1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2001-2004 by David Brownell
4 */
5
6/* this file is part of ehci-hcd.c */
7
8/*-------------------------------------------------------------------------*/
9
10/*
11 * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
12 *
13 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
14 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
15 * buffers needed for the larger number).  We use one QH per endpoint, queue
16 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
17 *
18 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
19 * interrupts) needs careful scheduling.  Performance improvements can be
20 * an ongoing challenge.  That's in "ehci-sched.c".
21 *
22 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
23 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
24 * (b) special fields in qh entries or (c) split iso entries.  TTs will
25 * buffer low/full speed data so the host collects it at high speed.
26 */
27
28/*-------------------------------------------------------------------------*/
29
30/* PID Codes that are used here, from EHCI specification, Table 3-16. */
31#define PID_CODE_IN    1
32#define PID_CODE_SETUP 2
33
34/* fill a qtd, returning how much of the buffer we were able to queue up */
35
36static int
37qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
38		  size_t len, int token, int maxpacket)
39{
40	int	i, count;
41	u64	addr = buf;
42
43	/* one buffer entry per 4K ... first might be short or unaligned */
44	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
45	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
46	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
47	if (likely (len < count))		/* ... iff needed */
48		count = len;
49	else {
50		buf +=  0x1000;
51		buf &= ~0x0fff;
52
53		/* per-qtd limit: from 16K to 20K (best alignment) */
54		for (i = 1; count < len && i < 5; i++) {
55			addr = buf;
56			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
57			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
58					(u32)(addr >> 32));
59			buf += 0x1000;
60			if ((count + 0x1000) < len)
61				count += 0x1000;
62			else
63				count = len;
64		}
65
66		/* short packets may only terminate transfers */
67		if (count != len)
68			count -= (count % maxpacket);
69	}
70	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
71	qtd->length = count;
72
73	return count;
74}
75
76/*-------------------------------------------------------------------------*/
77
78static inline void
79qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
80{
81	struct ehci_qh_hw *hw = qh->hw;
82
83	/* writes to an active overlay are unsafe */
84	WARN_ON(qh->qh_state != QH_STATE_IDLE);
85
86	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
87	hw->hw_alt_next = EHCI_LIST_END(ehci);
88
89	/* Except for control endpoints, we make hardware maintain data
90	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
91	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
92	 * ever clear it.
93	 */
94	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
95		unsigned	is_out, epnum;
96
97		is_out = qh->is_out;
98		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
99		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
100			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
101			usb_settoggle(qh->ps.udev, epnum, is_out, 1);
102		}
103	}
104
105	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
106}
107
108/* if it weren't for a common silicon quirk (writing the dummy into the qh
109 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
110 * recovery (including urb dequeue) would need software changes to a QH...
111 */
112static void
113qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
114{
115	struct ehci_qtd *qtd;
116
117	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
118
119	/*
120	 * first qtd may already be partially processed.
121	 * If we come here during unlink, the QH overlay region
122	 * might have reference to the just unlinked qtd. The
123	 * qtd is updated in qh_completions(). Update the QH
124	 * overlay here.
125	 */
126	if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
127		qh->hw->hw_qtd_next = qtd->hw_next;
128		if (qh->should_be_inactive)
129			ehci_warn(ehci, "qh %p should be inactive!\n", qh);
130	} else {
131		qh_update(ehci, qh, qtd);
132	}
133	qh->should_be_inactive = 0;
134}
135
136/*-------------------------------------------------------------------------*/
137
138static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
139
140static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
141		struct usb_host_endpoint *ep)
142{
143	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
144	struct ehci_qh		*qh = ep->hcpriv;
145	unsigned long		flags;
146
147	spin_lock_irqsave(&ehci->lock, flags);
148	qh->clearing_tt = 0;
149	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
150			&& ehci->rh_state == EHCI_RH_RUNNING)
151		qh_link_async(ehci, qh);
152	spin_unlock_irqrestore(&ehci->lock, flags);
153}
154
155static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
156		struct urb *urb, u32 token)
157{
158
159	/* If an async split transaction gets an error or is unlinked,
160	 * the TT buffer may be left in an indeterminate state.  We
161	 * have to clear the TT buffer.
162	 *
163	 * Note: this routine is never called for Isochronous transfers.
164	 */
165	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
166#ifdef CONFIG_DYNAMIC_DEBUG
167		struct usb_device *tt = urb->dev->tt->hub;
168		dev_dbg(&tt->dev,
169			"clear tt buffer port %d, a%d ep%d t%08x\n",
170			urb->dev->ttport, urb->dev->devnum,
171			usb_pipeendpoint(urb->pipe), token);
172#endif /* CONFIG_DYNAMIC_DEBUG */
173		if (!ehci_is_TDI(ehci)
174				|| urb->dev->tt->hub !=
175				   ehci_to_hcd(ehci)->self.root_hub) {
176			if (usb_hub_clear_tt_buffer(urb) == 0)
177				qh->clearing_tt = 1;
178		} else {
179
180			/* REVISIT ARC-derived cores don't clear the root
181			 * hub TT buffer in this way...
182			 */
183		}
184	}
185}
186
187static int qtd_copy_status (
188	struct ehci_hcd *ehci,
189	struct urb *urb,
190	size_t length,
191	u32 token
192)
193{
194	int	status = -EINPROGRESS;
195
196	/* count IN/OUT bytes, not SETUP (even short packets) */
197	if (likely(QTD_PID(token) != PID_CODE_SETUP))
198		urb->actual_length += length - QTD_LENGTH (token);
199
200	/* don't modify error codes */
201	if (unlikely(urb->unlinked))
202		return status;
203
204	/* force cleanup after short read; not always an error */
205	if (unlikely (IS_SHORT_READ (token)))
206		status = -EREMOTEIO;
207
208	/* serious "can't proceed" faults reported by the hardware */
209	if (token & QTD_STS_HALT) {
210		if (token & QTD_STS_BABBLE) {
211			/* FIXME "must" disable babbling device's port too */
212			status = -EOVERFLOW;
213		/*
214		 * When MMF is active and PID Code is IN, queue is halted.
215		 * EHCI Specification, Table 4-13.
216		 */
217		} else if ((token & QTD_STS_MMF) &&
218					(QTD_PID(token) == PID_CODE_IN)) {
219			status = -EPROTO;
220		/* CERR nonzero + halt --> stall */
221		} else if (QTD_CERR(token)) {
222			status = -EPIPE;
223
224		/* In theory, more than one of the following bits can be set
225		 * since they are sticky and the transaction is retried.
226		 * Which to test first is rather arbitrary.
227		 */
228		} else if (token & QTD_STS_MMF) {
229			/* fs/ls interrupt xfer missed the complete-split */
230			status = -EPROTO;
231		} else if (token & QTD_STS_DBE) {
232			status = (QTD_PID (token) == 1) /* IN ? */
233				? -ENOSR  /* hc couldn't read data */
234				: -ECOMM; /* hc couldn't write data */
235		} else if (token & QTD_STS_XACT) {
236			/* timeout, bad CRC, wrong PID, etc */
237			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
238				urb->dev->devpath,
239				usb_pipeendpoint(urb->pipe),
240				usb_pipein(urb->pipe) ? "in" : "out");
241			status = -EPROTO;
242		} else {	/* unknown */
243			status = -EPROTO;
244		}
245	}
246
247	return status;
248}
249
250static void
251ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
252{
253	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
254		/* ... update hc-wide periodic stats */
255		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
256	}
257
258	if (unlikely(urb->unlinked)) {
259		INCR(ehci->stats.unlink);
260	} else {
261		/* report non-error and short read status as zero */
262		if (status == -EINPROGRESS || status == -EREMOTEIO)
263			status = 0;
264		INCR(ehci->stats.complete);
265	}
266
267#ifdef EHCI_URB_TRACE
268	ehci_dbg (ehci,
269		"%s %s urb %p ep%d%s status %d len %d/%d\n",
270		__func__, urb->dev->devpath, urb,
271		usb_pipeendpoint (urb->pipe),
272		usb_pipein (urb->pipe) ? "in" : "out",
273		status,
274		urb->actual_length, urb->transfer_buffer_length);
275#endif
276
277	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
278	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
279}
280
281static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
282
283/*
284 * Process and free completed qtds for a qh, returning URBs to drivers.
285 * Chases up to qh->hw_current.  Returns nonzero if the caller should
286 * unlink qh.
287 */
288static unsigned
289qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
290{
291	struct ehci_qtd		*last, *end = qh->dummy;
292	struct list_head	*entry, *tmp;
293	int			last_status;
294	int			stopped;
295	u8			state;
296	struct ehci_qh_hw	*hw = qh->hw;
297
298	/* completions (or tasks on other cpus) must never clobber HALT
299	 * till we've gone through and cleaned everything up, even when
300	 * they add urbs to this qh's queue or mark them for unlinking.
301	 *
302	 * NOTE:  unlinking expects to be done in queue order.
303	 *
304	 * It's a bug for qh->qh_state to be anything other than
305	 * QH_STATE_IDLE, unless our caller is scan_async() or
306	 * scan_intr().
307	 */
308	state = qh->qh_state;
309	qh->qh_state = QH_STATE_COMPLETING;
310	stopped = (state == QH_STATE_IDLE);
311
312 rescan:
313	last = NULL;
314	last_status = -EINPROGRESS;
315	qh->dequeue_during_giveback = 0;
316
317	/* remove de-activated QTDs from front of queue.
318	 * after faults (including short reads), cleanup this urb
319	 * then let the queue advance.
320	 * if queue is stopped, handles unlinks.
321	 */
322	list_for_each_safe (entry, tmp, &qh->qtd_list) {
323		struct ehci_qtd	*qtd;
324		struct urb	*urb;
325		u32		token = 0;
326
327		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
328		urb = qtd->urb;
329
330		/* clean up any state from previous QTD ...*/
331		if (last) {
332			if (likely (last->urb != urb)) {
333				ehci_urb_done(ehci, last->urb, last_status);
334				last_status = -EINPROGRESS;
335			}
336			ehci_qtd_free (ehci, last);
337			last = NULL;
338		}
339
340		/* ignore urbs submitted during completions we reported */
341		if (qtd == end)
342			break;
343
344		/* hardware copies qtd out of qh overlay */
345		rmb ();
346		token = hc32_to_cpu(ehci, qtd->hw_token);
347
348		/* always clean up qtds the hc de-activated */
349 retry_xacterr:
350		if ((token & QTD_STS_ACTIVE) == 0) {
351
352			/* Report Data Buffer Error: non-fatal but useful */
353			if (token & QTD_STS_DBE)
354				ehci_dbg(ehci,
355					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
356					urb,
357					usb_endpoint_num(&urb->ep->desc),
358					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
359					urb->transfer_buffer_length,
360					qtd,
361					qh);
362
363			/* on STALL, error, and short reads this urb must
364			 * complete and all its qtds must be recycled.
365			 */
366			if ((token & QTD_STS_HALT) != 0) {
367
368				/* retry transaction errors until we
369				 * reach the software xacterr limit
370				 */
371				if ((token & QTD_STS_XACT) &&
372						QTD_CERR(token) == 0 &&
373						++qh->xacterrs < QH_XACTERR_MAX &&
374						!urb->unlinked) {
375					ehci_dbg(ehci,
376	"detected XactErr len %zu/%zu retry %d\n",
377	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
378
379					/* reset the token in the qtd and the
380					 * qh overlay (which still contains
381					 * the qtd) so that we pick up from
382					 * where we left off
383					 */
384					token &= ~QTD_STS_HALT;
385					token |= QTD_STS_ACTIVE |
386							(EHCI_TUNE_CERR << 10);
387					qtd->hw_token = cpu_to_hc32(ehci,
388							token);
389					wmb();
390					hw->hw_token = cpu_to_hc32(ehci,
391							token);
392					goto retry_xacterr;
393				}
394				stopped = 1;
395				qh->unlink_reason |= QH_UNLINK_HALTED;
396
397			/* magic dummy for some short reads; qh won't advance.
398			 * that silicon quirk can kick in with this dummy too.
399			 *
400			 * other short reads won't stop the queue, including
401			 * control transfers (status stage handles that) or
402			 * most other single-qtd reads ... the queue stops if
403			 * URB_SHORT_NOT_OK was set so the driver submitting
404			 * the urbs could clean it up.
405			 */
406			} else if (IS_SHORT_READ (token)
407					&& !(qtd->hw_alt_next
408						& EHCI_LIST_END(ehci))) {
409				stopped = 1;
410				qh->unlink_reason |= QH_UNLINK_SHORT_READ;
411			}
412
413		/* stop scanning when we reach qtds the hc is using */
414		} else if (likely (!stopped
415				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
416			break;
417
418		/* scan the whole queue for unlinks whenever it stops */
419		} else {
420			stopped = 1;
421
422			/* cancel everything if we halt, suspend, etc */
423			if (ehci->rh_state < EHCI_RH_RUNNING) {
424				last_status = -ESHUTDOWN;
425				qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
426			}
427
428			/* this qtd is active; skip it unless a previous qtd
429			 * for its urb faulted, or its urb was canceled.
430			 */
431			else if (last_status == -EINPROGRESS && !urb->unlinked)
432				continue;
433
434			/*
435			 * If this was the active qtd when the qh was unlinked
436			 * and the overlay's token is active, then the overlay
437			 * hasn't been written back to the qtd yet so use its
438			 * token instead of the qtd's.  After the qtd is
439			 * processed and removed, the overlay won't be valid
440			 * any more.
441			 */
442			if (state == QH_STATE_IDLE &&
443					qh->qtd_list.next == &qtd->qtd_list &&
444					(hw->hw_token & ACTIVE_BIT(ehci))) {
445				token = hc32_to_cpu(ehci, hw->hw_token);
446				hw->hw_token &= ~ACTIVE_BIT(ehci);
447				qh->should_be_inactive = 1;
448
449				/* An unlink may leave an incomplete
450				 * async transaction in the TT buffer.
451				 * We have to clear it.
452				 */
453				ehci_clear_tt_buffer(ehci, qh, urb, token);
454			}
455		}
456
457		/* unless we already know the urb's status, collect qtd status
458		 * and update count of bytes transferred.  in common short read
459		 * cases with only one data qtd (including control transfers),
460		 * queue processing won't halt.  but with two or more qtds (for
461		 * example, with a 32 KB transfer), when the first qtd gets a
462		 * short read the second must be removed by hand.
463		 */
464		if (last_status == -EINPROGRESS) {
465			last_status = qtd_copy_status(ehci, urb,
466					qtd->length, token);
467			if (last_status == -EREMOTEIO
468					&& (qtd->hw_alt_next
469						& EHCI_LIST_END(ehci)))
470				last_status = -EINPROGRESS;
471
472			/* As part of low/full-speed endpoint-halt processing
473			 * we must clear the TT buffer (11.17.5).
474			 */
475			if (unlikely(last_status != -EINPROGRESS &&
476					last_status != -EREMOTEIO)) {
477				/* The TT's in some hubs malfunction when they
478				 * receive this request following a STALL (they
479				 * stop sending isochronous packets).  Since a
480				 * STALL can't leave the TT buffer in a busy
481				 * state (if you believe Figures 11-48 - 11-51
482				 * in the USB 2.0 spec), we won't clear the TT
483				 * buffer in this case.  Strictly speaking this
484				 * is a violation of the spec.
485				 */
486				if (last_status != -EPIPE)
487					ehci_clear_tt_buffer(ehci, qh, urb,
488							token);
489			}
490		}
491
492		/* if we're removing something not at the queue head,
493		 * patch the hardware queue pointer.
494		 */
495		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
496			last = list_entry (qtd->qtd_list.prev,
497					struct ehci_qtd, qtd_list);
498			last->hw_next = qtd->hw_next;
499		}
500
501		/* remove qtd; it's recycled after possible urb completion */
502		list_del (&qtd->qtd_list);
503		last = qtd;
504
505		/* reinit the xacterr counter for the next qtd */
506		qh->xacterrs = 0;
507	}
508
509	/* last urb's completion might still need calling */
510	if (likely (last != NULL)) {
511		ehci_urb_done(ehci, last->urb, last_status);
512		ehci_qtd_free (ehci, last);
513	}
514
515	/* Do we need to rescan for URBs dequeued during a giveback? */
516	if (unlikely(qh->dequeue_during_giveback)) {
517		/* If the QH is already unlinked, do the rescan now. */
518		if (state == QH_STATE_IDLE)
519			goto rescan;
520
521		/* Otherwise the caller must unlink the QH. */
522	}
523
524	/* restore original state; caller must unlink or relink */
525	qh->qh_state = state;
526
527	/* be sure the hardware's done with the qh before refreshing
528	 * it after fault cleanup, or recovering from silicon wrongly
529	 * overlaying the dummy qtd (which reduces DMA chatter).
530	 *
531	 * We won't refresh a QH that's linked (after the HC
532	 * stopped the queue).  That avoids a race:
533	 *  - HC reads first part of QH;
534	 *  - CPU updates that first part and the token;
535	 *  - HC reads rest of that QH, including token
536	 * Result:  HC gets an inconsistent image, and then
537	 * DMAs to/from the wrong memory (corrupting it).
538	 *
539	 * That should be rare for interrupt transfers,
540	 * except maybe high bandwidth ...
541	 */
542	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
543		qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
544
545	/* Let the caller know if the QH needs to be unlinked. */
546	return qh->unlink_reason;
547}
548
549/*-------------------------------------------------------------------------*/
550
551/*
552 * reverse of qh_urb_transaction:  free a list of TDs.
553 * used for cleanup after errors, before HC sees an URB's TDs.
554 */
555static void qtd_list_free (
556	struct ehci_hcd		*ehci,
557	struct urb		*urb,
558	struct list_head	*qtd_list
559) {
560	struct list_head	*entry, *temp;
561
562	list_for_each_safe (entry, temp, qtd_list) {
563		struct ehci_qtd	*qtd;
564
565		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
566		list_del (&qtd->qtd_list);
567		ehci_qtd_free (ehci, qtd);
568	}
569}
570
571/*
572 * create a list of filled qtds for this URB; won't link into qh.
573 */
574static struct list_head *
575qh_urb_transaction (
576	struct ehci_hcd		*ehci,
577	struct urb		*urb,
578	struct list_head	*head,
579	gfp_t			flags
580) {
581	struct ehci_qtd		*qtd, *qtd_prev;
582	dma_addr_t		buf;
583	int			len, this_sg_len, maxpacket;
584	int			is_input;
585	u32			token;
586	int			i;
587	struct scatterlist	*sg;
588
589	/*
590	 * URBs map to sequences of QTDs:  one logical transaction
591	 */
592	qtd = ehci_qtd_alloc (ehci, flags);
593	if (unlikely (!qtd))
594		return NULL;
595	list_add_tail (&qtd->qtd_list, head);
596	qtd->urb = urb;
597
598	token = QTD_STS_ACTIVE;
599	token |= (EHCI_TUNE_CERR << 10);
600	/* for split transactions, SplitXState initialized to zero */
601
602	len = urb->transfer_buffer_length;
603	is_input = usb_pipein (urb->pipe);
604	if (usb_pipecontrol (urb->pipe)) {
605		/* SETUP pid */
606		qtd_fill(ehci, qtd, urb->setup_dma,
607				sizeof (struct usb_ctrlrequest),
608				token | (2 /* "setup" */ << 8), 8);
609
610		/* ... and always at least one more pid */
611		token ^= QTD_TOGGLE;
612		qtd_prev = qtd;
613		qtd = ehci_qtd_alloc (ehci, flags);
614		if (unlikely (!qtd))
615			goto cleanup;
616		qtd->urb = urb;
617		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
618		list_add_tail (&qtd->qtd_list, head);
619
620		/* for zero length DATA stages, STATUS is always IN */
621		if (len == 0)
622			token |= (1 /* "in" */ << 8);
623	}
624
625	/*
626	 * data transfer stage:  buffer setup
627	 */
628	i = urb->num_mapped_sgs;
629	if (len > 0 && i > 0) {
630		sg = urb->sg;
631		buf = sg_dma_address(sg);
632
633		/* urb->transfer_buffer_length may be smaller than the
634		 * size of the scatterlist (or vice versa)
635		 */
636		this_sg_len = min_t(int, sg_dma_len(sg), len);
637	} else {
638		sg = NULL;
639		buf = urb->transfer_dma;
640		this_sg_len = len;
641	}
642
643	if (is_input)
644		token |= (1 /* "in" */ << 8);
645	/* else it's already initted to "out" pid (0 << 8) */
646
647	maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
648
649	/*
650	 * buffer gets wrapped in one or more qtds;
651	 * last one may be "short" (including zero len)
652	 * and may serve as a control status ack
653	 */
654	for (;;) {
655		int this_qtd_len;
656
657		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
658				maxpacket);
659		this_sg_len -= this_qtd_len;
660		len -= this_qtd_len;
661		buf += this_qtd_len;
662
663		/*
664		 * short reads advance to a "magic" dummy instead of the next
665		 * qtd ... that forces the queue to stop, for manual cleanup.
666		 * (this will usually be overridden later.)
667		 */
668		if (is_input)
669			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
670
671		/* qh makes control packets use qtd toggle; maybe switch it */
672		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
673			token ^= QTD_TOGGLE;
674
675		if (likely(this_sg_len <= 0)) {
676			if (--i <= 0 || len <= 0)
677				break;
678			sg = sg_next(sg);
679			buf = sg_dma_address(sg);
680			this_sg_len = min_t(int, sg_dma_len(sg), len);
681		}
682
683		qtd_prev = qtd;
684		qtd = ehci_qtd_alloc (ehci, flags);
685		if (unlikely (!qtd))
686			goto cleanup;
687		qtd->urb = urb;
688		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
689		list_add_tail (&qtd->qtd_list, head);
690	}
691
692	/*
693	 * unless the caller requires manual cleanup after short reads,
694	 * have the alt_next mechanism keep the queue running after the
695	 * last data qtd (the only one, for control and most other cases).
696	 */
697	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
698				|| usb_pipecontrol (urb->pipe)))
699		qtd->hw_alt_next = EHCI_LIST_END(ehci);
700
701	/*
702	 * control requests may need a terminating data "status" ack;
703	 * other OUT ones may need a terminating short packet
704	 * (zero length).
705	 */
706	if (likely (urb->transfer_buffer_length != 0)) {
707		int	one_more = 0;
708
709		if (usb_pipecontrol (urb->pipe)) {
710			one_more = 1;
711			token ^= 0x0100;	/* "in" <--> "out"  */
712			token |= QTD_TOGGLE;	/* force DATA1 */
713		} else if (usb_pipeout(urb->pipe)
714				&& (urb->transfer_flags & URB_ZERO_PACKET)
715				&& !(urb->transfer_buffer_length % maxpacket)) {
716			one_more = 1;
717		}
718		if (one_more) {
719			qtd_prev = qtd;
720			qtd = ehci_qtd_alloc (ehci, flags);
721			if (unlikely (!qtd))
722				goto cleanup;
723			qtd->urb = urb;
724			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
725			list_add_tail (&qtd->qtd_list, head);
726
727			/* never any data in such packets */
728			qtd_fill(ehci, qtd, 0, 0, token, 0);
729		}
730	}
731
732	/* by default, enable interrupt on urb completion */
733	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
734		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
735	return head;
736
737cleanup:
738	qtd_list_free (ehci, urb, head);
739	return NULL;
740}
741
742/*-------------------------------------------------------------------------*/
743
744// Would be best to create all qh's from config descriptors,
745// when each interface/altsetting is established.  Unlink
746// any previous qh and cancel its urbs first; endpoints are
747// implicitly reset then (data toggle too).
748// That'd mean updating how usbcore talks to HCDs. (2.7?)
749
750
751/*
752 * Each QH holds a qtd list; a QH is used for everything except iso.
753 *
754 * For interrupt urbs, the scheduler must set the microframe scheduling
755 * mask(s) each time the QH gets scheduled.  For highspeed, that's
756 * just one microframe in the s-mask.  For split interrupt transactions
757 * there are additional complications: c-mask, maybe FSTNs.
758 */
759static struct ehci_qh *
760qh_make (
761	struct ehci_hcd		*ehci,
762	struct urb		*urb,
763	gfp_t			flags
764) {
765	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
766	struct usb_host_endpoint *ep;
767	u32			info1 = 0, info2 = 0;
768	int			is_input, type;
769	int			maxp = 0;
770	int			mult;
771	struct usb_tt		*tt = urb->dev->tt;
772	struct ehci_qh_hw	*hw;
773
774	if (!qh)
775		return qh;
776
777	/*
778	 * init endpoint/device data for this QH
779	 */
780	info1 |= usb_pipeendpoint (urb->pipe) << 8;
781	info1 |= usb_pipedevice (urb->pipe) << 0;
782
783	is_input = usb_pipein (urb->pipe);
784	type = usb_pipetype (urb->pipe);
785	ep = usb_pipe_endpoint (urb->dev, urb->pipe);
786	maxp = usb_endpoint_maxp (&ep->desc);
787	mult = usb_endpoint_maxp_mult (&ep->desc);
788
789	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
790	 * acts like up to 3KB, but is built from smaller packets.
791	 */
792	if (maxp > 1024) {
793		ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
794		goto done;
795	}
796
797	/* Compute interrupt scheduling parameters just once, and save.
798	 * - allowing for high bandwidth, how many nsec/uframe are used?
799	 * - split transactions need a second CSPLIT uframe; same question
800	 * - splits also need a schedule gap (for full/low speed I/O)
801	 * - qh has a polling interval
802	 *
803	 * For control/bulk requests, the HC or TT handles these.
804	 */
805	if (type == PIPE_INTERRUPT) {
806		unsigned	tmp;
807
808		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
809				is_input, 0, mult * maxp));
810		qh->ps.phase = NO_FRAME;
811
812		if (urb->dev->speed == USB_SPEED_HIGH) {
813			qh->ps.c_usecs = 0;
814			qh->gap_uf = 0;
815
816			if (urb->interval > 1 && urb->interval < 8) {
817				/* NOTE interval 2 or 4 uframes could work.
818				 * But interval 1 scheduling is simpler, and
819				 * includes high bandwidth.
820				 */
821				urb->interval = 1;
822			} else if (urb->interval > ehci->periodic_size << 3) {
823				urb->interval = ehci->periodic_size << 3;
824			}
825			qh->ps.period = urb->interval >> 3;
826
827			/* period for bandwidth allocation */
828			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
829					1 << (urb->ep->desc.bInterval - 1));
830
831			/* Allow urb->interval to override */
832			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
833			qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
834		} else {
835			int		think_time;
836
837			/* gap is f(FS/LS transfer times) */
838			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
839					is_input, 0, maxp) / (125 * 1000);
840
841			/* FIXME this just approximates SPLIT/CSPLIT times */
842			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
843				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
844				qh->ps.usecs = HS_USECS(1);
845			} else {		// SPLIT+DATA, gap, CSPLIT
846				qh->ps.usecs += HS_USECS(1);
847				qh->ps.c_usecs = HS_USECS(0);
848			}
849
850			think_time = tt ? tt->think_time : 0;
851			qh->ps.tt_usecs = NS_TO_US(think_time +
852					usb_calc_bus_time (urb->dev->speed,
853					is_input, 0, maxp));
854			if (urb->interval > ehci->periodic_size)
855				urb->interval = ehci->periodic_size;
856			qh->ps.period = urb->interval;
857
858			/* period for bandwidth allocation */
859			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
860					urb->ep->desc.bInterval);
861			tmp = rounddown_pow_of_two(tmp);
862
863			/* Allow urb->interval to override */
864			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
865			qh->ps.bw_uperiod = qh->ps.bw_period << 3;
866		}
867	}
868
869	/* support for tt scheduling, and access to toggles */
870	qh->ps.udev = urb->dev;
871	qh->ps.ep = urb->ep;
872
873	/* using TT? */
874	switch (urb->dev->speed) {
875	case USB_SPEED_LOW:
876		info1 |= QH_LOW_SPEED;
877		fallthrough;
878
879	case USB_SPEED_FULL:
880		/* EPS 0 means "full" */
881		if (type != PIPE_INTERRUPT)
882			info1 |= (EHCI_TUNE_RL_TT << 28);
883		if (type == PIPE_CONTROL) {
884			info1 |= QH_CONTROL_EP;		/* for TT */
885			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
886		}
887		info1 |= maxp << 16;
888
889		info2 |= (EHCI_TUNE_MULT_TT << 30);
890
891		/* Some Freescale processors have an erratum in which the
892		 * port number in the queue head was 0..N-1 instead of 1..N.
893		 */
894		if (ehci_has_fsl_portno_bug(ehci))
895			info2 |= (urb->dev->ttport-1) << 23;
896		else
897			info2 |= urb->dev->ttport << 23;
898
899		/* set the address of the TT; for TDI's integrated
900		 * root hub tt, leave it zeroed.
901		 */
902		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
903			info2 |= tt->hub->devnum << 16;
904
905		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
906
907		break;
908
909	case USB_SPEED_HIGH:		/* no TT involved */
910		info1 |= QH_HIGH_SPEED;
911		if (type == PIPE_CONTROL) {
912			info1 |= (EHCI_TUNE_RL_HS << 28);
913			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
914			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
915			info2 |= (EHCI_TUNE_MULT_HS << 30);
916		} else if (type == PIPE_BULK) {
917			info1 |= (EHCI_TUNE_RL_HS << 28);
918			/* The USB spec says that high speed bulk endpoints
919			 * always use 512 byte maxpacket.  But some device
920			 * vendors decided to ignore that, and MSFT is happy
921			 * to help them do so.  So now people expect to use
922			 * such nonconformant devices with Linux too; sigh.
923			 */
924			info1 |= maxp << 16;
925			info2 |= (EHCI_TUNE_MULT_HS << 30);
926		} else {		/* PIPE_INTERRUPT */
927			info1 |= maxp << 16;
928			info2 |= mult << 30;
929		}
930		break;
931	default:
932		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
933			urb->dev->speed);
934done:
935		qh_destroy(ehci, qh);
936		return NULL;
937	}
938
939	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
940
941	/* init as live, toggle clear */
942	qh->qh_state = QH_STATE_IDLE;
943	hw = qh->hw;
944	hw->hw_info1 = cpu_to_hc32(ehci, info1);
945	hw->hw_info2 = cpu_to_hc32(ehci, info2);
946	qh->is_out = !is_input;
947	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
948	return qh;
949}
950
951/*-------------------------------------------------------------------------*/
952
953static void enable_async(struct ehci_hcd *ehci)
954{
955	if (ehci->async_count++)
956		return;
957
958	/* Stop waiting to turn off the async schedule */
959	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
960
961	/* Don't start the schedule until ASS is 0 */
962	ehci_poll_ASS(ehci);
963	turn_on_io_watchdog(ehci);
964}
965
966static void disable_async(struct ehci_hcd *ehci)
967{
968	if (--ehci->async_count)
969		return;
970
971	/* The async schedule and unlink lists are supposed to be empty */
972	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
973			!list_empty(&ehci->async_idle));
974
975	/* Don't turn off the schedule until ASS is 1 */
976	ehci_poll_ASS(ehci);
977}
978
979/* move qh (and its qtds) onto async queue; maybe enable queue.  */
980
981static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
982{
983	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
984	struct ehci_qh	*head;
985
986	/* Don't link a QH if there's a Clear-TT-Buffer pending */
987	if (unlikely(qh->clearing_tt))
988		return;
989
990	WARN_ON(qh->qh_state != QH_STATE_IDLE);
991
992	/* clear halt and/or toggle; and maybe recover from silicon quirk */
993	qh_refresh(ehci, qh);
994
995	/* splice right after start */
996	head = ehci->async;
997	qh->qh_next = head->qh_next;
998	qh->hw->hw_next = head->hw->hw_next;
999	wmb ();
1000
1001	head->qh_next.qh = qh;
1002	head->hw->hw_next = dma;
1003
1004	qh->qh_state = QH_STATE_LINKED;
1005	qh->xacterrs = 0;
1006	qh->unlink_reason = 0;
1007	/* qtd completions reported later by interrupt */
1008
1009	enable_async(ehci);
1010}
1011
1012/*-------------------------------------------------------------------------*/
1013
1014/*
1015 * For control/bulk/interrupt, return QH with these TDs appended.
1016 * Allocates and initializes the QH if necessary.
1017 * Returns null if it can't allocate a QH it needs to.
1018 * If the QH has TDs (urbs) already, that's great.
1019 */
1020static struct ehci_qh *qh_append_tds (
1021	struct ehci_hcd		*ehci,
1022	struct urb		*urb,
1023	struct list_head	*qtd_list,
1024	int			epnum,
1025	void			**ptr
1026)
1027{
1028	struct ehci_qh		*qh = NULL;
1029	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1030
1031	qh = (struct ehci_qh *) *ptr;
1032	if (unlikely (qh == NULL)) {
1033		/* can't sleep here, we have ehci->lock... */
1034		qh = qh_make (ehci, urb, GFP_ATOMIC);
1035		*ptr = qh;
1036	}
1037	if (likely (qh != NULL)) {
1038		struct ehci_qtd	*qtd;
1039
1040		if (unlikely (list_empty (qtd_list)))
1041			qtd = NULL;
1042		else
1043			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1044					qtd_list);
1045
1046		/* control qh may need patching ... */
1047		if (unlikely (epnum == 0)) {
1048
1049                        /* usb_reset_device() briefly reverts to address 0 */
1050                        if (usb_pipedevice (urb->pipe) == 0)
1051				qh->hw->hw_info1 &= ~qh_addr_mask;
1052		}
1053
1054		/* just one way to queue requests: swap with the dummy qtd.
1055		 * only hc or qh_refresh() ever modify the overlay.
1056		 */
1057		if (likely (qtd != NULL)) {
1058			struct ehci_qtd		*dummy;
1059			dma_addr_t		dma;
1060			__hc32			token;
1061
1062			/* to avoid racing the HC, use the dummy td instead of
1063			 * the first td of our list (becomes new dummy).  both
1064			 * tds stay deactivated until we're done, when the
1065			 * HC is allowed to fetch the old dummy (4.10.2).
1066			 */
1067			token = qtd->hw_token;
1068			qtd->hw_token = HALT_BIT(ehci);
1069
1070			dummy = qh->dummy;
1071
1072			dma = dummy->qtd_dma;
1073			*dummy = *qtd;
1074			dummy->qtd_dma = dma;
1075
1076			list_del (&qtd->qtd_list);
1077			list_add (&dummy->qtd_list, qtd_list);
1078			list_splice_tail(qtd_list, &qh->qtd_list);
1079
1080			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1081			qh->dummy = qtd;
1082
1083			/* hc must see the new dummy at list end */
1084			dma = qtd->qtd_dma;
1085			qtd = list_entry (qh->qtd_list.prev,
1086					struct ehci_qtd, qtd_list);
1087			qtd->hw_next = QTD_NEXT(ehci, dma);
1088
1089			/* let the hc process these next qtds */
1090			wmb ();
1091			dummy->hw_token = token;
1092
1093			urb->hcpriv = qh;
1094		}
1095	}
1096	return qh;
1097}
1098
1099/*-------------------------------------------------------------------------*/
1100
1101static int
1102submit_async (
1103	struct ehci_hcd		*ehci,
1104	struct urb		*urb,
1105	struct list_head	*qtd_list,
1106	gfp_t			mem_flags
1107) {
1108	int			epnum;
1109	unsigned long		flags;
1110	struct ehci_qh		*qh = NULL;
1111	int			rc;
1112
1113	epnum = urb->ep->desc.bEndpointAddress;
1114
1115#ifdef EHCI_URB_TRACE
1116	{
1117		struct ehci_qtd *qtd;
1118		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1119		ehci_dbg(ehci,
1120			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1121			 __func__, urb->dev->devpath, urb,
1122			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1123			 urb->transfer_buffer_length,
1124			 qtd, urb->ep->hcpriv);
1125	}
1126#endif
1127
1128	spin_lock_irqsave (&ehci->lock, flags);
1129	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1130		rc = -ESHUTDOWN;
1131		goto done;
1132	}
1133	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1134	if (unlikely(rc))
1135		goto done;
1136
1137	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1138	if (unlikely(qh == NULL)) {
1139		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1140		rc = -ENOMEM;
1141		goto done;
1142	}
1143
1144	/* Control/bulk operations through TTs don't need scheduling,
1145	 * the HC and TT handle it when the TT has a buffer ready.
1146	 */
1147	if (likely (qh->qh_state == QH_STATE_IDLE))
1148		qh_link_async(ehci, qh);
1149 done:
1150	spin_unlock_irqrestore (&ehci->lock, flags);
1151	if (unlikely (qh == NULL))
1152		qtd_list_free (ehci, urb, qtd_list);
1153	return rc;
1154}
1155
1156/*-------------------------------------------------------------------------*/
1157#ifdef CONFIG_USB_HCD_TEST_MODE
1158/*
1159 * This function creates the qtds and submits them for the
1160 * SINGLE_STEP_SET_FEATURE Test.
1161 * This is done in two parts: first SETUP req for GetDesc is sent then
1162 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1163 *
1164 * is_setup : i/p arguement decides which of the two stage needs to be
1165 * performed; TRUE - SETUP and FALSE - IN+STATUS
1166 * Returns 0 if success
1167 */
1168static int submit_single_step_set_feature(
1169	struct usb_hcd  *hcd,
1170	struct urb      *urb,
1171	int             is_setup
1172) {
1173	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
1174	struct list_head	qtd_list;
1175	struct list_head	*head;
1176
1177	struct ehci_qtd		*qtd, *qtd_prev;
1178	dma_addr_t		buf;
1179	int			len, maxpacket;
1180	u32			token;
1181
1182	INIT_LIST_HEAD(&qtd_list);
1183	head = &qtd_list;
1184
1185	/* URBs map to sequences of QTDs:  one logical transaction */
1186	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1187	if (unlikely(!qtd))
1188		return -1;
1189	list_add_tail(&qtd->qtd_list, head);
1190	qtd->urb = urb;
1191
1192	token = QTD_STS_ACTIVE;
1193	token |= (EHCI_TUNE_CERR << 10);
1194
1195	len = urb->transfer_buffer_length;
1196	/*
1197	 * Check if the request is to perform just the SETUP stage (getDesc)
1198	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1199	 * 15 secs after the setup
1200	 */
1201	if (is_setup) {
1202		/* SETUP pid, and interrupt after SETUP completion */
1203		qtd_fill(ehci, qtd, urb->setup_dma,
1204				sizeof(struct usb_ctrlrequest),
1205				QTD_IOC | token | (2 /* "setup" */ << 8), 8);
1206
1207		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1208		return 0; /*Return now; we shall come back after 15 seconds*/
1209	}
1210
1211	/*
1212	 * IN: data transfer stage:  buffer setup : start the IN txn phase for
1213	 * the get_Desc SETUP which was sent 15seconds back
1214	 */
1215	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/
1216	buf = urb->transfer_dma;
1217
1218	token |= (1 /* "in" */ << 8);  /*This is IN stage*/
1219
1220	maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0);
1221
1222	qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1223
1224	/*
1225	 * Our IN phase shall always be a short read; so keep the queue running
1226	 * and let it advance to the next qtd which zero length OUT status
1227	 */
1228	qtd->hw_alt_next = EHCI_LIST_END(ehci);
1229
1230	/* STATUS stage for GetDesc control request */
1231	token ^= 0x0100;        /* "in" <--> "out"  */
1232	token |= QTD_TOGGLE;    /* force DATA1 */
1233
1234	qtd_prev = qtd;
1235	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1236	if (unlikely(!qtd))
1237		goto cleanup;
1238	qtd->urb = urb;
1239	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1240	list_add_tail(&qtd->qtd_list, head);
1241
1242	/* Interrupt after STATUS completion */
1243	qtd_fill(ehci, qtd, 0, 0, token | QTD_IOC, 0);
1244
1245	submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1246
1247	return 0;
1248
1249cleanup:
1250	qtd_list_free(ehci, urb, head);
1251	return -1;
1252}
1253#endif /* CONFIG_USB_HCD_TEST_MODE */
1254
1255/*-------------------------------------------------------------------------*/
1256
1257static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1258{
1259	struct ehci_qh		*prev;
1260
1261	/* Add to the end of the list of QHs waiting for the next IAAD */
1262	qh->qh_state = QH_STATE_UNLINK_WAIT;
1263	list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1264
1265	/* Unlink it from the schedule */
1266	prev = ehci->async;
1267	while (prev->qh_next.qh != qh)
1268		prev = prev->qh_next.qh;
1269
1270	prev->hw->hw_next = qh->hw->hw_next;
1271	prev->qh_next = qh->qh_next;
1272	if (ehci->qh_scan_next == qh)
1273		ehci->qh_scan_next = qh->qh_next.qh;
1274}
1275
1276static void start_iaa_cycle(struct ehci_hcd *ehci)
1277{
1278	/* If the controller isn't running, we don't have to wait for it */
1279	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1280		end_unlink_async(ehci);
1281
1282	/* Otherwise start a new IAA cycle if one isn't already running */
1283	} else if (ehci->rh_state == EHCI_RH_RUNNING &&
1284			!ehci->iaa_in_progress) {
1285
1286		/* Make sure the unlinks are all visible to the hardware */
1287		wmb();
1288
1289		ehci_writel(ehci, ehci->command | CMD_IAAD,
1290				&ehci->regs->command);
1291		ehci_readl(ehci, &ehci->regs->command);
1292		ehci->iaa_in_progress = true;
1293		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1294	}
1295}
1296
1297static void end_iaa_cycle(struct ehci_hcd *ehci)
1298{
1299	if (ehci->has_synopsys_hc_bug)
1300		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1301			    &ehci->regs->async_next);
1302
1303	/* The current IAA cycle has ended */
1304	ehci->iaa_in_progress = false;
1305
1306	end_unlink_async(ehci);
1307}
1308
1309/* See if the async qh for the qtds being unlinked are now gone from the HC */
1310
1311static void end_unlink_async(struct ehci_hcd *ehci)
1312{
1313	struct ehci_qh		*qh;
1314	bool			early_exit;
1315
1316	if (list_empty(&ehci->async_unlink))
1317		return;
1318	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1319			unlink_node);	/* QH whose IAA cycle just ended */
1320
1321	/*
1322	 * If async_unlinking is set then this routine is already running,
1323	 * either on the stack or on another CPU.
1324	 */
1325	early_exit = ehci->async_unlinking;
1326
1327	/* If the controller isn't running, process all the waiting QHs */
1328	if (ehci->rh_state < EHCI_RH_RUNNING)
1329		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1330
1331	/*
1332	 * Intel (?) bug: The HC can write back the overlay region even
1333	 * after the IAA interrupt occurs.  In self-defense, always go
1334	 * through two IAA cycles for each QH.
1335	 */
1336	else if (qh->qh_state == QH_STATE_UNLINK) {
1337		/*
1338		 * Second IAA cycle has finished.  Process only the first
1339		 * waiting QH (NVIDIA (?) bug).
1340		 */
1341		list_move_tail(&qh->unlink_node, &ehci->async_idle);
1342	}
1343
1344	/*
1345	 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1346	 * after the IAA interrupt occurs.  To prevent problems, QHs that
1347	 * may still be active will wait until 2 ms have passed with no
1348	 * change to the hw_current and hw_token fields (this delay occurs
1349	 * between the two IAA cycles).
1350	 *
1351	 * The EHCI spec (4.8.2) says that active QHs must not be removed
1352	 * from the async schedule and recommends waiting until the QH
1353	 * goes inactive.  This is ridiculous because the QH will _never_
1354	 * become inactive if the endpoint NAKs indefinitely.
1355	 */
1356
1357	/* Some reasons for unlinking guarantee the QH can't be active */
1358	else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1359			QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1360		goto DelayDone;
1361
1362	/* The QH can't be active if the queue was and still is empty... */
1363	else if	((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1364			list_empty(&qh->qtd_list))
1365		goto DelayDone;
1366
1367	/* ... or if the QH has halted */
1368	else if	(qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1369		goto DelayDone;
1370
1371	/* Otherwise we have to wait until the QH stops changing */
1372	else {
1373		__hc32		qh_current, qh_token;
1374
1375		qh_current = qh->hw->hw_current;
1376		qh_token = qh->hw->hw_token;
1377		if (qh_current != ehci->old_current ||
1378				qh_token != ehci->old_token) {
1379			ehci->old_current = qh_current;
1380			ehci->old_token = qh_token;
1381			ehci_enable_event(ehci,
1382					EHCI_HRTIMER_ACTIVE_UNLINK, true);
1383			return;
1384		}
1385 DelayDone:
1386		qh->qh_state = QH_STATE_UNLINK;
1387		early_exit = true;
1388	}
1389	ehci->old_current = ~0;		/* Prepare for next QH */
1390
1391	/* Start a new IAA cycle if any QHs are waiting for it */
1392	if (!list_empty(&ehci->async_unlink))
1393		start_iaa_cycle(ehci);
1394
1395	/*
1396	 * Don't allow nesting or concurrent calls,
1397	 * or wait for the second IAA cycle for the next QH.
1398	 */
1399	if (early_exit)
1400		return;
1401
1402	/* Process the idle QHs */
1403	ehci->async_unlinking = true;
1404	while (!list_empty(&ehci->async_idle)) {
1405		qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1406				unlink_node);
1407		list_del(&qh->unlink_node);
1408
1409		qh->qh_state = QH_STATE_IDLE;
1410		qh->qh_next.qh = NULL;
1411
1412		if (!list_empty(&qh->qtd_list))
1413			qh_completions(ehci, qh);
1414		if (!list_empty(&qh->qtd_list) &&
1415				ehci->rh_state == EHCI_RH_RUNNING)
1416			qh_link_async(ehci, qh);
1417		disable_async(ehci);
1418	}
1419	ehci->async_unlinking = false;
1420}
1421
1422static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1423
1424static void unlink_empty_async(struct ehci_hcd *ehci)
1425{
1426	struct ehci_qh		*qh;
1427	struct ehci_qh		*qh_to_unlink = NULL;
1428	int			count = 0;
1429
1430	/* Find the last async QH which has been empty for a timer cycle */
1431	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1432		if (list_empty(&qh->qtd_list) &&
1433				qh->qh_state == QH_STATE_LINKED) {
1434			++count;
1435			if (qh->unlink_cycle != ehci->async_unlink_cycle)
1436				qh_to_unlink = qh;
1437		}
1438	}
1439
1440	/* If nothing else is being unlinked, unlink the last empty QH */
1441	if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1442		qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1443		start_unlink_async(ehci, qh_to_unlink);
1444		--count;
1445	}
1446
1447	/* Other QHs will be handled later */
1448	if (count > 0) {
1449		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1450		++ehci->async_unlink_cycle;
1451	}
1452}
1453
1454#ifdef	CONFIG_PM
1455
1456/* The root hub is suspended; unlink all the async QHs */
1457static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1458{
1459	struct ehci_qh		*qh;
1460
1461	while (ehci->async->qh_next.qh) {
1462		qh = ehci->async->qh_next.qh;
1463		WARN_ON(!list_empty(&qh->qtd_list));
1464		single_unlink_async(ehci, qh);
1465	}
1466}
1467
1468#endif
1469
1470/* makes sure the async qh will become idle */
1471/* caller must own ehci->lock */
1472
1473static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1474{
1475	/* If the QH isn't linked then there's nothing we can do. */
1476	if (qh->qh_state != QH_STATE_LINKED)
1477		return;
1478
1479	single_unlink_async(ehci, qh);
1480	start_iaa_cycle(ehci);
1481}
1482
1483/*-------------------------------------------------------------------------*/
1484
1485static void scan_async (struct ehci_hcd *ehci)
1486{
1487	struct ehci_qh		*qh;
1488	bool			check_unlinks_later = false;
1489
1490	ehci->qh_scan_next = ehci->async->qh_next.qh;
1491	while (ehci->qh_scan_next) {
1492		qh = ehci->qh_scan_next;
1493		ehci->qh_scan_next = qh->qh_next.qh;
1494
1495		/* clean any finished work for this qh */
1496		if (!list_empty(&qh->qtd_list)) {
1497			int temp;
1498
1499			/*
1500			 * Unlinks could happen here; completion reporting
1501			 * drops the lock.  That's why ehci->qh_scan_next
1502			 * always holds the next qh to scan; if the next qh
1503			 * gets unlinked then ehci->qh_scan_next is adjusted
1504			 * in single_unlink_async().
1505			 */
1506			temp = qh_completions(ehci, qh);
1507			if (unlikely(temp)) {
1508				start_unlink_async(ehci, qh);
1509			} else if (list_empty(&qh->qtd_list)
1510					&& qh->qh_state == QH_STATE_LINKED) {
1511				qh->unlink_cycle = ehci->async_unlink_cycle;
1512				check_unlinks_later = true;
1513			}
1514		}
1515	}
1516
1517	/*
1518	 * Unlink empty entries, reducing DMA usage as well
1519	 * as HCD schedule-scanning costs.  Delay for any qh
1520	 * we just scanned, there's a not-unusual case that it
1521	 * doesn't stay idle for long.
1522	 */
1523	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1524			!(ehci->enabled_hrtimer_events &
1525				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1526		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1527		++ehci->async_unlink_cycle;
1528	}
1529}
1530