1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/usb.h>
12#include <linux/pci.h>
13#include <linux/slab.h>
14#include <linux/dmapool.h>
15#include <linux/dma-mapping.h>
16
17#include "xhci.h"
18#include "xhci-trace.h"
19#include "xhci-debugfs.h"
20
21/*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29					       unsigned int cycle_state,
30					       unsigned int max_packet,
31					       gfp_t flags)
32{
33	struct xhci_segment *seg;
34	dma_addr_t	dma;
35	int		i;
36	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39	if (!seg)
40		return NULL;
41
42	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43	if (!seg->trbs) {
44		kfree(seg);
45		return NULL;
46	}
47
48	if (max_packet) {
49		seg->bounce_buf = kzalloc_node(max_packet, flags,
50					dev_to_node(dev));
51		if (!seg->bounce_buf) {
52			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53			kfree(seg);
54			return NULL;
55		}
56	}
57	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58	if (cycle_state == 0) {
59		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61	}
62	seg->dma = dma;
63	seg->next = NULL;
64
65	return seg;
66}
67
68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69{
70	if (seg->trbs) {
71		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72		seg->trbs = NULL;
73	}
74	kfree(seg->bounce_buf);
75	kfree(seg);
76}
77
78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79				struct xhci_segment *first)
80{
81	struct xhci_segment *seg;
82
83	seg = first->next;
84	while (seg != first) {
85		struct xhci_segment *next = seg->next;
86		xhci_segment_free(xhci, seg);
87		seg = next;
88	}
89	xhci_segment_free(xhci, first);
90}
91
92/*
93 * Make the prev segment point to the next segment.
94 *
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment.  The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
98 */
99static void xhci_link_segments(struct xhci_segment *prev,
100			       struct xhci_segment *next,
101			       enum xhci_ring_type type, bool chain_links)
102{
103	u32 val;
104
105	if (!prev || !next)
106		return;
107	prev->next = next;
108	if (type != TYPE_EVENT) {
109		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110			cpu_to_le64(next->dma);
111
112		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114		val &= ~TRB_TYPE_BITMASK;
115		val |= TRB_TYPE(TRB_LINK);
116		if (chain_links)
117			val |= TRB_CHAIN;
118		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119	}
120}
121
122/*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127		struct xhci_segment *first, struct xhci_segment *last,
128		unsigned int num_segs)
129{
130	struct xhci_segment *next;
131	bool chain_links;
132
133	if (!ring || !first || !last)
134		return;
135
136	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137	chain_links = !!(xhci_link_trb_quirk(xhci) ||
138			 (ring->type == TYPE_ISOC &&
139			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141	next = ring->enq_seg->next;
142	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143	xhci_link_segments(last, next, ring->type, chain_links);
144	ring->num_segs += num_segs;
145	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149			&= ~cpu_to_le32(LINK_TOGGLE);
150		last->trbs[TRBS_PER_SEGMENT-1].link.control
151			|= cpu_to_le32(LINK_TOGGLE);
152		ring->last_seg = last;
153	}
154}
155
156/*
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to.  We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from.  We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
162 *
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses.  For example, say I
165 * have segments of size 1KB, that are always 1KB aligned.  A segment may
166 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
169 *
170 *	0x10c90fff >> 10 = 0x43243
171 *	0x10c912c0 >> 10 = 0x43244
172 *	0x10c91400 >> 10 = 0x43245
173 *
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
176 *
177 * Caveats for the radix tree:
178 *
179 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
186 */
187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188		struct xhci_ring *ring,
189		struct xhci_segment *seg,
190		gfp_t mem_flags)
191{
192	unsigned long key;
193	int ret;
194
195	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196	/* Skip any segments that were already added. */
197	if (radix_tree_lookup(trb_address_map, key))
198		return 0;
199
200	ret = radix_tree_maybe_preload(mem_flags);
201	if (ret)
202		return ret;
203	ret = radix_tree_insert(trb_address_map,
204			key, ring);
205	radix_tree_preload_end();
206	return ret;
207}
208
209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210		struct xhci_segment *seg)
211{
212	unsigned long key;
213
214	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215	if (radix_tree_lookup(trb_address_map, key))
216		radix_tree_delete(trb_address_map, key);
217}
218
219static int xhci_update_stream_segment_mapping(
220		struct radix_tree_root *trb_address_map,
221		struct xhci_ring *ring,
222		struct xhci_segment *first_seg,
223		struct xhci_segment *last_seg,
224		gfp_t mem_flags)
225{
226	struct xhci_segment *seg;
227	struct xhci_segment *failed_seg;
228	int ret;
229
230	if (WARN_ON_ONCE(trb_address_map == NULL))
231		return 0;
232
233	seg = first_seg;
234	do {
235		ret = xhci_insert_segment_mapping(trb_address_map,
236				ring, seg, mem_flags);
237		if (ret)
238			goto remove_streams;
239		if (seg == last_seg)
240			return 0;
241		seg = seg->next;
242	} while (seg != first_seg);
243
244	return 0;
245
246remove_streams:
247	failed_seg = seg;
248	seg = first_seg;
249	do {
250		xhci_remove_segment_mapping(trb_address_map, seg);
251		if (seg == failed_seg)
252			return ret;
253		seg = seg->next;
254	} while (seg != first_seg);
255
256	return ret;
257}
258
259static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260{
261	struct xhci_segment *seg;
262
263	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264		return;
265
266	seg = ring->first_seg;
267	do {
268		xhci_remove_segment_mapping(ring->trb_address_map, seg);
269		seg = seg->next;
270	} while (seg != ring->first_seg);
271}
272
273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274{
275	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276			ring->first_seg, ring->last_seg, mem_flags);
277}
278
279/* XXX: Do we need the hcd structure in all these functions? */
280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281{
282	if (!ring)
283		return;
284
285	trace_xhci_ring_free(ring);
286
287	if (ring->first_seg) {
288		if (ring->type == TYPE_STREAM)
289			xhci_remove_stream_mapping(ring);
290		xhci_free_segments_for_ring(xhci, ring->first_seg);
291	}
292
293	kfree(ring);
294}
295
296void xhci_initialize_ring_info(struct xhci_ring *ring,
297			       unsigned int cycle_state)
298{
299	/* The ring is empty, so the enqueue pointer == dequeue pointer */
300	ring->enqueue = ring->first_seg->trbs;
301	ring->enq_seg = ring->first_seg;
302	ring->dequeue = ring->enqueue;
303	ring->deq_seg = ring->first_seg;
304	/* The ring is initialized to 0. The producer must write 1 to the cycle
305	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
306	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
307	 *
308	 * New rings are initialized with cycle state equal to 1; if we are
309	 * handling ring expansion, set the cycle state equal to the old ring.
310	 */
311	ring->cycle_state = cycle_state;
312
313	/*
314	 * Each segment has a link TRB, and leave an extra TRB for SW
315	 * accounting purpose
316	 */
317	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318}
319
320/* Allocate segments and link them for a ring */
321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322		struct xhci_segment **first, struct xhci_segment **last,
323		unsigned int num_segs, unsigned int cycle_state,
324		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325{
326	struct xhci_segment *prev;
327	bool chain_links;
328
329	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330	chain_links = !!(xhci_link_trb_quirk(xhci) ||
331			 (type == TYPE_ISOC &&
332			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335	if (!prev)
336		return -ENOMEM;
337	num_segs--;
338
339	*first = prev;
340	while (num_segs > 0) {
341		struct xhci_segment	*next;
342
343		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344		if (!next) {
345			prev = *first;
346			while (prev) {
347				next = prev->next;
348				xhci_segment_free(xhci, prev);
349				prev = next;
350			}
351			return -ENOMEM;
352		}
353		xhci_link_segments(prev, next, type, chain_links);
354
355		prev = next;
356		num_segs--;
357	}
358	xhci_link_segments(prev, *first, type, chain_links);
359	*last = prev;
360
361	return 0;
362}
363
364/*
365 * Create a new ring with zero or more segments.
366 *
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
370 */
371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372		unsigned int num_segs, unsigned int cycle_state,
373		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374{
375	struct xhci_ring	*ring;
376	int ret;
377	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380	if (!ring)
381		return NULL;
382
383	ring->num_segs = num_segs;
384	ring->bounce_buf_len = max_packet;
385	INIT_LIST_HEAD(&ring->td_list);
386	ring->type = type;
387	if (num_segs == 0)
388		return ring;
389
390	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391			&ring->last_seg, num_segs, cycle_state, type,
392			max_packet, flags);
393	if (ret)
394		goto fail;
395
396	/* Only event ring does not use link TRB */
397	if (type != TYPE_EVENT) {
398		/* See section 4.9.2.1 and 6.4.4.1 */
399		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400			cpu_to_le32(LINK_TOGGLE);
401	}
402	xhci_initialize_ring_info(ring, cycle_state);
403	trace_xhci_ring_alloc(ring);
404	return ring;
405
406fail:
407	kfree(ring);
408	return NULL;
409}
410
411void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412		struct xhci_virt_device *virt_dev,
413		unsigned int ep_index)
414{
415	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416	virt_dev->eps[ep_index].ring = NULL;
417}
418
419/*
420 * Expand an existing ring.
421 * Allocate a new ring which has same segment numbers and link the two rings.
422 */
423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424				unsigned int num_trbs, gfp_t flags)
425{
426	struct xhci_segment	*first;
427	struct xhci_segment	*last;
428	unsigned int		num_segs;
429	unsigned int		num_segs_needed;
430	int			ret;
431
432	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433				(TRBS_PER_SEGMENT - 1);
434
435	/* Allocate number of segments we needed, or double the ring size */
436	num_segs = ring->num_segs > num_segs_needed ?
437			ring->num_segs : num_segs_needed;
438
439	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440			num_segs, ring->cycle_state, ring->type,
441			ring->bounce_buf_len, flags);
442	if (ret)
443		return -ENOMEM;
444
445	if (ring->type == TYPE_STREAM)
446		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447						ring, first, last, flags);
448	if (ret) {
449		struct xhci_segment *next;
450		do {
451			next = first->next;
452			xhci_segment_free(xhci, first);
453			if (first == last)
454				break;
455			first = next;
456		} while (true);
457		return ret;
458	}
459
460	xhci_link_rings(xhci, ring, first, last, num_segs);
461	trace_xhci_ring_expansion(ring);
462	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463			"ring expansion succeed, now has %d segments",
464			ring->num_segs);
465
466	return 0;
467}
468
469struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470						    int type, gfp_t flags)
471{
472	struct xhci_container_ctx *ctx;
473	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474
475	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476		return NULL;
477
478	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479	if (!ctx)
480		return NULL;
481
482	ctx->type = type;
483	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484	if (type == XHCI_CTX_TYPE_INPUT)
485		ctx->size += CTX_SIZE(xhci->hcc_params);
486
487	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488	if (!ctx->bytes) {
489		kfree(ctx);
490		return NULL;
491	}
492	return ctx;
493}
494
495void xhci_free_container_ctx(struct xhci_hcd *xhci,
496			     struct xhci_container_ctx *ctx)
497{
498	if (!ctx)
499		return;
500	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501	kfree(ctx);
502}
503
504struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505					      struct xhci_container_ctx *ctx)
506{
507	if (ctx->type != XHCI_CTX_TYPE_INPUT)
508		return NULL;
509
510	return (struct xhci_input_control_ctx *)ctx->bytes;
511}
512
513struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514					struct xhci_container_ctx *ctx)
515{
516	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517		return (struct xhci_slot_ctx *)ctx->bytes;
518
519	return (struct xhci_slot_ctx *)
520		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
521}
522
523struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524				    struct xhci_container_ctx *ctx,
525				    unsigned int ep_index)
526{
527	/* increment ep index by offset of start of ep ctx array */
528	ep_index++;
529	if (ctx->type == XHCI_CTX_TYPE_INPUT)
530		ep_index++;
531
532	return (struct xhci_ep_ctx *)
533		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534}
535
536
537/***************** Streams structures manipulation *************************/
538
539static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540		unsigned int num_stream_ctxs,
541		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542{
543	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546	if (size > MEDIUM_STREAM_ARRAY_SIZE)
547		dma_free_coherent(dev, size,
548				stream_ctx, dma);
549	else if (size <= SMALL_STREAM_ARRAY_SIZE)
550		return dma_pool_free(xhci->small_streams_pool,
551				stream_ctx, dma);
552	else
553		return dma_pool_free(xhci->medium_streams_pool,
554				stream_ctx, dma);
555}
556
557/*
558 * The stream context array for each endpoint with bulk streams enabled can
559 * vary in size, based on:
560 *  - how many streams the endpoint supports,
561 *  - the maximum primary stream array size the host controller supports,
562 *  - and how many streams the device driver asks for.
563 *
564 * The stream context array must be a power of 2, and can be as small as
565 * 64 bytes or as large as 1MB.
566 */
567static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568		unsigned int num_stream_ctxs, dma_addr_t *dma,
569		gfp_t mem_flags)
570{
571	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574	if (size > MEDIUM_STREAM_ARRAY_SIZE)
575		return dma_alloc_coherent(dev, size,
576				dma, mem_flags);
577	else if (size <= SMALL_STREAM_ARRAY_SIZE)
578		return dma_pool_alloc(xhci->small_streams_pool,
579				mem_flags, dma);
580	else
581		return dma_pool_alloc(xhci->medium_streams_pool,
582				mem_flags, dma);
583}
584
585struct xhci_ring *xhci_dma_to_transfer_ring(
586		struct xhci_virt_ep *ep,
587		u64 address)
588{
589	if (ep->ep_state & EP_HAS_STREAMS)
590		return radix_tree_lookup(&ep->stream_info->trb_address_map,
591				address >> TRB_SEGMENT_SHIFT);
592	return ep->ring;
593}
594
595struct xhci_ring *xhci_stream_id_to_ring(
596		struct xhci_virt_device *dev,
597		unsigned int ep_index,
598		unsigned int stream_id)
599{
600	struct xhci_virt_ep *ep = &dev->eps[ep_index];
601
602	if (stream_id == 0)
603		return ep->ring;
604	if (!ep->stream_info)
605		return NULL;
606
607	if (stream_id >= ep->stream_info->num_streams)
608		return NULL;
609	return ep->stream_info->stream_rings[stream_id];
610}
611
612/*
613 * Change an endpoint's internal structure so it supports stream IDs.  The
614 * number of requested streams includes stream 0, which cannot be used by device
615 * drivers.
616 *
617 * The number of stream contexts in the stream context array may be bigger than
618 * the number of streams the driver wants to use.  This is because the number of
619 * stream context array entries must be a power of two.
620 */
621struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622		unsigned int num_stream_ctxs,
623		unsigned int num_streams,
624		unsigned int max_packet, gfp_t mem_flags)
625{
626	struct xhci_stream_info *stream_info;
627	u32 cur_stream;
628	struct xhci_ring *cur_ring;
629	u64 addr;
630	int ret;
631	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
632
633	xhci_dbg(xhci, "Allocating %u streams and %u "
634			"stream context array entries.\n",
635			num_streams, num_stream_ctxs);
636	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
638		return NULL;
639	}
640	xhci->cmd_ring_reserved_trbs++;
641
642	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
643			dev_to_node(dev));
644	if (!stream_info)
645		goto cleanup_trbs;
646
647	stream_info->num_streams = num_streams;
648	stream_info->num_stream_ctxs = num_stream_ctxs;
649
650	/* Initialize the array of virtual pointers to stream rings. */
651	stream_info->stream_rings = kcalloc_node(
652			num_streams, sizeof(struct xhci_ring *), mem_flags,
653			dev_to_node(dev));
654	if (!stream_info->stream_rings)
655		goto cleanup_info;
656
657	/* Initialize the array of DMA addresses for stream rings for the HW. */
658	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659			num_stream_ctxs, &stream_info->ctx_array_dma,
660			mem_flags);
661	if (!stream_info->stream_ctx_array)
662		goto cleanup_ring_array;
663	memset(stream_info->stream_ctx_array, 0,
664			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
665
666	/* Allocate everything needed to free the stream rings later */
667	stream_info->free_streams_command =
668		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669	if (!stream_info->free_streams_command)
670		goto cleanup_ctx;
671
672	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
673
674	/* Allocate rings for all the streams that the driver will use,
675	 * and add their segment DMA addresses to the radix tree.
676	 * Stream 0 is reserved.
677	 */
678
679	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680		stream_info->stream_rings[cur_stream] =
681			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
682					mem_flags);
683		cur_ring = stream_info->stream_rings[cur_stream];
684		if (!cur_ring)
685			goto cleanup_rings;
686		cur_ring->stream_id = cur_stream;
687		cur_ring->trb_address_map = &stream_info->trb_address_map;
688		/* Set deq ptr, cycle bit, and stream context type */
689		addr = cur_ring->first_seg->dma |
690			SCT_FOR_CTX(SCT_PRI_TR) |
691			cur_ring->cycle_state;
692		stream_info->stream_ctx_array[cur_stream].stream_ring =
693			cpu_to_le64(addr);
694		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695				cur_stream, (unsigned long long) addr);
696
697		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
698		if (ret) {
699			xhci_ring_free(xhci, cur_ring);
700			stream_info->stream_rings[cur_stream] = NULL;
701			goto cleanup_rings;
702		}
703	}
704	/* Leave the other unused stream ring pointers in the stream context
705	 * array initialized to zero.  This will cause the xHC to give us an
706	 * error if the device asks for a stream ID we don't have setup (if it
707	 * was any other way, the host controller would assume the ring is
708	 * "empty" and wait forever for data to be queued to that stream ID).
709	 */
710
711	return stream_info;
712
713cleanup_rings:
714	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715		cur_ring = stream_info->stream_rings[cur_stream];
716		if (cur_ring) {
717			xhci_ring_free(xhci, cur_ring);
718			stream_info->stream_rings[cur_stream] = NULL;
719		}
720	}
721	xhci_free_command(xhci, stream_info->free_streams_command);
722cleanup_ctx:
723	xhci_free_stream_ctx(xhci,
724		stream_info->num_stream_ctxs,
725		stream_info->stream_ctx_array,
726		stream_info->ctx_array_dma);
727cleanup_ring_array:
728	kfree(stream_info->stream_rings);
729cleanup_info:
730	kfree(stream_info);
731cleanup_trbs:
732	xhci->cmd_ring_reserved_trbs--;
733	return NULL;
734}
735/*
736 * Sets the MaxPStreams field and the Linear Stream Array field.
737 * Sets the dequeue pointer to the stream context array.
738 */
739void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
740		struct xhci_ep_ctx *ep_ctx,
741		struct xhci_stream_info *stream_info)
742{
743	u32 max_primary_streams;
744	/* MaxPStreams is the number of stream context array entries, not the
745	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
746	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
747	 */
748	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
749	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
750			"Setting number of stream ctx array entries to %u",
751			1 << (max_primary_streams + 1));
752	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
753	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
754				       | EP_HAS_LSA);
755	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
756}
757
758/*
759 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
760 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
761 * not at the beginning of the ring).
762 */
763void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
764		struct xhci_virt_ep *ep)
765{
766	dma_addr_t addr;
767	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
768	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
769	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
770}
771
772/* Frees all stream contexts associated with the endpoint,
773 *
774 * Caller should fix the endpoint context streams fields.
775 */
776void xhci_free_stream_info(struct xhci_hcd *xhci,
777		struct xhci_stream_info *stream_info)
778{
779	int cur_stream;
780	struct xhci_ring *cur_ring;
781
782	if (!stream_info)
783		return;
784
785	for (cur_stream = 1; cur_stream < stream_info->num_streams;
786			cur_stream++) {
787		cur_ring = stream_info->stream_rings[cur_stream];
788		if (cur_ring) {
789			xhci_ring_free(xhci, cur_ring);
790			stream_info->stream_rings[cur_stream] = NULL;
791		}
792	}
793	xhci_free_command(xhci, stream_info->free_streams_command);
794	xhci->cmd_ring_reserved_trbs--;
795	if (stream_info->stream_ctx_array)
796		xhci_free_stream_ctx(xhci,
797				stream_info->num_stream_ctxs,
798				stream_info->stream_ctx_array,
799				stream_info->ctx_array_dma);
800
801	kfree(stream_info->stream_rings);
802	kfree(stream_info);
803}
804
805
806/***************** Device context manipulation *************************/
807
808static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
809		struct xhci_virt_ep *ep)
810{
811	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
812		    0);
813	ep->xhci = xhci;
814}
815
816static void xhci_free_tt_info(struct xhci_hcd *xhci,
817		struct xhci_virt_device *virt_dev,
818		int slot_id)
819{
820	struct list_head *tt_list_head;
821	struct xhci_tt_bw_info *tt_info, *next;
822	bool slot_found = false;
823
824	/* If the device never made it past the Set Address stage,
825	 * it may not have the real_port set correctly.
826	 */
827	if (virt_dev->real_port == 0 ||
828			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
829		xhci_dbg(xhci, "Bad real port.\n");
830		return;
831	}
832
833	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
834	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
835		/* Multi-TT hubs will have more than one entry */
836		if (tt_info->slot_id == slot_id) {
837			slot_found = true;
838			list_del(&tt_info->tt_list);
839			kfree(tt_info);
840		} else if (slot_found) {
841			break;
842		}
843	}
844}
845
846int xhci_alloc_tt_info(struct xhci_hcd *xhci,
847		struct xhci_virt_device *virt_dev,
848		struct usb_device *hdev,
849		struct usb_tt *tt, gfp_t mem_flags)
850{
851	struct xhci_tt_bw_info		*tt_info;
852	unsigned int			num_ports;
853	int				i, j;
854	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
855
856	if (!tt->multi)
857		num_ports = 1;
858	else
859		num_ports = hdev->maxchild;
860
861	for (i = 0; i < num_ports; i++, tt_info++) {
862		struct xhci_interval_bw_table *bw_table;
863
864		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
865				dev_to_node(dev));
866		if (!tt_info)
867			goto free_tts;
868		INIT_LIST_HEAD(&tt_info->tt_list);
869		list_add(&tt_info->tt_list,
870				&xhci->rh_bw[virt_dev->real_port - 1].tts);
871		tt_info->slot_id = virt_dev->udev->slot_id;
872		if (tt->multi)
873			tt_info->ttport = i+1;
874		bw_table = &tt_info->bw_table;
875		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
876			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
877	}
878	return 0;
879
880free_tts:
881	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
882	return -ENOMEM;
883}
884
885
886/* All the xhci_tds in the ring's TD list should be freed at this point.
887 * Should be called with xhci->lock held if there is any chance the TT lists
888 * will be manipulated by the configure endpoint, allocate device, or update
889 * hub functions while this function is removing the TT entries from the list.
890 */
891void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
892{
893	struct xhci_virt_device *dev;
894	int i;
895	int old_active_eps = 0;
896
897	/* Slot ID 0 is reserved */
898	if (slot_id == 0 || !xhci->devs[slot_id])
899		return;
900
901	dev = xhci->devs[slot_id];
902
903	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
904	if (!dev)
905		return;
906
907	trace_xhci_free_virt_device(dev);
908
909	if (dev->tt_info)
910		old_active_eps = dev->tt_info->active_eps;
911
912	for (i = 0; i < 31; i++) {
913		if (dev->eps[i].ring)
914			xhci_ring_free(xhci, dev->eps[i].ring);
915		if (dev->eps[i].stream_info)
916			xhci_free_stream_info(xhci,
917					dev->eps[i].stream_info);
918		/*
919		 * Endpoints are normally deleted from the bandwidth list when
920		 * endpoints are dropped, before device is freed.
921		 * If host is dying or being removed then endpoints aren't
922		 * dropped cleanly, so delete the endpoint from list here.
923		 * Only applicable for hosts with software bandwidth checking.
924		 */
925
926		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
927			list_del_init(&dev->eps[i].bw_endpoint_list);
928			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
929				 slot_id, i);
930		}
931	}
932	/* If this is a hub, free the TT(s) from the TT list */
933	xhci_free_tt_info(xhci, dev, slot_id);
934	/* If necessary, update the number of active TTs on this root port */
935	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
936
937	if (dev->in_ctx)
938		xhci_free_container_ctx(xhci, dev->in_ctx);
939	if (dev->out_ctx)
940		xhci_free_container_ctx(xhci, dev->out_ctx);
941
942	if (dev->udev && dev->udev->slot_id)
943		dev->udev->slot_id = 0;
944	kfree(xhci->devs[slot_id]);
945	xhci->devs[slot_id] = NULL;
946}
947
948/*
949 * Free a virt_device structure.
950 * If the virt_device added a tt_info (a hub) and has children pointing to
951 * that tt_info, then free the child first. Recursive.
952 * We can't rely on udev at this point to find child-parent relationships.
953 */
954static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
955{
956	struct xhci_virt_device *vdev;
957	struct list_head *tt_list_head;
958	struct xhci_tt_bw_info *tt_info, *next;
959	int i;
960
961	vdev = xhci->devs[slot_id];
962	if (!vdev)
963		return;
964
965	if (vdev->real_port == 0 ||
966			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
967		xhci_dbg(xhci, "Bad vdev->real_port.\n");
968		goto out;
969	}
970
971	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
972	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
973		/* is this a hub device that added a tt_info to the tts list */
974		if (tt_info->slot_id == slot_id) {
975			/* are any devices using this tt_info? */
976			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
977				vdev = xhci->devs[i];
978				if (vdev && (vdev->tt_info == tt_info))
979					xhci_free_virt_devices_depth_first(
980						xhci, i);
981			}
982		}
983	}
984out:
985	/* we are now at a leaf device */
986	xhci_debugfs_remove_slot(xhci, slot_id);
987	xhci_free_virt_device(xhci, slot_id);
988}
989
990int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
991		struct usb_device *udev, gfp_t flags)
992{
993	struct xhci_virt_device *dev;
994	int i;
995
996	/* Slot ID 0 is reserved */
997	if (slot_id == 0 || xhci->devs[slot_id]) {
998		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
999		return 0;
1000	}
1001
1002	dev = kzalloc(sizeof(*dev), flags);
1003	if (!dev)
1004		return 0;
1005
1006	dev->slot_id = slot_id;
1007
1008	/* Allocate the (output) device context that will be used in the HC. */
1009	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1010	if (!dev->out_ctx)
1011		goto fail;
1012
1013	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1014			(unsigned long long)dev->out_ctx->dma);
1015
1016	/* Allocate the (input) device context for address device command */
1017	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1018	if (!dev->in_ctx)
1019		goto fail;
1020
1021	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1022			(unsigned long long)dev->in_ctx->dma);
1023
1024	/* Initialize the cancellation list and watchdog timers for each ep */
1025	for (i = 0; i < 31; i++) {
1026		dev->eps[i].ep_index = i;
1027		dev->eps[i].vdev = dev;
1028		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1029		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1030		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1031	}
1032
1033	/* Allocate endpoint 0 ring */
1034	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1035	if (!dev->eps[0].ring)
1036		goto fail;
1037
1038	dev->udev = udev;
1039
1040	/* Point to output device context in dcbaa. */
1041	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1042	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1043		 slot_id,
1044		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1045		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1046
1047	trace_xhci_alloc_virt_device(dev);
1048
1049	xhci->devs[slot_id] = dev;
1050
1051	return 1;
1052fail:
1053
1054	if (dev->in_ctx)
1055		xhci_free_container_ctx(xhci, dev->in_ctx);
1056	if (dev->out_ctx)
1057		xhci_free_container_ctx(xhci, dev->out_ctx);
1058	kfree(dev);
1059
1060	return 0;
1061}
1062
1063void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1064		struct usb_device *udev)
1065{
1066	struct xhci_virt_device *virt_dev;
1067	struct xhci_ep_ctx	*ep0_ctx;
1068	struct xhci_ring	*ep_ring;
1069
1070	virt_dev = xhci->devs[udev->slot_id];
1071	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1072	ep_ring = virt_dev->eps[0].ring;
1073	/*
1074	 * FIXME we don't keep track of the dequeue pointer very well after a
1075	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1076	 * host to our enqueue pointer.  This should only be called after a
1077	 * configured device has reset, so all control transfers should have
1078	 * been completed or cancelled before the reset.
1079	 */
1080	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1081							ep_ring->enqueue)
1082				   | ep_ring->cycle_state);
1083}
1084
1085/*
1086 * The xHCI roothub may have ports of differing speeds in any order in the port
1087 * status registers.
1088 *
1089 * The xHCI hardware wants to know the roothub port number that the USB device
1090 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1091 * know is the index of that port under either the USB 2.0 or the USB 3.0
1092 * roothub, but that doesn't give us the real index into the HW port status
1093 * registers. Call xhci_find_raw_port_number() to get real index.
1094 */
1095static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1096		struct usb_device *udev)
1097{
1098	struct usb_device *top_dev;
1099	struct usb_hcd *hcd;
1100
1101	if (udev->speed >= USB_SPEED_SUPER)
1102		hcd = xhci->shared_hcd;
1103	else
1104		hcd = xhci->main_hcd;
1105
1106	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1107			top_dev = top_dev->parent)
1108		/* Found device below root hub */;
1109
1110	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1111}
1112
1113/* Setup an xHCI virtual device for a Set Address command */
1114int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1115{
1116	struct xhci_virt_device *dev;
1117	struct xhci_ep_ctx	*ep0_ctx;
1118	struct xhci_slot_ctx    *slot_ctx;
1119	u32			port_num;
1120	u32			max_packets;
1121	struct usb_device *top_dev;
1122
1123	dev = xhci->devs[udev->slot_id];
1124	/* Slot ID 0 is reserved */
1125	if (udev->slot_id == 0 || !dev) {
1126		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1127				udev->slot_id);
1128		return -EINVAL;
1129	}
1130	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1131	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1132
1133	/* 3) Only the control endpoint is valid - one endpoint context */
1134	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1135	switch (udev->speed) {
1136	case USB_SPEED_SUPER_PLUS:
1137		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1138		max_packets = MAX_PACKET(512);
1139		break;
1140	case USB_SPEED_SUPER:
1141		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1142		max_packets = MAX_PACKET(512);
1143		break;
1144	case USB_SPEED_HIGH:
1145		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1146		max_packets = MAX_PACKET(64);
1147		break;
1148	/* USB core guesses at a 64-byte max packet first for FS devices */
1149	case USB_SPEED_FULL:
1150		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1151		max_packets = MAX_PACKET(64);
1152		break;
1153	case USB_SPEED_LOW:
1154		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1155		max_packets = MAX_PACKET(8);
1156		break;
1157	case USB_SPEED_WIRELESS:
1158		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1159		return -EINVAL;
1160		break;
1161	default:
1162		/* Speed was set earlier, this shouldn't happen. */
1163		return -EINVAL;
1164	}
1165	/* Find the root hub port this device is under */
1166	port_num = xhci_find_real_port_number(xhci, udev);
1167	if (!port_num)
1168		return -EINVAL;
1169	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1170	/* Set the port number in the virtual_device to the faked port number */
1171	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1172			top_dev = top_dev->parent)
1173		/* Found device below root hub */;
1174	dev->fake_port = top_dev->portnum;
1175	dev->real_port = port_num;
1176	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1177	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1178
1179	/* Find the right bandwidth table that this device will be a part of.
1180	 * If this is a full speed device attached directly to a root port (or a
1181	 * decendent of one), it counts as a primary bandwidth domain, not a
1182	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1183	 * will never be created for the HS root hub.
1184	 */
1185	if (!udev->tt || !udev->tt->hub->parent) {
1186		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1187	} else {
1188		struct xhci_root_port_bw_info *rh_bw;
1189		struct xhci_tt_bw_info *tt_bw;
1190
1191		rh_bw = &xhci->rh_bw[port_num - 1];
1192		/* Find the right TT. */
1193		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1194			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1195				continue;
1196
1197			if (!dev->udev->tt->multi ||
1198					(udev->tt->multi &&
1199					 tt_bw->ttport == dev->udev->ttport)) {
1200				dev->bw_table = &tt_bw->bw_table;
1201				dev->tt_info = tt_bw;
1202				break;
1203			}
1204		}
1205		if (!dev->tt_info)
1206			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1207	}
1208
1209	/* Is this a LS/FS device under an external HS hub? */
1210	if (udev->tt && udev->tt->hub->parent) {
1211		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1212						(udev->ttport << 8));
1213		if (udev->tt->multi)
1214			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1215	}
1216	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1217	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1218
1219	/* Step 4 - ring already allocated */
1220	/* Step 5 */
1221	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1222
1223	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1224	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1225					 max_packets);
1226
1227	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1228				   dev->eps[0].ring->cycle_state);
1229
1230	trace_xhci_setup_addressable_virt_device(dev);
1231
1232	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1233
1234	return 0;
1235}
1236
1237/*
1238 * Convert interval expressed as 2^(bInterval - 1) == interval into
1239 * straight exponent value 2^n == interval.
1240 *
1241 */
1242static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1243		struct usb_host_endpoint *ep)
1244{
1245	unsigned int interval;
1246
1247	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1248	if (interval != ep->desc.bInterval - 1)
1249		dev_warn(&udev->dev,
1250			 "ep %#x - rounding interval to %d %sframes\n",
1251			 ep->desc.bEndpointAddress,
1252			 1 << interval,
1253			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1254
1255	if (udev->speed == USB_SPEED_FULL) {
1256		/*
1257		 * Full speed isoc endpoints specify interval in frames,
1258		 * not microframes. We are using microframes everywhere,
1259		 * so adjust accordingly.
1260		 */
1261		interval += 3;	/* 1 frame = 2^3 uframes */
1262	}
1263
1264	return interval;
1265}
1266
1267/*
1268 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1269 * microframes, rounded down to nearest power of 2.
1270 */
1271static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1272		struct usb_host_endpoint *ep, unsigned int desc_interval,
1273		unsigned int min_exponent, unsigned int max_exponent)
1274{
1275	unsigned int interval;
1276
1277	interval = fls(desc_interval) - 1;
1278	interval = clamp_val(interval, min_exponent, max_exponent);
1279	if ((1 << interval) != desc_interval)
1280		dev_dbg(&udev->dev,
1281			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1282			 ep->desc.bEndpointAddress,
1283			 1 << interval,
1284			 desc_interval);
1285
1286	return interval;
1287}
1288
1289static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1290		struct usb_host_endpoint *ep)
1291{
1292	if (ep->desc.bInterval == 0)
1293		return 0;
1294	return xhci_microframes_to_exponent(udev, ep,
1295			ep->desc.bInterval, 0, 15);
1296}
1297
1298
1299static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1300		struct usb_host_endpoint *ep)
1301{
1302	return xhci_microframes_to_exponent(udev, ep,
1303			ep->desc.bInterval * 8, 3, 10);
1304}
1305
1306/* Return the polling or NAK interval.
1307 *
1308 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1309 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1310 *
1311 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1312 * is set to 0.
1313 */
1314static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1315		struct usb_host_endpoint *ep)
1316{
1317	unsigned int interval = 0;
1318
1319	switch (udev->speed) {
1320	case USB_SPEED_HIGH:
1321		/* Max NAK rate */
1322		if (usb_endpoint_xfer_control(&ep->desc) ||
1323		    usb_endpoint_xfer_bulk(&ep->desc)) {
1324			interval = xhci_parse_microframe_interval(udev, ep);
1325			break;
1326		}
1327		fallthrough;	/* SS and HS isoc/int have same decoding */
1328
1329	case USB_SPEED_SUPER_PLUS:
1330	case USB_SPEED_SUPER:
1331		if (usb_endpoint_xfer_int(&ep->desc) ||
1332		    usb_endpoint_xfer_isoc(&ep->desc)) {
1333			interval = xhci_parse_exponent_interval(udev, ep);
1334		}
1335		break;
1336
1337	case USB_SPEED_FULL:
1338		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1339			interval = xhci_parse_exponent_interval(udev, ep);
1340			break;
1341		}
1342		/*
1343		 * Fall through for interrupt endpoint interval decoding
1344		 * since it uses the same rules as low speed interrupt
1345		 * endpoints.
1346		 */
1347		fallthrough;
1348
1349	case USB_SPEED_LOW:
1350		if (usb_endpoint_xfer_int(&ep->desc) ||
1351		    usb_endpoint_xfer_isoc(&ep->desc)) {
1352
1353			interval = xhci_parse_frame_interval(udev, ep);
1354		}
1355		break;
1356
1357	default:
1358		BUG();
1359	}
1360	return interval;
1361}
1362
1363/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1364 * High speed endpoint descriptors can define "the number of additional
1365 * transaction opportunities per microframe", but that goes in the Max Burst
1366 * endpoint context field.
1367 */
1368static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1369		struct usb_host_endpoint *ep)
1370{
1371	if (udev->speed < USB_SPEED_SUPER ||
1372			!usb_endpoint_xfer_isoc(&ep->desc))
1373		return 0;
1374	return ep->ss_ep_comp.bmAttributes;
1375}
1376
1377static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1378				       struct usb_host_endpoint *ep)
1379{
1380	/* Super speed and Plus have max burst in ep companion desc */
1381	if (udev->speed >= USB_SPEED_SUPER)
1382		return ep->ss_ep_comp.bMaxBurst;
1383
1384	if (udev->speed == USB_SPEED_HIGH &&
1385	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1386	     usb_endpoint_xfer_int(&ep->desc)))
1387		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1388
1389	return 0;
1390}
1391
1392static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1393{
1394	int in;
1395
1396	in = usb_endpoint_dir_in(&ep->desc);
1397
1398	switch (usb_endpoint_type(&ep->desc)) {
1399	case USB_ENDPOINT_XFER_CONTROL:
1400		return CTRL_EP;
1401	case USB_ENDPOINT_XFER_BULK:
1402		return in ? BULK_IN_EP : BULK_OUT_EP;
1403	case USB_ENDPOINT_XFER_ISOC:
1404		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1405	case USB_ENDPOINT_XFER_INT:
1406		return in ? INT_IN_EP : INT_OUT_EP;
1407	}
1408	return 0;
1409}
1410
1411/* Return the maximum endpoint service interval time (ESIT) payload.
1412 * Basically, this is the maxpacket size, multiplied by the burst size
1413 * and mult size.
1414 */
1415static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1416		struct usb_host_endpoint *ep)
1417{
1418	int max_burst;
1419	int max_packet;
1420
1421	/* Only applies for interrupt or isochronous endpoints */
1422	if (usb_endpoint_xfer_control(&ep->desc) ||
1423			usb_endpoint_xfer_bulk(&ep->desc))
1424		return 0;
1425
1426	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1427	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1428	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1429		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1430	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1431	else if (udev->speed >= USB_SPEED_SUPER)
1432		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1433
1434	max_packet = usb_endpoint_maxp(&ep->desc);
1435	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1436	/* A 0 in max burst means 1 transfer per ESIT */
1437	return max_packet * max_burst;
1438}
1439
1440/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1441 * Drivers will have to call usb_alloc_streams() to do that.
1442 */
1443int xhci_endpoint_init(struct xhci_hcd *xhci,
1444		struct xhci_virt_device *virt_dev,
1445		struct usb_device *udev,
1446		struct usb_host_endpoint *ep,
1447		gfp_t mem_flags)
1448{
1449	unsigned int ep_index;
1450	struct xhci_ep_ctx *ep_ctx;
1451	struct xhci_ring *ep_ring;
1452	unsigned int max_packet;
1453	enum xhci_ring_type ring_type;
1454	u32 max_esit_payload;
1455	u32 endpoint_type;
1456	unsigned int max_burst;
1457	unsigned int interval;
1458	unsigned int mult;
1459	unsigned int avg_trb_len;
1460	unsigned int err_count = 0;
1461
1462	ep_index = xhci_get_endpoint_index(&ep->desc);
1463	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1464
1465	endpoint_type = xhci_get_endpoint_type(ep);
1466	if (!endpoint_type)
1467		return -EINVAL;
1468
1469	ring_type = usb_endpoint_type(&ep->desc);
1470
1471	/*
1472	 * Get values to fill the endpoint context, mostly from ep descriptor.
1473	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1474	 * have no clue on scatter gather list entry size. For Isoc and Int,
1475	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1476	 */
1477	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1478	interval = xhci_get_endpoint_interval(udev, ep);
1479
1480	/* Periodic endpoint bInterval limit quirk */
1481	if (usb_endpoint_xfer_int(&ep->desc) ||
1482	    usb_endpoint_xfer_isoc(&ep->desc)) {
1483		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1484		    udev->speed >= USB_SPEED_HIGH &&
1485		    interval >= 7) {
1486			interval = 6;
1487		}
1488	}
1489
1490	mult = xhci_get_endpoint_mult(udev, ep);
1491	max_packet = usb_endpoint_maxp(&ep->desc);
1492	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1493	avg_trb_len = max_esit_payload;
1494
1495	/* FIXME dig Mult and streams info out of ep companion desc */
1496
1497	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1498	if (!usb_endpoint_xfer_isoc(&ep->desc))
1499		err_count = 3;
1500	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1501	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1502		if (udev->speed == USB_SPEED_HIGH)
1503			max_packet = 512;
1504		if (udev->speed == USB_SPEED_FULL) {
1505			max_packet = rounddown_pow_of_two(max_packet);
1506			max_packet = clamp_val(max_packet, 8, 64);
1507		}
1508	}
1509	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1510	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1511		avg_trb_len = 8;
1512	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1513	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1514		mult = 0;
1515
1516	/* Set up the endpoint ring */
1517	virt_dev->eps[ep_index].new_ring =
1518		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1519	if (!virt_dev->eps[ep_index].new_ring)
1520		return -ENOMEM;
1521
1522	virt_dev->eps[ep_index].skip = false;
1523	ep_ring = virt_dev->eps[ep_index].new_ring;
1524
1525	/* Fill the endpoint context */
1526	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1527				      EP_INTERVAL(interval) |
1528				      EP_MULT(mult));
1529	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1530				       MAX_PACKET(max_packet) |
1531				       MAX_BURST(max_burst) |
1532				       ERROR_COUNT(err_count));
1533	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1534				  ep_ring->cycle_state);
1535
1536	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1537				      EP_AVG_TRB_LENGTH(avg_trb_len));
1538
1539	return 0;
1540}
1541
1542void xhci_endpoint_zero(struct xhci_hcd *xhci,
1543		struct xhci_virt_device *virt_dev,
1544		struct usb_host_endpoint *ep)
1545{
1546	unsigned int ep_index;
1547	struct xhci_ep_ctx *ep_ctx;
1548
1549	ep_index = xhci_get_endpoint_index(&ep->desc);
1550	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1551
1552	ep_ctx->ep_info = 0;
1553	ep_ctx->ep_info2 = 0;
1554	ep_ctx->deq = 0;
1555	ep_ctx->tx_info = 0;
1556	/* Don't free the endpoint ring until the set interface or configuration
1557	 * request succeeds.
1558	 */
1559}
1560
1561void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1562{
1563	bw_info->ep_interval = 0;
1564	bw_info->mult = 0;
1565	bw_info->num_packets = 0;
1566	bw_info->max_packet_size = 0;
1567	bw_info->type = 0;
1568	bw_info->max_esit_payload = 0;
1569}
1570
1571void xhci_update_bw_info(struct xhci_hcd *xhci,
1572		struct xhci_container_ctx *in_ctx,
1573		struct xhci_input_control_ctx *ctrl_ctx,
1574		struct xhci_virt_device *virt_dev)
1575{
1576	struct xhci_bw_info *bw_info;
1577	struct xhci_ep_ctx *ep_ctx;
1578	unsigned int ep_type;
1579	int i;
1580
1581	for (i = 1; i < 31; i++) {
1582		bw_info = &virt_dev->eps[i].bw_info;
1583
1584		/* We can't tell what endpoint type is being dropped, but
1585		 * unconditionally clearing the bandwidth info for non-periodic
1586		 * endpoints should be harmless because the info will never be
1587		 * set in the first place.
1588		 */
1589		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1590			/* Dropped endpoint */
1591			xhci_clear_endpoint_bw_info(bw_info);
1592			continue;
1593		}
1594
1595		if (EP_IS_ADDED(ctrl_ctx, i)) {
1596			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1597			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1598
1599			/* Ignore non-periodic endpoints */
1600			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1601					ep_type != ISOC_IN_EP &&
1602					ep_type != INT_IN_EP)
1603				continue;
1604
1605			/* Added or changed endpoint */
1606			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1607					le32_to_cpu(ep_ctx->ep_info));
1608			/* Number of packets and mult are zero-based in the
1609			 * input context, but we want one-based for the
1610			 * interval table.
1611			 */
1612			bw_info->mult = CTX_TO_EP_MULT(
1613					le32_to_cpu(ep_ctx->ep_info)) + 1;
1614			bw_info->num_packets = CTX_TO_MAX_BURST(
1615					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1616			bw_info->max_packet_size = MAX_PACKET_DECODED(
1617					le32_to_cpu(ep_ctx->ep_info2));
1618			bw_info->type = ep_type;
1619			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1620					le32_to_cpu(ep_ctx->tx_info));
1621		}
1622	}
1623}
1624
1625/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1626 * Useful when you want to change one particular aspect of the endpoint and then
1627 * issue a configure endpoint command.
1628 */
1629void xhci_endpoint_copy(struct xhci_hcd *xhci,
1630		struct xhci_container_ctx *in_ctx,
1631		struct xhci_container_ctx *out_ctx,
1632		unsigned int ep_index)
1633{
1634	struct xhci_ep_ctx *out_ep_ctx;
1635	struct xhci_ep_ctx *in_ep_ctx;
1636
1637	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1638	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1639
1640	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1641	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1642	in_ep_ctx->deq = out_ep_ctx->deq;
1643	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1644	if (xhci->quirks & XHCI_MTK_HOST) {
1645		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1646		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1647	}
1648}
1649
1650/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1651 * Useful when you want to change one particular aspect of the endpoint and then
1652 * issue a configure endpoint command.  Only the context entries field matters,
1653 * but we'll copy the whole thing anyway.
1654 */
1655void xhci_slot_copy(struct xhci_hcd *xhci,
1656		struct xhci_container_ctx *in_ctx,
1657		struct xhci_container_ctx *out_ctx)
1658{
1659	struct xhci_slot_ctx *in_slot_ctx;
1660	struct xhci_slot_ctx *out_slot_ctx;
1661
1662	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1663	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1664
1665	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1666	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1667	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1668	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1669}
1670
1671/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1672static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1673{
1674	int i;
1675	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1676	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1677
1678	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1679			"Allocating %d scratchpad buffers", num_sp);
1680
1681	if (!num_sp)
1682		return 0;
1683
1684	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1685				dev_to_node(dev));
1686	if (!xhci->scratchpad)
1687		goto fail_sp;
1688
1689	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1690				     num_sp * sizeof(u64),
1691				     &xhci->scratchpad->sp_dma, flags);
1692	if (!xhci->scratchpad->sp_array)
1693		goto fail_sp2;
1694
1695	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1696					flags, dev_to_node(dev));
1697	if (!xhci->scratchpad->sp_buffers)
1698		goto fail_sp3;
1699
1700	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1701	for (i = 0; i < num_sp; i++) {
1702		dma_addr_t dma;
1703		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1704					       flags);
1705		if (!buf)
1706			goto fail_sp4;
1707
1708		xhci->scratchpad->sp_array[i] = dma;
1709		xhci->scratchpad->sp_buffers[i] = buf;
1710	}
1711
1712	return 0;
1713
1714 fail_sp4:
1715	for (i = i - 1; i >= 0; i--) {
1716		dma_free_coherent(dev, xhci->page_size,
1717				    xhci->scratchpad->sp_buffers[i],
1718				    xhci->scratchpad->sp_array[i]);
1719	}
1720
1721	kfree(xhci->scratchpad->sp_buffers);
1722
1723 fail_sp3:
1724	dma_free_coherent(dev, num_sp * sizeof(u64),
1725			    xhci->scratchpad->sp_array,
1726			    xhci->scratchpad->sp_dma);
1727
1728 fail_sp2:
1729	kfree(xhci->scratchpad);
1730	xhci->scratchpad = NULL;
1731
1732 fail_sp:
1733	return -ENOMEM;
1734}
1735
1736static void scratchpad_free(struct xhci_hcd *xhci)
1737{
1738	int num_sp;
1739	int i;
1740	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1741
1742	if (!xhci->scratchpad)
1743		return;
1744
1745	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1746
1747	for (i = 0; i < num_sp; i++) {
1748		dma_free_coherent(dev, xhci->page_size,
1749				    xhci->scratchpad->sp_buffers[i],
1750				    xhci->scratchpad->sp_array[i]);
1751	}
1752	kfree(xhci->scratchpad->sp_buffers);
1753	dma_free_coherent(dev, num_sp * sizeof(u64),
1754			    xhci->scratchpad->sp_array,
1755			    xhci->scratchpad->sp_dma);
1756	kfree(xhci->scratchpad);
1757	xhci->scratchpad = NULL;
1758}
1759
1760struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1761		bool allocate_completion, gfp_t mem_flags)
1762{
1763	struct xhci_command *command;
1764	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1765
1766	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1767	if (!command)
1768		return NULL;
1769
1770	if (allocate_completion) {
1771		command->completion =
1772			kzalloc_node(sizeof(struct completion), mem_flags,
1773				dev_to_node(dev));
1774		if (!command->completion) {
1775			kfree(command);
1776			return NULL;
1777		}
1778		init_completion(command->completion);
1779	}
1780
1781	command->status = 0;
1782	INIT_LIST_HEAD(&command->cmd_list);
1783	return command;
1784}
1785
1786struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1787		bool allocate_completion, gfp_t mem_flags)
1788{
1789	struct xhci_command *command;
1790
1791	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1792	if (!command)
1793		return NULL;
1794
1795	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1796						   mem_flags);
1797	if (!command->in_ctx) {
1798		kfree(command->completion);
1799		kfree(command);
1800		return NULL;
1801	}
1802	return command;
1803}
1804
1805void xhci_urb_free_priv(struct urb_priv *urb_priv)
1806{
1807	kfree(urb_priv);
1808}
1809
1810void xhci_free_command(struct xhci_hcd *xhci,
1811		struct xhci_command *command)
1812{
1813	xhci_free_container_ctx(xhci,
1814			command->in_ctx);
1815	kfree(command->completion);
1816	kfree(command);
1817}
1818
1819int xhci_alloc_erst(struct xhci_hcd *xhci,
1820		    struct xhci_ring *evt_ring,
1821		    struct xhci_erst *erst,
1822		    gfp_t flags)
1823{
1824	size_t size;
1825	unsigned int val;
1826	struct xhci_segment *seg;
1827	struct xhci_erst_entry *entry;
1828
1829	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1830	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1831					   size, &erst->erst_dma_addr, flags);
1832	if (!erst->entries)
1833		return -ENOMEM;
1834
1835	erst->num_entries = evt_ring->num_segs;
1836
1837	seg = evt_ring->first_seg;
1838	for (val = 0; val < evt_ring->num_segs; val++) {
1839		entry = &erst->entries[val];
1840		entry->seg_addr = cpu_to_le64(seg->dma);
1841		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1842		entry->rsvd = 0;
1843		seg = seg->next;
1844	}
1845
1846	return 0;
1847}
1848
1849void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1850{
1851	size_t size;
1852	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1853
1854	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1855	if (erst->entries)
1856		dma_free_coherent(dev, size,
1857				erst->entries,
1858				erst->erst_dma_addr);
1859	erst->entries = NULL;
1860}
1861
1862void xhci_mem_cleanup(struct xhci_hcd *xhci)
1863{
1864	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1865	int i, j, num_ports;
1866
1867	cancel_delayed_work_sync(&xhci->cmd_timer);
1868
1869	xhci_free_erst(xhci, &xhci->erst);
1870
1871	if (xhci->event_ring)
1872		xhci_ring_free(xhci, xhci->event_ring);
1873	xhci->event_ring = NULL;
1874	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1875
1876	if (xhci->lpm_command)
1877		xhci_free_command(xhci, xhci->lpm_command);
1878	xhci->lpm_command = NULL;
1879	if (xhci->cmd_ring)
1880		xhci_ring_free(xhci, xhci->cmd_ring);
1881	xhci->cmd_ring = NULL;
1882	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1883	xhci_cleanup_command_queue(xhci);
1884
1885	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1886	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1887		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1888		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1889			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1890			while (!list_empty(ep))
1891				list_del_init(ep->next);
1892		}
1893	}
1894
1895	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1896		xhci_free_virt_devices_depth_first(xhci, i);
1897
1898	dma_pool_destroy(xhci->segment_pool);
1899	xhci->segment_pool = NULL;
1900	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1901
1902	dma_pool_destroy(xhci->device_pool);
1903	xhci->device_pool = NULL;
1904	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1905
1906	dma_pool_destroy(xhci->small_streams_pool);
1907	xhci->small_streams_pool = NULL;
1908	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1909			"Freed small stream array pool");
1910
1911	dma_pool_destroy(xhci->medium_streams_pool);
1912	xhci->medium_streams_pool = NULL;
1913	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1914			"Freed medium stream array pool");
1915
1916	if (xhci->dcbaa)
1917		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1918				xhci->dcbaa, xhci->dcbaa->dma);
1919	xhci->dcbaa = NULL;
1920
1921	scratchpad_free(xhci);
1922
1923	if (!xhci->rh_bw)
1924		goto no_bw;
1925
1926	for (i = 0; i < num_ports; i++) {
1927		struct xhci_tt_bw_info *tt, *n;
1928		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1929			list_del(&tt->tt_list);
1930			kfree(tt);
1931		}
1932	}
1933
1934no_bw:
1935	xhci->cmd_ring_reserved_trbs = 0;
1936	xhci->usb2_rhub.num_ports = 0;
1937	xhci->usb3_rhub.num_ports = 0;
1938	xhci->num_active_eps = 0;
1939	kfree(xhci->usb2_rhub.ports);
1940	kfree(xhci->usb3_rhub.ports);
1941	kfree(xhci->hw_ports);
1942	kfree(xhci->rh_bw);
1943	kfree(xhci->ext_caps);
1944	for (i = 0; i < xhci->num_port_caps; i++)
1945		kfree(xhci->port_caps[i].psi);
1946	kfree(xhci->port_caps);
1947	xhci->num_port_caps = 0;
1948
1949	xhci->usb2_rhub.ports = NULL;
1950	xhci->usb3_rhub.ports = NULL;
1951	xhci->hw_ports = NULL;
1952	xhci->rh_bw = NULL;
1953	xhci->ext_caps = NULL;
1954	xhci->port_caps = NULL;
1955
1956	xhci->page_size = 0;
1957	xhci->page_shift = 0;
1958	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1959	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1960}
1961
1962static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1963		struct xhci_segment *input_seg,
1964		union xhci_trb *start_trb,
1965		union xhci_trb *end_trb,
1966		dma_addr_t input_dma,
1967		struct xhci_segment *result_seg,
1968		char *test_name, int test_number)
1969{
1970	unsigned long long start_dma;
1971	unsigned long long end_dma;
1972	struct xhci_segment *seg;
1973
1974	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1975	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1976
1977	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1978	if (seg != result_seg) {
1979		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1980				test_name, test_number);
1981		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1982				"input DMA 0x%llx\n",
1983				input_seg,
1984				(unsigned long long) input_dma);
1985		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1986				"ending TRB %p (0x%llx DMA)\n",
1987				start_trb, start_dma,
1988				end_trb, end_dma);
1989		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1990				result_seg, seg);
1991		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1992			  true);
1993		return -1;
1994	}
1995	return 0;
1996}
1997
1998/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1999static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
2000{
2001	struct {
2002		dma_addr_t		input_dma;
2003		struct xhci_segment	*result_seg;
2004	} simple_test_vector [] = {
2005		/* A zeroed DMA field should fail */
2006		{ 0, NULL },
2007		/* One TRB before the ring start should fail */
2008		{ xhci->event_ring->first_seg->dma - 16, NULL },
2009		/* One byte before the ring start should fail */
2010		{ xhci->event_ring->first_seg->dma - 1, NULL },
2011		/* Starting TRB should succeed */
2012		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2013		/* Ending TRB should succeed */
2014		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2015			xhci->event_ring->first_seg },
2016		/* One byte after the ring end should fail */
2017		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2018		/* One TRB after the ring end should fail */
2019		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2020		/* An address of all ones should fail */
2021		{ (dma_addr_t) (~0), NULL },
2022	};
2023	struct {
2024		struct xhci_segment	*input_seg;
2025		union xhci_trb		*start_trb;
2026		union xhci_trb		*end_trb;
2027		dma_addr_t		input_dma;
2028		struct xhci_segment	*result_seg;
2029	} complex_test_vector [] = {
2030		/* Test feeding a valid DMA address from a different ring */
2031		{	.input_seg = xhci->event_ring->first_seg,
2032			.start_trb = xhci->event_ring->first_seg->trbs,
2033			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034			.input_dma = xhci->cmd_ring->first_seg->dma,
2035			.result_seg = NULL,
2036		},
2037		/* Test feeding a valid end TRB from a different ring */
2038		{	.input_seg = xhci->event_ring->first_seg,
2039			.start_trb = xhci->event_ring->first_seg->trbs,
2040			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2041			.input_dma = xhci->cmd_ring->first_seg->dma,
2042			.result_seg = NULL,
2043		},
2044		/* Test feeding a valid start and end TRB from a different ring */
2045		{	.input_seg = xhci->event_ring->first_seg,
2046			.start_trb = xhci->cmd_ring->first_seg->trbs,
2047			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2048			.input_dma = xhci->cmd_ring->first_seg->dma,
2049			.result_seg = NULL,
2050		},
2051		/* TRB in this ring, but after this TD */
2052		{	.input_seg = xhci->event_ring->first_seg,
2053			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2054			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2055			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2056			.result_seg = NULL,
2057		},
2058		/* TRB in this ring, but before this TD */
2059		{	.input_seg = xhci->event_ring->first_seg,
2060			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2061			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2062			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2063			.result_seg = NULL,
2064		},
2065		/* TRB in this ring, but after this wrapped TD */
2066		{	.input_seg = xhci->event_ring->first_seg,
2067			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2069			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2070			.result_seg = NULL,
2071		},
2072		/* TRB in this ring, but before this wrapped TD */
2073		{	.input_seg = xhci->event_ring->first_seg,
2074			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2075			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2076			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2077			.result_seg = NULL,
2078		},
2079		/* TRB not in this ring, and we have a wrapped TD */
2080		{	.input_seg = xhci->event_ring->first_seg,
2081			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2082			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2083			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2084			.result_seg = NULL,
2085		},
2086	};
2087
2088	unsigned int num_tests;
2089	int i, ret;
2090
2091	num_tests = ARRAY_SIZE(simple_test_vector);
2092	for (i = 0; i < num_tests; i++) {
2093		ret = xhci_test_trb_in_td(xhci,
2094				xhci->event_ring->first_seg,
2095				xhci->event_ring->first_seg->trbs,
2096				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2097				simple_test_vector[i].input_dma,
2098				simple_test_vector[i].result_seg,
2099				"Simple", i);
2100		if (ret < 0)
2101			return ret;
2102	}
2103
2104	num_tests = ARRAY_SIZE(complex_test_vector);
2105	for (i = 0; i < num_tests; i++) {
2106		ret = xhci_test_trb_in_td(xhci,
2107				complex_test_vector[i].input_seg,
2108				complex_test_vector[i].start_trb,
2109				complex_test_vector[i].end_trb,
2110				complex_test_vector[i].input_dma,
2111				complex_test_vector[i].result_seg,
2112				"Complex", i);
2113		if (ret < 0)
2114			return ret;
2115	}
2116	xhci_dbg(xhci, "TRB math tests passed.\n");
2117	return 0;
2118}
2119
2120static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2121{
2122	u64 temp;
2123	dma_addr_t deq;
2124
2125	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2126			xhci->event_ring->dequeue);
2127	if (deq == 0 && !in_interrupt())
2128		xhci_warn(xhci, "WARN something wrong with SW event ring "
2129				"dequeue ptr.\n");
2130	/* Update HC event ring dequeue pointer */
2131	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2132	temp &= ERST_PTR_MASK;
2133	/* Don't clear the EHB bit (which is RW1C) because
2134	 * there might be more events to service.
2135	 */
2136	temp &= ~ERST_EHB;
2137	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2138			"// Write event ring dequeue pointer, "
2139			"preserving EHB bit");
2140	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2141			&xhci->ir_set->erst_dequeue);
2142}
2143
2144static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2145		__le32 __iomem *addr, int max_caps)
2146{
2147	u32 temp, port_offset, port_count;
2148	int i;
2149	u8 major_revision, minor_revision, tmp_minor_revision;
2150	struct xhci_hub *rhub;
2151	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2152	struct xhci_port_cap *port_cap;
2153
2154	temp = readl(addr);
2155	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2156	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2157
2158	if (major_revision == 0x03) {
2159		rhub = &xhci->usb3_rhub;
2160		/*
2161		 * Some hosts incorrectly use sub-minor version for minor
2162		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2163		 * for bcdUSB 0x310). Since there is no USB release with sub
2164		 * minor version 0x301 to 0x309, we can assume that they are
2165		 * incorrect and fix it here.
2166		 */
2167		if (minor_revision > 0x00 && minor_revision < 0x10)
2168			minor_revision <<= 4;
2169		/*
2170		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2171		 * but only support Gen1.
2172		 */
2173		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2174			tmp_minor_revision = minor_revision;
2175			minor_revision = 0;
2176		}
2177
2178	} else if (major_revision <= 0x02) {
2179		rhub = &xhci->usb2_rhub;
2180	} else {
2181		xhci_warn(xhci, "Ignoring unknown port speed, "
2182				"Ext Cap %p, revision = 0x%x\n",
2183				addr, major_revision);
2184		/* Ignoring port protocol we can't understand. FIXME */
2185		return;
2186	}
2187
2188	/* Port offset and count in the third dword, see section 7.2 */
2189	temp = readl(addr + 2);
2190	port_offset = XHCI_EXT_PORT_OFF(temp);
2191	port_count = XHCI_EXT_PORT_COUNT(temp);
2192	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2193			"Ext Cap %p, port offset = %u, "
2194			"count = %u, revision = 0x%x",
2195			addr, port_offset, port_count, major_revision);
2196	/* Port count includes the current port offset */
2197	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2198		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2199		return;
2200
2201	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2202	if (xhci->num_port_caps > max_caps)
2203		return;
2204
2205	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2206
2207	if (port_cap->psi_count) {
2208		port_cap->psi = kcalloc_node(port_cap->psi_count,
2209					     sizeof(*port_cap->psi),
2210					     GFP_KERNEL, dev_to_node(dev));
2211		if (!port_cap->psi)
2212			port_cap->psi_count = 0;
2213
2214		port_cap->psi_uid_count++;
2215		for (i = 0; i < port_cap->psi_count; i++) {
2216			port_cap->psi[i] = readl(addr + 4 + i);
2217
2218			/* count unique ID values, two consecutive entries can
2219			 * have the same ID if link is assymetric
2220			 */
2221			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2222				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2223				port_cap->psi_uid_count++;
2224
2225			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2226			    major_revision == 0x03 &&
2227			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2228				minor_revision = tmp_minor_revision;
2229
2230			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2231				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2232				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2233				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2234				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2235				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2236				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2237		}
2238	}
2239
2240	rhub->maj_rev = major_revision;
2241
2242	if (rhub->min_rev < minor_revision)
2243		rhub->min_rev = minor_revision;
2244
2245	port_cap->maj_rev = major_revision;
2246	port_cap->min_rev = minor_revision;
2247
2248	/* cache usb2 port capabilities */
2249	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2250		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2251
2252	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2253		 (temp & XHCI_HLC)) {
2254		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2255			       "xHCI 1.0: support USB2 hardware lpm");
2256		xhci->hw_lpm_support = 1;
2257	}
2258
2259	port_offset--;
2260	for (i = port_offset; i < (port_offset + port_count); i++) {
2261		struct xhci_port *hw_port = &xhci->hw_ports[i];
2262		/* Duplicate entry.  Ignore the port if the revisions differ. */
2263		if (hw_port->rhub) {
2264			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2265					" port %u\n", addr, i);
2266			xhci_warn(xhci, "Port was marked as USB %u, "
2267					"duplicated as USB %u\n",
2268					hw_port->rhub->maj_rev, major_revision);
2269			/* Only adjust the roothub port counts if we haven't
2270			 * found a similar duplicate.
2271			 */
2272			if (hw_port->rhub != rhub &&
2273				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2274				hw_port->rhub->num_ports--;
2275				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2276			}
2277			continue;
2278		}
2279		hw_port->rhub = rhub;
2280		hw_port->port_cap = port_cap;
2281		rhub->num_ports++;
2282	}
2283	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2284}
2285
2286static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2287					struct xhci_hub *rhub, gfp_t flags)
2288{
2289	int port_index = 0;
2290	int i;
2291	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2292
2293	if (!rhub->num_ports)
2294		return;
2295	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2296			flags, dev_to_node(dev));
2297	if (!rhub->ports)
2298		return;
2299
2300	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2301		if (xhci->hw_ports[i].rhub != rhub ||
2302		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2303			continue;
2304		xhci->hw_ports[i].hcd_portnum = port_index;
2305		rhub->ports[port_index] = &xhci->hw_ports[i];
2306		port_index++;
2307		if (port_index == rhub->num_ports)
2308			break;
2309	}
2310}
2311
2312/*
2313 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2314 * specify what speeds each port is supposed to be.  We can't count on the port
2315 * speed bits in the PORTSC register being correct until a device is connected,
2316 * but we need to set up the two fake roothubs with the correct number of USB
2317 * 3.0 and USB 2.0 ports at host controller initialization time.
2318 */
2319static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2320{
2321	void __iomem *base;
2322	u32 offset;
2323	unsigned int num_ports;
2324	int i, j;
2325	int cap_count = 0;
2326	u32 cap_start;
2327	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2328
2329	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2330	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2331				flags, dev_to_node(dev));
2332	if (!xhci->hw_ports)
2333		return -ENOMEM;
2334
2335	for (i = 0; i < num_ports; i++) {
2336		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2337			NUM_PORT_REGS * i;
2338		xhci->hw_ports[i].hw_portnum = i;
2339
2340		init_completion(&xhci->hw_ports[i].rexit_done);
2341		init_completion(&xhci->hw_ports[i].u3exit_done);
2342	}
2343
2344	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2345				   dev_to_node(dev));
2346	if (!xhci->rh_bw)
2347		return -ENOMEM;
2348	for (i = 0; i < num_ports; i++) {
2349		struct xhci_interval_bw_table *bw_table;
2350
2351		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2352		bw_table = &xhci->rh_bw[i].bw_table;
2353		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2354			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2355	}
2356	base = &xhci->cap_regs->hc_capbase;
2357
2358	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2359	if (!cap_start) {
2360		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2361		return -ENODEV;
2362	}
2363
2364	offset = cap_start;
2365	/* count extended protocol capability entries for later caching */
2366	while (offset) {
2367		cap_count++;
2368		offset = xhci_find_next_ext_cap(base, offset,
2369						      XHCI_EXT_CAPS_PROTOCOL);
2370	}
2371
2372	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2373				flags, dev_to_node(dev));
2374	if (!xhci->ext_caps)
2375		return -ENOMEM;
2376
2377	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2378				flags, dev_to_node(dev));
2379	if (!xhci->port_caps)
2380		return -ENOMEM;
2381
2382	offset = cap_start;
2383
2384	while (offset) {
2385		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2386		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2387		    num_ports)
2388			break;
2389		offset = xhci_find_next_ext_cap(base, offset,
2390						XHCI_EXT_CAPS_PROTOCOL);
2391	}
2392	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2393		xhci_warn(xhci, "No ports on the roothubs?\n");
2394		return -ENODEV;
2395	}
2396	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2398		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2399
2400	/* Place limits on the number of roothub ports so that the hub
2401	 * descriptors aren't longer than the USB core will allocate.
2402	 */
2403	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2404		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405				"Limiting USB 3.0 roothub ports to %u.",
2406				USB_SS_MAXPORTS);
2407		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2408	}
2409	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2410		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2411				"Limiting USB 2.0 roothub ports to %u.",
2412				USB_MAXCHILDREN);
2413		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2414	}
2415
2416	/*
2417	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2418	 * Not sure how the USB core will handle a hub with no ports...
2419	 */
2420
2421	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2422	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2423
2424	return 0;
2425}
2426
2427int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2428{
2429	dma_addr_t	dma;
2430	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2431	unsigned int	val, val2;
2432	u64		val_64;
2433	u32		page_size, temp;
2434	int		i, ret;
2435
2436	INIT_LIST_HEAD(&xhci->cmd_list);
2437
2438	/* init command timeout work */
2439	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2440	init_completion(&xhci->cmd_ring_stop_completion);
2441
2442	page_size = readl(&xhci->op_regs->page_size);
2443	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2444			"Supported page size register = 0x%x", page_size);
2445	for (i = 0; i < 16; i++) {
2446		if ((0x1 & page_size) != 0)
2447			break;
2448		page_size = page_size >> 1;
2449	}
2450	if (i < 16)
2451		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452			"Supported page size of %iK", (1 << (i+12)) / 1024);
2453	else
2454		xhci_warn(xhci, "WARN: no supported page size\n");
2455	/* Use 4K pages, since that's common and the minimum the HC supports */
2456	xhci->page_shift = 12;
2457	xhci->page_size = 1 << xhci->page_shift;
2458	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2459			"HCD page size set to %iK", xhci->page_size / 1024);
2460
2461	/*
2462	 * Program the Number of Device Slots Enabled field in the CONFIG
2463	 * register with the max value of slots the HC can handle.
2464	 */
2465	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2466	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2467			"// xHC can handle at most %d device slots.", val);
2468	val2 = readl(&xhci->op_regs->config_reg);
2469	val |= (val2 & ~HCS_SLOTS_MASK);
2470	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2471			"// Setting Max device slots reg = 0x%x.", val);
2472	writel(val, &xhci->op_regs->config_reg);
2473
2474	/*
2475	 * xHCI section 5.4.6 - doorbell array must be
2476	 * "physically contiguous and 64-byte (cache line) aligned".
2477	 */
2478	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2479			flags);
2480	if (!xhci->dcbaa)
2481		goto fail;
2482	xhci->dcbaa->dma = dma;
2483	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2484			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2485			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2486	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2487
2488	/*
2489	 * Initialize the ring segment pool.  The ring must be a contiguous
2490	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2491	 * however, the command ring segment needs 64-byte aligned segments
2492	 * and our use of dma addresses in the trb_address_map radix tree needs
2493	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2494	 */
2495	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2496		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2497				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2498	else
2499		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2500				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2501
2502	/* See Table 46 and Note on Figure 55 */
2503	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2504			2112, 64, xhci->page_size);
2505	if (!xhci->segment_pool || !xhci->device_pool)
2506		goto fail;
2507
2508	/* Linear stream context arrays don't have any boundary restrictions,
2509	 * and only need to be 16-byte aligned.
2510	 */
2511	xhci->small_streams_pool =
2512		dma_pool_create("xHCI 256 byte stream ctx arrays",
2513			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2514	xhci->medium_streams_pool =
2515		dma_pool_create("xHCI 1KB stream ctx arrays",
2516			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2517	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2518	 * will be allocated with dma_alloc_coherent()
2519	 */
2520
2521	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2522		goto fail;
2523
2524	/* Set up the command ring to have one segments for now. */
2525	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2526	if (!xhci->cmd_ring)
2527		goto fail;
2528	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2529			"Allocated command ring at %p", xhci->cmd_ring);
2530	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2531			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2532
2533	/* Set the address in the Command Ring Control register */
2534	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2535	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2536		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2537		xhci->cmd_ring->cycle_state;
2538	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2539			"// Setting command ring address to 0x%016llx", val_64);
2540	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2541
2542	xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2543	if (!xhci->lpm_command)
2544		goto fail;
2545
2546	/* Reserve one command ring TRB for disabling LPM.
2547	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2548	 * disabling LPM, we only need to reserve one TRB for all devices.
2549	 */
2550	xhci->cmd_ring_reserved_trbs++;
2551
2552	val = readl(&xhci->cap_regs->db_off);
2553	val &= DBOFF_MASK;
2554	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2555			"// Doorbell array is located at offset 0x%x"
2556			" from cap regs base addr", val);
2557	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2558	/* Set ir_set to interrupt register set 0 */
2559	xhci->ir_set = &xhci->run_regs->ir_set[0];
2560
2561	/*
2562	 * Event ring setup: Allocate a normal ring, but also setup
2563	 * the event ring segment table (ERST).  Section 4.9.3.
2564	 */
2565	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2566	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2567					0, flags);
2568	if (!xhci->event_ring)
2569		goto fail;
2570	if (xhci_check_trb_in_td_math(xhci) < 0)
2571		goto fail;
2572
2573	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2574	if (ret)
2575		goto fail;
2576
2577	/* set ERST count with the number of entries in the segment table */
2578	val = readl(&xhci->ir_set->erst_size);
2579	val &= ERST_SIZE_MASK;
2580	val |= ERST_NUM_SEGS;
2581	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2582			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2583			val);
2584	writel(val, &xhci->ir_set->erst_size);
2585
2586	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2587			"// Set ERST entries to point to event ring.");
2588	/* set the segment table base address */
2589	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2590			"// Set ERST base address for ir_set 0 = 0x%llx",
2591			(unsigned long long)xhci->erst.erst_dma_addr);
2592	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2593	val_64 &= ERST_PTR_MASK;
2594	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2595	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2596
2597	/* Set the event ring dequeue address */
2598	xhci_set_hc_event_deq(xhci);
2599	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2600			"Wrote ERST address to ir_set 0.");
2601
2602	/*
2603	 * XXX: Might need to set the Interrupter Moderation Register to
2604	 * something other than the default (~1ms minimum between interrupts).
2605	 * See section 5.5.1.2.
2606	 */
2607	for (i = 0; i < MAX_HC_SLOTS; i++)
2608		xhci->devs[i] = NULL;
2609
2610	if (scratchpad_alloc(xhci, flags))
2611		goto fail;
2612	if (xhci_setup_port_arrays(xhci, flags))
2613		goto fail;
2614
2615	/* Enable USB 3.0 device notifications for function remote wake, which
2616	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2617	 * U3 (device suspend).
2618	 */
2619	temp = readl(&xhci->op_regs->dev_notification);
2620	temp &= ~DEV_NOTE_MASK;
2621	temp |= DEV_NOTE_FWAKE;
2622	writel(temp, &xhci->op_regs->dev_notification);
2623
2624	return 0;
2625
2626fail:
2627	xhci_halt(xhci);
2628	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2629	xhci_mem_cleanup(xhci);
2630	return -ENOMEM;
2631}
2632