xhci, 1630 struct xhci_container_ctx *in_ctx, 1631 struct xhci_container_ctx *out_ctx, 1632 unsigned int ep_index) 1633{ 1634 struct xhci_ep_ctx *out_ep_ctx; 1635 struct xhci_ep_ctx *in_ep_ctx; 1636 1637 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1638 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1639 1640 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1641 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1642 in_ep_ctx->deq = out_ep_ctx->deq; 1643 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1644 if (xhci->quirks & XHCI_MTK_HOST) { 1645 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; 1646 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; 1647 } 1648} 1649 1650/* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1651 * Useful when you want to change one particular aspect of the endpoint and then 1652 * issue a configure endpoint command. Only the context entries field matters, 1653 * but we'll copy the whole thing anyway. 1654 */ 1655void xhci_slot_copy(struct xhci_hcd *xhci, 1656 struct xhci_container_ctx *in_ctx, 1657 struct xhci_container_ctx *out_ctx) 1658{ 1659 struct xhci_slot_ctx *in_slot_ctx; 1660 struct xhci_slot_ctx *out_slot_ctx; 1661 1662 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1663 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1664 1665 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1666 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1667 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1668 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1669} 1670 1671/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1672static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1673{ 1674 int i; 1675 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1676 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1677 1678 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1679 "Allocating %d scratchpad buffers", num_sp); 1680 1681 if (!num_sp) 1682 return 0; 1683 1684 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, 1685 dev_to_node(dev)); 1686 if (!xhci->scratchpad) 1687 goto fail_sp; 1688 1689 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1690 num_sp * sizeof(u64), 1691 &xhci->scratchpad->sp_dma, flags); 1692 if (!xhci->scratchpad->sp_array) 1693 goto fail_sp2; 1694 1695 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), 1696 flags, dev_to_node(dev)); 1697 if (!xhci->scratchpad->sp_buffers) 1698 goto fail_sp3; 1699 1700 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1701 for (i = 0; i < num_sp; i++) { 1702 dma_addr_t dma; 1703 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1704 flags); 1705 if (!buf) 1706 goto fail_sp4; 1707 1708 xhci->scratchpad->sp_array[i] = dma; 1709 xhci->scratchpad->sp_buffers[i] = buf; 1710 } 1711 1712 return 0; 1713 1714 fail_sp4: 1715 for (i = i - 1; i >= 0; i--) { 1716 dma_free_coherent(dev, xhci->page_size, 1717 xhci->scratchpad->sp_buffers[i], 1718 xhci->scratchpad->sp_array[i]); 1719 } 1720 1721 kfree(xhci->scratchpad->sp_buffers); 1722 1723 fail_sp3: 1724 dma_free_coherent(dev, num_sp * sizeof(u64), 1725 xhci->scratchpad->sp_array, 1726 xhci->scratchpad->sp_dma); 1727 1728 fail_sp2: 1729 kfree(xhci->scratchpad); 1730 xhci->scratchpad = NULL; 1731 1732 fail_sp: 1733 return -ENOMEM; 1734} 1735 1736static void scratchpad_free(struct xhci_hcd *xhci) 1737{ 1738 int num_sp; 1739 int i; 1740 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1741 1742 if (!xhci->scratchpad) 1743 return; 1744 1745 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1746 1747 for (i = 0; i < num_sp; i++) { 1748 dma_free_coherent(dev, xhci->page_size, 1749 xhci->scratchpad->sp_buffers[i], 1750 xhci->scratchpad->sp_array[i]); 1751 } 1752 kfree(xhci->scratchpad->sp_buffers); 1753 dma_free_coherent(dev, num_sp * sizeof(u64), 1754 xhci->scratchpad->sp_array, 1755 xhci->scratchpad->sp_dma); 1756 kfree(xhci->scratchpad); 1757 xhci->scratchpad = NULL; 1758} 1759 1760struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1761 bool allocate_completion, gfp_t mem_flags) 1762{ 1763 struct xhci_command *command; 1764 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1765 1766 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); 1767 if (!command) 1768 return NULL; 1769 1770 if (allocate_completion) { 1771 command->completion = 1772 kzalloc_node(sizeof(struct completion), mem_flags, 1773 dev_to_node(dev)); 1774 if (!command->completion) { 1775 kfree(command); 1776 return NULL; 1777 } 1778 init_completion(command->completion); 1779 } 1780 1781 command->status = 0; 1782 INIT_LIST_HEAD(&command->cmd_list); 1783 return command; 1784} 1785 1786struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, 1787 bool allocate_completion, gfp_t mem_flags) 1788{ 1789 struct xhci_command *command; 1790 1791 command = xhci_alloc_command(xhci, allocate_completion, mem_flags); 1792 if (!command) 1793 return NULL; 1794 1795 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1796 mem_flags); 1797 if (!command->in_ctx) { 1798 kfree(command->completion); 1799 kfree(command); 1800 return NULL; 1801 } 1802 return command; 1803} 1804 1805void xhci_urb_free_priv(struct urb_priv *urb_priv) 1806{ 1807 kfree(urb_priv); 1808} 1809 1810void xhci_free_command(struct xhci_hcd *xhci, 1811 struct xhci_command *command) 1812{ 1813 xhci_free_container_ctx(xhci, 1814 command->in_ctx); 1815 kfree(command->completion); 1816 kfree(command); 1817} 1818 1819int xhci_alloc_erst(struct xhci_hcd *xhci, 1820 struct xhci_ring *evt_ring, 1821 struct xhci_erst *erst, 1822 gfp_t flags) 1823{ 1824 size_t size; 1825 unsigned int val; 1826 struct xhci_segment *seg; 1827 struct xhci_erst_entry *entry; 1828 1829 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs; 1830 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, 1831 size, &erst->erst_dma_addr, flags); 1832 if (!erst->entries) 1833 return -ENOMEM; 1834 1835 erst->num_entries = evt_ring->num_segs; 1836 1837 seg = evt_ring->first_seg; 1838 for (val = 0; val < evt_ring->num_segs; val++) { 1839 entry = &erst->entries[val]; 1840 entry->seg_addr = cpu_to_le64(seg->dma); 1841 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 1842 entry->rsvd = 0; 1843 seg = seg->next; 1844 } 1845 1846 return 0; 1847} 1848 1849void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst) 1850{ 1851 size_t size; 1852 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1853 1854 size = sizeof(struct xhci_erst_entry) * (erst->num_entries); 1855 if (erst->entries) 1856 dma_free_coherent(dev, size, 1857 erst->entries, 1858 erst->erst_dma_addr); 1859 erst->entries = NULL; 1860} 1861 1862void xhci_mem_cleanup(struct xhci_hcd *xhci) 1863{ 1864 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1865 int i, j, num_ports; 1866 1867 cancel_delayed_work_sync(&xhci->cmd_timer); 1868 1869 xhci_free_erst(xhci, &xhci->erst); 1870 1871 if (xhci->event_ring) 1872 xhci_ring_free(xhci, xhci->event_ring); 1873 xhci->event_ring = NULL; 1874 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1875 1876 if (xhci->lpm_command) 1877 xhci_free_command(xhci, xhci->lpm_command); 1878 xhci->lpm_command = NULL; 1879 if (xhci->cmd_ring) 1880 xhci_ring_free(xhci, xhci->cmd_ring); 1881 xhci->cmd_ring = NULL; 1882 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1883 xhci_cleanup_command_queue(xhci); 1884 1885 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1886 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1887 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1888 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1889 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1890 while (!list_empty(ep)) 1891 list_del_init(ep->next); 1892 } 1893 } 1894 1895 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1896 xhci_free_virt_devices_depth_first(xhci, i); 1897 1898 dma_pool_destroy(xhci->segment_pool); 1899 xhci->segment_pool = NULL; 1900 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1901 1902 dma_pool_destroy(xhci->device_pool); 1903 xhci->device_pool = NULL; 1904 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1905 1906 dma_pool_destroy(xhci->small_streams_pool); 1907 xhci->small_streams_pool = NULL; 1908 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1909 "Freed small stream array pool"); 1910 1911 dma_pool_destroy(xhci->medium_streams_pool); 1912 xhci->medium_streams_pool = NULL; 1913 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1914 "Freed medium stream array pool"); 1915 1916 if (xhci->dcbaa) 1917 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1918 xhci->dcbaa, xhci->dcbaa->dma); 1919 xhci->dcbaa = NULL; 1920 1921 scratchpad_free(xhci); 1922 1923 if (!xhci->rh_bw) 1924 goto no_bw; 1925 1926 for (i = 0; i < num_ports; i++) { 1927 struct xhci_tt_bw_info *tt, *n; 1928 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1929 list_del(&tt->tt_list); 1930 kfree(tt); 1931 } 1932 } 1933 1934no_bw: 1935 xhci->cmd_ring_reserved_trbs = 0; 1936 xhci->usb2_rhub.num_ports = 0; 1937 xhci->usb3_rhub.num_ports = 0; 1938 xhci->num_active_eps = 0; 1939 kfree(xhci->usb2_rhub.ports); 1940 kfree(xhci->usb3_rhub.ports); 1941 kfree(xhci->hw_ports); 1942 kfree(xhci->rh_bw); 1943 kfree(xhci->ext_caps); 1944 for (i = 0; i < xhci->num_port_caps; i++) 1945 kfree(xhci->port_caps[i].psi); 1946 kfree(xhci->port_caps); 1947 xhci->num_port_caps = 0; 1948 1949 xhci->usb2_rhub.ports = NULL; 1950 xhci->usb3_rhub.ports = NULL; 1951 xhci->hw_ports = NULL; 1952 xhci->rh_bw = NULL; 1953 xhci->ext_caps = NULL; 1954 xhci->port_caps = NULL; 1955 1956 xhci->page_size = 0; 1957 xhci->page_shift = 0; 1958 xhci->usb2_rhub.bus_state.bus_suspended = 0; 1959 xhci->usb3_rhub.bus_state.bus_suspended = 0; 1960} 1961 1962static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1963 struct xhci_segment *input_seg, 1964 union xhci_trb *start_trb, 1965 union xhci_trb *end_trb, 1966 dma_addr_t input_dma, 1967 struct xhci_segment *result_seg, 1968 char *test_name, int test_number) 1969{ 1970 unsigned long long start_dma; 1971 unsigned long long end_dma; 1972 struct xhci_segment *seg; 1973 1974 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1975 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1976 1977 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); 1978 if (seg != result_seg) { 1979 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1980 test_name, test_number); 1981 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1982 "input DMA 0x%llx\n", 1983 input_seg, 1984 (unsigned long long) input_dma); 1985 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1986 "ending TRB %p (0x%llx DMA)\n", 1987 start_trb, start_dma, 1988 end_trb, end_dma); 1989 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1990 result_seg, seg); 1991 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, 1992 true); 1993 return -1; 1994 } 1995 return 0; 1996} 1997 1998/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1999static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) 2000{ 2001 struct { 2002 dma_addr_t input_dma; 2003 struct xhci_segment *result_seg; 2004 } simple_test_vector [] = { 2005 /* A zeroed DMA field should fail */ 2006 { 0, NULL }, 2007 /* One TRB before the ring start should fail */ 2008 { xhci->event_ring->first_seg->dma - 16, NULL }, 2009 /* One byte before the ring start should fail */ 2010 { xhci->event_ring->first_seg->dma - 1, NULL }, 2011 /* Starting TRB should succeed */ 2012 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 2013 /* Ending TRB should succeed */ 2014 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 2015 xhci->event_ring->first_seg }, 2016 /* One byte after the ring end should fail */ 2017 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 2018 /* One TRB after the ring end should fail */ 2019 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 2020 /* An address of all ones should fail */ 2021 { (dma_addr_t) (~0), NULL }, 2022 }; 2023 struct { 2024 struct xhci_segment *input_seg; 2025 union xhci_trb *start_trb; 2026 union xhci_trb *end_trb; 2027 dma_addr_t input_dma; 2028 struct xhci_segment *result_seg; 2029 } complex_test_vector [] = { 2030 /* Test feeding a valid DMA address from a different ring */ 2031 { .input_seg = xhci->event_ring->first_seg, 2032 .start_trb = xhci->event_ring->first_seg->trbs, 2033 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2034 .input_dma = xhci->cmd_ring->first_seg->dma, 2035 .result_seg = NULL, 2036 }, 2037 /* Test feeding a valid end TRB from a different ring */ 2038 { .input_seg = xhci->event_ring->first_seg, 2039 .start_trb = xhci->event_ring->first_seg->trbs, 2040 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2041 .input_dma = xhci->cmd_ring->first_seg->dma, 2042 .result_seg = NULL, 2043 }, 2044 /* Test feeding a valid start and end TRB from a different ring */ 2045 { .input_seg = xhci->event_ring->first_seg, 2046 .start_trb = xhci->cmd_ring->first_seg->trbs, 2047 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2048 .input_dma = xhci->cmd_ring->first_seg->dma, 2049 .result_seg = NULL, 2050 }, 2051 /* TRB in this ring, but after this TD */ 2052 { .input_seg = xhci->event_ring->first_seg, 2053 .start_trb = &xhci->event_ring->first_seg->trbs[0], 2054 .end_trb = &xhci->event_ring->first_seg->trbs[3], 2055 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 2056 .result_seg = NULL, 2057 }, 2058 /* TRB in this ring, but before this TD */ 2059 { .input_seg = xhci->event_ring->first_seg, 2060 .start_trb = &xhci->event_ring->first_seg->trbs[3], 2061 .end_trb = &xhci->event_ring->first_seg->trbs[6], 2062 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2063 .result_seg = NULL, 2064 }, 2065 /* TRB in this ring, but after this wrapped TD */ 2066 { .input_seg = xhci->event_ring->first_seg, 2067 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2068 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2069 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2070 .result_seg = NULL, 2071 }, 2072 /* TRB in this ring, but before this wrapped TD */ 2073 { .input_seg = xhci->event_ring->first_seg, 2074 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2075 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2076 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 2077 .result_seg = NULL, 2078 }, 2079 /* TRB not in this ring, and we have a wrapped TD */ 2080 { .input_seg = xhci->event_ring->first_seg, 2081 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2082 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2083 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 2084 .result_seg = NULL, 2085 }, 2086 }; 2087 2088 unsigned int num_tests; 2089 int i, ret; 2090 2091 num_tests = ARRAY_SIZE(simple_test_vector); 2092 for (i = 0; i < num_tests; i++) { 2093 ret = xhci_test_trb_in_td(xhci, 2094 xhci->event_ring->first_seg, 2095 xhci->event_ring->first_seg->trbs, 2096 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2097 simple_test_vector[i].input_dma, 2098 simple_test_vector[i].result_seg, 2099 "Simple", i); 2100 if (ret < 0) 2101 return ret; 2102 } 2103 2104 num_tests = ARRAY_SIZE(complex_test_vector); 2105 for (i = 0; i < num_tests; i++) { 2106 ret = xhci_test_trb_in_td(xhci, 2107 complex_test_vector[i].input_seg, 2108 complex_test_vector[i].start_trb, 2109 complex_test_vector[i].end_trb, 2110 complex_test_vector[i].input_dma, 2111 complex_test_vector[i].result_seg, 2112 "Complex", i); 2113 if (ret < 0) 2114 return ret; 2115 } 2116 xhci_dbg(xhci, "TRB math tests passed.\n"); 2117 return 0; 2118} 2119 2120static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2121{ 2122 u64 temp; 2123 dma_addr_t deq; 2124 2125 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2126 xhci->event_ring->dequeue); 2127 if (deq == 0 && !in_interrupt()) 2128 xhci_warn(xhci, "WARN something wrong with SW event ring " 2129 "dequeue ptr.\n"); 2130 /* Update HC event ring dequeue pointer */ 2131 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2132 temp &= ERST_PTR_MASK; 2133 /* Don't clear the EHB bit (which is RW1C) because 2134 * there might be more events to service. 2135 */ 2136 temp &= ~ERST_EHB; 2137 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2138 "// Write event ring dequeue pointer, " 2139 "preserving EHB bit"); 2140 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2141 &xhci->ir_set->erst_dequeue); 2142} 2143 2144static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2145 __le32 __iomem *addr, int max_caps) 2146{ 2147 u32 temp, port_offset, port_count; 2148 int i; 2149 u8 major_revision, minor_revision, tmp_minor_revision; 2150 struct xhci_hub *rhub; 2151 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2152 struct xhci_port_cap *port_cap; 2153 2154 temp = readl(addr); 2155 major_revision = XHCI_EXT_PORT_MAJOR(temp); 2156 minor_revision = XHCI_EXT_PORT_MINOR(temp); 2157 2158 if (major_revision == 0x03) { 2159 rhub = &xhci->usb3_rhub; 2160 /* 2161 * Some hosts incorrectly use sub-minor version for minor 2162 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 2163 * for bcdUSB 0x310). Since there is no USB release with sub 2164 * minor version 0x301 to 0x309, we can assume that they are 2165 * incorrect and fix it here. 2166 */ 2167 if (minor_revision > 0x00 && minor_revision < 0x10) 2168 minor_revision <<= 4; 2169 /* 2170 * Some zhaoxin's xHCI controller that follow usb3.1 spec 2171 * but only support Gen1. 2172 */ 2173 if (xhci->quirks & XHCI_ZHAOXIN_HOST) { 2174 tmp_minor_revision = minor_revision; 2175 minor_revision = 0; 2176 } 2177 2178 } else if (major_revision <= 0x02) { 2179 rhub = &xhci->usb2_rhub; 2180 } else { 2181 xhci_warn(xhci, "Ignoring unknown port speed, " 2182 "Ext Cap %p, revision = 0x%x\n", 2183 addr, major_revision); 2184 /* Ignoring port protocol we can't understand. FIXME */ 2185 return; 2186 } 2187 2188 /* Port offset and count in the third dword, see section 7.2 */ 2189 temp = readl(addr + 2); 2190 port_offset = XHCI_EXT_PORT_OFF(temp); 2191 port_count = XHCI_EXT_PORT_COUNT(temp); 2192 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2193 "Ext Cap %p, port offset = %u, " 2194 "count = %u, revision = 0x%x", 2195 addr, port_offset, port_count, major_revision); 2196 /* Port count includes the current port offset */ 2197 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2198 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2199 return; 2200 2201 port_cap = &xhci->port_caps[xhci->num_port_caps++]; 2202 if (xhci->num_port_caps > max_caps) 2203 return; 2204 2205 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); 2206 2207 if (port_cap->psi_count) { 2208 port_cap->psi = kcalloc_node(port_cap->psi_count, 2209 sizeof(*port_cap->psi), 2210 GFP_KERNEL, dev_to_node(dev)); 2211 if (!port_cap->psi) 2212 port_cap->psi_count = 0; 2213 2214 port_cap->psi_uid_count++; 2215 for (i = 0; i < port_cap->psi_count; i++) { 2216 port_cap->psi[i] = readl(addr + 4 + i); 2217 2218 /* count unique ID values, two consecutive entries can 2219 * have the same ID if link is assymetric 2220 */ 2221 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != 2222 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) 2223 port_cap->psi_uid_count++; 2224 2225 if (xhci->quirks & XHCI_ZHAOXIN_HOST && 2226 major_revision == 0x03 && 2227 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5) 2228 minor_revision = tmp_minor_revision; 2229 2230 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2231 XHCI_EXT_PORT_PSIV(port_cap->psi[i]), 2232 XHCI_EXT_PORT_PSIE(port_cap->psi[i]), 2233 XHCI_EXT_PORT_PLT(port_cap->psi[i]), 2234 XHCI_EXT_PORT_PFD(port_cap->psi[i]), 2235 XHCI_EXT_PORT_LP(port_cap->psi[i]), 2236 XHCI_EXT_PORT_PSIM(port_cap->psi[i])); 2237 } 2238 } 2239 2240 rhub->maj_rev = major_revision; 2241 2242 if (rhub->min_rev < minor_revision) 2243 rhub->min_rev = minor_revision; 2244 2245 port_cap->maj_rev = major_revision; 2246 port_cap->min_rev = minor_revision; 2247 2248 /* cache usb2 port capabilities */ 2249 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2250 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2251 2252 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && 2253 (temp & XHCI_HLC)) { 2254 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2255 "xHCI 1.0: support USB2 hardware lpm"); 2256 xhci->hw_lpm_support = 1; 2257 } 2258 2259 port_offset--; 2260 for (i = port_offset; i < (port_offset + port_count); i++) { 2261 struct xhci_port *hw_port = &xhci->hw_ports[i]; 2262 /* Duplicate entry. Ignore the port if the revisions differ. */ 2263 if (hw_port->rhub) { 2264 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2265 " port %u\n", addr, i); 2266 xhci_warn(xhci, "Port was marked as USB %u, " 2267 "duplicated as USB %u\n", 2268 hw_port->rhub->maj_rev, major_revision); 2269 /* Only adjust the roothub port counts if we haven't 2270 * found a similar duplicate. 2271 */ 2272 if (hw_port->rhub != rhub && 2273 hw_port->hcd_portnum != DUPLICATE_ENTRY) { 2274 hw_port->rhub->num_ports--; 2275 hw_port->hcd_portnum = DUPLICATE_ENTRY; 2276 } 2277 continue; 2278 } 2279 hw_port->rhub = rhub; 2280 hw_port->port_cap = port_cap; 2281 rhub->num_ports++; 2282 } 2283 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2284} 2285 2286static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, 2287 struct xhci_hub *rhub, gfp_t flags) 2288{ 2289 int port_index = 0; 2290 int i; 2291 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2292 2293 if (!rhub->num_ports) 2294 return; 2295 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), 2296 flags, dev_to_node(dev)); 2297 if (!rhub->ports) 2298 return; 2299 2300 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 2301 if (xhci->hw_ports[i].rhub != rhub || 2302 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) 2303 continue; 2304 xhci->hw_ports[i].hcd_portnum = port_index; 2305 rhub->ports[port_index] = &xhci->hw_ports[i]; 2306 port_index++; 2307 if (port_index == rhub->num_ports) 2308 break; 2309 } 2310} 2311 2312/* 2313 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2314 * specify what speeds each port is supposed to be. We can't count on the port 2315 * speed bits in the PORTSC register being correct until a device is connected, 2316 * but we need to set up the two fake roothubs with the correct number of USB 2317 * 3.0 and USB 2.0 ports at host controller initialization time. 2318 */ 2319static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2320{ 2321 void __iomem *base; 2322 u32 offset; 2323 unsigned int num_ports; 2324 int i, j; 2325 int cap_count = 0; 2326 u32 cap_start; 2327 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2328 2329 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2330 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), 2331 flags, dev_to_node(dev)); 2332 if (!xhci->hw_ports) 2333 return -ENOMEM; 2334 2335 for (i = 0; i < num_ports; i++) { 2336 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + 2337 NUM_PORT_REGS * i; 2338 xhci->hw_ports[i].hw_portnum = i; 2339 2340 init_completion(&xhci->hw_ports[i].rexit_done); 2341 init_completion(&xhci->hw_ports[i].u3exit_done); 2342 } 2343 2344 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, 2345 dev_to_node(dev)); 2346 if (!xhci->rh_bw) 2347 return -ENOMEM; 2348 for (i = 0; i < num_ports; i++) { 2349 struct xhci_interval_bw_table *bw_table; 2350 2351 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2352 bw_table = &xhci->rh_bw[i].bw_table; 2353 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2354 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2355 } 2356 base = &xhci->cap_regs->hc_capbase; 2357 2358 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2359 if (!cap_start) { 2360 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2361 return -ENODEV; 2362 } 2363 2364 offset = cap_start; 2365 /* count extended protocol capability entries for later caching */ 2366 while (offset) { 2367 cap_count++; 2368 offset = xhci_find_next_ext_cap(base, offset, 2369 XHCI_EXT_CAPS_PROTOCOL); 2370 } 2371 2372 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps), 2373 flags, dev_to_node(dev)); 2374 if (!xhci->ext_caps) 2375 return -ENOMEM; 2376 2377 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), 2378 flags, dev_to_node(dev)); 2379 if (!xhci->port_caps) 2380 return -ENOMEM; 2381 2382 offset = cap_start; 2383 2384 while (offset) { 2385 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2386 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == 2387 num_ports) 2388 break; 2389 offset = xhci_find_next_ext_cap(base, offset, 2390 XHCI_EXT_CAPS_PROTOCOL); 2391 } 2392 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { 2393 xhci_warn(xhci, "No ports on the roothubs?\n"); 2394 return -ENODEV; 2395 } 2396 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2397 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2398 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); 2399 2400 /* Place limits on the number of roothub ports so that the hub 2401 * descriptors aren't longer than the USB core will allocate. 2402 */ 2403 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { 2404 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2405 "Limiting USB 3.0 roothub ports to %u.", 2406 USB_SS_MAXPORTS); 2407 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; 2408 } 2409 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { 2410 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2411 "Limiting USB 2.0 roothub ports to %u.", 2412 USB_MAXCHILDREN); 2413 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; 2414 } 2415 2416 /* 2417 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2418 * Not sure how the USB core will handle a hub with no ports... 2419 */ 2420 2421 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); 2422 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); 2423 2424 return 0; 2425} 2426 2427int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2428{ 2429 dma_addr_t dma; 2430 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2431 unsigned int val, val2; 2432 u64 val_64; 2433 u32 page_size, temp; 2434 int i, ret; 2435 2436 INIT_LIST_HEAD(&xhci->cmd_list); 2437 2438 /* init command timeout work */ 2439 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2440 init_completion(&xhci->cmd_ring_stop_completion); 2441 2442 page_size = readl(&xhci->op_regs->page_size); 2443 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2444 "Supported page size register = 0x%x", page_size); 2445 for (i = 0; i < 16; i++) { 2446 if ((0x1 & page_size) != 0) 2447 break; 2448 page_size = page_size >> 1; 2449 } 2450 if (i < 16) 2451 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2452 "Supported page size of %iK", (1 << (i+12)) / 1024); 2453 else 2454 xhci_warn(xhci, "WARN: no supported page size\n"); 2455 /* Use 4K pages, since that's common and the minimum the HC supports */ 2456 xhci->page_shift = 12; 2457 xhci->page_size = 1 << xhci->page_shift; 2458 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2459 "HCD page size set to %iK", xhci->page_size / 1024); 2460 2461 /* 2462 * Program the Number of Device Slots Enabled field in the CONFIG 2463 * register with the max value of slots the HC can handle. 2464 */ 2465 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2466 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2467 "// xHC can handle at most %d device slots.", val); 2468 val2 = readl(&xhci->op_regs->config_reg); 2469 val |= (val2 & ~HCS_SLOTS_MASK); 2470 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2471 "// Setting Max device slots reg = 0x%x.", val); 2472 writel(val, &xhci->op_regs->config_reg); 2473 2474 /* 2475 * xHCI section 5.4.6 - doorbell array must be 2476 * "physically contiguous and 64-byte (cache line) aligned". 2477 */ 2478 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2479 flags); 2480 if (!xhci->dcbaa) 2481 goto fail; 2482 xhci->dcbaa->dma = dma; 2483 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2484 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2485 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2486 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2487 2488 /* 2489 * Initialize the ring segment pool. The ring must be a contiguous 2490 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2491 * however, the command ring segment needs 64-byte aligned segments 2492 * and our use of dma addresses in the trb_address_map radix tree needs 2493 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2494 */ 2495 if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH) 2496 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2497 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2); 2498 else 2499 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2500 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2501 2502 /* See Table 46 and Note on Figure 55 */ 2503 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2504 2112, 64, xhci->page_size); 2505 if (!xhci->segment_pool || !xhci->device_pool) 2506 goto fail; 2507 2508 /* Linear stream context arrays don't have any boundary restrictions, 2509 * and only need to be 16-byte aligned. 2510 */ 2511 xhci->small_streams_pool = 2512 dma_pool_create("xHCI 256 byte stream ctx arrays", 2513 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2514 xhci->medium_streams_pool = 2515 dma_pool_create("xHCI 1KB stream ctx arrays", 2516 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2517 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2518 * will be allocated with dma_alloc_coherent() 2519 */ 2520 2521 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2522 goto fail; 2523 2524 /* Set up the command ring to have one segments for now. */ 2525 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2526 if (!xhci->cmd_ring) 2527 goto fail; 2528 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2529 "Allocated command ring at %p", xhci->cmd_ring); 2530 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2531 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2532 2533 /* Set the address in the Command Ring Control register */ 2534 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2535 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2536 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2537 xhci->cmd_ring->cycle_state; 2538 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2539 "// Setting command ring address to 0x%016llx", val_64); 2540 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2541 2542 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags); 2543 if (!xhci->lpm_command) 2544 goto fail; 2545 2546 /* Reserve one command ring TRB for disabling LPM. 2547 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2548 * disabling LPM, we only need to reserve one TRB for all devices. 2549 */ 2550 xhci->cmd_ring_reserved_trbs++; 2551 2552 val = readl(&xhci->cap_regs->db_off); 2553 val &= DBOFF_MASK; 2554 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2555 "// Doorbell array is located at offset 0x%x" 2556 " from cap regs base addr", val); 2557 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2558 /* Set ir_set to interrupt register set 0 */ 2559 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2560 2561 /* 2562 * Event ring setup: Allocate a normal ring, but also setup 2563 * the event ring segment table (ERST). Section 4.9.3. 2564 */ 2565 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2566 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2567 0, flags); 2568 if (!xhci->event_ring) 2569 goto fail; 2570 if (xhci_check_trb_in_td_math(xhci) < 0) 2571 goto fail; 2572 2573 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags); 2574 if (ret) 2575 goto fail; 2576 2577 /* set ERST count with the number of entries in the segment table */ 2578 val = readl(&xhci->ir_set->erst_size); 2579 val &= ERST_SIZE_MASK; 2580 val |= ERST_NUM_SEGS; 2581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2582 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2583 val); 2584 writel(val, &xhci->ir_set->erst_size); 2585 2586 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2587 "// Set ERST entries to point to event ring."); 2588 /* set the segment table base address */ 2589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2590 "// Set ERST base address for ir_set 0 = 0x%llx", 2591 (unsigned long long)xhci->erst.erst_dma_addr); 2592 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2593 val_64 &= ERST_PTR_MASK; 2594 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2595 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2596 2597 /* Set the event ring dequeue address */ 2598 xhci_set_hc_event_deq(xhci); 2599 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2600 "Wrote ERST address to ir_set 0."); 2601 2602 /* 2603 * XXX: Might need to set the Interrupter Moderation Register to 2604 * something other than the default (~1ms minimum between interrupts). 2605 * See section 5.5.1.2. 2606 */ 2607 for (i = 0; i < MAX_HC_SLOTS; i++) 2608 xhci->devs[i] = NULL; 2609 2610 if (scratchpad_alloc(xhci, flags)) 2611 goto fail; 2612 if (xhci_setup_port_arrays(xhci, flags)) 2613 goto fail; 2614 2615 /* Enable USB 3.0 device notifications for function remote wake, which 2616 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2617 * U3 (device suspend). 2618 */ 2619 temp = readl(&xhci->op_regs->dev_notification); 2620 temp &= ~DEV_NOTE_MASK; 2621 temp |= DEV_NOTE_FWAKE; 2622 writel(temp, &xhci->op_regs->dev_notification); 2623 2624 return 0; 2625 2626fail: 2627 xhci_halt(xhci); 2628 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 2629 xhci_mem_cleanup(xhci); 2630 return -ENOMEM; 2631} 2632