1// SPDX-License-Identifier: GPL-2.0+
2/* Faraday FOTG210 EHCI-like driver
3 *
4 * Copyright (c) 2013 Faraday Technology Corporation
5 *
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 *	   Feng-Hsin Chiang <john453@faraday-tech.com>
8 *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
9 *
10 * Most of code borrowed from the Linux-3.7 EHCI driver
11 */
12#include <linux/module.h>
13#include <linux/of.h>
14#include <linux/device.h>
15#include <linux/dmapool.h>
16#include <linux/kernel.h>
17#include <linux/delay.h>
18#include <linux/ioport.h>
19#include <linux/sched.h>
20#include <linux/vmalloc.h>
21#include <linux/errno.h>
22#include <linux/init.h>
23#include <linux/hrtimer.h>
24#include <linux/list.h>
25#include <linux/interrupt.h>
26#include <linux/usb.h>
27#include <linux/usb/hcd.h>
28#include <linux/moduleparam.h>
29#include <linux/dma-mapping.h>
30#include <linux/debugfs.h>
31#include <linux/slab.h>
32#include <linux/uaccess.h>
33#include <linux/platform_device.h>
34#include <linux/io.h>
35#include <linux/iopoll.h>
36#include <linux/clk.h>
37
38#include <asm/byteorder.h>
39#include <asm/irq.h>
40#include <asm/unaligned.h>
41
42#define DRIVER_AUTHOR "Yuan-Hsin Chen"
43#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
44static const char hcd_name[] = "fotg210_hcd";
45
46#undef FOTG210_URB_TRACE
47#define FOTG210_STATS
48
49/* magic numbers that can affect system performance */
50#define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
51#define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
52#define FOTG210_TUNE_RL_TT	0
53#define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
54#define FOTG210_TUNE_MULT_TT	1
55
56/* Some drivers think it's safe to schedule isochronous transfers more than 256
57 * ms into the future (partly as a result of an old bug in the scheduling
58 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
59 * length of 512 frames instead of 256.
60 */
61#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
62
63/* Initial IRQ latency:  faster than hw default */
64static int log2_irq_thresh; /* 0 to 6 */
65module_param(log2_irq_thresh, int, S_IRUGO);
66MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
67
68/* initial park setting:  slower than hw default */
69static unsigned park;
70module_param(park, uint, S_IRUGO);
71MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
72
73/* for link power management(LPM) feature */
74static unsigned int hird;
75module_param(hird, int, S_IRUGO);
76MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
77
78#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
79
80#include "fotg210.h"
81
82#define fotg210_dbg(fotg210, fmt, args...) \
83	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
84#define fotg210_err(fotg210, fmt, args...) \
85	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
86#define fotg210_info(fotg210, fmt, args...) \
87	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88#define fotg210_warn(fotg210, fmt, args...) \
89	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
90
91/* check the values in the HCSPARAMS register (host controller _Structural_
92 * parameters) see EHCI spec, Table 2-4 for each value
93 */
94static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
95{
96	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
97
98	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
99			HCS_N_PORTS(params));
100}
101
102/* check the values in the HCCPARAMS register (host controller _Capability_
103 * parameters) see EHCI Spec, Table 2-5 for each value
104 */
105static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
106{
107	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
108
109	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
110			params,
111			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
112			HCC_CANPARK(params) ? " park" : "");
113}
114
115static void __maybe_unused
116dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
117{
118	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
119			hc32_to_cpup(fotg210, &qtd->hw_next),
120			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
121			hc32_to_cpup(fotg210, &qtd->hw_token),
122			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
123	if (qtd->hw_buf[1])
124		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
125				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
126				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
127				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
128				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
129}
130
131static void __maybe_unused
132dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
133{
134	struct fotg210_qh_hw *hw = qh->hw;
135
136	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
137			hw->hw_next, hw->hw_info1, hw->hw_info2,
138			hw->hw_current);
139
140	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
141}
142
143static void __maybe_unused
144dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
145{
146	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
147			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
148			itd->urb);
149
150	fotg210_dbg(fotg210,
151			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
152			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
153			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
154			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
155			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
156			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
157			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
158			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
159			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
160
161	fotg210_dbg(fotg210,
162			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
163			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
164			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
165			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
166			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
167			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
168			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
169			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
170
171	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
172			itd->index[0], itd->index[1], itd->index[2],
173			itd->index[3], itd->index[4], itd->index[5],
174			itd->index[6], itd->index[7]);
175}
176
177static int __maybe_unused
178dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
179{
180	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
181			label, label[0] ? " " : "", status,
182			(status & STS_ASS) ? " Async" : "",
183			(status & STS_PSS) ? " Periodic" : "",
184			(status & STS_RECL) ? " Recl" : "",
185			(status & STS_HALT) ? " Halt" : "",
186			(status & STS_IAA) ? " IAA" : "",
187			(status & STS_FATAL) ? " FATAL" : "",
188			(status & STS_FLR) ? " FLR" : "",
189			(status & STS_PCD) ? " PCD" : "",
190			(status & STS_ERR) ? " ERR" : "",
191			(status & STS_INT) ? " INT" : "");
192}
193
194static int __maybe_unused
195dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
196{
197	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
198			label, label[0] ? " " : "", enable,
199			(enable & STS_IAA) ? " IAA" : "",
200			(enable & STS_FATAL) ? " FATAL" : "",
201			(enable & STS_FLR) ? " FLR" : "",
202			(enable & STS_PCD) ? " PCD" : "",
203			(enable & STS_ERR) ? " ERR" : "",
204			(enable & STS_INT) ? " INT" : "");
205}
206
207static const char *const fls_strings[] = { "1024", "512", "256", "??" };
208
209static int dbg_command_buf(char *buf, unsigned len, const char *label,
210		u32 command)
211{
212	return scnprintf(buf, len,
213			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
214			label, label[0] ? " " : "", command,
215			(command & CMD_PARK) ? " park" : "(park)",
216			CMD_PARK_CNT(command),
217			(command >> 16) & 0x3f,
218			(command & CMD_IAAD) ? " IAAD" : "",
219			(command & CMD_ASE) ? " Async" : "",
220			(command & CMD_PSE) ? " Periodic" : "",
221			fls_strings[(command >> 2) & 0x3],
222			(command & CMD_RESET) ? " Reset" : "",
223			(command & CMD_RUN) ? "RUN" : "HALT");
224}
225
226static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
227		u32 status)
228{
229	char *sig;
230
231	/* signaling state */
232	switch (status & (3 << 10)) {
233	case 0 << 10:
234		sig = "se0";
235		break;
236	case 1 << 10:
237		sig = "k";
238		break; /* low speed */
239	case 2 << 10:
240		sig = "j";
241		break;
242	default:
243		sig = "?";
244		break;
245	}
246
247	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
248			label, label[0] ? " " : "", port, status,
249			status >> 25, /*device address */
250			sig,
251			(status & PORT_RESET) ? " RESET" : "",
252			(status & PORT_SUSPEND) ? " SUSPEND" : "",
253			(status & PORT_RESUME) ? " RESUME" : "",
254			(status & PORT_PEC) ? " PEC" : "",
255			(status & PORT_PE) ? " PE" : "",
256			(status & PORT_CSC) ? " CSC" : "",
257			(status & PORT_CONNECT) ? " CONNECT" : "");
258
259	return buf;
260}
261
262/* functions have the "wrong" filename when they're output... */
263#define dbg_status(fotg210, label, status) {			\
264	char _buf[80];						\
265	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
266	fotg210_dbg(fotg210, "%s\n", _buf);			\
267}
268
269#define dbg_cmd(fotg210, label, command) {			\
270	char _buf[80];						\
271	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
272	fotg210_dbg(fotg210, "%s\n", _buf);			\
273}
274
275#define dbg_port(fotg210, label, port, status) {			       \
276	char _buf[80];							       \
277	fotg210_dbg(fotg210, "%s\n",					       \
278			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
279}
280
281/* troubleshooting help: expose state in debugfs */
282static int debug_async_open(struct inode *, struct file *);
283static int debug_periodic_open(struct inode *, struct file *);
284static int debug_registers_open(struct inode *, struct file *);
285static int debug_async_open(struct inode *, struct file *);
286
287static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
288static int debug_close(struct inode *, struct file *);
289
290static const struct file_operations debug_async_fops = {
291	.owner		= THIS_MODULE,
292	.open		= debug_async_open,
293	.read		= debug_output,
294	.release	= debug_close,
295	.llseek		= default_llseek,
296};
297static const struct file_operations debug_periodic_fops = {
298	.owner		= THIS_MODULE,
299	.open		= debug_periodic_open,
300	.read		= debug_output,
301	.release	= debug_close,
302	.llseek		= default_llseek,
303};
304static const struct file_operations debug_registers_fops = {
305	.owner		= THIS_MODULE,
306	.open		= debug_registers_open,
307	.read		= debug_output,
308	.release	= debug_close,
309	.llseek		= default_llseek,
310};
311
312static struct dentry *fotg210_debug_root;
313
314struct debug_buffer {
315	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
316	struct usb_bus *bus;
317	struct mutex mutex;	/* protect filling of buffer */
318	size_t count;		/* number of characters filled into buffer */
319	char *output_buf;
320	size_t alloc_size;
321};
322
323static inline char speed_char(u32 scratch)
324{
325	switch (scratch & (3 << 12)) {
326	case QH_FULL_SPEED:
327		return 'f';
328
329	case QH_LOW_SPEED:
330		return 'l';
331
332	case QH_HIGH_SPEED:
333		return 'h';
334
335	default:
336		return '?';
337	}
338}
339
340static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
341{
342	__u32 v = hc32_to_cpu(fotg210, token);
343
344	if (v & QTD_STS_ACTIVE)
345		return '*';
346	if (v & QTD_STS_HALT)
347		return '-';
348	if (!IS_SHORT_READ(v))
349		return ' ';
350	/* tries to advance through hw_alt_next */
351	return '/';
352}
353
354static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
355		char **nextp, unsigned *sizep)
356{
357	u32 scratch;
358	u32 hw_curr;
359	struct fotg210_qtd *td;
360	unsigned temp;
361	unsigned size = *sizep;
362	char *next = *nextp;
363	char mark;
364	__le32 list_end = FOTG210_LIST_END(fotg210);
365	struct fotg210_qh_hw *hw = qh->hw;
366
367	if (hw->hw_qtd_next == list_end) /* NEC does this */
368		mark = '@';
369	else
370		mark = token_mark(fotg210, hw->hw_token);
371	if (mark == '/') { /* qh_alt_next controls qh advance? */
372		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
373		    fotg210->async->hw->hw_alt_next)
374			mark = '#'; /* blocked */
375		else if (hw->hw_alt_next == list_end)
376			mark = '.'; /* use hw_qtd_next */
377		/* else alt_next points to some other qtd */
378	}
379	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
380	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
381	temp = scnprintf(next, size,
382			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
383			qh, scratch & 0x007f,
384			speed_char(scratch),
385			(scratch >> 8) & 0x000f,
386			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
387			hc32_to_cpup(fotg210, &hw->hw_token), mark,
388			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
389				? "data1" : "data0",
390			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
391	size -= temp;
392	next += temp;
393
394	/* hc may be modifying the list as we read it ... */
395	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
396		scratch = hc32_to_cpup(fotg210, &td->hw_token);
397		mark = ' ';
398		if (hw_curr == td->qtd_dma)
399			mark = '*';
400		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
401			mark = '+';
402		else if (QTD_LENGTH(scratch)) {
403			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
404				mark = '#';
405			else if (td->hw_alt_next != list_end)
406				mark = '/';
407		}
408		temp = snprintf(next, size,
409				"\n\t%p%c%s len=%d %08x urb %p",
410				td, mark, ({ char *tmp;
411				 switch ((scratch>>8)&0x03) {
412				 case 0:
413					tmp = "out";
414					break;
415				 case 1:
416					tmp = "in";
417					break;
418				 case 2:
419					tmp = "setup";
420					break;
421				 default:
422					tmp = "?";
423					break;
424				 } tmp; }),
425				(scratch >> 16) & 0x7fff,
426				scratch,
427				td->urb);
428		if (size < temp)
429			temp = size;
430		size -= temp;
431		next += temp;
432	}
433
434	temp = snprintf(next, size, "\n");
435	if (size < temp)
436		temp = size;
437
438	size -= temp;
439	next += temp;
440
441	*sizep = size;
442	*nextp = next;
443}
444
445static ssize_t fill_async_buffer(struct debug_buffer *buf)
446{
447	struct usb_hcd *hcd;
448	struct fotg210_hcd *fotg210;
449	unsigned long flags;
450	unsigned temp, size;
451	char *next;
452	struct fotg210_qh *qh;
453
454	hcd = bus_to_hcd(buf->bus);
455	fotg210 = hcd_to_fotg210(hcd);
456	next = buf->output_buf;
457	size = buf->alloc_size;
458
459	*next = 0;
460
461	/* dumps a snapshot of the async schedule.
462	 * usually empty except for long-term bulk reads, or head.
463	 * one QH per line, and TDs we know about
464	 */
465	spin_lock_irqsave(&fotg210->lock, flags);
466	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
467			qh = qh->qh_next.qh)
468		qh_lines(fotg210, qh, &next, &size);
469	if (fotg210->async_unlink && size > 0) {
470		temp = scnprintf(next, size, "\nunlink =\n");
471		size -= temp;
472		next += temp;
473
474		for (qh = fotg210->async_unlink; size > 0 && qh;
475				qh = qh->unlink_next)
476			qh_lines(fotg210, qh, &next, &size);
477	}
478	spin_unlock_irqrestore(&fotg210->lock, flags);
479
480	return strlen(buf->output_buf);
481}
482
483/* count tds, get ep direction */
484static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
485		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
486{
487	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
488	struct fotg210_qtd *qtd;
489	char *type = "";
490	unsigned temp = 0;
491
492	/* count tds, get ep direction */
493	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
494		temp++;
495		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
496		case 0:
497			type = "out";
498			continue;
499		case 1:
500			type = "in";
501			continue;
502		}
503	}
504
505	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
506			speed_char(scratch), scratch & 0x007f,
507			(scratch >> 8) & 0x000f, type, qh->usecs,
508			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
509}
510
511#define DBG_SCHED_LIMIT 64
512static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
513{
514	struct usb_hcd *hcd;
515	struct fotg210_hcd *fotg210;
516	unsigned long flags;
517	union fotg210_shadow p, *seen;
518	unsigned temp, size, seen_count;
519	char *next;
520	unsigned i;
521	__hc32 tag;
522
523	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
524	if (!seen)
525		return 0;
526
527	seen_count = 0;
528
529	hcd = bus_to_hcd(buf->bus);
530	fotg210 = hcd_to_fotg210(hcd);
531	next = buf->output_buf;
532	size = buf->alloc_size;
533
534	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
535	size -= temp;
536	next += temp;
537
538	/* dump a snapshot of the periodic schedule.
539	 * iso changes, interrupt usually doesn't.
540	 */
541	spin_lock_irqsave(&fotg210->lock, flags);
542	for (i = 0; i < fotg210->periodic_size; i++) {
543		p = fotg210->pshadow[i];
544		if (likely(!p.ptr))
545			continue;
546
547		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
548
549		temp = scnprintf(next, size, "%4d: ", i);
550		size -= temp;
551		next += temp;
552
553		do {
554			struct fotg210_qh_hw *hw;
555
556			switch (hc32_to_cpu(fotg210, tag)) {
557			case Q_TYPE_QH:
558				hw = p.qh->hw;
559				temp = scnprintf(next, size, " qh%d-%04x/%p",
560						p.qh->period,
561						hc32_to_cpup(fotg210,
562							&hw->hw_info2)
563							/* uframe masks */
564							& (QH_CMASK | QH_SMASK),
565						p.qh);
566				size -= temp;
567				next += temp;
568				/* don't repeat what follows this qh */
569				for (temp = 0; temp < seen_count; temp++) {
570					if (seen[temp].ptr != p.ptr)
571						continue;
572					if (p.qh->qh_next.ptr) {
573						temp = scnprintf(next, size,
574								" ...");
575						size -= temp;
576						next += temp;
577					}
578					break;
579				}
580				/* show more info the first time around */
581				if (temp == seen_count) {
582					temp = output_buf_tds_dir(next,
583							fotg210, hw,
584							p.qh, size);
585
586					if (seen_count < DBG_SCHED_LIMIT)
587						seen[seen_count++].qh = p.qh;
588				} else
589					temp = 0;
590				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
591				p = p.qh->qh_next;
592				break;
593			case Q_TYPE_FSTN:
594				temp = scnprintf(next, size,
595						" fstn-%8x/%p",
596						p.fstn->hw_prev, p.fstn);
597				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
598				p = p.fstn->fstn_next;
599				break;
600			case Q_TYPE_ITD:
601				temp = scnprintf(next, size,
602						" itd/%p", p.itd);
603				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
604				p = p.itd->itd_next;
605				break;
606			}
607			size -= temp;
608			next += temp;
609		} while (p.ptr);
610
611		temp = scnprintf(next, size, "\n");
612		size -= temp;
613		next += temp;
614	}
615	spin_unlock_irqrestore(&fotg210->lock, flags);
616	kfree(seen);
617
618	return buf->alloc_size - size;
619}
620#undef DBG_SCHED_LIMIT
621
622static const char *rh_state_string(struct fotg210_hcd *fotg210)
623{
624	switch (fotg210->rh_state) {
625	case FOTG210_RH_HALTED:
626		return "halted";
627	case FOTG210_RH_SUSPENDED:
628		return "suspended";
629	case FOTG210_RH_RUNNING:
630		return "running";
631	case FOTG210_RH_STOPPING:
632		return "stopping";
633	}
634	return "?";
635}
636
637static ssize_t fill_registers_buffer(struct debug_buffer *buf)
638{
639	struct usb_hcd *hcd;
640	struct fotg210_hcd *fotg210;
641	unsigned long flags;
642	unsigned temp, size, i;
643	char *next, scratch[80];
644	static const char fmt[] = "%*s\n";
645	static const char label[] = "";
646
647	hcd = bus_to_hcd(buf->bus);
648	fotg210 = hcd_to_fotg210(hcd);
649	next = buf->output_buf;
650	size = buf->alloc_size;
651
652	spin_lock_irqsave(&fotg210->lock, flags);
653
654	if (!HCD_HW_ACCESSIBLE(hcd)) {
655		size = scnprintf(next, size,
656				"bus %s, device %s\n"
657				"%s\n"
658				"SUSPENDED(no register access)\n",
659				hcd->self.controller->bus->name,
660				dev_name(hcd->self.controller),
661				hcd->product_desc);
662		goto done;
663	}
664
665	/* Capability Registers */
666	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
667			&fotg210->caps->hc_capbase));
668	temp = scnprintf(next, size,
669			"bus %s, device %s\n"
670			"%s\n"
671			"EHCI %x.%02x, rh state %s\n",
672			hcd->self.controller->bus->name,
673			dev_name(hcd->self.controller),
674			hcd->product_desc,
675			i >> 8, i & 0x0ff, rh_state_string(fotg210));
676	size -= temp;
677	next += temp;
678
679	/* FIXME interpret both types of params */
680	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
681	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
682	size -= temp;
683	next += temp;
684
685	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
686	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
687	size -= temp;
688	next += temp;
689
690	/* Operational Registers */
691	temp = dbg_status_buf(scratch, sizeof(scratch), label,
692			fotg210_readl(fotg210, &fotg210->regs->status));
693	temp = scnprintf(next, size, fmt, temp, scratch);
694	size -= temp;
695	next += temp;
696
697	temp = dbg_command_buf(scratch, sizeof(scratch), label,
698			fotg210_readl(fotg210, &fotg210->regs->command));
699	temp = scnprintf(next, size, fmt, temp, scratch);
700	size -= temp;
701	next += temp;
702
703	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
704			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
705	temp = scnprintf(next, size, fmt, temp, scratch);
706	size -= temp;
707	next += temp;
708
709	temp = scnprintf(next, size, "uframe %04x\n",
710			fotg210_read_frame_index(fotg210));
711	size -= temp;
712	next += temp;
713
714	if (fotg210->async_unlink) {
715		temp = scnprintf(next, size, "async unlink qh %p\n",
716				fotg210->async_unlink);
717		size -= temp;
718		next += temp;
719	}
720
721#ifdef FOTG210_STATS
722	temp = scnprintf(next, size,
723			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
724			fotg210->stats.normal, fotg210->stats.error,
725			fotg210->stats.iaa, fotg210->stats.lost_iaa);
726	size -= temp;
727	next += temp;
728
729	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
730			fotg210->stats.complete, fotg210->stats.unlink);
731	size -= temp;
732	next += temp;
733#endif
734
735done:
736	spin_unlock_irqrestore(&fotg210->lock, flags);
737
738	return buf->alloc_size - size;
739}
740
741static struct debug_buffer
742*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
743{
744	struct debug_buffer *buf;
745
746	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
747
748	if (buf) {
749		buf->bus = bus;
750		buf->fill_func = fill_func;
751		mutex_init(&buf->mutex);
752		buf->alloc_size = PAGE_SIZE;
753	}
754
755	return buf;
756}
757
758static int fill_buffer(struct debug_buffer *buf)
759{
760	int ret = 0;
761
762	if (!buf->output_buf)
763		buf->output_buf = vmalloc(buf->alloc_size);
764
765	if (!buf->output_buf) {
766		ret = -ENOMEM;
767		goto out;
768	}
769
770	ret = buf->fill_func(buf);
771
772	if (ret >= 0) {
773		buf->count = ret;
774		ret = 0;
775	}
776
777out:
778	return ret;
779}
780
781static ssize_t debug_output(struct file *file, char __user *user_buf,
782		size_t len, loff_t *offset)
783{
784	struct debug_buffer *buf = file->private_data;
785	int ret = 0;
786
787	mutex_lock(&buf->mutex);
788	if (buf->count == 0) {
789		ret = fill_buffer(buf);
790		if (ret != 0) {
791			mutex_unlock(&buf->mutex);
792			goto out;
793		}
794	}
795	mutex_unlock(&buf->mutex);
796
797	ret = simple_read_from_buffer(user_buf, len, offset,
798			buf->output_buf, buf->count);
799
800out:
801	return ret;
802
803}
804
805static int debug_close(struct inode *inode, struct file *file)
806{
807	struct debug_buffer *buf = file->private_data;
808
809	if (buf) {
810		vfree(buf->output_buf);
811		kfree(buf);
812	}
813
814	return 0;
815}
816static int debug_async_open(struct inode *inode, struct file *file)
817{
818	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
819
820	return file->private_data ? 0 : -ENOMEM;
821}
822
823static int debug_periodic_open(struct inode *inode, struct file *file)
824{
825	struct debug_buffer *buf;
826
827	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
828	if (!buf)
829		return -ENOMEM;
830
831	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
832	file->private_data = buf;
833	return 0;
834}
835
836static int debug_registers_open(struct inode *inode, struct file *file)
837{
838	file->private_data = alloc_buffer(inode->i_private,
839			fill_registers_buffer);
840
841	return file->private_data ? 0 : -ENOMEM;
842}
843
844static inline void create_debug_files(struct fotg210_hcd *fotg210)
845{
846	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
847	struct dentry *root;
848
849	root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
850	fotg210->debug_dir = root;
851
852	debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
853	debugfs_create_file("periodic", S_IRUGO, root, bus,
854			    &debug_periodic_fops);
855	debugfs_create_file("registers", S_IRUGO, root, bus,
856			    &debug_registers_fops);
857}
858
859static inline void remove_debug_files(struct fotg210_hcd *fotg210)
860{
861	debugfs_remove_recursive(fotg210->debug_dir);
862}
863
864/* handshake - spin reading hc until handshake completes or fails
865 * @ptr: address of hc register to be read
866 * @mask: bits to look at in result of read
867 * @done: value of those bits when handshake succeeds
868 * @usec: timeout in microseconds
869 *
870 * Returns negative errno, or zero on success
871 *
872 * Success happens when the "mask" bits have the specified value (hardware
873 * handshake done).  There are two failure modes:  "usec" have passed (major
874 * hardware flakeout), or the register reads as all-ones (hardware removed).
875 *
876 * That last failure should_only happen in cases like physical cardbus eject
877 * before driver shutdown. But it also seems to be caused by bugs in cardbus
878 * bridge shutdown:  shutting down the bridge before the devices using it.
879 */
880static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
881		u32 mask, u32 done, int usec)
882{
883	u32 result;
884	int ret;
885
886	ret = readl_poll_timeout_atomic(ptr, result,
887					((result & mask) == done ||
888					 result == U32_MAX), 1, usec);
889	if (result == U32_MAX)		/* card removed */
890		return -ENODEV;
891
892	return ret;
893}
894
895/* Force HC to halt state from unknown (EHCI spec section 2.3).
896 * Must be called with interrupts enabled and the lock not held.
897 */
898static int fotg210_halt(struct fotg210_hcd *fotg210)
899{
900	u32 temp;
901
902	spin_lock_irq(&fotg210->lock);
903
904	/* disable any irqs left enabled by previous code */
905	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
906
907	/*
908	 * This routine gets called during probe before fotg210->command
909	 * has been initialized, so we can't rely on its value.
910	 */
911	fotg210->command &= ~CMD_RUN;
912	temp = fotg210_readl(fotg210, &fotg210->regs->command);
913	temp &= ~(CMD_RUN | CMD_IAAD);
914	fotg210_writel(fotg210, temp, &fotg210->regs->command);
915
916	spin_unlock_irq(&fotg210->lock);
917	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
918
919	return handshake(fotg210, &fotg210->regs->status,
920			STS_HALT, STS_HALT, 16 * 125);
921}
922
923/* Reset a non-running (STS_HALT == 1) controller.
924 * Must be called with interrupts enabled and the lock not held.
925 */
926static int fotg210_reset(struct fotg210_hcd *fotg210)
927{
928	int retval;
929	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
930
931	/* If the EHCI debug controller is active, special care must be
932	 * taken before and after a host controller reset
933	 */
934	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
935		fotg210->debug = NULL;
936
937	command |= CMD_RESET;
938	dbg_cmd(fotg210, "reset", command);
939	fotg210_writel(fotg210, command, &fotg210->regs->command);
940	fotg210->rh_state = FOTG210_RH_HALTED;
941	fotg210->next_statechange = jiffies;
942	retval = handshake(fotg210, &fotg210->regs->command,
943			CMD_RESET, 0, 250 * 1000);
944
945	if (retval)
946		return retval;
947
948	if (fotg210->debug)
949		dbgp_external_startup(fotg210_to_hcd(fotg210));
950
951	fotg210->port_c_suspend = fotg210->suspended_ports =
952			fotg210->resuming_ports = 0;
953	return retval;
954}
955
956/* Idle the controller (turn off the schedules).
957 * Must be called with interrupts enabled and the lock not held.
958 */
959static void fotg210_quiesce(struct fotg210_hcd *fotg210)
960{
961	u32 temp;
962
963	if (fotg210->rh_state != FOTG210_RH_RUNNING)
964		return;
965
966	/* wait for any schedule enables/disables to take effect */
967	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
968	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
969			16 * 125);
970
971	/* then disable anything that's still active */
972	spin_lock_irq(&fotg210->lock);
973	fotg210->command &= ~(CMD_ASE | CMD_PSE);
974	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
975	spin_unlock_irq(&fotg210->lock);
976
977	/* hardware can take 16 microframes to turn off ... */
978	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
979			16 * 125);
980}
981
982static void end_unlink_async(struct fotg210_hcd *fotg210);
983static void unlink_empty_async(struct fotg210_hcd *fotg210);
984static void fotg210_work(struct fotg210_hcd *fotg210);
985static void start_unlink_intr(struct fotg210_hcd *fotg210,
986			      struct fotg210_qh *qh);
987static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
988
989/* Set a bit in the USBCMD register */
990static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
991{
992	fotg210->command |= bit;
993	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
994
995	/* unblock posted write */
996	fotg210_readl(fotg210, &fotg210->regs->command);
997}
998
999/* Clear a bit in the USBCMD register */
1000static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1001{
1002	fotg210->command &= ~bit;
1003	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1004
1005	/* unblock posted write */
1006	fotg210_readl(fotg210, &fotg210->regs->command);
1007}
1008
1009/* EHCI timer support...  Now using hrtimers.
1010 *
1011 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1012 * the timer routine runs, it checks each possible event; events that are
1013 * currently enabled and whose expiration time has passed get handled.
1014 * The set of enabled events is stored as a collection of bitflags in
1015 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1016 * increasing delay values (ranging between 1 ms and 100 ms).
1017 *
1018 * Rather than implementing a sorted list or tree of all pending events,
1019 * we keep track only of the lowest-numbered pending event, in
1020 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1021 * expiration time is set to the timeout value for this event.
1022 *
1023 * As a result, events might not get handled right away; the actual delay
1024 * could be anywhere up to twice the requested delay.  This doesn't
1025 * matter, because none of the events are especially time-critical.  The
1026 * ones that matter most all have a delay of 1 ms, so they will be
1027 * handled after 2 ms at most, which is okay.  In addition to this, we
1028 * allow for an expiration range of 1 ms.
1029 */
1030
1031/* Delay lengths for the hrtimer event types.
1032 * Keep this list sorted by delay length, in the same order as
1033 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1034 */
1035static unsigned event_delays_ns[] = {
1036	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1037	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1038	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1039	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1040	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1041	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1042	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1043	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1044	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1045	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1046};
1047
1048/* Enable a pending hrtimer event */
1049static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1050		bool resched)
1051{
1052	ktime_t *timeout = &fotg210->hr_timeouts[event];
1053
1054	if (resched)
1055		*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1056	fotg210->enabled_hrtimer_events |= (1 << event);
1057
1058	/* Track only the lowest-numbered pending event */
1059	if (event < fotg210->next_hrtimer_event) {
1060		fotg210->next_hrtimer_event = event;
1061		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1062				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1063	}
1064}
1065
1066
1067/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1068static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1069{
1070	unsigned actual, want;
1071
1072	/* Don't enable anything if the controller isn't running (e.g., died) */
1073	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1074		return;
1075
1076	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1077	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1078
1079	if (want != actual) {
1080
1081		/* Poll again later, but give up after about 20 ms */
1082		if (fotg210->ASS_poll_count++ < 20) {
1083			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1084					true);
1085			return;
1086		}
1087		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1088				want, actual);
1089	}
1090	fotg210->ASS_poll_count = 0;
1091
1092	/* The status is up-to-date; restart or stop the schedule as needed */
1093	if (want == 0) {	/* Stopped */
1094		if (fotg210->async_count > 0)
1095			fotg210_set_command_bit(fotg210, CMD_ASE);
1096
1097	} else {		/* Running */
1098		if (fotg210->async_count == 0) {
1099
1100			/* Turn off the schedule after a while */
1101			fotg210_enable_event(fotg210,
1102					FOTG210_HRTIMER_DISABLE_ASYNC,
1103					true);
1104		}
1105	}
1106}
1107
1108/* Turn off the async schedule after a brief delay */
1109static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1110{
1111	fotg210_clear_command_bit(fotg210, CMD_ASE);
1112}
1113
1114
1115/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1116static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1117{
1118	unsigned actual, want;
1119
1120	/* Don't do anything if the controller isn't running (e.g., died) */
1121	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1122		return;
1123
1124	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1125	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1126
1127	if (want != actual) {
1128
1129		/* Poll again later, but give up after about 20 ms */
1130		if (fotg210->PSS_poll_count++ < 20) {
1131			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1132					true);
1133			return;
1134		}
1135		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1136				want, actual);
1137	}
1138	fotg210->PSS_poll_count = 0;
1139
1140	/* The status is up-to-date; restart or stop the schedule as needed */
1141	if (want == 0) {	/* Stopped */
1142		if (fotg210->periodic_count > 0)
1143			fotg210_set_command_bit(fotg210, CMD_PSE);
1144
1145	} else {		/* Running */
1146		if (fotg210->periodic_count == 0) {
1147
1148			/* Turn off the schedule after a while */
1149			fotg210_enable_event(fotg210,
1150					FOTG210_HRTIMER_DISABLE_PERIODIC,
1151					true);
1152		}
1153	}
1154}
1155
1156/* Turn off the periodic schedule after a brief delay */
1157static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1158{
1159	fotg210_clear_command_bit(fotg210, CMD_PSE);
1160}
1161
1162
1163/* Poll the STS_HALT status bit; see when a dead controller stops */
1164static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1165{
1166	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1167
1168		/* Give up after a few milliseconds */
1169		if (fotg210->died_poll_count++ < 5) {
1170			/* Try again later */
1171			fotg210_enable_event(fotg210,
1172					FOTG210_HRTIMER_POLL_DEAD, true);
1173			return;
1174		}
1175		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1176	}
1177
1178	/* Clean up the mess */
1179	fotg210->rh_state = FOTG210_RH_HALTED;
1180	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1181	fotg210_work(fotg210);
1182	end_unlink_async(fotg210);
1183
1184	/* Not in process context, so don't try to reset the controller */
1185}
1186
1187
1188/* Handle unlinked interrupt QHs once they are gone from the hardware */
1189static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1190{
1191	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1192
1193	/*
1194	 * Process all the QHs on the intr_unlink list that were added
1195	 * before the current unlink cycle began.  The list is in
1196	 * temporal order, so stop when we reach the first entry in the
1197	 * current cycle.  But if the root hub isn't running then
1198	 * process all the QHs on the list.
1199	 */
1200	fotg210->intr_unlinking = true;
1201	while (fotg210->intr_unlink) {
1202		struct fotg210_qh *qh = fotg210->intr_unlink;
1203
1204		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1205			break;
1206		fotg210->intr_unlink = qh->unlink_next;
1207		qh->unlink_next = NULL;
1208		end_unlink_intr(fotg210, qh);
1209	}
1210
1211	/* Handle remaining entries later */
1212	if (fotg210->intr_unlink) {
1213		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1214				true);
1215		++fotg210->intr_unlink_cycle;
1216	}
1217	fotg210->intr_unlinking = false;
1218}
1219
1220
1221/* Start another free-iTDs/siTDs cycle */
1222static void start_free_itds(struct fotg210_hcd *fotg210)
1223{
1224	if (!(fotg210->enabled_hrtimer_events &
1225			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1226		fotg210->last_itd_to_free = list_entry(
1227				fotg210->cached_itd_list.prev,
1228				struct fotg210_itd, itd_list);
1229		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1230	}
1231}
1232
1233/* Wait for controller to stop using old iTDs and siTDs */
1234static void end_free_itds(struct fotg210_hcd *fotg210)
1235{
1236	struct fotg210_itd *itd, *n;
1237
1238	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1239		fotg210->last_itd_to_free = NULL;
1240
1241	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1242		list_del(&itd->itd_list);
1243		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1244		if (itd == fotg210->last_itd_to_free)
1245			break;
1246	}
1247
1248	if (!list_empty(&fotg210->cached_itd_list))
1249		start_free_itds(fotg210);
1250}
1251
1252
1253/* Handle lost (or very late) IAA interrupts */
1254static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1255{
1256	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1257		return;
1258
1259	/*
1260	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1261	 * So we need this watchdog, but must protect it against both
1262	 * (a) SMP races against real IAA firing and retriggering, and
1263	 * (b) clean HC shutdown, when IAA watchdog was pending.
1264	 */
1265	if (fotg210->async_iaa) {
1266		u32 cmd, status;
1267
1268		/* If we get here, IAA is *REALLY* late.  It's barely
1269		 * conceivable that the system is so busy that CMD_IAAD
1270		 * is still legitimately set, so let's be sure it's
1271		 * clear before we read STS_IAA.  (The HC should clear
1272		 * CMD_IAAD when it sets STS_IAA.)
1273		 */
1274		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1275
1276		/*
1277		 * If IAA is set here it either legitimately triggered
1278		 * after the watchdog timer expired (_way_ late, so we'll
1279		 * still count it as lost) ... or a silicon erratum:
1280		 * - VIA seems to set IAA without triggering the IRQ;
1281		 * - IAAD potentially cleared without setting IAA.
1282		 */
1283		status = fotg210_readl(fotg210, &fotg210->regs->status);
1284		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1285			INCR(fotg210->stats.lost_iaa);
1286			fotg210_writel(fotg210, STS_IAA,
1287					&fotg210->regs->status);
1288		}
1289
1290		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1291				status, cmd);
1292		end_unlink_async(fotg210);
1293	}
1294}
1295
1296
1297/* Enable the I/O watchdog, if appropriate */
1298static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1299{
1300	/* Not needed if the controller isn't running or it's already enabled */
1301	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1302			(fotg210->enabled_hrtimer_events &
1303			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1304		return;
1305
1306	/*
1307	 * Isochronous transfers always need the watchdog.
1308	 * For other sorts we use it only if the flag is set.
1309	 */
1310	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1311			fotg210->async_count + fotg210->intr_count > 0))
1312		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1313				true);
1314}
1315
1316
1317/* Handler functions for the hrtimer event types.
1318 * Keep this array in the same order as the event types indexed by
1319 * enum fotg210_hrtimer_event in fotg210.h.
1320 */
1321static void (*event_handlers[])(struct fotg210_hcd *) = {
1322	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1323	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1324	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1325	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1326	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1327	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1328	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1329	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1330	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1331	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1332};
1333
1334static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1335{
1336	struct fotg210_hcd *fotg210 =
1337			container_of(t, struct fotg210_hcd, hrtimer);
1338	ktime_t now;
1339	unsigned long events;
1340	unsigned long flags;
1341	unsigned e;
1342
1343	spin_lock_irqsave(&fotg210->lock, flags);
1344
1345	events = fotg210->enabled_hrtimer_events;
1346	fotg210->enabled_hrtimer_events = 0;
1347	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1348
1349	/*
1350	 * Check each pending event.  If its time has expired, handle
1351	 * the event; otherwise re-enable it.
1352	 */
1353	now = ktime_get();
1354	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1355		if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1356			event_handlers[e](fotg210);
1357		else
1358			fotg210_enable_event(fotg210, e, false);
1359	}
1360
1361	spin_unlock_irqrestore(&fotg210->lock, flags);
1362	return HRTIMER_NORESTART;
1363}
1364
1365#define fotg210_bus_suspend NULL
1366#define fotg210_bus_resume NULL
1367
1368static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1369		u32 __iomem *status_reg, int port_status)
1370{
1371	if (!(port_status & PORT_CONNECT))
1372		return port_status;
1373
1374	/* if reset finished and it's still not enabled -- handoff */
1375	if (!(port_status & PORT_PE))
1376		/* with integrated TT, there's nobody to hand it to! */
1377		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1378				index + 1);
1379	else
1380		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1381				index + 1);
1382
1383	return port_status;
1384}
1385
1386
1387/* build "status change" packet (one or two bytes) from HC registers */
1388
1389static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1390{
1391	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1392	u32 temp, status;
1393	u32 mask;
1394	int retval = 1;
1395	unsigned long flags;
1396
1397	/* init status to no-changes */
1398	buf[0] = 0;
1399
1400	/* Inform the core about resumes-in-progress by returning
1401	 * a non-zero value even if there are no status changes.
1402	 */
1403	status = fotg210->resuming_ports;
1404
1405	mask = PORT_CSC | PORT_PEC;
1406	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1407
1408	/* no hub change reports (bit 0) for now (power, ...) */
1409
1410	/* port N changes (bit N)? */
1411	spin_lock_irqsave(&fotg210->lock, flags);
1412
1413	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1414
1415	/*
1416	 * Return status information even for ports with OWNER set.
1417	 * Otherwise hub_wq wouldn't see the disconnect event when a
1418	 * high-speed device is switched over to the companion
1419	 * controller by the user.
1420	 */
1421
1422	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1423			(fotg210->reset_done[0] &&
1424			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1425		buf[0] |= 1 << 1;
1426		status = STS_PCD;
1427	}
1428	/* FIXME autosuspend idle root hubs */
1429	spin_unlock_irqrestore(&fotg210->lock, flags);
1430	return status ? retval : 0;
1431}
1432
1433static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1434		struct usb_hub_descriptor *desc)
1435{
1436	int ports = HCS_N_PORTS(fotg210->hcs_params);
1437	u16 temp;
1438
1439	desc->bDescriptorType = USB_DT_HUB;
1440	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1441	desc->bHubContrCurrent = 0;
1442
1443	desc->bNbrPorts = ports;
1444	temp = 1 + (ports / 8);
1445	desc->bDescLength = 7 + 2 * temp;
1446
1447	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1448	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1449	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1450
1451	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1452	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1453	desc->wHubCharacteristics = cpu_to_le16(temp);
1454}
1455
1456static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1457		u16 wIndex, char *buf, u16 wLength)
1458{
1459	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1460	int ports = HCS_N_PORTS(fotg210->hcs_params);
1461	u32 __iomem *status_reg = &fotg210->regs->port_status;
1462	u32 temp, temp1, status;
1463	unsigned long flags;
1464	int retval = 0;
1465	unsigned selector;
1466
1467	/*
1468	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1469	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1470	 * (track current state ourselves) ... blink for diagnostics,
1471	 * power, "this is the one", etc.  EHCI spec supports this.
1472	 */
1473
1474	spin_lock_irqsave(&fotg210->lock, flags);
1475	switch (typeReq) {
1476	case ClearHubFeature:
1477		switch (wValue) {
1478		case C_HUB_LOCAL_POWER:
1479		case C_HUB_OVER_CURRENT:
1480			/* no hub-wide feature/status flags */
1481			break;
1482		default:
1483			goto error;
1484		}
1485		break;
1486	case ClearPortFeature:
1487		if (!wIndex || wIndex > ports)
1488			goto error;
1489		wIndex--;
1490		temp = fotg210_readl(fotg210, status_reg);
1491		temp &= ~PORT_RWC_BITS;
1492
1493		/*
1494		 * Even if OWNER is set, so the port is owned by the
1495		 * companion controller, hub_wq needs to be able to clear
1496		 * the port-change status bits (especially
1497		 * USB_PORT_STAT_C_CONNECTION).
1498		 */
1499
1500		switch (wValue) {
1501		case USB_PORT_FEAT_ENABLE:
1502			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1503			break;
1504		case USB_PORT_FEAT_C_ENABLE:
1505			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1506			break;
1507		case USB_PORT_FEAT_SUSPEND:
1508			if (temp & PORT_RESET)
1509				goto error;
1510			if (!(temp & PORT_SUSPEND))
1511				break;
1512			if ((temp & PORT_PE) == 0)
1513				goto error;
1514
1515			/* resume signaling for 20 msec */
1516			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1517			fotg210->reset_done[wIndex] = jiffies
1518					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1519			break;
1520		case USB_PORT_FEAT_C_SUSPEND:
1521			clear_bit(wIndex, &fotg210->port_c_suspend);
1522			break;
1523		case USB_PORT_FEAT_C_CONNECTION:
1524			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1525			break;
1526		case USB_PORT_FEAT_C_OVER_CURRENT:
1527			fotg210_writel(fotg210, temp | OTGISR_OVC,
1528					&fotg210->regs->otgisr);
1529			break;
1530		case USB_PORT_FEAT_C_RESET:
1531			/* GetPortStatus clears reset */
1532			break;
1533		default:
1534			goto error;
1535		}
1536		fotg210_readl(fotg210, &fotg210->regs->command);
1537		break;
1538	case GetHubDescriptor:
1539		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1540				buf);
1541		break;
1542	case GetHubStatus:
1543		/* no hub-wide feature/status flags */
1544		memset(buf, 0, 4);
1545		/*cpu_to_le32s ((u32 *) buf); */
1546		break;
1547	case GetPortStatus:
1548		if (!wIndex || wIndex > ports)
1549			goto error;
1550		wIndex--;
1551		status = 0;
1552		temp = fotg210_readl(fotg210, status_reg);
1553
1554		/* wPortChange bits */
1555		if (temp & PORT_CSC)
1556			status |= USB_PORT_STAT_C_CONNECTION << 16;
1557		if (temp & PORT_PEC)
1558			status |= USB_PORT_STAT_C_ENABLE << 16;
1559
1560		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1561		if (temp1 & OTGISR_OVC)
1562			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1563
1564		/* whoever resumes must GetPortStatus to complete it!! */
1565		if (temp & PORT_RESUME) {
1566
1567			/* Remote Wakeup received? */
1568			if (!fotg210->reset_done[wIndex]) {
1569				/* resume signaling for 20 msec */
1570				fotg210->reset_done[wIndex] = jiffies
1571						+ msecs_to_jiffies(20);
1572				/* check the port again */
1573				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1574						fotg210->reset_done[wIndex]);
1575			}
1576
1577			/* resume completed? */
1578			else if (time_after_eq(jiffies,
1579					fotg210->reset_done[wIndex])) {
1580				clear_bit(wIndex, &fotg210->suspended_ports);
1581				set_bit(wIndex, &fotg210->port_c_suspend);
1582				fotg210->reset_done[wIndex] = 0;
1583
1584				/* stop resume signaling */
1585				temp = fotg210_readl(fotg210, status_reg);
1586				fotg210_writel(fotg210, temp &
1587						~(PORT_RWC_BITS | PORT_RESUME),
1588						status_reg);
1589				clear_bit(wIndex, &fotg210->resuming_ports);
1590				retval = handshake(fotg210, status_reg,
1591						PORT_RESUME, 0, 2000);/* 2ms */
1592				if (retval != 0) {
1593					fotg210_err(fotg210,
1594							"port %d resume error %d\n",
1595							wIndex + 1, retval);
1596					goto error;
1597				}
1598				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1599			}
1600		}
1601
1602		/* whoever resets must GetPortStatus to complete it!! */
1603		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1604				fotg210->reset_done[wIndex])) {
1605			status |= USB_PORT_STAT_C_RESET << 16;
1606			fotg210->reset_done[wIndex] = 0;
1607			clear_bit(wIndex, &fotg210->resuming_ports);
1608
1609			/* force reset to complete */
1610			fotg210_writel(fotg210,
1611					temp & ~(PORT_RWC_BITS | PORT_RESET),
1612					status_reg);
1613			/* REVISIT:  some hardware needs 550+ usec to clear
1614			 * this bit; seems too long to spin routinely...
1615			 */
1616			retval = handshake(fotg210, status_reg,
1617					PORT_RESET, 0, 1000);
1618			if (retval != 0) {
1619				fotg210_err(fotg210, "port %d reset error %d\n",
1620						wIndex + 1, retval);
1621				goto error;
1622			}
1623
1624			/* see what we found out */
1625			temp = check_reset_complete(fotg210, wIndex, status_reg,
1626					fotg210_readl(fotg210, status_reg));
1627
1628			/* restart schedule */
1629			fotg210->command |= CMD_RUN;
1630			fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1631		}
1632
1633		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1634			fotg210->reset_done[wIndex] = 0;
1635			clear_bit(wIndex, &fotg210->resuming_ports);
1636		}
1637
1638		/* transfer dedicated ports to the companion hc */
1639		if ((temp & PORT_CONNECT) &&
1640				test_bit(wIndex, &fotg210->companion_ports)) {
1641			temp &= ~PORT_RWC_BITS;
1642			fotg210_writel(fotg210, temp, status_reg);
1643			fotg210_dbg(fotg210, "port %d --> companion\n",
1644					wIndex + 1);
1645			temp = fotg210_readl(fotg210, status_reg);
1646		}
1647
1648		/*
1649		 * Even if OWNER is set, there's no harm letting hub_wq
1650		 * see the wPortStatus values (they should all be 0 except
1651		 * for PORT_POWER anyway).
1652		 */
1653
1654		if (temp & PORT_CONNECT) {
1655			status |= USB_PORT_STAT_CONNECTION;
1656			status |= fotg210_port_speed(fotg210, temp);
1657		}
1658		if (temp & PORT_PE)
1659			status |= USB_PORT_STAT_ENABLE;
1660
1661		/* maybe the port was unsuspended without our knowledge */
1662		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1663			status |= USB_PORT_STAT_SUSPEND;
1664		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1665			clear_bit(wIndex, &fotg210->suspended_ports);
1666			clear_bit(wIndex, &fotg210->resuming_ports);
1667			fotg210->reset_done[wIndex] = 0;
1668			if (temp & PORT_PE)
1669				set_bit(wIndex, &fotg210->port_c_suspend);
1670		}
1671
1672		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1673		if (temp1 & OTGISR_OVC)
1674			status |= USB_PORT_STAT_OVERCURRENT;
1675		if (temp & PORT_RESET)
1676			status |= USB_PORT_STAT_RESET;
1677		if (test_bit(wIndex, &fotg210->port_c_suspend))
1678			status |= USB_PORT_STAT_C_SUSPEND << 16;
1679
1680		if (status & ~0xffff)	/* only if wPortChange is interesting */
1681			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1682		put_unaligned_le32(status, buf);
1683		break;
1684	case SetHubFeature:
1685		switch (wValue) {
1686		case C_HUB_LOCAL_POWER:
1687		case C_HUB_OVER_CURRENT:
1688			/* no hub-wide feature/status flags */
1689			break;
1690		default:
1691			goto error;
1692		}
1693		break;
1694	case SetPortFeature:
1695		selector = wIndex >> 8;
1696		wIndex &= 0xff;
1697
1698		if (!wIndex || wIndex > ports)
1699			goto error;
1700		wIndex--;
1701		temp = fotg210_readl(fotg210, status_reg);
1702		temp &= ~PORT_RWC_BITS;
1703		switch (wValue) {
1704		case USB_PORT_FEAT_SUSPEND:
1705			if ((temp & PORT_PE) == 0
1706					|| (temp & PORT_RESET) != 0)
1707				goto error;
1708
1709			/* After above check the port must be connected.
1710			 * Set appropriate bit thus could put phy into low power
1711			 * mode if we have hostpc feature
1712			 */
1713			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1714					status_reg);
1715			set_bit(wIndex, &fotg210->suspended_ports);
1716			break;
1717		case USB_PORT_FEAT_RESET:
1718			if (temp & PORT_RESUME)
1719				goto error;
1720			/* line status bits may report this as low speed,
1721			 * which can be fine if this root hub has a
1722			 * transaction translator built in.
1723			 */
1724			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1725			temp |= PORT_RESET;
1726			temp &= ~PORT_PE;
1727
1728			/*
1729			 * caller must wait, then call GetPortStatus
1730			 * usb 2.0 spec says 50 ms resets on root
1731			 */
1732			fotg210->reset_done[wIndex] = jiffies
1733					+ msecs_to_jiffies(50);
1734			fotg210_writel(fotg210, temp, status_reg);
1735			break;
1736
1737		/* For downstream facing ports (these):  one hub port is put
1738		 * into test mode according to USB2 11.24.2.13, then the hub
1739		 * must be reset (which for root hub now means rmmod+modprobe,
1740		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1741		 * about the EHCI-specific stuff.
1742		 */
1743		case USB_PORT_FEAT_TEST:
1744			if (!selector || selector > 5)
1745				goto error;
1746			spin_unlock_irqrestore(&fotg210->lock, flags);
1747			fotg210_quiesce(fotg210);
1748			spin_lock_irqsave(&fotg210->lock, flags);
1749
1750			/* Put all enabled ports into suspend */
1751			temp = fotg210_readl(fotg210, status_reg) &
1752				~PORT_RWC_BITS;
1753			if (temp & PORT_PE)
1754				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1755						status_reg);
1756
1757			spin_unlock_irqrestore(&fotg210->lock, flags);
1758			fotg210_halt(fotg210);
1759			spin_lock_irqsave(&fotg210->lock, flags);
1760
1761			temp = fotg210_readl(fotg210, status_reg);
1762			temp |= selector << 16;
1763			fotg210_writel(fotg210, temp, status_reg);
1764			break;
1765
1766		default:
1767			goto error;
1768		}
1769		fotg210_readl(fotg210, &fotg210->regs->command);
1770		break;
1771
1772	default:
1773error:
1774		/* "stall" on error */
1775		retval = -EPIPE;
1776	}
1777	spin_unlock_irqrestore(&fotg210->lock, flags);
1778	return retval;
1779}
1780
1781static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1782		int portnum)
1783{
1784	return;
1785}
1786
1787static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1788		int portnum)
1789{
1790	return 0;
1791}
1792
1793/* There's basically three types of memory:
1794 *	- data used only by the HCD ... kmalloc is fine
1795 *	- async and periodic schedules, shared by HC and HCD ... these
1796 *	  need to use dma_pool or dma_alloc_coherent
1797 *	- driver buffers, read/written by HC ... single shot DMA mapped
1798 *
1799 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1800 * No memory seen by this driver is pageable.
1801 */
1802
1803/* Allocate the key transfer structures from the previously allocated pool */
1804static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1805		struct fotg210_qtd *qtd, dma_addr_t dma)
1806{
1807	memset(qtd, 0, sizeof(*qtd));
1808	qtd->qtd_dma = dma;
1809	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1810	qtd->hw_next = FOTG210_LIST_END(fotg210);
1811	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1812	INIT_LIST_HEAD(&qtd->qtd_list);
1813}
1814
1815static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1816		gfp_t flags)
1817{
1818	struct fotg210_qtd *qtd;
1819	dma_addr_t dma;
1820
1821	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1822	if (qtd != NULL)
1823		fotg210_qtd_init(fotg210, qtd, dma);
1824
1825	return qtd;
1826}
1827
1828static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1829		struct fotg210_qtd *qtd)
1830{
1831	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1832}
1833
1834
1835static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1836{
1837	/* clean qtds first, and know this is not linked */
1838	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1839		fotg210_dbg(fotg210, "unused qh not empty!\n");
1840		BUG();
1841	}
1842	if (qh->dummy)
1843		fotg210_qtd_free(fotg210, qh->dummy);
1844	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1845	kfree(qh);
1846}
1847
1848static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1849		gfp_t flags)
1850{
1851	struct fotg210_qh *qh;
1852	dma_addr_t dma;
1853
1854	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1855	if (!qh)
1856		goto done;
1857	qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1858	if (!qh->hw)
1859		goto fail;
1860	qh->qh_dma = dma;
1861	INIT_LIST_HEAD(&qh->qtd_list);
1862
1863	/* dummy td enables safe urb queuing */
1864	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1865	if (qh->dummy == NULL) {
1866		fotg210_dbg(fotg210, "no dummy td\n");
1867		goto fail1;
1868	}
1869done:
1870	return qh;
1871fail1:
1872	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1873fail:
1874	kfree(qh);
1875	return NULL;
1876}
1877
1878/* The queue heads and transfer descriptors are managed from pools tied
1879 * to each of the "per device" structures.
1880 * This is the initialisation and cleanup code.
1881 */
1882
1883static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1884{
1885	if (fotg210->async)
1886		qh_destroy(fotg210, fotg210->async);
1887	fotg210->async = NULL;
1888
1889	if (fotg210->dummy)
1890		qh_destroy(fotg210, fotg210->dummy);
1891	fotg210->dummy = NULL;
1892
1893	/* DMA consistent memory and pools */
1894	dma_pool_destroy(fotg210->qtd_pool);
1895	fotg210->qtd_pool = NULL;
1896
1897	dma_pool_destroy(fotg210->qh_pool);
1898	fotg210->qh_pool = NULL;
1899
1900	dma_pool_destroy(fotg210->itd_pool);
1901	fotg210->itd_pool = NULL;
1902
1903	if (fotg210->periodic)
1904		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1905				fotg210->periodic_size * sizeof(u32),
1906				fotg210->periodic, fotg210->periodic_dma);
1907	fotg210->periodic = NULL;
1908
1909	/* shadow periodic table */
1910	kfree(fotg210->pshadow);
1911	fotg210->pshadow = NULL;
1912}
1913
1914/* remember to add cleanup code (above) if you add anything here */
1915static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1916{
1917	int i;
1918
1919	/* QTDs for control/bulk/intr transfers */
1920	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1921			fotg210_to_hcd(fotg210)->self.controller,
1922			sizeof(struct fotg210_qtd),
1923			32 /* byte alignment (for hw parts) */,
1924			4096 /* can't cross 4K */);
1925	if (!fotg210->qtd_pool)
1926		goto fail;
1927
1928	/* QHs for control/bulk/intr transfers */
1929	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1930			fotg210_to_hcd(fotg210)->self.controller,
1931			sizeof(struct fotg210_qh_hw),
1932			32 /* byte alignment (for hw parts) */,
1933			4096 /* can't cross 4K */);
1934	if (!fotg210->qh_pool)
1935		goto fail;
1936
1937	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1938	if (!fotg210->async)
1939		goto fail;
1940
1941	/* ITD for high speed ISO transfers */
1942	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1943			fotg210_to_hcd(fotg210)->self.controller,
1944			sizeof(struct fotg210_itd),
1945			64 /* byte alignment (for hw parts) */,
1946			4096 /* can't cross 4K */);
1947	if (!fotg210->itd_pool)
1948		goto fail;
1949
1950	/* Hardware periodic table */
1951	fotg210->periodic = (__le32 *)
1952		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1953				fotg210->periodic_size * sizeof(__le32),
1954				&fotg210->periodic_dma, 0);
1955	if (fotg210->periodic == NULL)
1956		goto fail;
1957
1958	for (i = 0; i < fotg210->periodic_size; i++)
1959		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1960
1961	/* software shadow of hardware table */
1962	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1963			flags);
1964	if (fotg210->pshadow != NULL)
1965		return 0;
1966
1967fail:
1968	fotg210_dbg(fotg210, "couldn't init memory\n");
1969	fotg210_mem_cleanup(fotg210);
1970	return -ENOMEM;
1971}
1972/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1973 *
1974 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1975 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1976 * buffers needed for the larger number).  We use one QH per endpoint, queue
1977 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1978 *
1979 * ISO traffic uses "ISO TD" (itd) records, and (along with
1980 * interrupts) needs careful scheduling.  Performance improvements can be
1981 * an ongoing challenge.  That's in "ehci-sched.c".
1982 *
1983 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1984 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1985 * (b) special fields in qh entries or (c) split iso entries.  TTs will
1986 * buffer low/full speed data so the host collects it at high speed.
1987 */
1988
1989/* fill a qtd, returning how much of the buffer we were able to queue up */
1990static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1991		dma_addr_t buf, size_t len, int token, int maxpacket)
1992{
1993	int i, count;
1994	u64 addr = buf;
1995
1996	/* one buffer entry per 4K ... first might be short or unaligned */
1997	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1998	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
1999	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2000	if (likely(len < count))		/* ... iff needed */
2001		count = len;
2002	else {
2003		buf +=  0x1000;
2004		buf &= ~0x0fff;
2005
2006		/* per-qtd limit: from 16K to 20K (best alignment) */
2007		for (i = 1; count < len && i < 5; i++) {
2008			addr = buf;
2009			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2010			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2011					(u32)(addr >> 32));
2012			buf += 0x1000;
2013			if ((count + 0x1000) < len)
2014				count += 0x1000;
2015			else
2016				count = len;
2017		}
2018
2019		/* short packets may only terminate transfers */
2020		if (count != len)
2021			count -= (count % maxpacket);
2022	}
2023	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2024	qtd->length = count;
2025
2026	return count;
2027}
2028
2029static inline void qh_update(struct fotg210_hcd *fotg210,
2030		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2031{
2032	struct fotg210_qh_hw *hw = qh->hw;
2033
2034	/* writes to an active overlay are unsafe */
2035	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2036
2037	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2038	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2039
2040	/* Except for control endpoints, we make hardware maintain data
2041	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2042	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2043	 * ever clear it.
2044	 */
2045	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2046		unsigned is_out, epnum;
2047
2048		is_out = qh->is_out;
2049		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2050		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2051			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2052			usb_settoggle(qh->dev, epnum, is_out, 1);
2053		}
2054	}
2055
2056	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2057}
2058
2059/* if it weren't for a common silicon quirk (writing the dummy into the qh
2060 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2061 * recovery (including urb dequeue) would need software changes to a QH...
2062 */
2063static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2064{
2065	struct fotg210_qtd *qtd;
2066
2067	if (list_empty(&qh->qtd_list))
2068		qtd = qh->dummy;
2069	else {
2070		qtd = list_entry(qh->qtd_list.next,
2071				struct fotg210_qtd, qtd_list);
2072		/*
2073		 * first qtd may already be partially processed.
2074		 * If we come here during unlink, the QH overlay region
2075		 * might have reference to the just unlinked qtd. The
2076		 * qtd is updated in qh_completions(). Update the QH
2077		 * overlay here.
2078		 */
2079		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2080			qh->hw->hw_qtd_next = qtd->hw_next;
2081			qtd = NULL;
2082		}
2083	}
2084
2085	if (qtd)
2086		qh_update(fotg210, qh, qtd);
2087}
2088
2089static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2090
2091static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2092		struct usb_host_endpoint *ep)
2093{
2094	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2095	struct fotg210_qh *qh = ep->hcpriv;
2096	unsigned long flags;
2097
2098	spin_lock_irqsave(&fotg210->lock, flags);
2099	qh->clearing_tt = 0;
2100	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2101			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2102		qh_link_async(fotg210, qh);
2103	spin_unlock_irqrestore(&fotg210->lock, flags);
2104}
2105
2106static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2107		struct fotg210_qh *qh, struct urb *urb, u32 token)
2108{
2109
2110	/* If an async split transaction gets an error or is unlinked,
2111	 * the TT buffer may be left in an indeterminate state.  We
2112	 * have to clear the TT buffer.
2113	 *
2114	 * Note: this routine is never called for Isochronous transfers.
2115	 */
2116	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2117		struct usb_device *tt = urb->dev->tt->hub;
2118
2119		dev_dbg(&tt->dev,
2120				"clear tt buffer port %d, a%d ep%d t%08x\n",
2121				urb->dev->ttport, urb->dev->devnum,
2122				usb_pipeendpoint(urb->pipe), token);
2123
2124		if (urb->dev->tt->hub !=
2125				fotg210_to_hcd(fotg210)->self.root_hub) {
2126			if (usb_hub_clear_tt_buffer(urb) == 0)
2127				qh->clearing_tt = 1;
2128		}
2129	}
2130}
2131
2132static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2133		size_t length, u32 token)
2134{
2135	int status = -EINPROGRESS;
2136
2137	/* count IN/OUT bytes, not SETUP (even short packets) */
2138	if (likely(QTD_PID(token) != 2))
2139		urb->actual_length += length - QTD_LENGTH(token);
2140
2141	/* don't modify error codes */
2142	if (unlikely(urb->unlinked))
2143		return status;
2144
2145	/* force cleanup after short read; not always an error */
2146	if (unlikely(IS_SHORT_READ(token)))
2147		status = -EREMOTEIO;
2148
2149	/* serious "can't proceed" faults reported by the hardware */
2150	if (token & QTD_STS_HALT) {
2151		if (token & QTD_STS_BABBLE) {
2152			/* FIXME "must" disable babbling device's port too */
2153			status = -EOVERFLOW;
2154		/* CERR nonzero + halt --> stall */
2155		} else if (QTD_CERR(token)) {
2156			status = -EPIPE;
2157
2158		/* In theory, more than one of the following bits can be set
2159		 * since they are sticky and the transaction is retried.
2160		 * Which to test first is rather arbitrary.
2161		 */
2162		} else if (token & QTD_STS_MMF) {
2163			/* fs/ls interrupt xfer missed the complete-split */
2164			status = -EPROTO;
2165		} else if (token & QTD_STS_DBE) {
2166			status = (QTD_PID(token) == 1) /* IN ? */
2167				? -ENOSR  /* hc couldn't read data */
2168				: -ECOMM; /* hc couldn't write data */
2169		} else if (token & QTD_STS_XACT) {
2170			/* timeout, bad CRC, wrong PID, etc */
2171			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2172					urb->dev->devpath,
2173					usb_pipeendpoint(urb->pipe),
2174					usb_pipein(urb->pipe) ? "in" : "out");
2175			status = -EPROTO;
2176		} else {	/* unknown */
2177			status = -EPROTO;
2178		}
2179
2180		fotg210_dbg(fotg210,
2181				"dev%d ep%d%s qtd token %08x --> status %d\n",
2182				usb_pipedevice(urb->pipe),
2183				usb_pipeendpoint(urb->pipe),
2184				usb_pipein(urb->pipe) ? "in" : "out",
2185				token, status);
2186	}
2187
2188	return status;
2189}
2190
2191static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2192		int status)
2193__releases(fotg210->lock)
2194__acquires(fotg210->lock)
2195{
2196	if (likely(urb->hcpriv != NULL)) {
2197		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2198
2199		/* S-mask in a QH means it's an interrupt urb */
2200		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2201
2202			/* ... update hc-wide periodic stats (for usbfs) */
2203			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2204		}
2205	}
2206
2207	if (unlikely(urb->unlinked)) {
2208		INCR(fotg210->stats.unlink);
2209	} else {
2210		/* report non-error and short read status as zero */
2211		if (status == -EINPROGRESS || status == -EREMOTEIO)
2212			status = 0;
2213		INCR(fotg210->stats.complete);
2214	}
2215
2216#ifdef FOTG210_URB_TRACE
2217	fotg210_dbg(fotg210,
2218			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2219			__func__, urb->dev->devpath, urb,
2220			usb_pipeendpoint(urb->pipe),
2221			usb_pipein(urb->pipe) ? "in" : "out",
2222			status,
2223			urb->actual_length, urb->transfer_buffer_length);
2224#endif
2225
2226	/* complete() can reenter this HCD */
2227	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2228	spin_unlock(&fotg210->lock);
2229	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2230	spin_lock(&fotg210->lock);
2231}
2232
2233static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2234
2235/* Process and free completed qtds for a qh, returning URBs to drivers.
2236 * Chases up to qh->hw_current.  Returns number of completions called,
2237 * indicating how much "real" work we did.
2238 */
2239static unsigned qh_completions(struct fotg210_hcd *fotg210,
2240		struct fotg210_qh *qh)
2241{
2242	struct fotg210_qtd *last, *end = qh->dummy;
2243	struct fotg210_qtd *qtd, *tmp;
2244	int last_status;
2245	int stopped;
2246	unsigned count = 0;
2247	u8 state;
2248	struct fotg210_qh_hw *hw = qh->hw;
2249
2250	if (unlikely(list_empty(&qh->qtd_list)))
2251		return count;
2252
2253	/* completions (or tasks on other cpus) must never clobber HALT
2254	 * till we've gone through and cleaned everything up, even when
2255	 * they add urbs to this qh's queue or mark them for unlinking.
2256	 *
2257	 * NOTE:  unlinking expects to be done in queue order.
2258	 *
2259	 * It's a bug for qh->qh_state to be anything other than
2260	 * QH_STATE_IDLE, unless our caller is scan_async() or
2261	 * scan_intr().
2262	 */
2263	state = qh->qh_state;
2264	qh->qh_state = QH_STATE_COMPLETING;
2265	stopped = (state == QH_STATE_IDLE);
2266
2267rescan:
2268	last = NULL;
2269	last_status = -EINPROGRESS;
2270	qh->needs_rescan = 0;
2271
2272	/* remove de-activated QTDs from front of queue.
2273	 * after faults (including short reads), cleanup this urb
2274	 * then let the queue advance.
2275	 * if queue is stopped, handles unlinks.
2276	 */
2277	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2278		struct urb *urb;
2279		u32 token = 0;
2280
2281		urb = qtd->urb;
2282
2283		/* clean up any state from previous QTD ...*/
2284		if (last) {
2285			if (likely(last->urb != urb)) {
2286				fotg210_urb_done(fotg210, last->urb,
2287						last_status);
2288				count++;
2289				last_status = -EINPROGRESS;
2290			}
2291			fotg210_qtd_free(fotg210, last);
2292			last = NULL;
2293		}
2294
2295		/* ignore urbs submitted during completions we reported */
2296		if (qtd == end)
2297			break;
2298
2299		/* hardware copies qtd out of qh overlay */
2300		rmb();
2301		token = hc32_to_cpu(fotg210, qtd->hw_token);
2302
2303		/* always clean up qtds the hc de-activated */
2304retry_xacterr:
2305		if ((token & QTD_STS_ACTIVE) == 0) {
2306
2307			/* Report Data Buffer Error: non-fatal but useful */
2308			if (token & QTD_STS_DBE)
2309				fotg210_dbg(fotg210,
2310					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2311					urb, usb_endpoint_num(&urb->ep->desc),
2312					usb_endpoint_dir_in(&urb->ep->desc)
2313						? "in" : "out",
2314					urb->transfer_buffer_length, qtd, qh);
2315
2316			/* on STALL, error, and short reads this urb must
2317			 * complete and all its qtds must be recycled.
2318			 */
2319			if ((token & QTD_STS_HALT) != 0) {
2320
2321				/* retry transaction errors until we
2322				 * reach the software xacterr limit
2323				 */
2324				if ((token & QTD_STS_XACT) &&
2325						QTD_CERR(token) == 0 &&
2326						++qh->xacterrs < QH_XACTERR_MAX &&
2327						!urb->unlinked) {
2328					fotg210_dbg(fotg210,
2329						"detected XactErr len %zu/%zu retry %d\n",
2330						qtd->length - QTD_LENGTH(token),
2331						qtd->length,
2332						qh->xacterrs);
2333
2334					/* reset the token in the qtd and the
2335					 * qh overlay (which still contains
2336					 * the qtd) so that we pick up from
2337					 * where we left off
2338					 */
2339					token &= ~QTD_STS_HALT;
2340					token |= QTD_STS_ACTIVE |
2341						 (FOTG210_TUNE_CERR << 10);
2342					qtd->hw_token = cpu_to_hc32(fotg210,
2343							token);
2344					wmb();
2345					hw->hw_token = cpu_to_hc32(fotg210,
2346							token);
2347					goto retry_xacterr;
2348				}
2349				stopped = 1;
2350
2351			/* magic dummy for some short reads; qh won't advance.
2352			 * that silicon quirk can kick in with this dummy too.
2353			 *
2354			 * other short reads won't stop the queue, including
2355			 * control transfers (status stage handles that) or
2356			 * most other single-qtd reads ... the queue stops if
2357			 * URB_SHORT_NOT_OK was set so the driver submitting
2358			 * the urbs could clean it up.
2359			 */
2360			} else if (IS_SHORT_READ(token) &&
2361					!(qtd->hw_alt_next &
2362					FOTG210_LIST_END(fotg210))) {
2363				stopped = 1;
2364			}
2365
2366		/* stop scanning when we reach qtds the hc is using */
2367		} else if (likely(!stopped
2368				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2369			break;
2370
2371		/* scan the whole queue for unlinks whenever it stops */
2372		} else {
2373			stopped = 1;
2374
2375			/* cancel everything if we halt, suspend, etc */
2376			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2377				last_status = -ESHUTDOWN;
2378
2379			/* this qtd is active; skip it unless a previous qtd
2380			 * for its urb faulted, or its urb was canceled.
2381			 */
2382			else if (last_status == -EINPROGRESS && !urb->unlinked)
2383				continue;
2384
2385			/* qh unlinked; token in overlay may be most current */
2386			if (state == QH_STATE_IDLE &&
2387					cpu_to_hc32(fotg210, qtd->qtd_dma)
2388					== hw->hw_current) {
2389				token = hc32_to_cpu(fotg210, hw->hw_token);
2390
2391				/* An unlink may leave an incomplete
2392				 * async transaction in the TT buffer.
2393				 * We have to clear it.
2394				 */
2395				fotg210_clear_tt_buffer(fotg210, qh, urb,
2396						token);
2397			}
2398		}
2399
2400		/* unless we already know the urb's status, collect qtd status
2401		 * and update count of bytes transferred.  in common short read
2402		 * cases with only one data qtd (including control transfers),
2403		 * queue processing won't halt.  but with two or more qtds (for
2404		 * example, with a 32 KB transfer), when the first qtd gets a
2405		 * short read the second must be removed by hand.
2406		 */
2407		if (last_status == -EINPROGRESS) {
2408			last_status = qtd_copy_status(fotg210, urb,
2409					qtd->length, token);
2410			if (last_status == -EREMOTEIO &&
2411					(qtd->hw_alt_next &
2412					FOTG210_LIST_END(fotg210)))
2413				last_status = -EINPROGRESS;
2414
2415			/* As part of low/full-speed endpoint-halt processing
2416			 * we must clear the TT buffer (11.17.5).
2417			 */
2418			if (unlikely(last_status != -EINPROGRESS &&
2419					last_status != -EREMOTEIO)) {
2420				/* The TT's in some hubs malfunction when they
2421				 * receive this request following a STALL (they
2422				 * stop sending isochronous packets).  Since a
2423				 * STALL can't leave the TT buffer in a busy
2424				 * state (if you believe Figures 11-48 - 11-51
2425				 * in the USB 2.0 spec), we won't clear the TT
2426				 * buffer in this case.  Strictly speaking this
2427				 * is a violation of the spec.
2428				 */
2429				if (last_status != -EPIPE)
2430					fotg210_clear_tt_buffer(fotg210, qh,
2431							urb, token);
2432			}
2433		}
2434
2435		/* if we're removing something not at the queue head,
2436		 * patch the hardware queue pointer.
2437		 */
2438		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2439			last = list_entry(qtd->qtd_list.prev,
2440					struct fotg210_qtd, qtd_list);
2441			last->hw_next = qtd->hw_next;
2442		}
2443
2444		/* remove qtd; it's recycled after possible urb completion */
2445		list_del(&qtd->qtd_list);
2446		last = qtd;
2447
2448		/* reinit the xacterr counter for the next qtd */
2449		qh->xacterrs = 0;
2450	}
2451
2452	/* last urb's completion might still need calling */
2453	if (likely(last != NULL)) {
2454		fotg210_urb_done(fotg210, last->urb, last_status);
2455		count++;
2456		fotg210_qtd_free(fotg210, last);
2457	}
2458
2459	/* Do we need to rescan for URBs dequeued during a giveback? */
2460	if (unlikely(qh->needs_rescan)) {
2461		/* If the QH is already unlinked, do the rescan now. */
2462		if (state == QH_STATE_IDLE)
2463			goto rescan;
2464
2465		/* Otherwise we have to wait until the QH is fully unlinked.
2466		 * Our caller will start an unlink if qh->needs_rescan is
2467		 * set.  But if an unlink has already started, nothing needs
2468		 * to be done.
2469		 */
2470		if (state != QH_STATE_LINKED)
2471			qh->needs_rescan = 0;
2472	}
2473
2474	/* restore original state; caller must unlink or relink */
2475	qh->qh_state = state;
2476
2477	/* be sure the hardware's done with the qh before refreshing
2478	 * it after fault cleanup, or recovering from silicon wrongly
2479	 * overlaying the dummy qtd (which reduces DMA chatter).
2480	 */
2481	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2482		switch (state) {
2483		case QH_STATE_IDLE:
2484			qh_refresh(fotg210, qh);
2485			break;
2486		case QH_STATE_LINKED:
2487			/* We won't refresh a QH that's linked (after the HC
2488			 * stopped the queue).  That avoids a race:
2489			 *  - HC reads first part of QH;
2490			 *  - CPU updates that first part and the token;
2491			 *  - HC reads rest of that QH, including token
2492			 * Result:  HC gets an inconsistent image, and then
2493			 * DMAs to/from the wrong memory (corrupting it).
2494			 *
2495			 * That should be rare for interrupt transfers,
2496			 * except maybe high bandwidth ...
2497			 */
2498
2499			/* Tell the caller to start an unlink */
2500			qh->needs_rescan = 1;
2501			break;
2502		/* otherwise, unlink already started */
2503		}
2504	}
2505
2506	return count;
2507}
2508
2509/* reverse of qh_urb_transaction:  free a list of TDs.
2510 * used for cleanup after errors, before HC sees an URB's TDs.
2511 */
2512static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2513		struct list_head *head)
2514{
2515	struct fotg210_qtd *qtd, *temp;
2516
2517	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2518		list_del(&qtd->qtd_list);
2519		fotg210_qtd_free(fotg210, qtd);
2520	}
2521}
2522
2523/* create a list of filled qtds for this URB; won't link into qh.
2524 */
2525static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2526		struct urb *urb, struct list_head *head, gfp_t flags)
2527{
2528	struct fotg210_qtd *qtd, *qtd_prev;
2529	dma_addr_t buf;
2530	int len, this_sg_len, maxpacket;
2531	int is_input;
2532	u32 token;
2533	int i;
2534	struct scatterlist *sg;
2535
2536	/*
2537	 * URBs map to sequences of QTDs:  one logical transaction
2538	 */
2539	qtd = fotg210_qtd_alloc(fotg210, flags);
2540	if (unlikely(!qtd))
2541		return NULL;
2542	list_add_tail(&qtd->qtd_list, head);
2543	qtd->urb = urb;
2544
2545	token = QTD_STS_ACTIVE;
2546	token |= (FOTG210_TUNE_CERR << 10);
2547	/* for split transactions, SplitXState initialized to zero */
2548
2549	len = urb->transfer_buffer_length;
2550	is_input = usb_pipein(urb->pipe);
2551	if (usb_pipecontrol(urb->pipe)) {
2552		/* SETUP pid */
2553		qtd_fill(fotg210, qtd, urb->setup_dma,
2554				sizeof(struct usb_ctrlrequest),
2555				token | (2 /* "setup" */ << 8), 8);
2556
2557		/* ... and always at least one more pid */
2558		token ^= QTD_TOGGLE;
2559		qtd_prev = qtd;
2560		qtd = fotg210_qtd_alloc(fotg210, flags);
2561		if (unlikely(!qtd))
2562			goto cleanup;
2563		qtd->urb = urb;
2564		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2565		list_add_tail(&qtd->qtd_list, head);
2566
2567		/* for zero length DATA stages, STATUS is always IN */
2568		if (len == 0)
2569			token |= (1 /* "in" */ << 8);
2570	}
2571
2572	/*
2573	 * data transfer stage:  buffer setup
2574	 */
2575	i = urb->num_mapped_sgs;
2576	if (len > 0 && i > 0) {
2577		sg = urb->sg;
2578		buf = sg_dma_address(sg);
2579
2580		/* urb->transfer_buffer_length may be smaller than the
2581		 * size of the scatterlist (or vice versa)
2582		 */
2583		this_sg_len = min_t(int, sg_dma_len(sg), len);
2584	} else {
2585		sg = NULL;
2586		buf = urb->transfer_dma;
2587		this_sg_len = len;
2588	}
2589
2590	if (is_input)
2591		token |= (1 /* "in" */ << 8);
2592	/* else it's already initted to "out" pid (0 << 8) */
2593
2594	maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2595
2596	/*
2597	 * buffer gets wrapped in one or more qtds;
2598	 * last one may be "short" (including zero len)
2599	 * and may serve as a control status ack
2600	 */
2601	for (;;) {
2602		int this_qtd_len;
2603
2604		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2605				maxpacket);
2606		this_sg_len -= this_qtd_len;
2607		len -= this_qtd_len;
2608		buf += this_qtd_len;
2609
2610		/*
2611		 * short reads advance to a "magic" dummy instead of the next
2612		 * qtd ... that forces the queue to stop, for manual cleanup.
2613		 * (this will usually be overridden later.)
2614		 */
2615		if (is_input)
2616			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2617
2618		/* qh makes control packets use qtd toggle; maybe switch it */
2619		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2620			token ^= QTD_TOGGLE;
2621
2622		if (likely(this_sg_len <= 0)) {
2623			if (--i <= 0 || len <= 0)
2624				break;
2625			sg = sg_next(sg);
2626			buf = sg_dma_address(sg);
2627			this_sg_len = min_t(int, sg_dma_len(sg), len);
2628		}
2629
2630		qtd_prev = qtd;
2631		qtd = fotg210_qtd_alloc(fotg210, flags);
2632		if (unlikely(!qtd))
2633			goto cleanup;
2634		qtd->urb = urb;
2635		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2636		list_add_tail(&qtd->qtd_list, head);
2637	}
2638
2639	/*
2640	 * unless the caller requires manual cleanup after short reads,
2641	 * have the alt_next mechanism keep the queue running after the
2642	 * last data qtd (the only one, for control and most other cases).
2643	 */
2644	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2645			usb_pipecontrol(urb->pipe)))
2646		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2647
2648	/*
2649	 * control requests may need a terminating data "status" ack;
2650	 * other OUT ones may need a terminating short packet
2651	 * (zero length).
2652	 */
2653	if (likely(urb->transfer_buffer_length != 0)) {
2654		int one_more = 0;
2655
2656		if (usb_pipecontrol(urb->pipe)) {
2657			one_more = 1;
2658			token ^= 0x0100;	/* "in" <--> "out"  */
2659			token |= QTD_TOGGLE;	/* force DATA1 */
2660		} else if (usb_pipeout(urb->pipe)
2661				&& (urb->transfer_flags & URB_ZERO_PACKET)
2662				&& !(urb->transfer_buffer_length % maxpacket)) {
2663			one_more = 1;
2664		}
2665		if (one_more) {
2666			qtd_prev = qtd;
2667			qtd = fotg210_qtd_alloc(fotg210, flags);
2668			if (unlikely(!qtd))
2669				goto cleanup;
2670			qtd->urb = urb;
2671			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2672			list_add_tail(&qtd->qtd_list, head);
2673
2674			/* never any data in such packets */
2675			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2676		}
2677	}
2678
2679	/* by default, enable interrupt on urb completion */
2680	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2681		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2682	return head;
2683
2684cleanup:
2685	qtd_list_free(fotg210, urb, head);
2686	return NULL;
2687}
2688
2689/* Would be best to create all qh's from config descriptors,
2690 * when each interface/altsetting is established.  Unlink
2691 * any previous qh and cancel its urbs first; endpoints are
2692 * implicitly reset then (data toggle too).
2693 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2694*/
2695
2696
2697/* Each QH holds a qtd list; a QH is used for everything except iso.
2698 *
2699 * For interrupt urbs, the scheduler must set the microframe scheduling
2700 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2701 * just one microframe in the s-mask.  For split interrupt transactions
2702 * there are additional complications: c-mask, maybe FSTNs.
2703 */
2704static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2705		gfp_t flags)
2706{
2707	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2708	struct usb_host_endpoint *ep;
2709	u32 info1 = 0, info2 = 0;
2710	int is_input, type;
2711	int maxp = 0;
2712	int mult;
2713	struct usb_tt *tt = urb->dev->tt;
2714	struct fotg210_qh_hw *hw;
2715
2716	if (!qh)
2717		return qh;
2718
2719	/*
2720	 * init endpoint/device data for this QH
2721	 */
2722	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2723	info1 |= usb_pipedevice(urb->pipe) << 0;
2724
2725	is_input = usb_pipein(urb->pipe);
2726	type = usb_pipetype(urb->pipe);
2727	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2728	maxp = usb_endpoint_maxp(&ep->desc);
2729	mult = usb_endpoint_maxp_mult(&ep->desc);
2730
2731	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2732	 * acts like up to 3KB, but is built from smaller packets.
2733	 */
2734	if (maxp > 1024) {
2735		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2736		goto done;
2737	}
2738
2739	/* Compute interrupt scheduling parameters just once, and save.
2740	 * - allowing for high bandwidth, how many nsec/uframe are used?
2741	 * - split transactions need a second CSPLIT uframe; same question
2742	 * - splits also need a schedule gap (for full/low speed I/O)
2743	 * - qh has a polling interval
2744	 *
2745	 * For control/bulk requests, the HC or TT handles these.
2746	 */
2747	if (type == PIPE_INTERRUPT) {
2748		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2749				is_input, 0, mult * maxp));
2750		qh->start = NO_FRAME;
2751
2752		if (urb->dev->speed == USB_SPEED_HIGH) {
2753			qh->c_usecs = 0;
2754			qh->gap_uf = 0;
2755
2756			qh->period = urb->interval >> 3;
2757			if (qh->period == 0 && urb->interval != 1) {
2758				/* NOTE interval 2 or 4 uframes could work.
2759				 * But interval 1 scheduling is simpler, and
2760				 * includes high bandwidth.
2761				 */
2762				urb->interval = 1;
2763			} else if (qh->period > fotg210->periodic_size) {
2764				qh->period = fotg210->periodic_size;
2765				urb->interval = qh->period << 3;
2766			}
2767		} else {
2768			int think_time;
2769
2770			/* gap is f(FS/LS transfer times) */
2771			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2772					is_input, 0, maxp) / (125 * 1000);
2773
2774			/* FIXME this just approximates SPLIT/CSPLIT times */
2775			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2776				qh->c_usecs = qh->usecs + HS_USECS(0);
2777				qh->usecs = HS_USECS(1);
2778			} else {		/* SPLIT+DATA, gap, CSPLIT */
2779				qh->usecs += HS_USECS(1);
2780				qh->c_usecs = HS_USECS(0);
2781			}
2782
2783			think_time = tt ? tt->think_time : 0;
2784			qh->tt_usecs = NS_TO_US(think_time +
2785					usb_calc_bus_time(urb->dev->speed,
2786					is_input, 0, maxp));
2787			qh->period = urb->interval;
2788			if (qh->period > fotg210->periodic_size) {
2789				qh->period = fotg210->periodic_size;
2790				urb->interval = qh->period;
2791			}
2792		}
2793	}
2794
2795	/* support for tt scheduling, and access to toggles */
2796	qh->dev = urb->dev;
2797
2798	/* using TT? */
2799	switch (urb->dev->speed) {
2800	case USB_SPEED_LOW:
2801		info1 |= QH_LOW_SPEED;
2802		fallthrough;
2803
2804	case USB_SPEED_FULL:
2805		/* EPS 0 means "full" */
2806		if (type != PIPE_INTERRUPT)
2807			info1 |= (FOTG210_TUNE_RL_TT << 28);
2808		if (type == PIPE_CONTROL) {
2809			info1 |= QH_CONTROL_EP;		/* for TT */
2810			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2811		}
2812		info1 |= maxp << 16;
2813
2814		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2815
2816		/* Some Freescale processors have an erratum in which the
2817		 * port number in the queue head was 0..N-1 instead of 1..N.
2818		 */
2819		if (fotg210_has_fsl_portno_bug(fotg210))
2820			info2 |= (urb->dev->ttport-1) << 23;
2821		else
2822			info2 |= urb->dev->ttport << 23;
2823
2824		/* set the address of the TT; for TDI's integrated
2825		 * root hub tt, leave it zeroed.
2826		 */
2827		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2828			info2 |= tt->hub->devnum << 16;
2829
2830		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2831
2832		break;
2833
2834	case USB_SPEED_HIGH:		/* no TT involved */
2835		info1 |= QH_HIGH_SPEED;
2836		if (type == PIPE_CONTROL) {
2837			info1 |= (FOTG210_TUNE_RL_HS << 28);
2838			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2839			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2840			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2841		} else if (type == PIPE_BULK) {
2842			info1 |= (FOTG210_TUNE_RL_HS << 28);
2843			/* The USB spec says that high speed bulk endpoints
2844			 * always use 512 byte maxpacket.  But some device
2845			 * vendors decided to ignore that, and MSFT is happy
2846			 * to help them do so.  So now people expect to use
2847			 * such nonconformant devices with Linux too; sigh.
2848			 */
2849			info1 |= maxp << 16;
2850			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2851		} else {		/* PIPE_INTERRUPT */
2852			info1 |= maxp << 16;
2853			info2 |= mult << 30;
2854		}
2855		break;
2856	default:
2857		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2858				urb->dev->speed);
2859done:
2860		qh_destroy(fotg210, qh);
2861		return NULL;
2862	}
2863
2864	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2865
2866	/* init as live, toggle clear, advance to dummy */
2867	qh->qh_state = QH_STATE_IDLE;
2868	hw = qh->hw;
2869	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2870	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2871	qh->is_out = !is_input;
2872	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2873	qh_refresh(fotg210, qh);
2874	return qh;
2875}
2876
2877static void enable_async(struct fotg210_hcd *fotg210)
2878{
2879	if (fotg210->async_count++)
2880		return;
2881
2882	/* Stop waiting to turn off the async schedule */
2883	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2884
2885	/* Don't start the schedule until ASS is 0 */
2886	fotg210_poll_ASS(fotg210);
2887	turn_on_io_watchdog(fotg210);
2888}
2889
2890static void disable_async(struct fotg210_hcd *fotg210)
2891{
2892	if (--fotg210->async_count)
2893		return;
2894
2895	/* The async schedule and async_unlink list are supposed to be empty */
2896	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2897
2898	/* Don't turn off the schedule until ASS is 1 */
2899	fotg210_poll_ASS(fotg210);
2900}
2901
2902/* move qh (and its qtds) onto async queue; maybe enable queue.  */
2903
2904static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2905{
2906	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2907	struct fotg210_qh *head;
2908
2909	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2910	if (unlikely(qh->clearing_tt))
2911		return;
2912
2913	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2914
2915	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2916	qh_refresh(fotg210, qh);
2917
2918	/* splice right after start */
2919	head = fotg210->async;
2920	qh->qh_next = head->qh_next;
2921	qh->hw->hw_next = head->hw->hw_next;
2922	wmb();
2923
2924	head->qh_next.qh = qh;
2925	head->hw->hw_next = dma;
2926
2927	qh->xacterrs = 0;
2928	qh->qh_state = QH_STATE_LINKED;
2929	/* qtd completions reported later by interrupt */
2930
2931	enable_async(fotg210);
2932}
2933
2934/* For control/bulk/interrupt, return QH with these TDs appended.
2935 * Allocates and initializes the QH if necessary.
2936 * Returns null if it can't allocate a QH it needs to.
2937 * If the QH has TDs (urbs) already, that's great.
2938 */
2939static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2940		struct urb *urb, struct list_head *qtd_list,
2941		int epnum, void **ptr)
2942{
2943	struct fotg210_qh *qh = NULL;
2944	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2945
2946	qh = (struct fotg210_qh *) *ptr;
2947	if (unlikely(qh == NULL)) {
2948		/* can't sleep here, we have fotg210->lock... */
2949		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2950		*ptr = qh;
2951	}
2952	if (likely(qh != NULL)) {
2953		struct fotg210_qtd *qtd;
2954
2955		if (unlikely(list_empty(qtd_list)))
2956			qtd = NULL;
2957		else
2958			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2959					qtd_list);
2960
2961		/* control qh may need patching ... */
2962		if (unlikely(epnum == 0)) {
2963			/* usb_reset_device() briefly reverts to address 0 */
2964			if (usb_pipedevice(urb->pipe) == 0)
2965				qh->hw->hw_info1 &= ~qh_addr_mask;
2966		}
2967
2968		/* just one way to queue requests: swap with the dummy qtd.
2969		 * only hc or qh_refresh() ever modify the overlay.
2970		 */
2971		if (likely(qtd != NULL)) {
2972			struct fotg210_qtd *dummy;
2973			dma_addr_t dma;
2974			__hc32 token;
2975
2976			/* to avoid racing the HC, use the dummy td instead of
2977			 * the first td of our list (becomes new dummy).  both
2978			 * tds stay deactivated until we're done, when the
2979			 * HC is allowed to fetch the old dummy (4.10.2).
2980			 */
2981			token = qtd->hw_token;
2982			qtd->hw_token = HALT_BIT(fotg210);
2983
2984			dummy = qh->dummy;
2985
2986			dma = dummy->qtd_dma;
2987			*dummy = *qtd;
2988			dummy->qtd_dma = dma;
2989
2990			list_del(&qtd->qtd_list);
2991			list_add(&dummy->qtd_list, qtd_list);
2992			list_splice_tail(qtd_list, &qh->qtd_list);
2993
2994			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2995			qh->dummy = qtd;
2996
2997			/* hc must see the new dummy at list end */
2998			dma = qtd->qtd_dma;
2999			qtd = list_entry(qh->qtd_list.prev,
3000					struct fotg210_qtd, qtd_list);
3001			qtd->hw_next = QTD_NEXT(fotg210, dma);
3002
3003			/* let the hc process these next qtds */
3004			wmb();
3005			dummy->hw_token = token;
3006
3007			urb->hcpriv = qh;
3008		}
3009	}
3010	return qh;
3011}
3012
3013static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3014		struct list_head *qtd_list, gfp_t mem_flags)
3015{
3016	int epnum;
3017	unsigned long flags;
3018	struct fotg210_qh *qh = NULL;
3019	int rc;
3020
3021	epnum = urb->ep->desc.bEndpointAddress;
3022
3023#ifdef FOTG210_URB_TRACE
3024	{
3025		struct fotg210_qtd *qtd;
3026
3027		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3028		fotg210_dbg(fotg210,
3029				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3030				__func__, urb->dev->devpath, urb,
3031				epnum & 0x0f, (epnum & USB_DIR_IN)
3032					? "in" : "out",
3033				urb->transfer_buffer_length,
3034				qtd, urb->ep->hcpriv);
3035	}
3036#endif
3037
3038	spin_lock_irqsave(&fotg210->lock, flags);
3039	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3040		rc = -ESHUTDOWN;
3041		goto done;
3042	}
3043	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3044	if (unlikely(rc))
3045		goto done;
3046
3047	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3048	if (unlikely(qh == NULL)) {
3049		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3050		rc = -ENOMEM;
3051		goto done;
3052	}
3053
3054	/* Control/bulk operations through TTs don't need scheduling,
3055	 * the HC and TT handle it when the TT has a buffer ready.
3056	 */
3057	if (likely(qh->qh_state == QH_STATE_IDLE))
3058		qh_link_async(fotg210, qh);
3059done:
3060	spin_unlock_irqrestore(&fotg210->lock, flags);
3061	if (unlikely(qh == NULL))
3062		qtd_list_free(fotg210, urb, qtd_list);
3063	return rc;
3064}
3065
3066static void single_unlink_async(struct fotg210_hcd *fotg210,
3067		struct fotg210_qh *qh)
3068{
3069	struct fotg210_qh *prev;
3070
3071	/* Add to the end of the list of QHs waiting for the next IAAD */
3072	qh->qh_state = QH_STATE_UNLINK;
3073	if (fotg210->async_unlink)
3074		fotg210->async_unlink_last->unlink_next = qh;
3075	else
3076		fotg210->async_unlink = qh;
3077	fotg210->async_unlink_last = qh;
3078
3079	/* Unlink it from the schedule */
3080	prev = fotg210->async;
3081	while (prev->qh_next.qh != qh)
3082		prev = prev->qh_next.qh;
3083
3084	prev->hw->hw_next = qh->hw->hw_next;
3085	prev->qh_next = qh->qh_next;
3086	if (fotg210->qh_scan_next == qh)
3087		fotg210->qh_scan_next = qh->qh_next.qh;
3088}
3089
3090static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3091{
3092	/*
3093	 * Do nothing if an IAA cycle is already running or
3094	 * if one will be started shortly.
3095	 */
3096	if (fotg210->async_iaa || fotg210->async_unlinking)
3097		return;
3098
3099	/* Do all the waiting QHs at once */
3100	fotg210->async_iaa = fotg210->async_unlink;
3101	fotg210->async_unlink = NULL;
3102
3103	/* If the controller isn't running, we don't have to wait for it */
3104	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3105		if (!nested)		/* Avoid recursion */
3106			end_unlink_async(fotg210);
3107
3108	/* Otherwise start a new IAA cycle */
3109	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3110		/* Make sure the unlinks are all visible to the hardware */
3111		wmb();
3112
3113		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3114				&fotg210->regs->command);
3115		fotg210_readl(fotg210, &fotg210->regs->command);
3116		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3117				true);
3118	}
3119}
3120
3121/* the async qh for the qtds being unlinked are now gone from the HC */
3122
3123static void end_unlink_async(struct fotg210_hcd *fotg210)
3124{
3125	struct fotg210_qh *qh;
3126
3127	/* Process the idle QHs */
3128restart:
3129	fotg210->async_unlinking = true;
3130	while (fotg210->async_iaa) {
3131		qh = fotg210->async_iaa;
3132		fotg210->async_iaa = qh->unlink_next;
3133		qh->unlink_next = NULL;
3134
3135		qh->qh_state = QH_STATE_IDLE;
3136		qh->qh_next.qh = NULL;
3137
3138		qh_completions(fotg210, qh);
3139		if (!list_empty(&qh->qtd_list) &&
3140				fotg210->rh_state == FOTG210_RH_RUNNING)
3141			qh_link_async(fotg210, qh);
3142		disable_async(fotg210);
3143	}
3144	fotg210->async_unlinking = false;
3145
3146	/* Start a new IAA cycle if any QHs are waiting for it */
3147	if (fotg210->async_unlink) {
3148		start_iaa_cycle(fotg210, true);
3149		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3150			goto restart;
3151	}
3152}
3153
3154static void unlink_empty_async(struct fotg210_hcd *fotg210)
3155{
3156	struct fotg210_qh *qh, *next;
3157	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3158	bool check_unlinks_later = false;
3159
3160	/* Unlink all the async QHs that have been empty for a timer cycle */
3161	next = fotg210->async->qh_next.qh;
3162	while (next) {
3163		qh = next;
3164		next = qh->qh_next.qh;
3165
3166		if (list_empty(&qh->qtd_list) &&
3167				qh->qh_state == QH_STATE_LINKED) {
3168			if (!stopped && qh->unlink_cycle ==
3169					fotg210->async_unlink_cycle)
3170				check_unlinks_later = true;
3171			else
3172				single_unlink_async(fotg210, qh);
3173		}
3174	}
3175
3176	/* Start a new IAA cycle if any QHs are waiting for it */
3177	if (fotg210->async_unlink)
3178		start_iaa_cycle(fotg210, false);
3179
3180	/* QHs that haven't been empty for long enough will be handled later */
3181	if (check_unlinks_later) {
3182		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3183				true);
3184		++fotg210->async_unlink_cycle;
3185	}
3186}
3187
3188/* makes sure the async qh will become idle */
3189/* caller must own fotg210->lock */
3190
3191static void start_unlink_async(struct fotg210_hcd *fotg210,
3192		struct fotg210_qh *qh)
3193{
3194	/*
3195	 * If the QH isn't linked then there's nothing we can do
3196	 * unless we were called during a giveback, in which case
3197	 * qh_completions() has to deal with it.
3198	 */
3199	if (qh->qh_state != QH_STATE_LINKED) {
3200		if (qh->qh_state == QH_STATE_COMPLETING)
3201			qh->needs_rescan = 1;
3202		return;
3203	}
3204
3205	single_unlink_async(fotg210, qh);
3206	start_iaa_cycle(fotg210, false);
3207}
3208
3209static void scan_async(struct fotg210_hcd *fotg210)
3210{
3211	struct fotg210_qh *qh;
3212	bool check_unlinks_later = false;
3213
3214	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3215	while (fotg210->qh_scan_next) {
3216		qh = fotg210->qh_scan_next;
3217		fotg210->qh_scan_next = qh->qh_next.qh;
3218rescan:
3219		/* clean any finished work for this qh */
3220		if (!list_empty(&qh->qtd_list)) {
3221			int temp;
3222
3223			/*
3224			 * Unlinks could happen here; completion reporting
3225			 * drops the lock.  That's why fotg210->qh_scan_next
3226			 * always holds the next qh to scan; if the next qh
3227			 * gets unlinked then fotg210->qh_scan_next is adjusted
3228			 * in single_unlink_async().
3229			 */
3230			temp = qh_completions(fotg210, qh);
3231			if (qh->needs_rescan) {
3232				start_unlink_async(fotg210, qh);
3233			} else if (list_empty(&qh->qtd_list)
3234					&& qh->qh_state == QH_STATE_LINKED) {
3235				qh->unlink_cycle = fotg210->async_unlink_cycle;
3236				check_unlinks_later = true;
3237			} else if (temp != 0)
3238				goto rescan;
3239		}
3240	}
3241
3242	/*
3243	 * Unlink empty entries, reducing DMA usage as well
3244	 * as HCD schedule-scanning costs.  Delay for any qh
3245	 * we just scanned, there's a not-unusual case that it
3246	 * doesn't stay idle for long.
3247	 */
3248	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3249			!(fotg210->enabled_hrtimer_events &
3250			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3251		fotg210_enable_event(fotg210,
3252				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3253		++fotg210->async_unlink_cycle;
3254	}
3255}
3256/* EHCI scheduled transaction support:  interrupt, iso, split iso
3257 * These are called "periodic" transactions in the EHCI spec.
3258 *
3259 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3260 * with the "asynchronous" transaction support (control/bulk transfers).
3261 * The only real difference is in how interrupt transfers are scheduled.
3262 *
3263 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3264 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3265 * pre-calculated schedule data to make appending to the queue be quick.
3266 */
3267static int fotg210_get_frame(struct usb_hcd *hcd);
3268
3269/* periodic_next_shadow - return "next" pointer on shadow list
3270 * @periodic: host pointer to qh/itd
3271 * @tag: hardware tag for type of this record
3272 */
3273static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3274		union fotg210_shadow *periodic, __hc32 tag)
3275{
3276	switch (hc32_to_cpu(fotg210, tag)) {
3277	case Q_TYPE_QH:
3278		return &periodic->qh->qh_next;
3279	case Q_TYPE_FSTN:
3280		return &periodic->fstn->fstn_next;
3281	default:
3282		return &periodic->itd->itd_next;
3283	}
3284}
3285
3286static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3287		union fotg210_shadow *periodic, __hc32 tag)
3288{
3289	switch (hc32_to_cpu(fotg210, tag)) {
3290	/* our fotg210_shadow.qh is actually software part */
3291	case Q_TYPE_QH:
3292		return &periodic->qh->hw->hw_next;
3293	/* others are hw parts */
3294	default:
3295		return periodic->hw_next;
3296	}
3297}
3298
3299/* caller must hold fotg210->lock */
3300static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3301		void *ptr)
3302{
3303	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3304	__hc32 *hw_p = &fotg210->periodic[frame];
3305	union fotg210_shadow here = *prev_p;
3306
3307	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3308	while (here.ptr && here.ptr != ptr) {
3309		prev_p = periodic_next_shadow(fotg210, prev_p,
3310				Q_NEXT_TYPE(fotg210, *hw_p));
3311		hw_p = shadow_next_periodic(fotg210, &here,
3312				Q_NEXT_TYPE(fotg210, *hw_p));
3313		here = *prev_p;
3314	}
3315	/* an interrupt entry (at list end) could have been shared */
3316	if (!here.ptr)
3317		return;
3318
3319	/* update shadow and hardware lists ... the old "next" pointers
3320	 * from ptr may still be in use, the caller updates them.
3321	 */
3322	*prev_p = *periodic_next_shadow(fotg210, &here,
3323			Q_NEXT_TYPE(fotg210, *hw_p));
3324
3325	*hw_p = *shadow_next_periodic(fotg210, &here,
3326			Q_NEXT_TYPE(fotg210, *hw_p));
3327}
3328
3329/* how many of the uframe's 125 usecs are allocated? */
3330static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3331		unsigned frame, unsigned uframe)
3332{
3333	__hc32 *hw_p = &fotg210->periodic[frame];
3334	union fotg210_shadow *q = &fotg210->pshadow[frame];
3335	unsigned usecs = 0;
3336	struct fotg210_qh_hw *hw;
3337
3338	while (q->ptr) {
3339		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3340		case Q_TYPE_QH:
3341			hw = q->qh->hw;
3342			/* is it in the S-mask? */
3343			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3344				usecs += q->qh->usecs;
3345			/* ... or C-mask? */
3346			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3347					1 << (8 + uframe)))
3348				usecs += q->qh->c_usecs;
3349			hw_p = &hw->hw_next;
3350			q = &q->qh->qh_next;
3351			break;
3352		/* case Q_TYPE_FSTN: */
3353		default:
3354			/* for "save place" FSTNs, count the relevant INTR
3355			 * bandwidth from the previous frame
3356			 */
3357			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3358				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3359
3360			hw_p = &q->fstn->hw_next;
3361			q = &q->fstn->fstn_next;
3362			break;
3363		case Q_TYPE_ITD:
3364			if (q->itd->hw_transaction[uframe])
3365				usecs += q->itd->stream->usecs;
3366			hw_p = &q->itd->hw_next;
3367			q = &q->itd->itd_next;
3368			break;
3369		}
3370	}
3371	if (usecs > fotg210->uframe_periodic_max)
3372		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3373				frame * 8 + uframe, usecs);
3374	return usecs;
3375}
3376
3377static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3378{
3379	if (!dev1->tt || !dev2->tt)
3380		return 0;
3381	if (dev1->tt != dev2->tt)
3382		return 0;
3383	if (dev1->tt->multi)
3384		return dev1->ttport == dev2->ttport;
3385	else
3386		return 1;
3387}
3388
3389/* return true iff the device's transaction translator is available
3390 * for a periodic transfer starting at the specified frame, using
3391 * all the uframes in the mask.
3392 */
3393static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3394		struct usb_device *dev, unsigned frame, u32 uf_mask)
3395{
3396	if (period == 0)	/* error */
3397		return 0;
3398
3399	/* note bandwidth wastage:  split never follows csplit
3400	 * (different dev or endpoint) until the next uframe.
3401	 * calling convention doesn't make that distinction.
3402	 */
3403	for (; frame < fotg210->periodic_size; frame += period) {
3404		union fotg210_shadow here;
3405		__hc32 type;
3406		struct fotg210_qh_hw *hw;
3407
3408		here = fotg210->pshadow[frame];
3409		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3410		while (here.ptr) {
3411			switch (hc32_to_cpu(fotg210, type)) {
3412			case Q_TYPE_ITD:
3413				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3414				here = here.itd->itd_next;
3415				continue;
3416			case Q_TYPE_QH:
3417				hw = here.qh->hw;
3418				if (same_tt(dev, here.qh->dev)) {
3419					u32 mask;
3420
3421					mask = hc32_to_cpu(fotg210,
3422							hw->hw_info2);
3423					/* "knows" no gap is needed */
3424					mask |= mask >> 8;
3425					if (mask & uf_mask)
3426						break;
3427				}
3428				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3429				here = here.qh->qh_next;
3430				continue;
3431			/* case Q_TYPE_FSTN: */
3432			default:
3433				fotg210_dbg(fotg210,
3434						"periodic frame %d bogus type %d\n",
3435						frame, type);
3436			}
3437
3438			/* collision or error */
3439			return 0;
3440		}
3441	}
3442
3443	/* no collision */
3444	return 1;
3445}
3446
3447static void enable_periodic(struct fotg210_hcd *fotg210)
3448{
3449	if (fotg210->periodic_count++)
3450		return;
3451
3452	/* Stop waiting to turn off the periodic schedule */
3453	fotg210->enabled_hrtimer_events &=
3454		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3455
3456	/* Don't start the schedule until PSS is 0 */
3457	fotg210_poll_PSS(fotg210);
3458	turn_on_io_watchdog(fotg210);
3459}
3460
3461static void disable_periodic(struct fotg210_hcd *fotg210)
3462{
3463	if (--fotg210->periodic_count)
3464		return;
3465
3466	/* Don't turn off the schedule until PSS is 1 */
3467	fotg210_poll_PSS(fotg210);
3468}
3469
3470/* periodic schedule slots have iso tds (normal or split) first, then a
3471 * sparse tree for active interrupt transfers.
3472 *
3473 * this just links in a qh; caller guarantees uframe masks are set right.
3474 * no FSTN support (yet; fotg210 0.96+)
3475 */
3476static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3477{
3478	unsigned i;
3479	unsigned period = qh->period;
3480
3481	dev_dbg(&qh->dev->dev,
3482			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3483			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3484			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3485			qh->c_usecs);
3486
3487	/* high bandwidth, or otherwise every microframe */
3488	if (period == 0)
3489		period = 1;
3490
3491	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3492		union fotg210_shadow *prev = &fotg210->pshadow[i];
3493		__hc32 *hw_p = &fotg210->periodic[i];
3494		union fotg210_shadow here = *prev;
3495		__hc32 type = 0;
3496
3497		/* skip the iso nodes at list head */
3498		while (here.ptr) {
3499			type = Q_NEXT_TYPE(fotg210, *hw_p);
3500			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3501				break;
3502			prev = periodic_next_shadow(fotg210, prev, type);
3503			hw_p = shadow_next_periodic(fotg210, &here, type);
3504			here = *prev;
3505		}
3506
3507		/* sorting each branch by period (slow-->fast)
3508		 * enables sharing interior tree nodes
3509		 */
3510		while (here.ptr && qh != here.qh) {
3511			if (qh->period > here.qh->period)
3512				break;
3513			prev = &here.qh->qh_next;
3514			hw_p = &here.qh->hw->hw_next;
3515			here = *prev;
3516		}
3517		/* link in this qh, unless some earlier pass did that */
3518		if (qh != here.qh) {
3519			qh->qh_next = here;
3520			if (here.qh)
3521				qh->hw->hw_next = *hw_p;
3522			wmb();
3523			prev->qh = qh;
3524			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3525		}
3526	}
3527	qh->qh_state = QH_STATE_LINKED;
3528	qh->xacterrs = 0;
3529
3530	/* update per-qh bandwidth for usbfs */
3531	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3532		? ((qh->usecs + qh->c_usecs) / qh->period)
3533		: (qh->usecs * 8);
3534
3535	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3536
3537	/* maybe enable periodic schedule processing */
3538	++fotg210->intr_count;
3539	enable_periodic(fotg210);
3540}
3541
3542static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3543		struct fotg210_qh *qh)
3544{
3545	unsigned i;
3546	unsigned period;
3547
3548	/*
3549	 * If qh is for a low/full-speed device, simply unlinking it
3550	 * could interfere with an ongoing split transaction.  To unlink
3551	 * it safely would require setting the QH_INACTIVATE bit and
3552	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3553	 *
3554	 * We won't bother with any of this.  Instead, we assume that the
3555	 * only reason for unlinking an interrupt QH while the current URB
3556	 * is still active is to dequeue all the URBs (flush the whole
3557	 * endpoint queue).
3558	 *
3559	 * If rebalancing the periodic schedule is ever implemented, this
3560	 * approach will no longer be valid.
3561	 */
3562
3563	/* high bandwidth, or otherwise part of every microframe */
3564	period = qh->period;
3565	if (!period)
3566		period = 1;
3567
3568	for (i = qh->start; i < fotg210->periodic_size; i += period)
3569		periodic_unlink(fotg210, i, qh);
3570
3571	/* update per-qh bandwidth for usbfs */
3572	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3573		? ((qh->usecs + qh->c_usecs) / qh->period)
3574		: (qh->usecs * 8);
3575
3576	dev_dbg(&qh->dev->dev,
3577			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3578			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3579			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3580			qh->c_usecs);
3581
3582	/* qh->qh_next still "live" to HC */
3583	qh->qh_state = QH_STATE_UNLINK;
3584	qh->qh_next.ptr = NULL;
3585
3586	if (fotg210->qh_scan_next == qh)
3587		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3588				struct fotg210_qh, intr_node);
3589	list_del(&qh->intr_node);
3590}
3591
3592static void start_unlink_intr(struct fotg210_hcd *fotg210,
3593		struct fotg210_qh *qh)
3594{
3595	/* If the QH isn't linked then there's nothing we can do
3596	 * unless we were called during a giveback, in which case
3597	 * qh_completions() has to deal with it.
3598	 */
3599	if (qh->qh_state != QH_STATE_LINKED) {
3600		if (qh->qh_state == QH_STATE_COMPLETING)
3601			qh->needs_rescan = 1;
3602		return;
3603	}
3604
3605	qh_unlink_periodic(fotg210, qh);
3606
3607	/* Make sure the unlinks are visible before starting the timer */
3608	wmb();
3609
3610	/*
3611	 * The EHCI spec doesn't say how long it takes the controller to
3612	 * stop accessing an unlinked interrupt QH.  The timer delay is
3613	 * 9 uframes; presumably that will be long enough.
3614	 */
3615	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3616
3617	/* New entries go at the end of the intr_unlink list */
3618	if (fotg210->intr_unlink)
3619		fotg210->intr_unlink_last->unlink_next = qh;
3620	else
3621		fotg210->intr_unlink = qh;
3622	fotg210->intr_unlink_last = qh;
3623
3624	if (fotg210->intr_unlinking)
3625		;	/* Avoid recursive calls */
3626	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3627		fotg210_handle_intr_unlinks(fotg210);
3628	else if (fotg210->intr_unlink == qh) {
3629		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3630				true);
3631		++fotg210->intr_unlink_cycle;
3632	}
3633}
3634
3635static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3636{
3637	struct fotg210_qh_hw *hw = qh->hw;
3638	int rc;
3639
3640	qh->qh_state = QH_STATE_IDLE;
3641	hw->hw_next = FOTG210_LIST_END(fotg210);
3642
3643	qh_completions(fotg210, qh);
3644
3645	/* reschedule QH iff another request is queued */
3646	if (!list_empty(&qh->qtd_list) &&
3647			fotg210->rh_state == FOTG210_RH_RUNNING) {
3648		rc = qh_schedule(fotg210, qh);
3649
3650		/* An error here likely indicates handshake failure
3651		 * or no space left in the schedule.  Neither fault
3652		 * should happen often ...
3653		 *
3654		 * FIXME kill the now-dysfunctional queued urbs
3655		 */
3656		if (rc != 0)
3657			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3658					qh, rc);
3659	}
3660
3661	/* maybe turn off periodic schedule */
3662	--fotg210->intr_count;
3663	disable_periodic(fotg210);
3664}
3665
3666static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3667		unsigned uframe, unsigned period, unsigned usecs)
3668{
3669	int claimed;
3670
3671	/* complete split running into next frame?
3672	 * given FSTN support, we could sometimes check...
3673	 */
3674	if (uframe >= 8)
3675		return 0;
3676
3677	/* convert "usecs we need" to "max already claimed" */
3678	usecs = fotg210->uframe_periodic_max - usecs;
3679
3680	/* we "know" 2 and 4 uframe intervals were rejected; so
3681	 * for period 0, check _every_ microframe in the schedule.
3682	 */
3683	if (unlikely(period == 0)) {
3684		do {
3685			for (uframe = 0; uframe < 7; uframe++) {
3686				claimed = periodic_usecs(fotg210, frame,
3687						uframe);
3688				if (claimed > usecs)
3689					return 0;
3690			}
3691		} while ((frame += 1) < fotg210->periodic_size);
3692
3693	/* just check the specified uframe, at that period */
3694	} else {
3695		do {
3696			claimed = periodic_usecs(fotg210, frame, uframe);
3697			if (claimed > usecs)
3698				return 0;
3699		} while ((frame += period) < fotg210->periodic_size);
3700	}
3701
3702	/* success! */
3703	return 1;
3704}
3705
3706static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3707		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3708{
3709	int retval = -ENOSPC;
3710	u8 mask = 0;
3711
3712	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3713		goto done;
3714
3715	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3716		goto done;
3717	if (!qh->c_usecs) {
3718		retval = 0;
3719		*c_maskp = 0;
3720		goto done;
3721	}
3722
3723	/* Make sure this tt's buffer is also available for CSPLITs.
3724	 * We pessimize a bit; probably the typical full speed case
3725	 * doesn't need the second CSPLIT.
3726	 *
3727	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3728	 * one smart pass...
3729	 */
3730	mask = 0x03 << (uframe + qh->gap_uf);
3731	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3732
3733	mask |= 1 << uframe;
3734	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3735		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3736				qh->period, qh->c_usecs))
3737			goto done;
3738		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3739				qh->period, qh->c_usecs))
3740			goto done;
3741		retval = 0;
3742	}
3743done:
3744	return retval;
3745}
3746
3747/* "first fit" scheduling policy used the first time through,
3748 * or when the previous schedule slot can't be re-used.
3749 */
3750static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3751{
3752	int status;
3753	unsigned uframe;
3754	__hc32 c_mask;
3755	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3756	struct fotg210_qh_hw *hw = qh->hw;
3757
3758	qh_refresh(fotg210, qh);
3759	hw->hw_next = FOTG210_LIST_END(fotg210);
3760	frame = qh->start;
3761
3762	/* reuse the previous schedule slots, if we can */
3763	if (frame < qh->period) {
3764		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3765		status = check_intr_schedule(fotg210, frame, --uframe,
3766				qh, &c_mask);
3767	} else {
3768		uframe = 0;
3769		c_mask = 0;
3770		status = -ENOSPC;
3771	}
3772
3773	/* else scan the schedule to find a group of slots such that all
3774	 * uframes have enough periodic bandwidth available.
3775	 */
3776	if (status) {
3777		/* "normal" case, uframing flexible except with splits */
3778		if (qh->period) {
3779			int i;
3780
3781			for (i = qh->period; status && i > 0; --i) {
3782				frame = ++fotg210->random_frame % qh->period;
3783				for (uframe = 0; uframe < 8; uframe++) {
3784					status = check_intr_schedule(fotg210,
3785							frame, uframe, qh,
3786							&c_mask);
3787					if (status == 0)
3788						break;
3789				}
3790			}
3791
3792		/* qh->period == 0 means every uframe */
3793		} else {
3794			frame = 0;
3795			status = check_intr_schedule(fotg210, 0, 0, qh,
3796					&c_mask);
3797		}
3798		if (status)
3799			goto done;
3800		qh->start = frame;
3801
3802		/* reset S-frame and (maybe) C-frame masks */
3803		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3804		hw->hw_info2 |= qh->period
3805			? cpu_to_hc32(fotg210, 1 << uframe)
3806			: cpu_to_hc32(fotg210, QH_SMASK);
3807		hw->hw_info2 |= c_mask;
3808	} else
3809		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3810
3811	/* stuff into the periodic schedule */
3812	qh_link_periodic(fotg210, qh);
3813done:
3814	return status;
3815}
3816
3817static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3818		struct list_head *qtd_list, gfp_t mem_flags)
3819{
3820	unsigned epnum;
3821	unsigned long flags;
3822	struct fotg210_qh *qh;
3823	int status;
3824	struct list_head empty;
3825
3826	/* get endpoint and transfer/schedule data */
3827	epnum = urb->ep->desc.bEndpointAddress;
3828
3829	spin_lock_irqsave(&fotg210->lock, flags);
3830
3831	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3832		status = -ESHUTDOWN;
3833		goto done_not_linked;
3834	}
3835	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3836	if (unlikely(status))
3837		goto done_not_linked;
3838
3839	/* get qh and force any scheduling errors */
3840	INIT_LIST_HEAD(&empty);
3841	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3842	if (qh == NULL) {
3843		status = -ENOMEM;
3844		goto done;
3845	}
3846	if (qh->qh_state == QH_STATE_IDLE) {
3847		status = qh_schedule(fotg210, qh);
3848		if (status)
3849			goto done;
3850	}
3851
3852	/* then queue the urb's tds to the qh */
3853	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3854	BUG_ON(qh == NULL);
3855
3856	/* ... update usbfs periodic stats */
3857	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3858
3859done:
3860	if (unlikely(status))
3861		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3862done_not_linked:
3863	spin_unlock_irqrestore(&fotg210->lock, flags);
3864	if (status)
3865		qtd_list_free(fotg210, urb, qtd_list);
3866
3867	return status;
3868}
3869
3870static void scan_intr(struct fotg210_hcd *fotg210)
3871{
3872	struct fotg210_qh *qh;
3873
3874	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3875			&fotg210->intr_qh_list, intr_node) {
3876rescan:
3877		/* clean any finished work for this qh */
3878		if (!list_empty(&qh->qtd_list)) {
3879			int temp;
3880
3881			/*
3882			 * Unlinks could happen here; completion reporting
3883			 * drops the lock.  That's why fotg210->qh_scan_next
3884			 * always holds the next qh to scan; if the next qh
3885			 * gets unlinked then fotg210->qh_scan_next is adjusted
3886			 * in qh_unlink_periodic().
3887			 */
3888			temp = qh_completions(fotg210, qh);
3889			if (unlikely(qh->needs_rescan ||
3890					(list_empty(&qh->qtd_list) &&
3891					qh->qh_state == QH_STATE_LINKED)))
3892				start_unlink_intr(fotg210, qh);
3893			else if (temp != 0)
3894				goto rescan;
3895		}
3896	}
3897}
3898
3899/* fotg210_iso_stream ops work with both ITD and SITD */
3900
3901static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3902{
3903	struct fotg210_iso_stream *stream;
3904
3905	stream = kzalloc(sizeof(*stream), mem_flags);
3906	if (likely(stream != NULL)) {
3907		INIT_LIST_HEAD(&stream->td_list);
3908		INIT_LIST_HEAD(&stream->free_list);
3909		stream->next_uframe = -1;
3910	}
3911	return stream;
3912}
3913
3914static void iso_stream_init(struct fotg210_hcd *fotg210,
3915		struct fotg210_iso_stream *stream, struct usb_device *dev,
3916		int pipe, unsigned interval)
3917{
3918	u32 buf1;
3919	unsigned epnum, maxp;
3920	int is_input;
3921	long bandwidth;
3922	unsigned multi;
3923	struct usb_host_endpoint *ep;
3924
3925	/*
3926	 * this might be a "high bandwidth" highspeed endpoint,
3927	 * as encoded in the ep descriptor's wMaxPacket field
3928	 */
3929	epnum = usb_pipeendpoint(pipe);
3930	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3931	ep = usb_pipe_endpoint(dev, pipe);
3932	maxp = usb_endpoint_maxp(&ep->desc);
3933	if (is_input)
3934		buf1 = (1 << 11);
3935	else
3936		buf1 = 0;
3937
3938	multi = usb_endpoint_maxp_mult(&ep->desc);
3939	buf1 |= maxp;
3940	maxp *= multi;
3941
3942	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3943	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3944	stream->buf2 = cpu_to_hc32(fotg210, multi);
3945
3946	/* usbfs wants to report the average usecs per frame tied up
3947	 * when transfers on this endpoint are scheduled ...
3948	 */
3949	if (dev->speed == USB_SPEED_FULL) {
3950		interval <<= 3;
3951		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3952				is_input, 1, maxp));
3953		stream->usecs /= 8;
3954	} else {
3955		stream->highspeed = 1;
3956		stream->usecs = HS_USECS_ISO(maxp);
3957	}
3958	bandwidth = stream->usecs * 8;
3959	bandwidth /= interval;
3960
3961	stream->bandwidth = bandwidth;
3962	stream->udev = dev;
3963	stream->bEndpointAddress = is_input | epnum;
3964	stream->interval = interval;
3965	stream->maxp = maxp;
3966}
3967
3968static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3969		struct urb *urb)
3970{
3971	unsigned epnum;
3972	struct fotg210_iso_stream *stream;
3973	struct usb_host_endpoint *ep;
3974	unsigned long flags;
3975
3976	epnum = usb_pipeendpoint(urb->pipe);
3977	if (usb_pipein(urb->pipe))
3978		ep = urb->dev->ep_in[epnum];
3979	else
3980		ep = urb->dev->ep_out[epnum];
3981
3982	spin_lock_irqsave(&fotg210->lock, flags);
3983	stream = ep->hcpriv;
3984
3985	if (unlikely(stream == NULL)) {
3986		stream = iso_stream_alloc(GFP_ATOMIC);
3987		if (likely(stream != NULL)) {
3988			ep->hcpriv = stream;
3989			stream->ep = ep;
3990			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3991					urb->interval);
3992		}
3993
3994	/* if dev->ep[epnum] is a QH, hw is set */
3995	} else if (unlikely(stream->hw != NULL)) {
3996		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3997				urb->dev->devpath, epnum,
3998				usb_pipein(urb->pipe) ? "in" : "out");
3999		stream = NULL;
4000	}
4001
4002	spin_unlock_irqrestore(&fotg210->lock, flags);
4003	return stream;
4004}
4005
4006/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4007
4008static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4009		gfp_t mem_flags)
4010{
4011	struct fotg210_iso_sched *iso_sched;
4012	int size = sizeof(*iso_sched);
4013
4014	size += packets * sizeof(struct fotg210_iso_packet);
4015	iso_sched = kzalloc(size, mem_flags);
4016	if (likely(iso_sched != NULL))
4017		INIT_LIST_HEAD(&iso_sched->td_list);
4018
4019	return iso_sched;
4020}
4021
4022static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4023		struct fotg210_iso_sched *iso_sched,
4024		struct fotg210_iso_stream *stream, struct urb *urb)
4025{
4026	unsigned i;
4027	dma_addr_t dma = urb->transfer_dma;
4028
4029	/* how many uframes are needed for these transfers */
4030	iso_sched->span = urb->number_of_packets * stream->interval;
4031
4032	/* figure out per-uframe itd fields that we'll need later
4033	 * when we fit new itds into the schedule.
4034	 */
4035	for (i = 0; i < urb->number_of_packets; i++) {
4036		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4037		unsigned length;
4038		dma_addr_t buf;
4039		u32 trans;
4040
4041		length = urb->iso_frame_desc[i].length;
4042		buf = dma + urb->iso_frame_desc[i].offset;
4043
4044		trans = FOTG210_ISOC_ACTIVE;
4045		trans |= buf & 0x0fff;
4046		if (unlikely(((i + 1) == urb->number_of_packets))
4047				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4048			trans |= FOTG210_ITD_IOC;
4049		trans |= length << 16;
4050		uframe->transaction = cpu_to_hc32(fotg210, trans);
4051
4052		/* might need to cross a buffer page within a uframe */
4053		uframe->bufp = (buf & ~(u64)0x0fff);
4054		buf += length;
4055		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4056			uframe->cross = 1;
4057	}
4058}
4059
4060static void iso_sched_free(struct fotg210_iso_stream *stream,
4061		struct fotg210_iso_sched *iso_sched)
4062{
4063	if (!iso_sched)
4064		return;
4065	/* caller must hold fotg210->lock!*/
4066	list_splice(&iso_sched->td_list, &stream->free_list);
4067	kfree(iso_sched);
4068}
4069
4070static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4071		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4072{
4073	struct fotg210_itd *itd;
4074	dma_addr_t itd_dma;
4075	int i;
4076	unsigned num_itds;
4077	struct fotg210_iso_sched *sched;
4078	unsigned long flags;
4079
4080	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4081	if (unlikely(sched == NULL))
4082		return -ENOMEM;
4083
4084	itd_sched_init(fotg210, sched, stream, urb);
4085
4086	if (urb->interval < 8)
4087		num_itds = 1 + (sched->span + 7) / 8;
4088	else
4089		num_itds = urb->number_of_packets;
4090
4091	/* allocate/init ITDs */
4092	spin_lock_irqsave(&fotg210->lock, flags);
4093	for (i = 0; i < num_itds; i++) {
4094
4095		/*
4096		 * Use iTDs from the free list, but not iTDs that may
4097		 * still be in use by the hardware.
4098		 */
4099		if (likely(!list_empty(&stream->free_list))) {
4100			itd = list_first_entry(&stream->free_list,
4101					struct fotg210_itd, itd_list);
4102			if (itd->frame == fotg210->now_frame)
4103				goto alloc_itd;
4104			list_del(&itd->itd_list);
4105			itd_dma = itd->itd_dma;
4106		} else {
4107alloc_itd:
4108			spin_unlock_irqrestore(&fotg210->lock, flags);
4109			itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4110					&itd_dma);
4111			spin_lock_irqsave(&fotg210->lock, flags);
4112			if (!itd) {
4113				iso_sched_free(stream, sched);
4114				spin_unlock_irqrestore(&fotg210->lock, flags);
4115				return -ENOMEM;
4116			}
4117		}
4118
4119		itd->itd_dma = itd_dma;
4120		list_add(&itd->itd_list, &sched->td_list);
4121	}
4122	spin_unlock_irqrestore(&fotg210->lock, flags);
4123
4124	/* temporarily store schedule info in hcpriv */
4125	urb->hcpriv = sched;
4126	urb->error_count = 0;
4127	return 0;
4128}
4129
4130static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4131		u8 usecs, u32 period)
4132{
4133	uframe %= period;
4134	do {
4135		/* can't commit more than uframe_periodic_max usec */
4136		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4137				> (fotg210->uframe_periodic_max - usecs))
4138			return 0;
4139
4140		/* we know urb->interval is 2^N uframes */
4141		uframe += period;
4142	} while (uframe < mod);
4143	return 1;
4144}
4145
4146/* This scheduler plans almost as far into the future as it has actual
4147 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4148 * "as small as possible" to be cache-friendlier.)  That limits the size
4149 * transfers you can stream reliably; avoid more than 64 msec per urb.
4150 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4151 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4152 * and other factors); or more than about 230 msec total (for portability,
4153 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4154 */
4155
4156#define SCHEDULE_SLOP 80 /* microframes */
4157
4158static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4159		struct fotg210_iso_stream *stream)
4160{
4161	u32 now, next, start, period, span;
4162	int status;
4163	unsigned mod = fotg210->periodic_size << 3;
4164	struct fotg210_iso_sched *sched = urb->hcpriv;
4165
4166	period = urb->interval;
4167	span = sched->span;
4168
4169	if (span > mod - SCHEDULE_SLOP) {
4170		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4171		status = -EFBIG;
4172		goto fail;
4173	}
4174
4175	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4176
4177	/* Typical case: reuse current schedule, stream is still active.
4178	 * Hopefully there are no gaps from the host falling behind
4179	 * (irq delays etc), but if there are we'll take the next
4180	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4181	 */
4182	if (likely(!list_empty(&stream->td_list))) {
4183		u32 excess;
4184
4185		/* For high speed devices, allow scheduling within the
4186		 * isochronous scheduling threshold.  For full speed devices
4187		 * and Intel PCI-based controllers, don't (work around for
4188		 * Intel ICH9 bug).
4189		 */
4190		if (!stream->highspeed && fotg210->fs_i_thresh)
4191			next = now + fotg210->i_thresh;
4192		else
4193			next = now;
4194
4195		/* Fell behind (by up to twice the slop amount)?
4196		 * We decide based on the time of the last currently-scheduled
4197		 * slot, not the time of the next available slot.
4198		 */
4199		excess = (stream->next_uframe - period - next) & (mod - 1);
4200		if (excess >= mod - 2 * SCHEDULE_SLOP)
4201			start = next + excess - mod + period *
4202					DIV_ROUND_UP(mod - excess, period);
4203		else
4204			start = next + excess + period;
4205		if (start - now >= mod) {
4206			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4207					urb, start - now - period, period,
4208					mod);
4209			status = -EFBIG;
4210			goto fail;
4211		}
4212	}
4213
4214	/* need to schedule; when's the next (u)frame we could start?
4215	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4216	 * isn't free, the slop should handle reasonably slow cpus.  it
4217	 * can also help high bandwidth if the dma and irq loads don't
4218	 * jump until after the queue is primed.
4219	 */
4220	else {
4221		int done = 0;
4222
4223		start = SCHEDULE_SLOP + (now & ~0x07);
4224
4225		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4226
4227		/* find a uframe slot with enough bandwidth.
4228		 * Early uframes are more precious because full-speed
4229		 * iso IN transfers can't use late uframes,
4230		 * and therefore they should be allocated last.
4231		 */
4232		next = start;
4233		start += period;
4234		do {
4235			start--;
4236			/* check schedule: enough space? */
4237			if (itd_slot_ok(fotg210, mod, start,
4238					stream->usecs, period))
4239				done = 1;
4240		} while (start > next && !done);
4241
4242		/* no room in the schedule */
4243		if (!done) {
4244			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4245					urb, now, now + mod);
4246			status = -ENOSPC;
4247			goto fail;
4248		}
4249	}
4250
4251	/* Tried to schedule too far into the future? */
4252	if (unlikely(start - now + span - period >=
4253			mod - 2 * SCHEDULE_SLOP)) {
4254		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4255				urb, start - now, span - period,
4256				mod - 2 * SCHEDULE_SLOP);
4257		status = -EFBIG;
4258		goto fail;
4259	}
4260
4261	stream->next_uframe = start & (mod - 1);
4262
4263	/* report high speed start in uframes; full speed, in frames */
4264	urb->start_frame = stream->next_uframe;
4265	if (!stream->highspeed)
4266		urb->start_frame >>= 3;
4267
4268	/* Make sure scan_isoc() sees these */
4269	if (fotg210->isoc_count == 0)
4270		fotg210->next_frame = now >> 3;
4271	return 0;
4272
4273fail:
4274	iso_sched_free(stream, sched);
4275	urb->hcpriv = NULL;
4276	return status;
4277}
4278
4279static inline void itd_init(struct fotg210_hcd *fotg210,
4280		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4281{
4282	int i;
4283
4284	/* it's been recently zeroed */
4285	itd->hw_next = FOTG210_LIST_END(fotg210);
4286	itd->hw_bufp[0] = stream->buf0;
4287	itd->hw_bufp[1] = stream->buf1;
4288	itd->hw_bufp[2] = stream->buf2;
4289
4290	for (i = 0; i < 8; i++)
4291		itd->index[i] = -1;
4292
4293	/* All other fields are filled when scheduling */
4294}
4295
4296static inline void itd_patch(struct fotg210_hcd *fotg210,
4297		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4298		unsigned index, u16 uframe)
4299{
4300	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4301	unsigned pg = itd->pg;
4302
4303	uframe &= 0x07;
4304	itd->index[uframe] = index;
4305
4306	itd->hw_transaction[uframe] = uf->transaction;
4307	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4308	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4309	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4310
4311	/* iso_frame_desc[].offset must be strictly increasing */
4312	if (unlikely(uf->cross)) {
4313		u64 bufp = uf->bufp + 4096;
4314
4315		itd->pg = ++pg;
4316		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4317		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4318	}
4319}
4320
4321static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4322		struct fotg210_itd *itd)
4323{
4324	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4325	__hc32 *hw_p = &fotg210->periodic[frame];
4326	union fotg210_shadow here = *prev;
4327	__hc32 type = 0;
4328
4329	/* skip any iso nodes which might belong to previous microframes */
4330	while (here.ptr) {
4331		type = Q_NEXT_TYPE(fotg210, *hw_p);
4332		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4333			break;
4334		prev = periodic_next_shadow(fotg210, prev, type);
4335		hw_p = shadow_next_periodic(fotg210, &here, type);
4336		here = *prev;
4337	}
4338
4339	itd->itd_next = here;
4340	itd->hw_next = *hw_p;
4341	prev->itd = itd;
4342	itd->frame = frame;
4343	wmb();
4344	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4345}
4346
4347/* fit urb's itds into the selected schedule slot; activate as needed */
4348static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4349		unsigned mod, struct fotg210_iso_stream *stream)
4350{
4351	int packet;
4352	unsigned next_uframe, uframe, frame;
4353	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4354	struct fotg210_itd *itd;
4355
4356	next_uframe = stream->next_uframe & (mod - 1);
4357
4358	if (unlikely(list_empty(&stream->td_list))) {
4359		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4360				+= stream->bandwidth;
4361		fotg210_dbg(fotg210,
4362			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4363			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4364			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4365			urb->interval,
4366			next_uframe >> 3, next_uframe & 0x7);
4367	}
4368
4369	/* fill iTDs uframe by uframe */
4370	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4371		if (itd == NULL) {
4372			/* ASSERT:  we have all necessary itds */
4373
4374			/* ASSERT:  no itds for this endpoint in this uframe */
4375
4376			itd = list_entry(iso_sched->td_list.next,
4377					struct fotg210_itd, itd_list);
4378			list_move_tail(&itd->itd_list, &stream->td_list);
4379			itd->stream = stream;
4380			itd->urb = urb;
4381			itd_init(fotg210, stream, itd);
4382		}
4383
4384		uframe = next_uframe & 0x07;
4385		frame = next_uframe >> 3;
4386
4387		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4388
4389		next_uframe += stream->interval;
4390		next_uframe &= mod - 1;
4391		packet++;
4392
4393		/* link completed itds into the schedule */
4394		if (((next_uframe >> 3) != frame)
4395				|| packet == urb->number_of_packets) {
4396			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4397					itd);
4398			itd = NULL;
4399		}
4400	}
4401	stream->next_uframe = next_uframe;
4402
4403	/* don't need that schedule data any more */
4404	iso_sched_free(stream, iso_sched);
4405	urb->hcpriv = NULL;
4406
4407	++fotg210->isoc_count;
4408	enable_periodic(fotg210);
4409}
4410
4411#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4412		FOTG210_ISOC_XACTERR)
4413
4414/* Process and recycle a completed ITD.  Return true iff its urb completed,
4415 * and hence its completion callback probably added things to the hardware
4416 * schedule.
4417 *
4418 * Note that we carefully avoid recycling this descriptor until after any
4419 * completion callback runs, so that it won't be reused quickly.  That is,
4420 * assuming (a) no more than two urbs per frame on this endpoint, and also
4421 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4422 * corrupts things if you reuse completed descriptors very quickly...
4423 */
4424static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4425{
4426	struct urb *urb = itd->urb;
4427	struct usb_iso_packet_descriptor *desc;
4428	u32 t;
4429	unsigned uframe;
4430	int urb_index = -1;
4431	struct fotg210_iso_stream *stream = itd->stream;
4432	struct usb_device *dev;
4433	bool retval = false;
4434
4435	/* for each uframe with a packet */
4436	for (uframe = 0; uframe < 8; uframe++) {
4437		if (likely(itd->index[uframe] == -1))
4438			continue;
4439		urb_index = itd->index[uframe];
4440		desc = &urb->iso_frame_desc[urb_index];
4441
4442		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4443		itd->hw_transaction[uframe] = 0;
4444
4445		/* report transfer status */
4446		if (unlikely(t & ISO_ERRS)) {
4447			urb->error_count++;
4448			if (t & FOTG210_ISOC_BUF_ERR)
4449				desc->status = usb_pipein(urb->pipe)
4450					? -ENOSR  /* hc couldn't read */
4451					: -ECOMM; /* hc couldn't write */
4452			else if (t & FOTG210_ISOC_BABBLE)
4453				desc->status = -EOVERFLOW;
4454			else /* (t & FOTG210_ISOC_XACTERR) */
4455				desc->status = -EPROTO;
4456
4457			/* HC need not update length with this error */
4458			if (!(t & FOTG210_ISOC_BABBLE)) {
4459				desc->actual_length = FOTG210_ITD_LENGTH(t);
4460				urb->actual_length += desc->actual_length;
4461			}
4462		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4463			desc->status = 0;
4464			desc->actual_length = FOTG210_ITD_LENGTH(t);
4465			urb->actual_length += desc->actual_length;
4466		} else {
4467			/* URB was too late */
4468			desc->status = -EXDEV;
4469		}
4470	}
4471
4472	/* handle completion now? */
4473	if (likely((urb_index + 1) != urb->number_of_packets))
4474		goto done;
4475
4476	/* ASSERT: it's really the last itd for this urb
4477	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4478	 *	BUG_ON (itd->urb == urb);
4479	 */
4480
4481	/* give urb back to the driver; completion often (re)submits */
4482	dev = urb->dev;
4483	fotg210_urb_done(fotg210, urb, 0);
4484	retval = true;
4485	urb = NULL;
4486
4487	--fotg210->isoc_count;
4488	disable_periodic(fotg210);
4489
4490	if (unlikely(list_is_singular(&stream->td_list))) {
4491		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4492				-= stream->bandwidth;
4493		fotg210_dbg(fotg210,
4494			"deschedule devp %s ep%d%s-iso\n",
4495			dev->devpath, stream->bEndpointAddress & 0x0f,
4496			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4497	}
4498
4499done:
4500	itd->urb = NULL;
4501
4502	/* Add to the end of the free list for later reuse */
4503	list_move_tail(&itd->itd_list, &stream->free_list);
4504
4505	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4506	if (list_empty(&stream->td_list)) {
4507		list_splice_tail_init(&stream->free_list,
4508				&fotg210->cached_itd_list);
4509		start_free_itds(fotg210);
4510	}
4511
4512	return retval;
4513}
4514
4515static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4516		gfp_t mem_flags)
4517{
4518	int status = -EINVAL;
4519	unsigned long flags;
4520	struct fotg210_iso_stream *stream;
4521
4522	/* Get iso_stream head */
4523	stream = iso_stream_find(fotg210, urb);
4524	if (unlikely(stream == NULL)) {
4525		fotg210_dbg(fotg210, "can't get iso stream\n");
4526		return -ENOMEM;
4527	}
4528	if (unlikely(urb->interval != stream->interval &&
4529			fotg210_port_speed(fotg210, 0) ==
4530			USB_PORT_STAT_HIGH_SPEED)) {
4531		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4532				stream->interval, urb->interval);
4533		goto done;
4534	}
4535
4536#ifdef FOTG210_URB_TRACE
4537	fotg210_dbg(fotg210,
4538			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4539			__func__, urb->dev->devpath, urb,
4540			usb_pipeendpoint(urb->pipe),
4541			usb_pipein(urb->pipe) ? "in" : "out",
4542			urb->transfer_buffer_length,
4543			urb->number_of_packets, urb->interval,
4544			stream);
4545#endif
4546
4547	/* allocate ITDs w/o locking anything */
4548	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4549	if (unlikely(status < 0)) {
4550		fotg210_dbg(fotg210, "can't init itds\n");
4551		goto done;
4552	}
4553
4554	/* schedule ... need to lock */
4555	spin_lock_irqsave(&fotg210->lock, flags);
4556	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4557		status = -ESHUTDOWN;
4558		goto done_not_linked;
4559	}
4560	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4561	if (unlikely(status))
4562		goto done_not_linked;
4563	status = iso_stream_schedule(fotg210, urb, stream);
4564	if (likely(status == 0))
4565		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4566	else
4567		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4568done_not_linked:
4569	spin_unlock_irqrestore(&fotg210->lock, flags);
4570done:
4571	return status;
4572}
4573
4574static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4575		unsigned now_frame, bool live)
4576{
4577	unsigned uf;
4578	bool modified;
4579	union fotg210_shadow q, *q_p;
4580	__hc32 type, *hw_p;
4581
4582	/* scan each element in frame's queue for completions */
4583	q_p = &fotg210->pshadow[frame];
4584	hw_p = &fotg210->periodic[frame];
4585	q.ptr = q_p->ptr;
4586	type = Q_NEXT_TYPE(fotg210, *hw_p);
4587	modified = false;
4588
4589	while (q.ptr) {
4590		switch (hc32_to_cpu(fotg210, type)) {
4591		case Q_TYPE_ITD:
4592			/* If this ITD is still active, leave it for
4593			 * later processing ... check the next entry.
4594			 * No need to check for activity unless the
4595			 * frame is current.
4596			 */
4597			if (frame == now_frame && live) {
4598				rmb();
4599				for (uf = 0; uf < 8; uf++) {
4600					if (q.itd->hw_transaction[uf] &
4601							ITD_ACTIVE(fotg210))
4602						break;
4603				}
4604				if (uf < 8) {
4605					q_p = &q.itd->itd_next;
4606					hw_p = &q.itd->hw_next;
4607					type = Q_NEXT_TYPE(fotg210,
4608							q.itd->hw_next);
4609					q = *q_p;
4610					break;
4611				}
4612			}
4613
4614			/* Take finished ITDs out of the schedule
4615			 * and process them:  recycle, maybe report
4616			 * URB completion.  HC won't cache the
4617			 * pointer for much longer, if at all.
4618			 */
4619			*q_p = q.itd->itd_next;
4620			*hw_p = q.itd->hw_next;
4621			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4622			wmb();
4623			modified = itd_complete(fotg210, q.itd);
4624			q = *q_p;
4625			break;
4626		default:
4627			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4628					type, frame, q.ptr);
4629			fallthrough;
4630		case Q_TYPE_QH:
4631		case Q_TYPE_FSTN:
4632			/* End of the iTDs and siTDs */
4633			q.ptr = NULL;
4634			break;
4635		}
4636
4637		/* assume completion callbacks modify the queue */
4638		if (unlikely(modified && fotg210->isoc_count > 0))
4639			return -EINVAL;
4640	}
4641	return 0;
4642}
4643
4644static void scan_isoc(struct fotg210_hcd *fotg210)
4645{
4646	unsigned uf, now_frame, frame, ret;
4647	unsigned fmask = fotg210->periodic_size - 1;
4648	bool live;
4649
4650	/*
4651	 * When running, scan from last scan point up to "now"
4652	 * else clean up by scanning everything that's left.
4653	 * Touches as few pages as possible:  cache-friendly.
4654	 */
4655	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4656		uf = fotg210_read_frame_index(fotg210);
4657		now_frame = (uf >> 3) & fmask;
4658		live = true;
4659	} else  {
4660		now_frame = (fotg210->next_frame - 1) & fmask;
4661		live = false;
4662	}
4663	fotg210->now_frame = now_frame;
4664
4665	frame = fotg210->next_frame;
4666	for (;;) {
4667		ret = 1;
4668		while (ret != 0)
4669			ret = scan_frame_queue(fotg210, frame,
4670					now_frame, live);
4671
4672		/* Stop when we have reached the current frame */
4673		if (frame == now_frame)
4674			break;
4675		frame = (frame + 1) & fmask;
4676	}
4677	fotg210->next_frame = now_frame;
4678}
4679
4680/* Display / Set uframe_periodic_max
4681 */
4682static ssize_t uframe_periodic_max_show(struct device *dev,
4683		struct device_attribute *attr, char *buf)
4684{
4685	struct fotg210_hcd *fotg210;
4686	int n;
4687
4688	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4689	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4690	return n;
4691}
4692
4693
4694static ssize_t uframe_periodic_max_store(struct device *dev,
4695		struct device_attribute *attr, const char *buf, size_t count)
4696{
4697	struct fotg210_hcd *fotg210;
4698	unsigned uframe_periodic_max;
4699	unsigned frame, uframe;
4700	unsigned short allocated_max;
4701	unsigned long flags;
4702	ssize_t ret;
4703
4704	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4705	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4706		return -EINVAL;
4707
4708	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4709		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4710				uframe_periodic_max);
4711		return -EINVAL;
4712	}
4713
4714	ret = -EINVAL;
4715
4716	/*
4717	 * lock, so that our checking does not race with possible periodic
4718	 * bandwidth allocation through submitting new urbs.
4719	 */
4720	spin_lock_irqsave(&fotg210->lock, flags);
4721
4722	/*
4723	 * for request to decrease max periodic bandwidth, we have to check
4724	 * every microframe in the schedule to see whether the decrease is
4725	 * possible.
4726	 */
4727	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4728		allocated_max = 0;
4729
4730		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4731			for (uframe = 0; uframe < 7; ++uframe)
4732				allocated_max = max(allocated_max,
4733						periodic_usecs(fotg210, frame,
4734						uframe));
4735
4736		if (allocated_max > uframe_periodic_max) {
4737			fotg210_info(fotg210,
4738					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4739					allocated_max, uframe_periodic_max);
4740			goto out_unlock;
4741		}
4742	}
4743
4744	/* increasing is always ok */
4745
4746	fotg210_info(fotg210,
4747			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4748			100 * uframe_periodic_max/125, uframe_periodic_max);
4749
4750	if (uframe_periodic_max != 100)
4751		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4752
4753	fotg210->uframe_periodic_max = uframe_periodic_max;
4754	ret = count;
4755
4756out_unlock:
4757	spin_unlock_irqrestore(&fotg210->lock, flags);
4758	return ret;
4759}
4760
4761static DEVICE_ATTR_RW(uframe_periodic_max);
4762
4763static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4764{
4765	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4766
4767	return device_create_file(controller, &dev_attr_uframe_periodic_max);
4768}
4769
4770static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4771{
4772	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4773
4774	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4775}
4776/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4777 * The firmware seems to think that powering off is a wakeup event!
4778 * This routine turns off remote wakeup and everything else, on all ports.
4779 */
4780static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4781{
4782	u32 __iomem *status_reg = &fotg210->regs->port_status;
4783
4784	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4785}
4786
4787/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4788 * Must be called with interrupts enabled and the lock not held.
4789 */
4790static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4791{
4792	fotg210_halt(fotg210);
4793
4794	spin_lock_irq(&fotg210->lock);
4795	fotg210->rh_state = FOTG210_RH_HALTED;
4796	fotg210_turn_off_all_ports(fotg210);
4797	spin_unlock_irq(&fotg210->lock);
4798}
4799
4800/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4801 * This forcibly disables dma and IRQs, helping kexec and other cases
4802 * where the next system software may expect clean state.
4803 */
4804static void fotg210_shutdown(struct usb_hcd *hcd)
4805{
4806	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4807
4808	spin_lock_irq(&fotg210->lock);
4809	fotg210->shutdown = true;
4810	fotg210->rh_state = FOTG210_RH_STOPPING;
4811	fotg210->enabled_hrtimer_events = 0;
4812	spin_unlock_irq(&fotg210->lock);
4813
4814	fotg210_silence_controller(fotg210);
4815
4816	hrtimer_cancel(&fotg210->hrtimer);
4817}
4818
4819/* fotg210_work is called from some interrupts, timers, and so on.
4820 * it calls driver completion functions, after dropping fotg210->lock.
4821 */
4822static void fotg210_work(struct fotg210_hcd *fotg210)
4823{
4824	/* another CPU may drop fotg210->lock during a schedule scan while
4825	 * it reports urb completions.  this flag guards against bogus
4826	 * attempts at re-entrant schedule scanning.
4827	 */
4828	if (fotg210->scanning) {
4829		fotg210->need_rescan = true;
4830		return;
4831	}
4832	fotg210->scanning = true;
4833
4834rescan:
4835	fotg210->need_rescan = false;
4836	if (fotg210->async_count)
4837		scan_async(fotg210);
4838	if (fotg210->intr_count > 0)
4839		scan_intr(fotg210);
4840	if (fotg210->isoc_count > 0)
4841		scan_isoc(fotg210);
4842	if (fotg210->need_rescan)
4843		goto rescan;
4844	fotg210->scanning = false;
4845
4846	/* the IO watchdog guards against hardware or driver bugs that
4847	 * misplace IRQs, and should let us run completely without IRQs.
4848	 * such lossage has been observed on both VT6202 and VT8235.
4849	 */
4850	turn_on_io_watchdog(fotg210);
4851}
4852
4853/* Called when the fotg210_hcd module is removed.
4854 */
4855static void fotg210_stop(struct usb_hcd *hcd)
4856{
4857	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4858
4859	fotg210_dbg(fotg210, "stop\n");
4860
4861	/* no more interrupts ... */
4862
4863	spin_lock_irq(&fotg210->lock);
4864	fotg210->enabled_hrtimer_events = 0;
4865	spin_unlock_irq(&fotg210->lock);
4866
4867	fotg210_quiesce(fotg210);
4868	fotg210_silence_controller(fotg210);
4869	fotg210_reset(fotg210);
4870
4871	hrtimer_cancel(&fotg210->hrtimer);
4872	remove_sysfs_files(fotg210);
4873	remove_debug_files(fotg210);
4874
4875	/* root hub is shut down separately (first, when possible) */
4876	spin_lock_irq(&fotg210->lock);
4877	end_free_itds(fotg210);
4878	spin_unlock_irq(&fotg210->lock);
4879	fotg210_mem_cleanup(fotg210);
4880
4881#ifdef FOTG210_STATS
4882	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4883			fotg210->stats.normal, fotg210->stats.error,
4884			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4885	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4886			fotg210->stats.complete, fotg210->stats.unlink);
4887#endif
4888
4889	dbg_status(fotg210, "fotg210_stop completed",
4890			fotg210_readl(fotg210, &fotg210->regs->status));
4891}
4892
4893/* one-time init, only for memory state */
4894static int hcd_fotg210_init(struct usb_hcd *hcd)
4895{
4896	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4897	u32 temp;
4898	int retval;
4899	u32 hcc_params;
4900	struct fotg210_qh_hw *hw;
4901
4902	spin_lock_init(&fotg210->lock);
4903
4904	/*
4905	 * keep io watchdog by default, those good HCDs could turn off it later
4906	 */
4907	fotg210->need_io_watchdog = 1;
4908
4909	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4910	fotg210->hrtimer.function = fotg210_hrtimer_func;
4911	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4912
4913	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4914
4915	/*
4916	 * by default set standard 80% (== 100 usec/uframe) max periodic
4917	 * bandwidth as required by USB 2.0
4918	 */
4919	fotg210->uframe_periodic_max = 100;
4920
4921	/*
4922	 * hw default: 1K periodic list heads, one per frame.
4923	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4924	 */
4925	fotg210->periodic_size = DEFAULT_I_TDPS;
4926	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4927	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4928
4929	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4930		/* periodic schedule size can be smaller than default */
4931		switch (FOTG210_TUNE_FLS) {
4932		case 0:
4933			fotg210->periodic_size = 1024;
4934			break;
4935		case 1:
4936			fotg210->periodic_size = 512;
4937			break;
4938		case 2:
4939			fotg210->periodic_size = 256;
4940			break;
4941		default:
4942			BUG();
4943		}
4944	}
4945	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4946	if (retval < 0)
4947		return retval;
4948
4949	/* controllers may cache some of the periodic schedule ... */
4950	fotg210->i_thresh = 2;
4951
4952	/*
4953	 * dedicate a qh for the async ring head, since we couldn't unlink
4954	 * a 'real' qh without stopping the async schedule [4.8].  use it
4955	 * as the 'reclamation list head' too.
4956	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4957	 * from automatically advancing to the next td after short reads.
4958	 */
4959	fotg210->async->qh_next.qh = NULL;
4960	hw = fotg210->async->hw;
4961	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4962	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4963	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4964	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4965	fotg210->async->qh_state = QH_STATE_LINKED;
4966	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4967
4968	/* clear interrupt enables, set irq latency */
4969	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4970		log2_irq_thresh = 0;
4971	temp = 1 << (16 + log2_irq_thresh);
4972	if (HCC_CANPARK(hcc_params)) {
4973		/* HW default park == 3, on hardware that supports it (like
4974		 * NVidia and ALI silicon), maximizes throughput on the async
4975		 * schedule by avoiding QH fetches between transfers.
4976		 *
4977		 * With fast usb storage devices and NForce2, "park" seems to
4978		 * make problems:  throughput reduction (!), data errors...
4979		 */
4980		if (park) {
4981			park = min_t(unsigned, park, 3);
4982			temp |= CMD_PARK;
4983			temp |= park << 8;
4984		}
4985		fotg210_dbg(fotg210, "park %d\n", park);
4986	}
4987	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4988		/* periodic schedule size can be smaller than default */
4989		temp &= ~(3 << 2);
4990		temp |= (FOTG210_TUNE_FLS << 2);
4991	}
4992	fotg210->command = temp;
4993
4994	/* Accept arbitrarily long scatter-gather lists */
4995	if (!hcd->localmem_pool)
4996		hcd->self.sg_tablesize = ~0;
4997	return 0;
4998}
4999
5000/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5001static int fotg210_run(struct usb_hcd *hcd)
5002{
5003	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5004	u32 temp;
5005
5006	hcd->uses_new_polling = 1;
5007
5008	/* EHCI spec section 4.1 */
5009
5010	fotg210_writel(fotg210, fotg210->periodic_dma,
5011			&fotg210->regs->frame_list);
5012	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5013			&fotg210->regs->async_next);
5014
5015	/*
5016	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5017	 * be used; it constrains QH/ITD/SITD and QTD locations.
5018	 * dma_pool consistent memory always uses segment zero.
5019	 * streaming mappings for I/O buffers, like pci_map_single(),
5020	 * can return segments above 4GB, if the device allows.
5021	 *
5022	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5023	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5024	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5025	 * host side drivers though.
5026	 */
5027	fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5028
5029	/*
5030	 * Philips, Intel, and maybe others need CMD_RUN before the
5031	 * root hub will detect new devices (why?); NEC doesn't
5032	 */
5033	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5034	fotg210->command |= CMD_RUN;
5035	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5036	dbg_cmd(fotg210, "init", fotg210->command);
5037
5038	/*
5039	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5040	 * are explicitly handed to companion controller(s), so no TT is
5041	 * involved with the root hub.  (Except where one is integrated,
5042	 * and there's no companion controller unless maybe for USB OTG.)
5043	 *
5044	 * Turning on the CF flag will transfer ownership of all ports
5045	 * from the companions to the EHCI controller.  If any of the
5046	 * companions are in the middle of a port reset at the time, it
5047	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5048	 * guarantees that no resets are in progress.  After we set CF,
5049	 * a short delay lets the hardware catch up; new resets shouldn't
5050	 * be started before the port switching actions could complete.
5051	 */
5052	down_write(&ehci_cf_port_reset_rwsem);
5053	fotg210->rh_state = FOTG210_RH_RUNNING;
5054	/* unblock posted writes */
5055	fotg210_readl(fotg210, &fotg210->regs->command);
5056	usleep_range(5000, 10000);
5057	up_write(&ehci_cf_port_reset_rwsem);
5058	fotg210->last_periodic_enable = ktime_get_real();
5059
5060	temp = HC_VERSION(fotg210,
5061			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5062	fotg210_info(fotg210,
5063			"USB %x.%x started, EHCI %x.%02x\n",
5064			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5065			temp >> 8, temp & 0xff);
5066
5067	fotg210_writel(fotg210, INTR_MASK,
5068			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5069
5070	/* GRR this is run-once init(), being done every time the HC starts.
5071	 * So long as they're part of class devices, we can't do it init()
5072	 * since the class device isn't created that early.
5073	 */
5074	create_debug_files(fotg210);
5075	create_sysfs_files(fotg210);
5076
5077	return 0;
5078}
5079
5080static int fotg210_setup(struct usb_hcd *hcd)
5081{
5082	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5083	int retval;
5084
5085	fotg210->regs = (void __iomem *)fotg210->caps +
5086			HC_LENGTH(fotg210,
5087			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5088	dbg_hcs_params(fotg210, "reset");
5089	dbg_hcc_params(fotg210, "reset");
5090
5091	/* cache this readonly data; minimize chip reads */
5092	fotg210->hcs_params = fotg210_readl(fotg210,
5093			&fotg210->caps->hcs_params);
5094
5095	fotg210->sbrn = HCD_USB2;
5096
5097	/* data structure init */
5098	retval = hcd_fotg210_init(hcd);
5099	if (retval)
5100		return retval;
5101
5102	retval = fotg210_halt(fotg210);
5103	if (retval)
5104		return retval;
5105
5106	fotg210_reset(fotg210);
5107
5108	return 0;
5109}
5110
5111static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5112{
5113	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5114	u32 status, masked_status, pcd_status = 0, cmd;
5115	int bh;
5116
5117	spin_lock(&fotg210->lock);
5118
5119	status = fotg210_readl(fotg210, &fotg210->regs->status);
5120
5121	/* e.g. cardbus physical eject */
5122	if (status == ~(u32) 0) {
5123		fotg210_dbg(fotg210, "device removed\n");
5124		goto dead;
5125	}
5126
5127	/*
5128	 * We don't use STS_FLR, but some controllers don't like it to
5129	 * remain on, so mask it out along with the other status bits.
5130	 */
5131	masked_status = status & (INTR_MASK | STS_FLR);
5132
5133	/* Shared IRQ? */
5134	if (!masked_status ||
5135			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5136		spin_unlock(&fotg210->lock);
5137		return IRQ_NONE;
5138	}
5139
5140	/* clear (just) interrupts */
5141	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5142	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5143	bh = 0;
5144
5145	/* unrequested/ignored: Frame List Rollover */
5146	dbg_status(fotg210, "irq", status);
5147
5148	/* INT, ERR, and IAA interrupt rates can be throttled */
5149
5150	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5151	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5152		if (likely((status & STS_ERR) == 0))
5153			INCR(fotg210->stats.normal);
5154		else
5155			INCR(fotg210->stats.error);
5156		bh = 1;
5157	}
5158
5159	/* complete the unlinking of some qh [4.15.2.3] */
5160	if (status & STS_IAA) {
5161
5162		/* Turn off the IAA watchdog */
5163		fotg210->enabled_hrtimer_events &=
5164			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5165
5166		/*
5167		 * Mild optimization: Allow another IAAD to reset the
5168		 * hrtimer, if one occurs before the next expiration.
5169		 * In theory we could always cancel the hrtimer, but
5170		 * tests show that about half the time it will be reset
5171		 * for some other event anyway.
5172		 */
5173		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5174			++fotg210->next_hrtimer_event;
5175
5176		/* guard against (alleged) silicon errata */
5177		if (cmd & CMD_IAAD)
5178			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5179		if (fotg210->async_iaa) {
5180			INCR(fotg210->stats.iaa);
5181			end_unlink_async(fotg210);
5182		} else
5183			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5184	}
5185
5186	/* remote wakeup [4.3.1] */
5187	if (status & STS_PCD) {
5188		int pstatus;
5189		u32 __iomem *status_reg = &fotg210->regs->port_status;
5190
5191		/* kick root hub later */
5192		pcd_status = status;
5193
5194		/* resume root hub? */
5195		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5196			usb_hcd_resume_root_hub(hcd);
5197
5198		pstatus = fotg210_readl(fotg210, status_reg);
5199
5200		if (test_bit(0, &fotg210->suspended_ports) &&
5201				((pstatus & PORT_RESUME) ||
5202				!(pstatus & PORT_SUSPEND)) &&
5203				(pstatus & PORT_PE) &&
5204				fotg210->reset_done[0] == 0) {
5205
5206			/* start 20 msec resume signaling from this port,
5207			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5208			 * stop that signaling.  Use 5 ms extra for safety,
5209			 * like usb_port_resume() does.
5210			 */
5211			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5212			set_bit(0, &fotg210->resuming_ports);
5213			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5214			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5215		}
5216	}
5217
5218	/* PCI errors [4.15.2.4] */
5219	if (unlikely((status & STS_FATAL) != 0)) {
5220		fotg210_err(fotg210, "fatal error\n");
5221		dbg_cmd(fotg210, "fatal", cmd);
5222		dbg_status(fotg210, "fatal", status);
5223dead:
5224		usb_hc_died(hcd);
5225
5226		/* Don't let the controller do anything more */
5227		fotg210->shutdown = true;
5228		fotg210->rh_state = FOTG210_RH_STOPPING;
5229		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5230		fotg210_writel(fotg210, fotg210->command,
5231				&fotg210->regs->command);
5232		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5233		fotg210_handle_controller_death(fotg210);
5234
5235		/* Handle completions when the controller stops */
5236		bh = 0;
5237	}
5238
5239	if (bh)
5240		fotg210_work(fotg210);
5241	spin_unlock(&fotg210->lock);
5242	if (pcd_status)
5243		usb_hcd_poll_rh_status(hcd);
5244	return IRQ_HANDLED;
5245}
5246
5247/* non-error returns are a promise to giveback() the urb later
5248 * we drop ownership so next owner (or urb unlink) can get it
5249 *
5250 * urb + dev is in hcd.self.controller.urb_list
5251 * we're queueing TDs onto software and hardware lists
5252 *
5253 * hcd-specific init for hcpriv hasn't been done yet
5254 *
5255 * NOTE:  control, bulk, and interrupt share the same code to append TDs
5256 * to a (possibly active) QH, and the same QH scanning code.
5257 */
5258static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5259		gfp_t mem_flags)
5260{
5261	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5262	struct list_head qtd_list;
5263
5264	INIT_LIST_HEAD(&qtd_list);
5265
5266	switch (usb_pipetype(urb->pipe)) {
5267	case PIPE_CONTROL:
5268		/* qh_completions() code doesn't handle all the fault cases
5269		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5270		 */
5271		if (urb->transfer_buffer_length > (16 * 1024))
5272			return -EMSGSIZE;
5273		/* FALLTHROUGH */
5274	/* case PIPE_BULK: */
5275	default:
5276		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5277			return -ENOMEM;
5278		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5279
5280	case PIPE_INTERRUPT:
5281		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5282			return -ENOMEM;
5283		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5284
5285	case PIPE_ISOCHRONOUS:
5286		return itd_submit(fotg210, urb, mem_flags);
5287	}
5288}
5289
5290/* remove from hardware lists
5291 * completions normally happen asynchronously
5292 */
5293
5294static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5295{
5296	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5297	struct fotg210_qh *qh;
5298	unsigned long flags;
5299	int rc;
5300
5301	spin_lock_irqsave(&fotg210->lock, flags);
5302	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5303	if (rc)
5304		goto done;
5305
5306	switch (usb_pipetype(urb->pipe)) {
5307	/* case PIPE_CONTROL: */
5308	/* case PIPE_BULK:*/
5309	default:
5310		qh = (struct fotg210_qh *) urb->hcpriv;
5311		if (!qh)
5312			break;
5313		switch (qh->qh_state) {
5314		case QH_STATE_LINKED:
5315		case QH_STATE_COMPLETING:
5316			start_unlink_async(fotg210, qh);
5317			break;
5318		case QH_STATE_UNLINK:
5319		case QH_STATE_UNLINK_WAIT:
5320			/* already started */
5321			break;
5322		case QH_STATE_IDLE:
5323			/* QH might be waiting for a Clear-TT-Buffer */
5324			qh_completions(fotg210, qh);
5325			break;
5326		}
5327		break;
5328
5329	case PIPE_INTERRUPT:
5330		qh = (struct fotg210_qh *) urb->hcpriv;
5331		if (!qh)
5332			break;
5333		switch (qh->qh_state) {
5334		case QH_STATE_LINKED:
5335		case QH_STATE_COMPLETING:
5336			start_unlink_intr(fotg210, qh);
5337			break;
5338		case QH_STATE_IDLE:
5339			qh_completions(fotg210, qh);
5340			break;
5341		default:
5342			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5343					qh, qh->qh_state);
5344			goto done;
5345		}
5346		break;
5347
5348	case PIPE_ISOCHRONOUS:
5349		/* itd... */
5350
5351		/* wait till next completion, do it then. */
5352		/* completion irqs can wait up to 1024 msec, */
5353		break;
5354	}
5355done:
5356	spin_unlock_irqrestore(&fotg210->lock, flags);
5357	return rc;
5358}
5359
5360/* bulk qh holds the data toggle */
5361
5362static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5363		struct usb_host_endpoint *ep)
5364{
5365	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5366	unsigned long flags;
5367	struct fotg210_qh *qh, *tmp;
5368
5369	/* ASSERT:  any requests/urbs are being unlinked */
5370	/* ASSERT:  nobody can be submitting urbs for this any more */
5371
5372rescan:
5373	spin_lock_irqsave(&fotg210->lock, flags);
5374	qh = ep->hcpriv;
5375	if (!qh)
5376		goto done;
5377
5378	/* endpoints can be iso streams.  for now, we don't
5379	 * accelerate iso completions ... so spin a while.
5380	 */
5381	if (qh->hw == NULL) {
5382		struct fotg210_iso_stream *stream = ep->hcpriv;
5383
5384		if (!list_empty(&stream->td_list))
5385			goto idle_timeout;
5386
5387		/* BUG_ON(!list_empty(&stream->free_list)); */
5388		kfree(stream);
5389		goto done;
5390	}
5391
5392	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5393		qh->qh_state = QH_STATE_IDLE;
5394	switch (qh->qh_state) {
5395	case QH_STATE_LINKED:
5396	case QH_STATE_COMPLETING:
5397		for (tmp = fotg210->async->qh_next.qh;
5398				tmp && tmp != qh;
5399				tmp = tmp->qh_next.qh)
5400			continue;
5401		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5402		 * may already be unlinked.
5403		 */
5404		if (tmp)
5405			start_unlink_async(fotg210, qh);
5406		fallthrough;
5407	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5408	case QH_STATE_UNLINK_WAIT:
5409idle_timeout:
5410		spin_unlock_irqrestore(&fotg210->lock, flags);
5411		schedule_timeout_uninterruptible(1);
5412		goto rescan;
5413	case QH_STATE_IDLE:		/* fully unlinked */
5414		if (qh->clearing_tt)
5415			goto idle_timeout;
5416		if (list_empty(&qh->qtd_list)) {
5417			qh_destroy(fotg210, qh);
5418			break;
5419		}
5420		fallthrough;
5421	default:
5422		/* caller was supposed to have unlinked any requests;
5423		 * that's not our job.  just leak this memory.
5424		 */
5425		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5426				qh, ep->desc.bEndpointAddress, qh->qh_state,
5427				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5428		break;
5429	}
5430done:
5431	ep->hcpriv = NULL;
5432	spin_unlock_irqrestore(&fotg210->lock, flags);
5433}
5434
5435static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5436		struct usb_host_endpoint *ep)
5437{
5438	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5439	struct fotg210_qh *qh;
5440	int eptype = usb_endpoint_type(&ep->desc);
5441	int epnum = usb_endpoint_num(&ep->desc);
5442	int is_out = usb_endpoint_dir_out(&ep->desc);
5443	unsigned long flags;
5444
5445	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5446		return;
5447
5448	spin_lock_irqsave(&fotg210->lock, flags);
5449	qh = ep->hcpriv;
5450
5451	/* For Bulk and Interrupt endpoints we maintain the toggle state
5452	 * in the hardware; the toggle bits in udev aren't used at all.
5453	 * When an endpoint is reset by usb_clear_halt() we must reset
5454	 * the toggle bit in the QH.
5455	 */
5456	if (qh) {
5457		usb_settoggle(qh->dev, epnum, is_out, 0);
5458		if (!list_empty(&qh->qtd_list)) {
5459			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5460		} else if (qh->qh_state == QH_STATE_LINKED ||
5461				qh->qh_state == QH_STATE_COMPLETING) {
5462
5463			/* The toggle value in the QH can't be updated
5464			 * while the QH is active.  Unlink it now;
5465			 * re-linking will call qh_refresh().
5466			 */
5467			if (eptype == USB_ENDPOINT_XFER_BULK)
5468				start_unlink_async(fotg210, qh);
5469			else
5470				start_unlink_intr(fotg210, qh);
5471		}
5472	}
5473	spin_unlock_irqrestore(&fotg210->lock, flags);
5474}
5475
5476static int fotg210_get_frame(struct usb_hcd *hcd)
5477{
5478	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5479
5480	return (fotg210_read_frame_index(fotg210) >> 3) %
5481		fotg210->periodic_size;
5482}
5483
5484/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5485 * because its registers (and irq) are shared between host/gadget/otg
5486 * functions  and in order to facilitate role switching we cannot
5487 * give the fotg210 driver exclusive access to those.
5488 */
5489MODULE_DESCRIPTION(DRIVER_DESC);
5490MODULE_AUTHOR(DRIVER_AUTHOR);
5491MODULE_LICENSE("GPL");
5492
5493static const struct hc_driver fotg210_fotg210_hc_driver = {
5494	.description		= hcd_name,
5495	.product_desc		= "Faraday USB2.0 Host Controller",
5496	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5497
5498	/*
5499	 * generic hardware linkage
5500	 */
5501	.irq			= fotg210_irq,
5502	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
5503
5504	/*
5505	 * basic lifecycle operations
5506	 */
5507	.reset			= hcd_fotg210_init,
5508	.start			= fotg210_run,
5509	.stop			= fotg210_stop,
5510	.shutdown		= fotg210_shutdown,
5511
5512	/*
5513	 * managing i/o requests and associated device resources
5514	 */
5515	.urb_enqueue		= fotg210_urb_enqueue,
5516	.urb_dequeue		= fotg210_urb_dequeue,
5517	.endpoint_disable	= fotg210_endpoint_disable,
5518	.endpoint_reset		= fotg210_endpoint_reset,
5519
5520	/*
5521	 * scheduling support
5522	 */
5523	.get_frame_number	= fotg210_get_frame,
5524
5525	/*
5526	 * root hub support
5527	 */
5528	.hub_status_data	= fotg210_hub_status_data,
5529	.hub_control		= fotg210_hub_control,
5530	.bus_suspend		= fotg210_bus_suspend,
5531	.bus_resume		= fotg210_bus_resume,
5532
5533	.relinquish_port	= fotg210_relinquish_port,
5534	.port_handed_over	= fotg210_port_handed_over,
5535
5536	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5537};
5538
5539static void fotg210_init(struct fotg210_hcd *fotg210)
5540{
5541	u32 value;
5542
5543	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5544			&fotg210->regs->gmir);
5545
5546	value = ioread32(&fotg210->regs->otgcsr);
5547	value &= ~OTGCSR_A_BUS_DROP;
5548	value |= OTGCSR_A_BUS_REQ;
5549	iowrite32(value, &fotg210->regs->otgcsr);
5550}
5551
5552/*
5553 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5554 *
5555 * Allocates basic resources for this USB host controller, and
5556 * then invokes the start() method for the HCD associated with it
5557 * through the hotplug entry's driver_data.
5558 */
5559static int fotg210_hcd_probe(struct platform_device *pdev)
5560{
5561	struct device *dev = &pdev->dev;
5562	struct usb_hcd *hcd;
5563	struct resource *res;
5564	int irq;
5565	int retval;
5566	struct fotg210_hcd *fotg210;
5567
5568	if (usb_disabled())
5569		return -ENODEV;
5570
5571	pdev->dev.power.power_state = PMSG_ON;
5572
5573	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5574	if (!res) {
5575		dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5576				dev_name(dev));
5577		return -ENODEV;
5578	}
5579
5580	irq = res->start;
5581
5582	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5583			dev_name(dev));
5584	if (!hcd) {
5585		dev_err(dev, "failed to create hcd\n");
5586		retval = -ENOMEM;
5587		goto fail_create_hcd;
5588	}
5589
5590	hcd->has_tt = 1;
5591
5592	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5593	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5594	if (IS_ERR(hcd->regs)) {
5595		retval = PTR_ERR(hcd->regs);
5596		goto failed_put_hcd;
5597	}
5598
5599	hcd->rsrc_start = res->start;
5600	hcd->rsrc_len = resource_size(res);
5601
5602	fotg210 = hcd_to_fotg210(hcd);
5603
5604	fotg210->caps = hcd->regs;
5605
5606	/* It's OK not to supply this clock */
5607	fotg210->pclk = clk_get(dev, "PCLK");
5608	if (!IS_ERR(fotg210->pclk)) {
5609		retval = clk_prepare_enable(fotg210->pclk);
5610		if (retval) {
5611			dev_err(dev, "failed to enable PCLK\n");
5612			goto failed_put_hcd;
5613		}
5614	} else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5615		/*
5616		 * Percolate deferrals, for anything else,
5617		 * just live without the clocking.
5618		 */
5619		retval = PTR_ERR(fotg210->pclk);
5620		goto failed_dis_clk;
5621	}
5622
5623	retval = fotg210_setup(hcd);
5624	if (retval)
5625		goto failed_dis_clk;
5626
5627	fotg210_init(fotg210);
5628
5629	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5630	if (retval) {
5631		dev_err(dev, "failed to add hcd with err %d\n", retval);
5632		goto failed_dis_clk;
5633	}
5634	device_wakeup_enable(hcd->self.controller);
5635	platform_set_drvdata(pdev, hcd);
5636
5637	return retval;
5638
5639failed_dis_clk:
5640	if (!IS_ERR(fotg210->pclk)) {
5641		clk_disable_unprepare(fotg210->pclk);
5642		clk_put(fotg210->pclk);
5643	}
5644failed_put_hcd:
5645	usb_put_hcd(hcd);
5646fail_create_hcd:
5647	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5648	return retval;
5649}
5650
5651/*
5652 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5653 * @dev: USB Host Controller being removed
5654 *
5655 */
5656static int fotg210_hcd_remove(struct platform_device *pdev)
5657{
5658	struct usb_hcd *hcd = platform_get_drvdata(pdev);
5659	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5660
5661	if (!IS_ERR(fotg210->pclk)) {
5662		clk_disable_unprepare(fotg210->pclk);
5663		clk_put(fotg210->pclk);
5664	}
5665
5666	usb_remove_hcd(hcd);
5667	usb_put_hcd(hcd);
5668
5669	return 0;
5670}
5671
5672#ifdef CONFIG_OF
5673static const struct of_device_id fotg210_of_match[] = {
5674	{ .compatible = "faraday,fotg210" },
5675	{},
5676};
5677MODULE_DEVICE_TABLE(of, fotg210_of_match);
5678#endif
5679
5680static struct platform_driver fotg210_hcd_driver = {
5681	.driver = {
5682		.name   = "fotg210-hcd",
5683		.of_match_table = of_match_ptr(fotg210_of_match),
5684	},
5685	.probe  = fotg210_hcd_probe,
5686	.remove = fotg210_hcd_remove,
5687};
5688
5689static int __init fotg210_hcd_init(void)
5690{
5691	int retval = 0;
5692
5693	if (usb_disabled())
5694		return -ENODEV;
5695
5696	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5697	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5698	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5699			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5700		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5701
5702	pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5703			hcd_name, sizeof(struct fotg210_qh),
5704			sizeof(struct fotg210_qtd),
5705			sizeof(struct fotg210_itd));
5706
5707	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5708
5709	retval = platform_driver_register(&fotg210_hcd_driver);
5710	if (retval < 0)
5711		goto clean;
5712	return retval;
5713
5714clean:
5715	debugfs_remove(fotg210_debug_root);
5716	fotg210_debug_root = NULL;
5717
5718	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5719	return retval;
5720}
5721module_init(fotg210_hcd_init);
5722
5723static void __exit fotg210_hcd_cleanup(void)
5724{
5725	platform_driver_unregister(&fotg210_hcd_driver);
5726	debugfs_remove(fotg210_debug_root);
5727	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5728}
5729module_exit(fotg210_hcd_cleanup);
5730