xref: /kernel/linux/linux-5.10/drivers/usb/dwc2/hcd.c (revision 8c2ecf20)
1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2/*
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions, and the following disclaimer,
12 *    without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 *    to endorse or promote products derived from this software without
18 *    specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38/*
39 * This file contains the core HCD code, and implements the Linux hc_driver
40 * API
41 */
42#include <linux/kernel.h>
43#include <linux/module.h>
44#include <linux/spinlock.h>
45#include <linux/interrupt.h>
46#include <linux/platform_device.h>
47#include <linux/dma-mapping.h>
48#include <linux/delay.h>
49#include <linux/io.h>
50#include <linux/slab.h>
51#include <linux/usb.h>
52
53#include <linux/usb/hcd.h>
54#include <linux/usb/ch11.h>
55
56#include "core.h"
57#include "hcd.h"
58
59static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60
61/*
62 * =========================================================================
63 *  Host Core Layer Functions
64 * =========================================================================
65 */
66
67/**
68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69 * used in both device and host modes
70 *
71 * @hsotg: Programming view of the DWC_otg controller
72 */
73static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74{
75	u32 intmsk;
76
77	/* Clear any pending OTG Interrupts */
78	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
79
80	/* Clear any pending interrupts */
81	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
82
83	/* Enable the interrupts in the GINTMSK */
84	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85
86	if (!hsotg->params.host_dma)
87		intmsk |= GINTSTS_RXFLVL;
88	if (!hsotg->params.external_id_pin_ctl)
89		intmsk |= GINTSTS_CONIDSTSCHNG;
90
91	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92		  GINTSTS_SESSREQINT;
93
94	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95		intmsk |= GINTSTS_LPMTRANRCVD;
96
97	dwc2_writel(hsotg, intmsk, GINTMSK);
98}
99
100static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
101{
102	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
103
104	switch (hsotg->hw_params.arch) {
105	case GHWCFG2_EXT_DMA_ARCH:
106		dev_err(hsotg->dev, "External DMA Mode not supported\n");
107		return -EINVAL;
108
109	case GHWCFG2_INT_DMA_ARCH:
110		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
111		if (hsotg->params.ahbcfg != -1) {
112			ahbcfg &= GAHBCFG_CTRL_MASK;
113			ahbcfg |= hsotg->params.ahbcfg &
114				  ~GAHBCFG_CTRL_MASK;
115		}
116		break;
117
118	case GHWCFG2_SLAVE_ONLY_ARCH:
119	default:
120		dev_dbg(hsotg->dev, "Slave Only Mode\n");
121		break;
122	}
123
124	if (hsotg->params.host_dma)
125		ahbcfg |= GAHBCFG_DMA_EN;
126	else
127		hsotg->params.dma_desc_enable = false;
128
129	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
130
131	return 0;
132}
133
134static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
135{
136	u32 usbcfg;
137
138	usbcfg = dwc2_readl(hsotg, GUSBCFG);
139	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
140
141	switch (hsotg->hw_params.op_mode) {
142	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
143		if (hsotg->params.otg_cap ==
144				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
145			usbcfg |= GUSBCFG_HNPCAP;
146		if (hsotg->params.otg_cap !=
147				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
148			usbcfg |= GUSBCFG_SRPCAP;
149		break;
150
151	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
152	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
153	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
154		if (hsotg->params.otg_cap !=
155				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
156			usbcfg |= GUSBCFG_SRPCAP;
157		break;
158
159	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
160	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
161	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
162	default:
163		break;
164	}
165
166	dwc2_writel(hsotg, usbcfg, GUSBCFG);
167}
168
169static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
170{
171	if (hsotg->vbus_supply)
172		return regulator_enable(hsotg->vbus_supply);
173
174	return 0;
175}
176
177static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
178{
179	if (hsotg->vbus_supply)
180		return regulator_disable(hsotg->vbus_supply);
181
182	return 0;
183}
184
185/**
186 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
187 *
188 * @hsotg: Programming view of DWC_otg controller
189 */
190static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
191{
192	u32 intmsk;
193
194	dev_dbg(hsotg->dev, "%s()\n", __func__);
195
196	/* Disable all interrupts */
197	dwc2_writel(hsotg, 0, GINTMSK);
198	dwc2_writel(hsotg, 0, HAINTMSK);
199
200	/* Enable the common interrupts */
201	dwc2_enable_common_interrupts(hsotg);
202
203	/* Enable host mode interrupts without disturbing common interrupts */
204	intmsk = dwc2_readl(hsotg, GINTMSK);
205	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
206	dwc2_writel(hsotg, intmsk, GINTMSK);
207}
208
209/**
210 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
211 *
212 * @hsotg: Programming view of DWC_otg controller
213 */
214static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
215{
216	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
217
218	/* Disable host mode interrupts without disturbing common interrupts */
219	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
220		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
221	dwc2_writel(hsotg, intmsk, GINTMSK);
222}
223
224/*
225 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
226 * For system that have a total fifo depth that is smaller than the default
227 * RX + TX fifo size.
228 *
229 * @hsotg: Programming view of DWC_otg controller
230 */
231static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
232{
233	struct dwc2_core_params *params = &hsotg->params;
234	struct dwc2_hw_params *hw = &hsotg->hw_params;
235	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
236
237	total_fifo_size = hw->total_fifo_size;
238	rxfsiz = params->host_rx_fifo_size;
239	nptxfsiz = params->host_nperio_tx_fifo_size;
240	ptxfsiz = params->host_perio_tx_fifo_size;
241
242	/*
243	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
244	 * allocation with support for high bandwidth endpoints. Synopsys
245	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
246	 * non-periodic as 512.
247	 */
248	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
249		/*
250		 * For Buffer DMA mode/Scatter Gather DMA mode
251		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
252		 * with n = number of host channel.
253		 * 2 * ((1024/4) + 2) = 516
254		 */
255		rxfsiz = 516 + hw->host_channels;
256
257		/*
258		 * min non-periodic tx fifo depth
259		 * 2 * (largest non-periodic USB packet used / 4)
260		 * 2 * (512/4) = 256
261		 */
262		nptxfsiz = 256;
263
264		/*
265		 * min periodic tx fifo depth
266		 * (largest packet size*MC)/4
267		 * (1024 * 3)/4 = 768
268		 */
269		ptxfsiz = 768;
270
271		params->host_rx_fifo_size = rxfsiz;
272		params->host_nperio_tx_fifo_size = nptxfsiz;
273		params->host_perio_tx_fifo_size = ptxfsiz;
274	}
275
276	/*
277	 * If the summation of RX, NPTX and PTX fifo sizes is still
278	 * bigger than the total_fifo_size, then we have a problem.
279	 *
280	 * We won't be able to allocate as many endpoints. Right now,
281	 * we're just printing an error message, but ideally this FIFO
282	 * allocation algorithm would be improved in the future.
283	 *
284	 * FIXME improve this FIFO allocation algorithm.
285	 */
286	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
287		dev_err(hsotg->dev, "invalid fifo sizes\n");
288}
289
290static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
291{
292	struct dwc2_core_params *params = &hsotg->params;
293	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
294
295	if (!params->enable_dynamic_fifo)
296		return;
297
298	dwc2_calculate_dynamic_fifo(hsotg);
299
300	/* Rx FIFO */
301	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
302	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
303	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
304	grxfsiz |= params->host_rx_fifo_size <<
305		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
306	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
307	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
308		dwc2_readl(hsotg, GRXFSIZ));
309
310	/* Non-periodic Tx FIFO */
311	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
312		dwc2_readl(hsotg, GNPTXFSIZ));
313	nptxfsiz = params->host_nperio_tx_fifo_size <<
314		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
315	nptxfsiz |= params->host_rx_fifo_size <<
316		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
317	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
318	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
319		dwc2_readl(hsotg, GNPTXFSIZ));
320
321	/* Periodic Tx FIFO */
322	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
323		dwc2_readl(hsotg, HPTXFSIZ));
324	hptxfsiz = params->host_perio_tx_fifo_size <<
325		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
326	hptxfsiz |= (params->host_rx_fifo_size +
327		     params->host_nperio_tx_fifo_size) <<
328		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
329	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
330	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
331		dwc2_readl(hsotg, HPTXFSIZ));
332
333	if (hsotg->params.en_multiple_tx_fifo &&
334	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
335		/*
336		 * This feature was implemented in 2.91a version
337		 * Global DFIFOCFG calculation for Host mode -
338		 * include RxFIFO, NPTXFIFO and HPTXFIFO
339		 */
340		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
341		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
342		dfifocfg |= (params->host_rx_fifo_size +
343			     params->host_nperio_tx_fifo_size +
344			     params->host_perio_tx_fifo_size) <<
345			    GDFIFOCFG_EPINFOBASE_SHIFT &
346			    GDFIFOCFG_EPINFOBASE_MASK;
347		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
348	}
349}
350
351/**
352 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
353 * the HFIR register according to PHY type and speed
354 *
355 * @hsotg: Programming view of DWC_otg controller
356 *
357 * NOTE: The caller can modify the value of the HFIR register only after the
358 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
359 * has been set
360 */
361u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
362{
363	u32 usbcfg;
364	u32 hprt0;
365	int clock = 60;	/* default value */
366
367	usbcfg = dwc2_readl(hsotg, GUSBCFG);
368	hprt0 = dwc2_readl(hsotg, HPRT0);
369
370	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
371	    !(usbcfg & GUSBCFG_PHYIF16))
372		clock = 60;
373	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
374	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
375		clock = 48;
376	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
377	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
378		clock = 30;
379	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
380	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
381		clock = 60;
382	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
383	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
384		clock = 48;
385	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
386	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
387		clock = 48;
388	if ((usbcfg & GUSBCFG_PHYSEL) &&
389	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
390		clock = 48;
391
392	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
393		/* High speed case */
394		return 125 * clock - 1;
395
396	/* FS/LS case */
397	return 1000 * clock - 1;
398}
399
400/**
401 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
402 * buffer
403 *
404 * @hsotg: Programming view of DWC_otg controller
405 * @dest:    Destination buffer for the packet
406 * @bytes:   Number of bytes to copy to the destination
407 */
408void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
409{
410	u32 *data_buf = (u32 *)dest;
411	int word_count = (bytes + 3) / 4;
412	int i;
413
414	/*
415	 * Todo: Account for the case where dest is not dword aligned. This
416	 * requires reading data from the FIFO into a u32 temp buffer, then
417	 * moving it into the data buffer.
418	 */
419
420	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
421
422	for (i = 0; i < word_count; i++, data_buf++)
423		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
424}
425
426/**
427 * dwc2_dump_channel_info() - Prints the state of a host channel
428 *
429 * @hsotg: Programming view of DWC_otg controller
430 * @chan:  Pointer to the channel to dump
431 *
432 * Must be called with interrupt disabled and spinlock held
433 *
434 * NOTE: This function will be removed once the peripheral controller code
435 * is integrated and the driver is stable
436 */
437static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
438				   struct dwc2_host_chan *chan)
439{
440#ifdef VERBOSE_DEBUG
441	int num_channels = hsotg->params.host_channels;
442	struct dwc2_qh *qh;
443	u32 hcchar;
444	u32 hcsplt;
445	u32 hctsiz;
446	u32 hc_dma;
447	int i;
448
449	if (!chan)
450		return;
451
452	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
453	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
454	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
455	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
456
457	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
458	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
459		hcchar, hcsplt);
460	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
461		hctsiz, hc_dma);
462	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
463		chan->dev_addr, chan->ep_num, chan->ep_is_in);
464	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
465	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
466	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
467	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
468	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
469	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
470	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
471		(unsigned long)chan->xfer_dma);
472	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
473	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
474	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
475	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
476			    qh_list_entry)
477		dev_dbg(hsotg->dev, "    %p\n", qh);
478	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
479	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
480			    qh_list_entry)
481		dev_dbg(hsotg->dev, "    %p\n", qh);
482	dev_dbg(hsotg->dev, "  NP active sched:\n");
483	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
484			    qh_list_entry)
485		dev_dbg(hsotg->dev, "    %p\n", qh);
486	dev_dbg(hsotg->dev, "  Channels:\n");
487	for (i = 0; i < num_channels; i++) {
488		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
489
490		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
491	}
492#endif /* VERBOSE_DEBUG */
493}
494
495static int _dwc2_hcd_start(struct usb_hcd *hcd);
496
497static void dwc2_host_start(struct dwc2_hsotg *hsotg)
498{
499	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
500
501	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
502	_dwc2_hcd_start(hcd);
503}
504
505static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
506{
507	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
508
509	hcd->self.is_b_host = 0;
510}
511
512static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
513			       int *hub_addr, int *hub_port)
514{
515	struct urb *urb = context;
516
517	if (urb->dev->tt)
518		*hub_addr = urb->dev->tt->hub->devnum;
519	else
520		*hub_addr = 0;
521	*hub_port = urb->dev->ttport;
522}
523
524/*
525 * =========================================================================
526 *  Low Level Host Channel Access Functions
527 * =========================================================================
528 */
529
530static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
531				      struct dwc2_host_chan *chan)
532{
533	u32 hcintmsk = HCINTMSK_CHHLTD;
534
535	switch (chan->ep_type) {
536	case USB_ENDPOINT_XFER_CONTROL:
537	case USB_ENDPOINT_XFER_BULK:
538		dev_vdbg(hsotg->dev, "control/bulk\n");
539		hcintmsk |= HCINTMSK_XFERCOMPL;
540		hcintmsk |= HCINTMSK_STALL;
541		hcintmsk |= HCINTMSK_XACTERR;
542		hcintmsk |= HCINTMSK_DATATGLERR;
543		if (chan->ep_is_in) {
544			hcintmsk |= HCINTMSK_BBLERR;
545		} else {
546			hcintmsk |= HCINTMSK_NAK;
547			hcintmsk |= HCINTMSK_NYET;
548			if (chan->do_ping)
549				hcintmsk |= HCINTMSK_ACK;
550		}
551
552		if (chan->do_split) {
553			hcintmsk |= HCINTMSK_NAK;
554			if (chan->complete_split)
555				hcintmsk |= HCINTMSK_NYET;
556			else
557				hcintmsk |= HCINTMSK_ACK;
558		}
559
560		if (chan->error_state)
561			hcintmsk |= HCINTMSK_ACK;
562		break;
563
564	case USB_ENDPOINT_XFER_INT:
565		if (dbg_perio())
566			dev_vdbg(hsotg->dev, "intr\n");
567		hcintmsk |= HCINTMSK_XFERCOMPL;
568		hcintmsk |= HCINTMSK_NAK;
569		hcintmsk |= HCINTMSK_STALL;
570		hcintmsk |= HCINTMSK_XACTERR;
571		hcintmsk |= HCINTMSK_DATATGLERR;
572		hcintmsk |= HCINTMSK_FRMOVRUN;
573
574		if (chan->ep_is_in)
575			hcintmsk |= HCINTMSK_BBLERR;
576		if (chan->error_state)
577			hcintmsk |= HCINTMSK_ACK;
578		if (chan->do_split) {
579			if (chan->complete_split)
580				hcintmsk |= HCINTMSK_NYET;
581			else
582				hcintmsk |= HCINTMSK_ACK;
583		}
584		break;
585
586	case USB_ENDPOINT_XFER_ISOC:
587		if (dbg_perio())
588			dev_vdbg(hsotg->dev, "isoc\n");
589		hcintmsk |= HCINTMSK_XFERCOMPL;
590		hcintmsk |= HCINTMSK_FRMOVRUN;
591		hcintmsk |= HCINTMSK_ACK;
592
593		if (chan->ep_is_in) {
594			hcintmsk |= HCINTMSK_XACTERR;
595			hcintmsk |= HCINTMSK_BBLERR;
596		}
597		break;
598	default:
599		dev_err(hsotg->dev, "## Unknown EP type ##\n");
600		break;
601	}
602
603	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
604	if (dbg_hc(chan))
605		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
606}
607
608static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
609				    struct dwc2_host_chan *chan)
610{
611	u32 hcintmsk = HCINTMSK_CHHLTD;
612
613	/*
614	 * For Descriptor DMA mode core halts the channel on AHB error.
615	 * Interrupt is not required.
616	 */
617	if (!hsotg->params.dma_desc_enable) {
618		if (dbg_hc(chan))
619			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
620		hcintmsk |= HCINTMSK_AHBERR;
621	} else {
622		if (dbg_hc(chan))
623			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
624		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
625			hcintmsk |= HCINTMSK_XFERCOMPL;
626	}
627
628	if (chan->error_state && !chan->do_split &&
629	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
630		if (dbg_hc(chan))
631			dev_vdbg(hsotg->dev, "setting ACK\n");
632		hcintmsk |= HCINTMSK_ACK;
633		if (chan->ep_is_in) {
634			hcintmsk |= HCINTMSK_DATATGLERR;
635			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
636				hcintmsk |= HCINTMSK_NAK;
637		}
638	}
639
640	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
641	if (dbg_hc(chan))
642		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
643}
644
645static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
646				struct dwc2_host_chan *chan)
647{
648	u32 intmsk;
649
650	if (hsotg->params.host_dma) {
651		if (dbg_hc(chan))
652			dev_vdbg(hsotg->dev, "DMA enabled\n");
653		dwc2_hc_enable_dma_ints(hsotg, chan);
654	} else {
655		if (dbg_hc(chan))
656			dev_vdbg(hsotg->dev, "DMA disabled\n");
657		dwc2_hc_enable_slave_ints(hsotg, chan);
658	}
659
660	/* Enable the top level host channel interrupt */
661	intmsk = dwc2_readl(hsotg, HAINTMSK);
662	intmsk |= 1 << chan->hc_num;
663	dwc2_writel(hsotg, intmsk, HAINTMSK);
664	if (dbg_hc(chan))
665		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
666
667	/* Make sure host channel interrupts are enabled */
668	intmsk = dwc2_readl(hsotg, GINTMSK);
669	intmsk |= GINTSTS_HCHINT;
670	dwc2_writel(hsotg, intmsk, GINTMSK);
671	if (dbg_hc(chan))
672		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
673}
674
675/**
676 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
677 * a specific endpoint
678 *
679 * @hsotg: Programming view of DWC_otg controller
680 * @chan:  Information needed to initialize the host channel
681 *
682 * The HCCHARn register is set up with the characteristics specified in chan.
683 * Host channel interrupts that may need to be serviced while this transfer is
684 * in progress are enabled.
685 */
686static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
687{
688	u8 hc_num = chan->hc_num;
689	u32 hcintmsk;
690	u32 hcchar;
691	u32 hcsplt = 0;
692
693	if (dbg_hc(chan))
694		dev_vdbg(hsotg->dev, "%s()\n", __func__);
695
696	/* Clear old interrupt conditions for this host channel */
697	hcintmsk = 0xffffffff;
698	hcintmsk &= ~HCINTMSK_RESERVED14_31;
699	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
700
701	/* Enable channel interrupts required for this transfer */
702	dwc2_hc_enable_ints(hsotg, chan);
703
704	/*
705	 * Program the HCCHARn register with the endpoint characteristics for
706	 * the current transfer
707	 */
708	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
709	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
710	if (chan->ep_is_in)
711		hcchar |= HCCHAR_EPDIR;
712	if (chan->speed == USB_SPEED_LOW)
713		hcchar |= HCCHAR_LSPDDEV;
714	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
715	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
716	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
717	if (dbg_hc(chan)) {
718		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
719			 hc_num, hcchar);
720
721		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
722			 __func__, hc_num);
723		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
724			 chan->dev_addr);
725		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
726			 chan->ep_num);
727		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
728			 chan->ep_is_in);
729		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
730			 chan->speed == USB_SPEED_LOW);
731		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
732			 chan->ep_type);
733		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
734			 chan->max_packet);
735	}
736
737	/* Program the HCSPLT register for SPLITs */
738	if (chan->do_split) {
739		if (dbg_hc(chan))
740			dev_vdbg(hsotg->dev,
741				 "Programming HC %d with split --> %s\n",
742				 hc_num,
743				 chan->complete_split ? "CSPLIT" : "SSPLIT");
744		if (chan->complete_split)
745			hcsplt |= HCSPLT_COMPSPLT;
746		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
747			  HCSPLT_XACTPOS_MASK;
748		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
749			  HCSPLT_HUBADDR_MASK;
750		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
751			  HCSPLT_PRTADDR_MASK;
752		if (dbg_hc(chan)) {
753			dev_vdbg(hsotg->dev, "	  comp split %d\n",
754				 chan->complete_split);
755			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
756				 chan->xact_pos);
757			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
758				 chan->hub_addr);
759			dev_vdbg(hsotg->dev, "	  hub port %d\n",
760				 chan->hub_port);
761			dev_vdbg(hsotg->dev, "	  is_in %d\n",
762				 chan->ep_is_in);
763			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
764				 chan->max_packet);
765			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
766				 chan->xfer_len);
767		}
768	}
769
770	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
771}
772
773/**
774 * dwc2_hc_halt() - Attempts to halt a host channel
775 *
776 * @hsotg:       Controller register interface
777 * @chan:        Host channel to halt
778 * @halt_status: Reason for halting the channel
779 *
780 * This function should only be called in Slave mode or to abort a transfer in
781 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
782 * controller halts the channel when the transfer is complete or a condition
783 * occurs that requires application intervention.
784 *
785 * In slave mode, checks for a free request queue entry, then sets the Channel
786 * Enable and Channel Disable bits of the Host Channel Characteristics
787 * register of the specified channel to intiate the halt. If there is no free
788 * request queue entry, sets only the Channel Disable bit of the HCCHARn
789 * register to flush requests for this channel. In the latter case, sets a
790 * flag to indicate that the host channel needs to be halted when a request
791 * queue slot is open.
792 *
793 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
794 * HCCHARn register. The controller ensures there is space in the request
795 * queue before submitting the halt request.
796 *
797 * Some time may elapse before the core flushes any posted requests for this
798 * host channel and halts. The Channel Halted interrupt handler completes the
799 * deactivation of the host channel.
800 */
801void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
802		  enum dwc2_halt_status halt_status)
803{
804	u32 nptxsts, hptxsts, hcchar;
805
806	if (dbg_hc(chan))
807		dev_vdbg(hsotg->dev, "%s()\n", __func__);
808
809	/*
810	 * In buffer DMA or external DMA mode channel can't be halted
811	 * for non-split periodic channels. At the end of the next
812	 * uframe/frame (in the worst case), the core generates a channel
813	 * halted and disables the channel automatically.
814	 */
815	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
816	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
817		if (!chan->do_split &&
818		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
819		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
820			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
821				__func__);
822			return;
823		}
824	}
825
826	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
827		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
828
829	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
830	    halt_status == DWC2_HC_XFER_AHB_ERR) {
831		/*
832		 * Disable all channel interrupts except Ch Halted. The QTD
833		 * and QH state associated with this transfer has been cleared
834		 * (in the case of URB_DEQUEUE), so the channel needs to be
835		 * shut down carefully to prevent crashes.
836		 */
837		u32 hcintmsk = HCINTMSK_CHHLTD;
838
839		dev_vdbg(hsotg->dev, "dequeue/error\n");
840		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
841
842		/*
843		 * Make sure no other interrupts besides halt are currently
844		 * pending. Handling another interrupt could cause a crash due
845		 * to the QTD and QH state.
846		 */
847		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
848
849		/*
850		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
851		 * even if the channel was already halted for some other
852		 * reason
853		 */
854		chan->halt_status = halt_status;
855
856		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
857		if (!(hcchar & HCCHAR_CHENA)) {
858			/*
859			 * The channel is either already halted or it hasn't
860			 * started yet. In DMA mode, the transfer may halt if
861			 * it finishes normally or a condition occurs that
862			 * requires driver intervention. Don't want to halt
863			 * the channel again. In either Slave or DMA mode,
864			 * it's possible that the transfer has been assigned
865			 * to a channel, but not started yet when an URB is
866			 * dequeued. Don't want to halt a channel that hasn't
867			 * started yet.
868			 */
869			return;
870		}
871	}
872	if (chan->halt_pending) {
873		/*
874		 * A halt has already been issued for this channel. This might
875		 * happen when a transfer is aborted by a higher level in
876		 * the stack.
877		 */
878		dev_vdbg(hsotg->dev,
879			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
880			 __func__, chan->hc_num);
881		return;
882	}
883
884	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
885
886	/* No need to set the bit in DDMA for disabling the channel */
887	/* TODO check it everywhere channel is disabled */
888	if (!hsotg->params.dma_desc_enable) {
889		if (dbg_hc(chan))
890			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
891		hcchar |= HCCHAR_CHENA;
892	} else {
893		if (dbg_hc(chan))
894			dev_dbg(hsotg->dev, "desc DMA enabled\n");
895	}
896	hcchar |= HCCHAR_CHDIS;
897
898	if (!hsotg->params.host_dma) {
899		if (dbg_hc(chan))
900			dev_vdbg(hsotg->dev, "DMA not enabled\n");
901		hcchar |= HCCHAR_CHENA;
902
903		/* Check for space in the request queue to issue the halt */
904		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
905		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
906			dev_vdbg(hsotg->dev, "control/bulk\n");
907			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
908			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
909				dev_vdbg(hsotg->dev, "Disabling channel\n");
910				hcchar &= ~HCCHAR_CHENA;
911			}
912		} else {
913			if (dbg_perio())
914				dev_vdbg(hsotg->dev, "isoc/intr\n");
915			hptxsts = dwc2_readl(hsotg, HPTXSTS);
916			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
917			    hsotg->queuing_high_bandwidth) {
918				if (dbg_perio())
919					dev_vdbg(hsotg->dev, "Disabling channel\n");
920				hcchar &= ~HCCHAR_CHENA;
921			}
922		}
923	} else {
924		if (dbg_hc(chan))
925			dev_vdbg(hsotg->dev, "DMA enabled\n");
926	}
927
928	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
929	chan->halt_status = halt_status;
930
931	if (hcchar & HCCHAR_CHENA) {
932		if (dbg_hc(chan))
933			dev_vdbg(hsotg->dev, "Channel enabled\n");
934		chan->halt_pending = 1;
935		chan->halt_on_queue = 0;
936	} else {
937		if (dbg_hc(chan))
938			dev_vdbg(hsotg->dev, "Channel disabled\n");
939		chan->halt_on_queue = 1;
940	}
941
942	if (dbg_hc(chan)) {
943		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
944			 chan->hc_num);
945		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
946			 hcchar);
947		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
948			 chan->halt_pending);
949		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
950			 chan->halt_on_queue);
951		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
952			 chan->halt_status);
953	}
954}
955
956/**
957 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
958 *
959 * @hsotg: Programming view of DWC_otg controller
960 * @chan:  Identifies the host channel to clean up
961 *
962 * This function is normally called after a transfer is done and the host
963 * channel is being released
964 */
965void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
966{
967	u32 hcintmsk;
968
969	chan->xfer_started = 0;
970
971	list_del_init(&chan->split_order_list_entry);
972
973	/*
974	 * Clear channel interrupt enables and any unhandled channel interrupt
975	 * conditions
976	 */
977	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
978	hcintmsk = 0xffffffff;
979	hcintmsk &= ~HCINTMSK_RESERVED14_31;
980	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
981}
982
983/**
984 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
985 * which frame a periodic transfer should occur
986 *
987 * @hsotg:  Programming view of DWC_otg controller
988 * @chan:   Identifies the host channel to set up and its properties
989 * @hcchar: Current value of the HCCHAR register for the specified host channel
990 *
991 * This function has no effect on non-periodic transfers
992 */
993static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
994				       struct dwc2_host_chan *chan, u32 *hcchar)
995{
996	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
997	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
998		int host_speed;
999		int xfer_ns;
1000		int xfer_us;
1001		int bytes_in_fifo;
1002		u16 fifo_space;
1003		u16 frame_number;
1004		u16 wire_frame;
1005
1006		/*
1007		 * Try to figure out if we're an even or odd frame. If we set
1008		 * even and the current frame number is even the the transfer
1009		 * will happen immediately.  Similar if both are odd. If one is
1010		 * even and the other is odd then the transfer will happen when
1011		 * the frame number ticks.
1012		 *
1013		 * There's a bit of a balancing act to get this right.
1014		 * Sometimes we may want to send data in the current frame (AK
1015		 * right away).  We might want to do this if the frame number
1016		 * _just_ ticked, but we might also want to do this in order
1017		 * to continue a split transaction that happened late in a
1018		 * microframe (so we didn't know to queue the next transfer
1019		 * until the frame number had ticked).  The problem is that we
1020		 * need a lot of knowledge to know if there's actually still
1021		 * time to send things or if it would be better to wait until
1022		 * the next frame.
1023		 *
1024		 * We can look at how much time is left in the current frame
1025		 * and make a guess about whether we'll have time to transfer.
1026		 * We'll do that.
1027		 */
1028
1029		/* Get speed host is running at */
1030		host_speed = (chan->speed != USB_SPEED_HIGH &&
1031			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1032
1033		/* See how many bytes are in the periodic FIFO right now */
1034		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1035			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1036		bytes_in_fifo = sizeof(u32) *
1037				(hsotg->params.host_perio_tx_fifo_size -
1038				 fifo_space);
1039
1040		/*
1041		 * Roughly estimate bus time for everything in the periodic
1042		 * queue + our new transfer.  This is "rough" because we're
1043		 * using a function that makes takes into account IN/OUT
1044		 * and INT/ISO and we're just slamming in one value for all
1045		 * transfers.  This should be an over-estimate and that should
1046		 * be OK, but we can probably tighten it.
1047		 */
1048		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1049					    chan->xfer_len + bytes_in_fifo);
1050		xfer_us = NS_TO_US(xfer_ns);
1051
1052		/* See what frame number we'll be at by the time we finish */
1053		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1054
1055		/* This is when we were scheduled to be on the wire */
1056		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1057
1058		/*
1059		 * If we'd finish _after_ the frame we're scheduled in then
1060		 * it's hopeless.  Just schedule right away and hope for the
1061		 * best.  Note that it _might_ be wise to call back into the
1062		 * scheduler to pick a better frame, but this is better than
1063		 * nothing.
1064		 */
1065		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1066			dwc2_sch_vdbg(hsotg,
1067				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1068				      chan->qh, wire_frame, frame_number,
1069				      dwc2_frame_num_dec(frame_number,
1070							 wire_frame));
1071			wire_frame = frame_number;
1072
1073			/*
1074			 * We picked a different frame number; communicate this
1075			 * back to the scheduler so it doesn't try to schedule
1076			 * another in the same frame.
1077			 *
1078			 * Remember that next_active_frame is 1 before the wire
1079			 * frame.
1080			 */
1081			chan->qh->next_active_frame =
1082				dwc2_frame_num_dec(frame_number, 1);
1083		}
1084
1085		if (wire_frame & 1)
1086			*hcchar |= HCCHAR_ODDFRM;
1087		else
1088			*hcchar &= ~HCCHAR_ODDFRM;
1089	}
1090}
1091
1092static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1093{
1094	/* Set up the initial PID for the transfer */
1095	if (chan->speed == USB_SPEED_HIGH) {
1096		if (chan->ep_is_in) {
1097			if (chan->multi_count == 1)
1098				chan->data_pid_start = DWC2_HC_PID_DATA0;
1099			else if (chan->multi_count == 2)
1100				chan->data_pid_start = DWC2_HC_PID_DATA1;
1101			else
1102				chan->data_pid_start = DWC2_HC_PID_DATA2;
1103		} else {
1104			if (chan->multi_count == 1)
1105				chan->data_pid_start = DWC2_HC_PID_DATA0;
1106			else
1107				chan->data_pid_start = DWC2_HC_PID_MDATA;
1108		}
1109	} else {
1110		chan->data_pid_start = DWC2_HC_PID_DATA0;
1111	}
1112}
1113
1114/**
1115 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1116 * the Host Channel
1117 *
1118 * @hsotg: Programming view of DWC_otg controller
1119 * @chan:  Information needed to initialize the host channel
1120 *
1121 * This function should only be called in Slave mode. For a channel associated
1122 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1123 * associated with a periodic EP, the periodic Tx FIFO is written.
1124 *
1125 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1126 * the number of bytes written to the Tx FIFO.
1127 */
1128static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1129				 struct dwc2_host_chan *chan)
1130{
1131	u32 i;
1132	u32 remaining_count;
1133	u32 byte_count;
1134	u32 dword_count;
1135	u32 *data_buf = (u32 *)chan->xfer_buf;
1136
1137	if (dbg_hc(chan))
1138		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1139
1140	remaining_count = chan->xfer_len - chan->xfer_count;
1141	if (remaining_count > chan->max_packet)
1142		byte_count = chan->max_packet;
1143	else
1144		byte_count = remaining_count;
1145
1146	dword_count = (byte_count + 3) / 4;
1147
1148	if (((unsigned long)data_buf & 0x3) == 0) {
1149		/* xfer_buf is DWORD aligned */
1150		for (i = 0; i < dword_count; i++, data_buf++)
1151			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1152	} else {
1153		/* xfer_buf is not DWORD aligned */
1154		for (i = 0; i < dword_count; i++, data_buf++) {
1155			u32 data = data_buf[0] | data_buf[1] << 8 |
1156				   data_buf[2] << 16 | data_buf[3] << 24;
1157			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1158		}
1159	}
1160
1161	chan->xfer_count += byte_count;
1162	chan->xfer_buf += byte_count;
1163}
1164
1165/**
1166 * dwc2_hc_do_ping() - Starts a PING transfer
1167 *
1168 * @hsotg: Programming view of DWC_otg controller
1169 * @chan:  Information needed to initialize the host channel
1170 *
1171 * This function should only be called in Slave mode. The Do Ping bit is set in
1172 * the HCTSIZ register, then the channel is enabled.
1173 */
1174static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1175			    struct dwc2_host_chan *chan)
1176{
1177	u32 hcchar;
1178	u32 hctsiz;
1179
1180	if (dbg_hc(chan))
1181		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1182			 chan->hc_num);
1183
1184	hctsiz = TSIZ_DOPNG;
1185	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1186	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1187
1188	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1189	hcchar |= HCCHAR_CHENA;
1190	hcchar &= ~HCCHAR_CHDIS;
1191	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1192}
1193
1194/**
1195 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1196 * channel and starts the transfer
1197 *
1198 * @hsotg: Programming view of DWC_otg controller
1199 * @chan:  Information needed to initialize the host channel. The xfer_len value
1200 *         may be reduced to accommodate the max widths of the XferSize and
1201 *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1202 *         changed to reflect the final xfer_len value.
1203 *
1204 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1205 * the caller must ensure that there is sufficient space in the request queue
1206 * and Tx Data FIFO.
1207 *
1208 * For an OUT transfer in Slave mode, it loads a data packet into the
1209 * appropriate FIFO. If necessary, additional data packets are loaded in the
1210 * Host ISR.
1211 *
1212 * For an IN transfer in Slave mode, a data packet is requested. The data
1213 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1214 * additional data packets are requested in the Host ISR.
1215 *
1216 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1217 * register along with a packet count of 1 and the channel is enabled. This
1218 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1219 * simply set to 0 since no data transfer occurs in this case.
1220 *
1221 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1222 * all the information required to perform the subsequent data transfer. In
1223 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1224 * controller performs the entire PING protocol, then starts the data
1225 * transfer.
1226 */
1227static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1228				   struct dwc2_host_chan *chan)
1229{
1230	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1231	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1232	u32 hcchar;
1233	u32 hctsiz = 0;
1234	u16 num_packets;
1235	u32 ec_mc;
1236
1237	if (dbg_hc(chan))
1238		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1239
1240	if (chan->do_ping) {
1241		if (!hsotg->params.host_dma) {
1242			if (dbg_hc(chan))
1243				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1244			dwc2_hc_do_ping(hsotg, chan);
1245			chan->xfer_started = 1;
1246			return;
1247		}
1248
1249		if (dbg_hc(chan))
1250			dev_vdbg(hsotg->dev, "ping, DMA\n");
1251
1252		hctsiz |= TSIZ_DOPNG;
1253	}
1254
1255	if (chan->do_split) {
1256		if (dbg_hc(chan))
1257			dev_vdbg(hsotg->dev, "split\n");
1258		num_packets = 1;
1259
1260		if (chan->complete_split && !chan->ep_is_in)
1261			/*
1262			 * For CSPLIT OUT Transfer, set the size to 0 so the
1263			 * core doesn't expect any data written to the FIFO
1264			 */
1265			chan->xfer_len = 0;
1266		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1267			chan->xfer_len = chan->max_packet;
1268		else if (!chan->ep_is_in && chan->xfer_len > 188)
1269			chan->xfer_len = 188;
1270
1271		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1272			  TSIZ_XFERSIZE_MASK;
1273
1274		/* For split set ec_mc for immediate retries */
1275		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1276		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1277			ec_mc = 3;
1278		else
1279			ec_mc = 1;
1280	} else {
1281		if (dbg_hc(chan))
1282			dev_vdbg(hsotg->dev, "no split\n");
1283		/*
1284		 * Ensure that the transfer length and packet count will fit
1285		 * in the widths allocated for them in the HCTSIZn register
1286		 */
1287		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1288		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1289			/*
1290			 * Make sure the transfer size is no larger than one
1291			 * (micro)frame's worth of data. (A check was done
1292			 * when the periodic transfer was accepted to ensure
1293			 * that a (micro)frame's worth of data can be
1294			 * programmed into a channel.)
1295			 */
1296			u32 max_periodic_len =
1297				chan->multi_count * chan->max_packet;
1298
1299			if (chan->xfer_len > max_periodic_len)
1300				chan->xfer_len = max_periodic_len;
1301		} else if (chan->xfer_len > max_hc_xfer_size) {
1302			/*
1303			 * Make sure that xfer_len is a multiple of max packet
1304			 * size
1305			 */
1306			chan->xfer_len =
1307				max_hc_xfer_size - chan->max_packet + 1;
1308		}
1309
1310		if (chan->xfer_len > 0) {
1311			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1312					chan->max_packet;
1313			if (num_packets > max_hc_pkt_count) {
1314				num_packets = max_hc_pkt_count;
1315				chan->xfer_len = num_packets * chan->max_packet;
1316			} else if (chan->ep_is_in) {
1317				/*
1318				 * Always program an integral # of max packets
1319				 * for IN transfers.
1320				 * Note: This assumes that the input buffer is
1321				 * aligned and sized accordingly.
1322				 */
1323				chan->xfer_len = num_packets * chan->max_packet;
1324			}
1325		} else {
1326			/* Need 1 packet for transfer length of 0 */
1327			num_packets = 1;
1328		}
1329
1330		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1331		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1332			/*
1333			 * Make sure that the multi_count field matches the
1334			 * actual transfer length
1335			 */
1336			chan->multi_count = num_packets;
1337
1338		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1339			dwc2_set_pid_isoc(chan);
1340
1341		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1342			  TSIZ_XFERSIZE_MASK;
1343
1344		/* The ec_mc gets the multi_count for non-split */
1345		ec_mc = chan->multi_count;
1346	}
1347
1348	chan->start_pkt_count = num_packets;
1349	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1350	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1351		  TSIZ_SC_MC_PID_MASK;
1352	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1353	if (dbg_hc(chan)) {
1354		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1355			 hctsiz, chan->hc_num);
1356
1357		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1358			 chan->hc_num);
1359		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1360			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1361			 TSIZ_XFERSIZE_SHIFT);
1362		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1363			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1364			 TSIZ_PKTCNT_SHIFT);
1365		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1366			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1367			 TSIZ_SC_MC_PID_SHIFT);
1368	}
1369
1370	if (hsotg->params.host_dma) {
1371		dma_addr_t dma_addr;
1372
1373		if (chan->align_buf) {
1374			if (dbg_hc(chan))
1375				dev_vdbg(hsotg->dev, "align_buf\n");
1376			dma_addr = chan->align_buf;
1377		} else {
1378			dma_addr = chan->xfer_dma;
1379		}
1380		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1381
1382		if (dbg_hc(chan))
1383			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1384				 (unsigned long)dma_addr, chan->hc_num);
1385	}
1386
1387	/* Start the split */
1388	if (chan->do_split) {
1389		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1390
1391		hcsplt |= HCSPLT_SPLTENA;
1392		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1393	}
1394
1395	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1396	hcchar &= ~HCCHAR_MULTICNT_MASK;
1397	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1398	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1399
1400	if (hcchar & HCCHAR_CHDIS)
1401		dev_warn(hsotg->dev,
1402			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1403			 __func__, chan->hc_num, hcchar);
1404
1405	/* Set host channel enable after all other setup is complete */
1406	hcchar |= HCCHAR_CHENA;
1407	hcchar &= ~HCCHAR_CHDIS;
1408
1409	if (dbg_hc(chan))
1410		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1411			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1412			 HCCHAR_MULTICNT_SHIFT);
1413
1414	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1415	if (dbg_hc(chan))
1416		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1417			 chan->hc_num);
1418
1419	chan->xfer_started = 1;
1420	chan->requests++;
1421
1422	if (!hsotg->params.host_dma &&
1423	    !chan->ep_is_in && chan->xfer_len > 0)
1424		/* Load OUT packet into the appropriate Tx FIFO */
1425		dwc2_hc_write_packet(hsotg, chan);
1426}
1427
1428/**
1429 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1430 * host channel and starts the transfer in Descriptor DMA mode
1431 *
1432 * @hsotg: Programming view of DWC_otg controller
1433 * @chan:  Information needed to initialize the host channel
1434 *
1435 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1436 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1437 * with micro-frame bitmap.
1438 *
1439 * Initializes HCDMA register with descriptor list address and CTD value then
1440 * starts the transfer via enabling the channel.
1441 */
1442void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1443				 struct dwc2_host_chan *chan)
1444{
1445	u32 hcchar;
1446	u32 hctsiz = 0;
1447
1448	if (chan->do_ping)
1449		hctsiz |= TSIZ_DOPNG;
1450
1451	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1452		dwc2_set_pid_isoc(chan);
1453
1454	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1455	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1456		  TSIZ_SC_MC_PID_MASK;
1457
1458	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1459	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1460
1461	/* Non-zero only for high-speed interrupt endpoints */
1462	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1463
1464	if (dbg_hc(chan)) {
1465		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1466			 chan->hc_num);
1467		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1468			 chan->data_pid_start);
1469		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1470	}
1471
1472	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1473
1474	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1475				   chan->desc_list_sz, DMA_TO_DEVICE);
1476
1477	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1478
1479	if (dbg_hc(chan))
1480		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1481			 &chan->desc_list_addr, chan->hc_num);
1482
1483	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1484	hcchar &= ~HCCHAR_MULTICNT_MASK;
1485	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1486		  HCCHAR_MULTICNT_MASK;
1487
1488	if (hcchar & HCCHAR_CHDIS)
1489		dev_warn(hsotg->dev,
1490			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1491			 __func__, chan->hc_num, hcchar);
1492
1493	/* Set host channel enable after all other setup is complete */
1494	hcchar |= HCCHAR_CHENA;
1495	hcchar &= ~HCCHAR_CHDIS;
1496
1497	if (dbg_hc(chan))
1498		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1499			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1500			 HCCHAR_MULTICNT_SHIFT);
1501
1502	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1503	if (dbg_hc(chan))
1504		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1505			 chan->hc_num);
1506
1507	chan->xfer_started = 1;
1508	chan->requests++;
1509}
1510
1511/**
1512 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1513 * a previous call to dwc2_hc_start_transfer()
1514 *
1515 * @hsotg: Programming view of DWC_otg controller
1516 * @chan:  Information needed to initialize the host channel
1517 *
1518 * The caller must ensure there is sufficient space in the request queue and Tx
1519 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1520 * the controller acts autonomously to complete transfers programmed to a host
1521 * channel.
1522 *
1523 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1524 * if there is any data remaining to be queued. For an IN transfer, another
1525 * data packet is always requested. For the SETUP phase of a control transfer,
1526 * this function does nothing.
1527 *
1528 * Return: 1 if a new request is queued, 0 if no more requests are required
1529 * for this transfer
1530 */
1531static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1532				     struct dwc2_host_chan *chan)
1533{
1534	if (dbg_hc(chan))
1535		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1536			 chan->hc_num);
1537
1538	if (chan->do_split)
1539		/* SPLITs always queue just once per channel */
1540		return 0;
1541
1542	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1543		/* SETUPs are queued only once since they can't be NAK'd */
1544		return 0;
1545
1546	if (chan->ep_is_in) {
1547		/*
1548		 * Always queue another request for other IN transfers. If
1549		 * back-to-back INs are issued and NAKs are received for both,
1550		 * the driver may still be processing the first NAK when the
1551		 * second NAK is received. When the interrupt handler clears
1552		 * the NAK interrupt for the first NAK, the second NAK will
1553		 * not be seen. So we can't depend on the NAK interrupt
1554		 * handler to requeue a NAK'd request. Instead, IN requests
1555		 * are issued each time this function is called. When the
1556		 * transfer completes, the extra requests for the channel will
1557		 * be flushed.
1558		 */
1559		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1560
1561		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1562		hcchar |= HCCHAR_CHENA;
1563		hcchar &= ~HCCHAR_CHDIS;
1564		if (dbg_hc(chan))
1565			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1566				 hcchar);
1567		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1568		chan->requests++;
1569		return 1;
1570	}
1571
1572	/* OUT transfers */
1573
1574	if (chan->xfer_count < chan->xfer_len) {
1575		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1576		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1577			u32 hcchar = dwc2_readl(hsotg,
1578						HCCHAR(chan->hc_num));
1579
1580			dwc2_hc_set_even_odd_frame(hsotg, chan,
1581						   &hcchar);
1582		}
1583
1584		/* Load OUT packet into the appropriate Tx FIFO */
1585		dwc2_hc_write_packet(hsotg, chan);
1586		chan->requests++;
1587		return 1;
1588	}
1589
1590	return 0;
1591}
1592
1593/*
1594 * =========================================================================
1595 *  HCD
1596 * =========================================================================
1597 */
1598
1599/*
1600 * Processes all the URBs in a single list of QHs. Completes them with
1601 * -ETIMEDOUT and frees the QTD.
1602 *
1603 * Must be called with interrupt disabled and spinlock held
1604 */
1605static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1606				      struct list_head *qh_list)
1607{
1608	struct dwc2_qh *qh, *qh_tmp;
1609	struct dwc2_qtd *qtd, *qtd_tmp;
1610
1611	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1612		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1613					 qtd_list_entry) {
1614			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1615			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1616		}
1617	}
1618}
1619
1620static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1621			      struct list_head *qh_list)
1622{
1623	struct dwc2_qtd *qtd, *qtd_tmp;
1624	struct dwc2_qh *qh, *qh_tmp;
1625	unsigned long flags;
1626
1627	if (!qh_list->next)
1628		/* The list hasn't been initialized yet */
1629		return;
1630
1631	spin_lock_irqsave(&hsotg->lock, flags);
1632
1633	/* Ensure there are no QTDs or URBs left */
1634	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1635
1636	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1637		dwc2_hcd_qh_unlink(hsotg, qh);
1638
1639		/* Free each QTD in the QH's QTD list */
1640		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1641					 qtd_list_entry)
1642			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1643
1644		if (qh->channel && qh->channel->qh == qh)
1645			qh->channel->qh = NULL;
1646
1647		spin_unlock_irqrestore(&hsotg->lock, flags);
1648		dwc2_hcd_qh_free(hsotg, qh);
1649		spin_lock_irqsave(&hsotg->lock, flags);
1650	}
1651
1652	spin_unlock_irqrestore(&hsotg->lock, flags);
1653}
1654
1655/*
1656 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1657 * and periodic schedules. The QTD associated with each URB is removed from
1658 * the schedule and freed. This function may be called when a disconnect is
1659 * detected or when the HCD is being stopped.
1660 *
1661 * Must be called with interrupt disabled and spinlock held
1662 */
1663static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1664{
1665	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1666	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1667	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1668	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1669	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1670	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1671	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1672}
1673
1674/**
1675 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1676 *
1677 * @hsotg: Pointer to struct dwc2_hsotg
1678 */
1679void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1680{
1681	u32 hprt0;
1682
1683	if (hsotg->op_state == OTG_STATE_B_HOST) {
1684		/*
1685		 * Reset the port. During a HNP mode switch the reset
1686		 * needs to occur within 1ms and have a duration of at
1687		 * least 50ms.
1688		 */
1689		hprt0 = dwc2_read_hprt0(hsotg);
1690		hprt0 |= HPRT0_RST;
1691		dwc2_writel(hsotg, hprt0, HPRT0);
1692	}
1693
1694	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1695			   msecs_to_jiffies(50));
1696}
1697
1698/* Must be called with interrupt disabled and spinlock held */
1699static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1700{
1701	int num_channels = hsotg->params.host_channels;
1702	struct dwc2_host_chan *channel;
1703	u32 hcchar;
1704	int i;
1705
1706	if (!hsotg->params.host_dma) {
1707		/* Flush out any channel requests in slave mode */
1708		for (i = 0; i < num_channels; i++) {
1709			channel = hsotg->hc_ptr_array[i];
1710			if (!list_empty(&channel->hc_list_entry))
1711				continue;
1712			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1713			if (hcchar & HCCHAR_CHENA) {
1714				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1715				hcchar |= HCCHAR_CHDIS;
1716				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1717			}
1718		}
1719	}
1720
1721	for (i = 0; i < num_channels; i++) {
1722		channel = hsotg->hc_ptr_array[i];
1723		if (!list_empty(&channel->hc_list_entry))
1724			continue;
1725		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1726		if (hcchar & HCCHAR_CHENA) {
1727			/* Halt the channel */
1728			hcchar |= HCCHAR_CHDIS;
1729			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1730		}
1731
1732		dwc2_hc_cleanup(hsotg, channel);
1733		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1734		/*
1735		 * Added for Descriptor DMA to prevent channel double cleanup in
1736		 * release_channel_ddma(), which is called from ep_disable when
1737		 * device disconnects
1738		 */
1739		channel->qh = NULL;
1740	}
1741	/* All channels have been freed, mark them available */
1742	if (hsotg->params.uframe_sched) {
1743		hsotg->available_host_channels =
1744			hsotg->params.host_channels;
1745	} else {
1746		hsotg->non_periodic_channels = 0;
1747		hsotg->periodic_channels = 0;
1748	}
1749}
1750
1751/**
1752 * dwc2_hcd_connect() - Handles connect of the HCD
1753 *
1754 * @hsotg: Pointer to struct dwc2_hsotg
1755 *
1756 * Must be called with interrupt disabled and spinlock held
1757 */
1758void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1759{
1760	if (hsotg->lx_state != DWC2_L0)
1761		usb_hcd_resume_root_hub(hsotg->priv);
1762
1763	hsotg->flags.b.port_connect_status_change = 1;
1764	hsotg->flags.b.port_connect_status = 1;
1765}
1766
1767/**
1768 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1769 *
1770 * @hsotg: Pointer to struct dwc2_hsotg
1771 * @force: If true, we won't try to reconnect even if we see device connected.
1772 *
1773 * Must be called with interrupt disabled and spinlock held
1774 */
1775void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1776{
1777	u32 intr;
1778	u32 hprt0;
1779
1780	/* Set status flags for the hub driver */
1781	hsotg->flags.b.port_connect_status_change = 1;
1782	hsotg->flags.b.port_connect_status = 0;
1783
1784	/*
1785	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1786	 * interrupt mask and status bits and disabling subsequent host
1787	 * channel interrupts.
1788	 */
1789	intr = dwc2_readl(hsotg, GINTMSK);
1790	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1791	dwc2_writel(hsotg, intr, GINTMSK);
1792	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1793	dwc2_writel(hsotg, intr, GINTSTS);
1794
1795	/*
1796	 * Turn off the vbus power only if the core has transitioned to device
1797	 * mode. If still in host mode, need to keep power on to detect a
1798	 * reconnection.
1799	 */
1800	if (dwc2_is_device_mode(hsotg)) {
1801		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1802			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1803			dwc2_writel(hsotg, 0, HPRT0);
1804		}
1805
1806		dwc2_disable_host_interrupts(hsotg);
1807	}
1808
1809	/* Respond with an error status to all URBs in the schedule */
1810	dwc2_kill_all_urbs(hsotg);
1811
1812	if (dwc2_is_host_mode(hsotg))
1813		/* Clean up any host channels that were in use */
1814		dwc2_hcd_cleanup_channels(hsotg);
1815
1816	dwc2_host_disconnect(hsotg);
1817
1818	/*
1819	 * Add an extra check here to see if we're actually connected but
1820	 * we don't have a detection interrupt pending.  This can happen if:
1821	 *   1. hardware sees connect
1822	 *   2. hardware sees disconnect
1823	 *   3. hardware sees connect
1824	 *   4. dwc2_port_intr() - clears connect interrupt
1825	 *   5. dwc2_handle_common_intr() - calls here
1826	 *
1827	 * Without the extra check here we will end calling disconnect
1828	 * and won't get any future interrupts to handle the connect.
1829	 */
1830	if (!force) {
1831		hprt0 = dwc2_readl(hsotg, HPRT0);
1832		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1833			dwc2_hcd_connect(hsotg);
1834	}
1835}
1836
1837/**
1838 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1839 *
1840 * @hsotg: Pointer to struct dwc2_hsotg
1841 */
1842static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1843{
1844	if (hsotg->bus_suspended) {
1845		hsotg->flags.b.port_suspend_change = 1;
1846		usb_hcd_resume_root_hub(hsotg->priv);
1847	}
1848
1849	if (hsotg->lx_state == DWC2_L1)
1850		hsotg->flags.b.port_l1_change = 1;
1851}
1852
1853/**
1854 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1855 *
1856 * @hsotg: Pointer to struct dwc2_hsotg
1857 *
1858 * Must be called with interrupt disabled and spinlock held
1859 */
1860void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1861{
1862	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1863
1864	/*
1865	 * The root hub should be disconnected before this function is called.
1866	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1867	 * and the QH lists (via ..._hcd_endpoint_disable).
1868	 */
1869
1870	/* Turn off all host-specific interrupts */
1871	dwc2_disable_host_interrupts(hsotg);
1872
1873	/* Turn off the vbus power */
1874	dev_dbg(hsotg->dev, "PortPower off\n");
1875	dwc2_writel(hsotg, 0, HPRT0);
1876}
1877
1878/* Caller must hold driver lock */
1879static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1880				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1881				struct dwc2_qtd *qtd)
1882{
1883	u32 intr_mask;
1884	int retval;
1885	int dev_speed;
1886
1887	if (!hsotg->flags.b.port_connect_status) {
1888		/* No longer connected */
1889		dev_err(hsotg->dev, "Not connected\n");
1890		return -ENODEV;
1891	}
1892
1893	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1894
1895	/* Some configurations cannot support LS traffic on a FS root port */
1896	if ((dev_speed == USB_SPEED_LOW) &&
1897	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1898	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1899		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1900		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1901
1902		if (prtspd == HPRT0_SPD_FULL_SPEED)
1903			return -ENODEV;
1904	}
1905
1906	if (!qtd)
1907		return -EINVAL;
1908
1909	dwc2_hcd_qtd_init(qtd, urb);
1910	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1911	if (retval) {
1912		dev_err(hsotg->dev,
1913			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1914			retval);
1915		return retval;
1916	}
1917
1918	intr_mask = dwc2_readl(hsotg, GINTMSK);
1919	if (!(intr_mask & GINTSTS_SOF)) {
1920		enum dwc2_transaction_type tr_type;
1921
1922		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1923		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1924			/*
1925			 * Do not schedule SG transactions until qtd has
1926			 * URB_GIVEBACK_ASAP set
1927			 */
1928			return 0;
1929
1930		tr_type = dwc2_hcd_select_transactions(hsotg);
1931		if (tr_type != DWC2_TRANSACTION_NONE)
1932			dwc2_hcd_queue_transactions(hsotg, tr_type);
1933	}
1934
1935	return 0;
1936}
1937
1938/* Must be called with interrupt disabled and spinlock held */
1939static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1940				struct dwc2_hcd_urb *urb)
1941{
1942	struct dwc2_qh *qh;
1943	struct dwc2_qtd *urb_qtd;
1944
1945	urb_qtd = urb->qtd;
1946	if (!urb_qtd) {
1947		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1948		return -EINVAL;
1949	}
1950
1951	qh = urb_qtd->qh;
1952	if (!qh) {
1953		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1954		return -EINVAL;
1955	}
1956
1957	urb->priv = NULL;
1958
1959	if (urb_qtd->in_process && qh->channel) {
1960		dwc2_dump_channel_info(hsotg, qh->channel);
1961
1962		/* The QTD is in process (it has been assigned to a channel) */
1963		if (hsotg->flags.b.port_connect_status)
1964			/*
1965			 * If still connected (i.e. in host mode), halt the
1966			 * channel so it can be used for other transfers. If
1967			 * no longer connected, the host registers can't be
1968			 * written to halt the channel since the core is in
1969			 * device mode.
1970			 */
1971			dwc2_hc_halt(hsotg, qh->channel,
1972				     DWC2_HC_XFER_URB_DEQUEUE);
1973	}
1974
1975	/*
1976	 * Free the QTD and clean up the associated QH. Leave the QH in the
1977	 * schedule if it has any remaining QTDs.
1978	 */
1979	if (!hsotg->params.dma_desc_enable) {
1980		u8 in_process = urb_qtd->in_process;
1981
1982		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1983		if (in_process) {
1984			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1985			qh->channel = NULL;
1986		} else if (list_empty(&qh->qtd_list)) {
1987			dwc2_hcd_qh_unlink(hsotg, qh);
1988		}
1989	} else {
1990		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1991	}
1992
1993	return 0;
1994}
1995
1996/* Must NOT be called with interrupt disabled or spinlock held */
1997static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1998				     struct usb_host_endpoint *ep, int retry)
1999{
2000	struct dwc2_qtd *qtd, *qtd_tmp;
2001	struct dwc2_qh *qh;
2002	unsigned long flags;
2003	int rc;
2004
2005	spin_lock_irqsave(&hsotg->lock, flags);
2006
2007	qh = ep->hcpriv;
2008	if (!qh) {
2009		rc = -EINVAL;
2010		goto err;
2011	}
2012
2013	while (!list_empty(&qh->qtd_list) && retry--) {
2014		if (retry == 0) {
2015			dev_err(hsotg->dev,
2016				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2017			rc = -EBUSY;
2018			goto err;
2019		}
2020
2021		spin_unlock_irqrestore(&hsotg->lock, flags);
2022		msleep(20);
2023		spin_lock_irqsave(&hsotg->lock, flags);
2024		qh = ep->hcpriv;
2025		if (!qh) {
2026			rc = -EINVAL;
2027			goto err;
2028		}
2029	}
2030
2031	dwc2_hcd_qh_unlink(hsotg, qh);
2032
2033	/* Free each QTD in the QH's QTD list */
2034	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2035		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2036
2037	ep->hcpriv = NULL;
2038
2039	if (qh->channel && qh->channel->qh == qh)
2040		qh->channel->qh = NULL;
2041
2042	spin_unlock_irqrestore(&hsotg->lock, flags);
2043
2044	dwc2_hcd_qh_free(hsotg, qh);
2045
2046	return 0;
2047
2048err:
2049	ep->hcpriv = NULL;
2050	spin_unlock_irqrestore(&hsotg->lock, flags);
2051
2052	return rc;
2053}
2054
2055/* Must be called with interrupt disabled and spinlock held */
2056static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2057				   struct usb_host_endpoint *ep)
2058{
2059	struct dwc2_qh *qh = ep->hcpriv;
2060
2061	if (!qh)
2062		return -EINVAL;
2063
2064	qh->data_toggle = DWC2_HC_PID_DATA0;
2065
2066	return 0;
2067}
2068
2069/**
2070 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2071 * prepares the core for device mode or host mode operation
2072 *
2073 * @hsotg:         Programming view of the DWC_otg controller
2074 * @initial_setup: If true then this is the first init for this instance.
2075 */
2076int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2077{
2078	u32 usbcfg, otgctl;
2079	int retval;
2080
2081	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2082
2083	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2084
2085	/* Set ULPI External VBUS bit if needed */
2086	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2087	if (hsotg->params.phy_ulpi_ext_vbus)
2088		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2089
2090	/* Set external TS Dline pulsing bit if needed */
2091	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2092	if (hsotg->params.ts_dline)
2093		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2094
2095	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2096
2097	/*
2098	 * Reset the Controller
2099	 *
2100	 * We only need to reset the controller if this is a re-init.
2101	 * For the first init we know for sure that earlier code reset us (it
2102	 * needed to in order to properly detect various parameters).
2103	 */
2104	if (!initial_setup) {
2105		retval = dwc2_core_reset(hsotg, false);
2106		if (retval) {
2107			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2108				__func__);
2109			return retval;
2110		}
2111	}
2112
2113	/*
2114	 * This needs to happen in FS mode before any other programming occurs
2115	 */
2116	retval = dwc2_phy_init(hsotg, initial_setup);
2117	if (retval)
2118		return retval;
2119
2120	/* Program the GAHBCFG Register */
2121	retval = dwc2_gahbcfg_init(hsotg);
2122	if (retval)
2123		return retval;
2124
2125	/* Program the GUSBCFG register */
2126	dwc2_gusbcfg_init(hsotg);
2127
2128	/* Program the GOTGCTL register */
2129	otgctl = dwc2_readl(hsotg, GOTGCTL);
2130	otgctl &= ~GOTGCTL_OTGVER;
2131	dwc2_writel(hsotg, otgctl, GOTGCTL);
2132
2133	/* Clear the SRP success bit for FS-I2c */
2134	hsotg->srp_success = 0;
2135
2136	/* Enable common interrupts */
2137	dwc2_enable_common_interrupts(hsotg);
2138
2139	/*
2140	 * Do device or host initialization based on mode during PCD and
2141	 * HCD initialization
2142	 */
2143	if (dwc2_is_host_mode(hsotg)) {
2144		dev_dbg(hsotg->dev, "Host Mode\n");
2145		hsotg->op_state = OTG_STATE_A_HOST;
2146	} else {
2147		dev_dbg(hsotg->dev, "Device Mode\n");
2148		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2149	}
2150
2151	return 0;
2152}
2153
2154/**
2155 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2156 * Host mode
2157 *
2158 * @hsotg: Programming view of DWC_otg controller
2159 *
2160 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2161 * request queues. Host channels are reset to ensure that they are ready for
2162 * performing transfers.
2163 */
2164static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2165{
2166	u32 hcfg, hfir, otgctl, usbcfg;
2167
2168	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2169
2170	/* Set HS/FS Timeout Calibration to 7 (max available value).
2171	 * The number of PHY clocks that the application programs in
2172	 * this field is added to the high/full speed interpacket timeout
2173	 * duration in the core to account for any additional delays
2174	 * introduced by the PHY. This can be required, because the delay
2175	 * introduced by the PHY in generating the linestate condition
2176	 * can vary from one PHY to another.
2177	 */
2178	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2179	usbcfg |= GUSBCFG_TOUTCAL(7);
2180	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2181
2182	/* Restart the Phy Clock */
2183	dwc2_writel(hsotg, 0, PCGCTL);
2184
2185	/* Initialize Host Configuration Register */
2186	dwc2_init_fs_ls_pclk_sel(hsotg);
2187	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2188	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2189		hcfg = dwc2_readl(hsotg, HCFG);
2190		hcfg |= HCFG_FSLSSUPP;
2191		dwc2_writel(hsotg, hcfg, HCFG);
2192	}
2193
2194	/*
2195	 * This bit allows dynamic reloading of the HFIR register during
2196	 * runtime. This bit needs to be programmed during initial configuration
2197	 * and its value must not be changed during runtime.
2198	 */
2199	if (hsotg->params.reload_ctl) {
2200		hfir = dwc2_readl(hsotg, HFIR);
2201		hfir |= HFIR_RLDCTRL;
2202		dwc2_writel(hsotg, hfir, HFIR);
2203	}
2204
2205	if (hsotg->params.dma_desc_enable) {
2206		u32 op_mode = hsotg->hw_params.op_mode;
2207
2208		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2209		    !hsotg->hw_params.dma_desc_enable ||
2210		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2211		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2212		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2213			dev_err(hsotg->dev,
2214				"Hardware does not support descriptor DMA mode -\n");
2215			dev_err(hsotg->dev,
2216				"falling back to buffer DMA mode.\n");
2217			hsotg->params.dma_desc_enable = false;
2218		} else {
2219			hcfg = dwc2_readl(hsotg, HCFG);
2220			hcfg |= HCFG_DESCDMA;
2221			dwc2_writel(hsotg, hcfg, HCFG);
2222		}
2223	}
2224
2225	/* Configure data FIFO sizes */
2226	dwc2_config_fifos(hsotg);
2227
2228	/* TODO - check this */
2229	/* Clear Host Set HNP Enable in the OTG Control Register */
2230	otgctl = dwc2_readl(hsotg, GOTGCTL);
2231	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2232	dwc2_writel(hsotg, otgctl, GOTGCTL);
2233
2234	/* Make sure the FIFOs are flushed */
2235	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2236	dwc2_flush_rx_fifo(hsotg);
2237
2238	/* Clear Host Set HNP Enable in the OTG Control Register */
2239	otgctl = dwc2_readl(hsotg, GOTGCTL);
2240	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2241	dwc2_writel(hsotg, otgctl, GOTGCTL);
2242
2243	if (!hsotg->params.dma_desc_enable) {
2244		int num_channels, i;
2245		u32 hcchar;
2246
2247		/* Flush out any leftover queued requests */
2248		num_channels = hsotg->params.host_channels;
2249		for (i = 0; i < num_channels; i++) {
2250			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2251			if (hcchar & HCCHAR_CHENA) {
2252				hcchar &= ~HCCHAR_CHENA;
2253				hcchar |= HCCHAR_CHDIS;
2254				hcchar &= ~HCCHAR_EPDIR;
2255				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2256			}
2257		}
2258
2259		/* Halt all channels to put them into a known state */
2260		for (i = 0; i < num_channels; i++) {
2261			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2262			if (hcchar & HCCHAR_CHENA) {
2263				hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2264				hcchar &= ~HCCHAR_EPDIR;
2265				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2266				dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2267					__func__, i);
2268
2269				if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2270							      HCCHAR_CHENA,
2271							      1000)) {
2272					dev_warn(hsotg->dev,
2273						 "Unable to clear enable on channel %d\n",
2274						 i);
2275				}
2276			}
2277		}
2278	}
2279
2280	/* Enable ACG feature in host mode, if supported */
2281	dwc2_enable_acg(hsotg);
2282
2283	/* Turn on the vbus power */
2284	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2285	if (hsotg->op_state == OTG_STATE_A_HOST) {
2286		u32 hprt0 = dwc2_read_hprt0(hsotg);
2287
2288		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2289			!!(hprt0 & HPRT0_PWR));
2290		if (!(hprt0 & HPRT0_PWR)) {
2291			hprt0 |= HPRT0_PWR;
2292			dwc2_writel(hsotg, hprt0, HPRT0);
2293		}
2294	}
2295
2296	dwc2_enable_host_interrupts(hsotg);
2297}
2298
2299/*
2300 * Initializes dynamic portions of the DWC_otg HCD state
2301 *
2302 * Must be called with interrupt disabled and spinlock held
2303 */
2304static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2305{
2306	struct dwc2_host_chan *chan, *chan_tmp;
2307	int num_channels;
2308	int i;
2309
2310	hsotg->flags.d32 = 0;
2311	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2312
2313	if (hsotg->params.uframe_sched) {
2314		hsotg->available_host_channels =
2315			hsotg->params.host_channels;
2316	} else {
2317		hsotg->non_periodic_channels = 0;
2318		hsotg->periodic_channels = 0;
2319	}
2320
2321	/*
2322	 * Put all channels in the free channel list and clean up channel
2323	 * states
2324	 */
2325	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2326				 hc_list_entry)
2327		list_del_init(&chan->hc_list_entry);
2328
2329	num_channels = hsotg->params.host_channels;
2330	for (i = 0; i < num_channels; i++) {
2331		chan = hsotg->hc_ptr_array[i];
2332		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2333		dwc2_hc_cleanup(hsotg, chan);
2334	}
2335
2336	/* Initialize the DWC core for host mode operation */
2337	dwc2_core_host_init(hsotg);
2338}
2339
2340static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2341			       struct dwc2_host_chan *chan,
2342			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2343{
2344	int hub_addr, hub_port;
2345
2346	chan->do_split = 1;
2347	chan->xact_pos = qtd->isoc_split_pos;
2348	chan->complete_split = qtd->complete_split;
2349	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2350	chan->hub_addr = (u8)hub_addr;
2351	chan->hub_port = (u8)hub_port;
2352}
2353
2354static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2355			      struct dwc2_host_chan *chan,
2356			      struct dwc2_qtd *qtd)
2357{
2358	struct dwc2_hcd_urb *urb = qtd->urb;
2359	struct dwc2_hcd_iso_packet_desc *frame_desc;
2360
2361	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2362	case USB_ENDPOINT_XFER_CONTROL:
2363		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2364
2365		switch (qtd->control_phase) {
2366		case DWC2_CONTROL_SETUP:
2367			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2368			chan->do_ping = 0;
2369			chan->ep_is_in = 0;
2370			chan->data_pid_start = DWC2_HC_PID_SETUP;
2371			if (hsotg->params.host_dma)
2372				chan->xfer_dma = urb->setup_dma;
2373			else
2374				chan->xfer_buf = urb->setup_packet;
2375			chan->xfer_len = 8;
2376			break;
2377
2378		case DWC2_CONTROL_DATA:
2379			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2380			chan->data_pid_start = qtd->data_toggle;
2381			break;
2382
2383		case DWC2_CONTROL_STATUS:
2384			/*
2385			 * Direction is opposite of data direction or IN if no
2386			 * data
2387			 */
2388			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2389			if (urb->length == 0)
2390				chan->ep_is_in = 1;
2391			else
2392				chan->ep_is_in =
2393					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2394			if (chan->ep_is_in)
2395				chan->do_ping = 0;
2396			chan->data_pid_start = DWC2_HC_PID_DATA1;
2397			chan->xfer_len = 0;
2398			if (hsotg->params.host_dma)
2399				chan->xfer_dma = hsotg->status_buf_dma;
2400			else
2401				chan->xfer_buf = hsotg->status_buf;
2402			break;
2403		}
2404		break;
2405
2406	case USB_ENDPOINT_XFER_BULK:
2407		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2408		break;
2409
2410	case USB_ENDPOINT_XFER_INT:
2411		chan->ep_type = USB_ENDPOINT_XFER_INT;
2412		break;
2413
2414	case USB_ENDPOINT_XFER_ISOC:
2415		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2416		if (hsotg->params.dma_desc_enable)
2417			break;
2418
2419		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2420		frame_desc->status = 0;
2421
2422		if (hsotg->params.host_dma) {
2423			chan->xfer_dma = urb->dma;
2424			chan->xfer_dma += frame_desc->offset +
2425					qtd->isoc_split_offset;
2426		} else {
2427			chan->xfer_buf = urb->buf;
2428			chan->xfer_buf += frame_desc->offset +
2429					qtd->isoc_split_offset;
2430		}
2431
2432		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2433
2434		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2435			if (chan->xfer_len <= 188)
2436				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2437			else
2438				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2439		}
2440		break;
2441	}
2442}
2443
2444static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2445					    struct dwc2_qh *qh,
2446					    struct dwc2_host_chan *chan)
2447{
2448	if (!hsotg->unaligned_cache ||
2449	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2450		return -ENOMEM;
2451
2452	if (!qh->dw_align_buf) {
2453		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2454						    GFP_ATOMIC | GFP_DMA);
2455		if (!qh->dw_align_buf)
2456			return -ENOMEM;
2457	}
2458
2459	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2460					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2461					      DMA_FROM_DEVICE);
2462
2463	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2464		dev_err(hsotg->dev, "can't map align_buf\n");
2465		chan->align_buf = 0;
2466		return -EINVAL;
2467	}
2468
2469	chan->align_buf = qh->dw_align_buf_dma;
2470	return 0;
2471}
2472
2473#define DWC2_USB_DMA_ALIGN 4
2474
2475static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2476{
2477	void *stored_xfer_buffer;
2478	size_t length;
2479
2480	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2481		return;
2482
2483	/* Restore urb->transfer_buffer from the end of the allocated area */
2484	memcpy(&stored_xfer_buffer,
2485	       PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2486			 dma_get_cache_alignment()),
2487	       sizeof(urb->transfer_buffer));
2488
2489	if (usb_urb_dir_in(urb)) {
2490		if (usb_pipeisoc(urb->pipe))
2491			length = urb->transfer_buffer_length;
2492		else
2493			length = urb->actual_length;
2494
2495		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2496	}
2497	kfree(urb->transfer_buffer);
2498	urb->transfer_buffer = stored_xfer_buffer;
2499
2500	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2501}
2502
2503static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2504{
2505	void *kmalloc_ptr;
2506	size_t kmalloc_size;
2507
2508	if (urb->num_sgs || urb->sg ||
2509	    urb->transfer_buffer_length == 0 ||
2510	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2511		return 0;
2512
2513	/*
2514	 * Allocate a buffer with enough padding for original transfer_buffer
2515	 * pointer. This allocation is guaranteed to be aligned properly for
2516	 * DMA
2517	 */
2518	kmalloc_size = urb->transfer_buffer_length +
2519		(dma_get_cache_alignment() - 1) +
2520		sizeof(urb->transfer_buffer);
2521
2522	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2523	if (!kmalloc_ptr)
2524		return -ENOMEM;
2525
2526	/*
2527	 * Position value of original urb->transfer_buffer pointer to the end
2528	 * of allocation for later referencing
2529	 */
2530	memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2531			 dma_get_cache_alignment()),
2532	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2533
2534	if (usb_urb_dir_out(urb))
2535		memcpy(kmalloc_ptr, urb->transfer_buffer,
2536		       urb->transfer_buffer_length);
2537	urb->transfer_buffer = kmalloc_ptr;
2538
2539	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2540
2541	return 0;
2542}
2543
2544static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2545				gfp_t mem_flags)
2546{
2547	int ret;
2548
2549	/* We assume setup_dma is always aligned; warn if not */
2550	WARN_ON_ONCE(urb->setup_dma &&
2551		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2552
2553	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2554	if (ret)
2555		return ret;
2556
2557	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2558	if (ret)
2559		dwc2_free_dma_aligned_buffer(urb);
2560
2561	return ret;
2562}
2563
2564static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2565{
2566	usb_hcd_unmap_urb_for_dma(hcd, urb);
2567	dwc2_free_dma_aligned_buffer(urb);
2568}
2569
2570/**
2571 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2572 * channel and initializes the host channel to perform the transactions. The
2573 * host channel is removed from the free list.
2574 *
2575 * @hsotg: The HCD state structure
2576 * @qh:    Transactions from the first QTD for this QH are selected and assigned
2577 *         to a free host channel
2578 */
2579static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2580{
2581	struct dwc2_host_chan *chan;
2582	struct dwc2_hcd_urb *urb;
2583	struct dwc2_qtd *qtd;
2584
2585	if (dbg_qh(qh))
2586		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2587
2588	if (list_empty(&qh->qtd_list)) {
2589		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2590		return -ENOMEM;
2591	}
2592
2593	if (list_empty(&hsotg->free_hc_list)) {
2594		dev_dbg(hsotg->dev, "No free channel to assign\n");
2595		return -ENOMEM;
2596	}
2597
2598	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2599				hc_list_entry);
2600
2601	/* Remove host channel from free list */
2602	list_del_init(&chan->hc_list_entry);
2603
2604	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2605	urb = qtd->urb;
2606	qh->channel = chan;
2607	qtd->in_process = 1;
2608
2609	/*
2610	 * Use usb_pipedevice to determine device address. This address is
2611	 * 0 before the SET_ADDRESS command and the correct address afterward.
2612	 */
2613	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2614	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2615	chan->speed = qh->dev_speed;
2616	chan->max_packet = qh->maxp;
2617
2618	chan->xfer_started = 0;
2619	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2620	chan->error_state = (qtd->error_count > 0);
2621	chan->halt_on_queue = 0;
2622	chan->halt_pending = 0;
2623	chan->requests = 0;
2624
2625	/*
2626	 * The following values may be modified in the transfer type section
2627	 * below. The xfer_len value may be reduced when the transfer is
2628	 * started to accommodate the max widths of the XferSize and PktCnt
2629	 * fields in the HCTSIZn register.
2630	 */
2631
2632	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2633	if (chan->ep_is_in)
2634		chan->do_ping = 0;
2635	else
2636		chan->do_ping = qh->ping_state;
2637
2638	chan->data_pid_start = qh->data_toggle;
2639	chan->multi_count = 1;
2640
2641	if (urb->actual_length > urb->length &&
2642	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2643		urb->actual_length = urb->length;
2644
2645	if (hsotg->params.host_dma)
2646		chan->xfer_dma = urb->dma + urb->actual_length;
2647	else
2648		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2649
2650	chan->xfer_len = urb->length - urb->actual_length;
2651	chan->xfer_count = 0;
2652
2653	/* Set the split attributes if required */
2654	if (qh->do_split)
2655		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2656	else
2657		chan->do_split = 0;
2658
2659	/* Set the transfer attributes */
2660	dwc2_hc_init_xfer(hsotg, chan, qtd);
2661
2662	/* For non-dword aligned buffers */
2663	if (hsotg->params.host_dma && qh->do_split &&
2664	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2665		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2666		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2667			dev_err(hsotg->dev,
2668				"Failed to allocate memory to handle non-aligned buffer\n");
2669			/* Add channel back to free list */
2670			chan->align_buf = 0;
2671			chan->multi_count = 0;
2672			list_add_tail(&chan->hc_list_entry,
2673				      &hsotg->free_hc_list);
2674			qtd->in_process = 0;
2675			qh->channel = NULL;
2676			return -ENOMEM;
2677		}
2678	} else {
2679		/*
2680		 * We assume that DMA is always aligned in non-split
2681		 * case or split out case. Warn if not.
2682		 */
2683		WARN_ON_ONCE(hsotg->params.host_dma &&
2684			     (chan->xfer_dma & 0x3));
2685		chan->align_buf = 0;
2686	}
2687
2688	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2689	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2690		/*
2691		 * This value may be modified when the transfer is started
2692		 * to reflect the actual transfer length
2693		 */
2694		chan->multi_count = qh->maxp_mult;
2695
2696	if (hsotg->params.dma_desc_enable) {
2697		chan->desc_list_addr = qh->desc_list_dma;
2698		chan->desc_list_sz = qh->desc_list_sz;
2699	}
2700
2701	dwc2_hc_init(hsotg, chan);
2702	chan->qh = qh;
2703
2704	return 0;
2705}
2706
2707/**
2708 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2709 * schedule and assigns them to available host channels. Called from the HCD
2710 * interrupt handler functions.
2711 *
2712 * @hsotg: The HCD state structure
2713 *
2714 * Return: The types of new transactions that were assigned to host channels
2715 */
2716enum dwc2_transaction_type dwc2_hcd_select_transactions(
2717		struct dwc2_hsotg *hsotg)
2718{
2719	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2720	struct list_head *qh_ptr;
2721	struct dwc2_qh *qh;
2722	int num_channels;
2723
2724#ifdef DWC2_DEBUG_SOF
2725	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2726#endif
2727
2728	/* Process entries in the periodic ready list */
2729	qh_ptr = hsotg->periodic_sched_ready.next;
2730	while (qh_ptr != &hsotg->periodic_sched_ready) {
2731		if (list_empty(&hsotg->free_hc_list))
2732			break;
2733		if (hsotg->params.uframe_sched) {
2734			if (hsotg->available_host_channels <= 1)
2735				break;
2736			hsotg->available_host_channels--;
2737		}
2738		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2739		if (dwc2_assign_and_init_hc(hsotg, qh))
2740			break;
2741
2742		/*
2743		 * Move the QH from the periodic ready schedule to the
2744		 * periodic assigned schedule
2745		 */
2746		qh_ptr = qh_ptr->next;
2747		list_move_tail(&qh->qh_list_entry,
2748			       &hsotg->periodic_sched_assigned);
2749		ret_val = DWC2_TRANSACTION_PERIODIC;
2750	}
2751
2752	/*
2753	 * Process entries in the inactive portion of the non-periodic
2754	 * schedule. Some free host channels may not be used if they are
2755	 * reserved for periodic transfers.
2756	 */
2757	num_channels = hsotg->params.host_channels;
2758	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2759	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2760		if (!hsotg->params.uframe_sched &&
2761		    hsotg->non_periodic_channels >= num_channels -
2762						hsotg->periodic_channels)
2763			break;
2764		if (list_empty(&hsotg->free_hc_list))
2765			break;
2766		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2767		if (hsotg->params.uframe_sched) {
2768			if (hsotg->available_host_channels < 1)
2769				break;
2770			hsotg->available_host_channels--;
2771		}
2772
2773		if (dwc2_assign_and_init_hc(hsotg, qh))
2774			break;
2775
2776		/*
2777		 * Move the QH from the non-periodic inactive schedule to the
2778		 * non-periodic active schedule
2779		 */
2780		qh_ptr = qh_ptr->next;
2781		list_move_tail(&qh->qh_list_entry,
2782			       &hsotg->non_periodic_sched_active);
2783
2784		if (ret_val == DWC2_TRANSACTION_NONE)
2785			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2786		else
2787			ret_val = DWC2_TRANSACTION_ALL;
2788
2789		if (!hsotg->params.uframe_sched)
2790			hsotg->non_periodic_channels++;
2791	}
2792
2793	return ret_val;
2794}
2795
2796/**
2797 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2798 * a host channel associated with either a periodic or non-periodic transfer
2799 *
2800 * @hsotg: The HCD state structure
2801 * @chan:  Host channel descriptor associated with either a periodic or
2802 *         non-periodic transfer
2803 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2804 *                     for periodic transfers or the non-periodic Tx FIFO
2805 *                     for non-periodic transfers
2806 *
2807 * Return: 1 if a request is queued and more requests may be needed to
2808 * complete the transfer, 0 if no more requests are required for this
2809 * transfer, -1 if there is insufficient space in the Tx FIFO
2810 *
2811 * This function assumes that there is space available in the appropriate
2812 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2813 * it checks whether space is available in the appropriate Tx FIFO.
2814 *
2815 * Must be called with interrupt disabled and spinlock held
2816 */
2817static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2818				  struct dwc2_host_chan *chan,
2819				  u16 fifo_dwords_avail)
2820{
2821	int retval = 0;
2822
2823	if (chan->do_split)
2824		/* Put ourselves on the list to keep order straight */
2825		list_move_tail(&chan->split_order_list_entry,
2826			       &hsotg->split_order);
2827
2828	if (hsotg->params.host_dma && chan->qh) {
2829		if (hsotg->params.dma_desc_enable) {
2830			if (!chan->xfer_started ||
2831			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2832				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2833				chan->qh->ping_state = 0;
2834			}
2835		} else if (!chan->xfer_started) {
2836			dwc2_hc_start_transfer(hsotg, chan);
2837			chan->qh->ping_state = 0;
2838		}
2839	} else if (chan->halt_pending) {
2840		/* Don't queue a request if the channel has been halted */
2841	} else if (chan->halt_on_queue) {
2842		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2843	} else if (chan->do_ping) {
2844		if (!chan->xfer_started)
2845			dwc2_hc_start_transfer(hsotg, chan);
2846	} else if (!chan->ep_is_in ||
2847		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2848		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2849			if (!chan->xfer_started) {
2850				dwc2_hc_start_transfer(hsotg, chan);
2851				retval = 1;
2852			} else {
2853				retval = dwc2_hc_continue_transfer(hsotg, chan);
2854			}
2855		} else {
2856			retval = -1;
2857		}
2858	} else {
2859		if (!chan->xfer_started) {
2860			dwc2_hc_start_transfer(hsotg, chan);
2861			retval = 1;
2862		} else {
2863			retval = dwc2_hc_continue_transfer(hsotg, chan);
2864		}
2865	}
2866
2867	return retval;
2868}
2869
2870/*
2871 * Processes periodic channels for the next frame and queues transactions for
2872 * these channels to the DWC_otg controller. After queueing transactions, the
2873 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2874 * to queue as Periodic Tx FIFO or request queue space becomes available.
2875 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2876 *
2877 * Must be called with interrupt disabled and spinlock held
2878 */
2879static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2880{
2881	struct list_head *qh_ptr;
2882	struct dwc2_qh *qh;
2883	u32 tx_status;
2884	u32 fspcavail;
2885	u32 gintmsk;
2886	int status;
2887	bool no_queue_space = false;
2888	bool no_fifo_space = false;
2889	u32 qspcavail;
2890
2891	/* If empty list then just adjust interrupt enables */
2892	if (list_empty(&hsotg->periodic_sched_assigned))
2893		goto exit;
2894
2895	if (dbg_perio())
2896		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2897
2898	tx_status = dwc2_readl(hsotg, HPTXSTS);
2899	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2900		    TXSTS_QSPCAVAIL_SHIFT;
2901	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2902		    TXSTS_FSPCAVAIL_SHIFT;
2903
2904	if (dbg_perio()) {
2905		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2906			 qspcavail);
2907		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2908			 fspcavail);
2909	}
2910
2911	qh_ptr = hsotg->periodic_sched_assigned.next;
2912	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2913		tx_status = dwc2_readl(hsotg, HPTXSTS);
2914		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2915			    TXSTS_QSPCAVAIL_SHIFT;
2916		if (qspcavail == 0) {
2917			no_queue_space = true;
2918			break;
2919		}
2920
2921		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2922		if (!qh->channel) {
2923			qh_ptr = qh_ptr->next;
2924			continue;
2925		}
2926
2927		/* Make sure EP's TT buffer is clean before queueing qtds */
2928		if (qh->tt_buffer_dirty) {
2929			qh_ptr = qh_ptr->next;
2930			continue;
2931		}
2932
2933		/*
2934		 * Set a flag if we're queuing high-bandwidth in slave mode.
2935		 * The flag prevents any halts to get into the request queue in
2936		 * the middle of multiple high-bandwidth packets getting queued.
2937		 */
2938		if (!hsotg->params.host_dma &&
2939		    qh->channel->multi_count > 1)
2940			hsotg->queuing_high_bandwidth = 1;
2941
2942		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2943			    TXSTS_FSPCAVAIL_SHIFT;
2944		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2945		if (status < 0) {
2946			no_fifo_space = true;
2947			break;
2948		}
2949
2950		/*
2951		 * In Slave mode, stay on the current transfer until there is
2952		 * nothing more to do or the high-bandwidth request count is
2953		 * reached. In DMA mode, only need to queue one request. The
2954		 * controller automatically handles multiple packets for
2955		 * high-bandwidth transfers.
2956		 */
2957		if (hsotg->params.host_dma || status == 0 ||
2958		    qh->channel->requests == qh->channel->multi_count) {
2959			qh_ptr = qh_ptr->next;
2960			/*
2961			 * Move the QH from the periodic assigned schedule to
2962			 * the periodic queued schedule
2963			 */
2964			list_move_tail(&qh->qh_list_entry,
2965				       &hsotg->periodic_sched_queued);
2966
2967			/* done queuing high bandwidth */
2968			hsotg->queuing_high_bandwidth = 0;
2969		}
2970	}
2971
2972exit:
2973	if (no_queue_space || no_fifo_space ||
2974	    (!hsotg->params.host_dma &&
2975	     !list_empty(&hsotg->periodic_sched_assigned))) {
2976		/*
2977		 * May need to queue more transactions as the request
2978		 * queue or Tx FIFO empties. Enable the periodic Tx
2979		 * FIFO empty interrupt. (Always use the half-empty
2980		 * level to ensure that new requests are loaded as
2981		 * soon as possible.)
2982		 */
2983		gintmsk = dwc2_readl(hsotg, GINTMSK);
2984		if (!(gintmsk & GINTSTS_PTXFEMP)) {
2985			gintmsk |= GINTSTS_PTXFEMP;
2986			dwc2_writel(hsotg, gintmsk, GINTMSK);
2987		}
2988	} else {
2989		/*
2990		 * Disable the Tx FIFO empty interrupt since there are
2991		 * no more transactions that need to be queued right
2992		 * now. This function is called from interrupt
2993		 * handlers to queue more transactions as transfer
2994		 * states change.
2995		 */
2996		gintmsk = dwc2_readl(hsotg, GINTMSK);
2997		if (gintmsk & GINTSTS_PTXFEMP) {
2998			gintmsk &= ~GINTSTS_PTXFEMP;
2999			dwc2_writel(hsotg, gintmsk, GINTMSK);
3000		}
3001	}
3002}
3003
3004/*
3005 * Processes active non-periodic channels and queues transactions for these
3006 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3007 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3008 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3009 * FIFO Empty interrupt is disabled.
3010 *
3011 * Must be called with interrupt disabled and spinlock held
3012 */
3013static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3014{
3015	struct list_head *orig_qh_ptr;
3016	struct dwc2_qh *qh;
3017	u32 tx_status;
3018	u32 qspcavail;
3019	u32 fspcavail;
3020	u32 gintmsk;
3021	int status;
3022	int no_queue_space = 0;
3023	int no_fifo_space = 0;
3024	int more_to_do = 0;
3025
3026	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3027
3028	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3029	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3030		    TXSTS_QSPCAVAIL_SHIFT;
3031	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3032		    TXSTS_FSPCAVAIL_SHIFT;
3033	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3034		 qspcavail);
3035	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3036		 fspcavail);
3037
3038	/*
3039	 * Keep track of the starting point. Skip over the start-of-list
3040	 * entry.
3041	 */
3042	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3043		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3044	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3045
3046	/*
3047	 * Process once through the active list or until no more space is
3048	 * available in the request queue or the Tx FIFO
3049	 */
3050	do {
3051		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3052		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3053			    TXSTS_QSPCAVAIL_SHIFT;
3054		if (!hsotg->params.host_dma && qspcavail == 0) {
3055			no_queue_space = 1;
3056			break;
3057		}
3058
3059		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3060				qh_list_entry);
3061		if (!qh->channel)
3062			goto next;
3063
3064		/* Make sure EP's TT buffer is clean before queueing qtds */
3065		if (qh->tt_buffer_dirty)
3066			goto next;
3067
3068		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3069			    TXSTS_FSPCAVAIL_SHIFT;
3070		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3071
3072		if (status > 0) {
3073			more_to_do = 1;
3074		} else if (status < 0) {
3075			no_fifo_space = 1;
3076			break;
3077		}
3078next:
3079		/* Advance to next QH, skipping start-of-list entry */
3080		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3081		if (hsotg->non_periodic_qh_ptr ==
3082				&hsotg->non_periodic_sched_active)
3083			hsotg->non_periodic_qh_ptr =
3084					hsotg->non_periodic_qh_ptr->next;
3085	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3086
3087	if (!hsotg->params.host_dma) {
3088		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3089		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3090			    TXSTS_QSPCAVAIL_SHIFT;
3091		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3092			    TXSTS_FSPCAVAIL_SHIFT;
3093		dev_vdbg(hsotg->dev,
3094			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3095			 qspcavail);
3096		dev_vdbg(hsotg->dev,
3097			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3098			 fspcavail);
3099
3100		if (more_to_do || no_queue_space || no_fifo_space) {
3101			/*
3102			 * May need to queue more transactions as the request
3103			 * queue or Tx FIFO empties. Enable the non-periodic
3104			 * Tx FIFO empty interrupt. (Always use the half-empty
3105			 * level to ensure that new requests are loaded as
3106			 * soon as possible.)
3107			 */
3108			gintmsk = dwc2_readl(hsotg, GINTMSK);
3109			gintmsk |= GINTSTS_NPTXFEMP;
3110			dwc2_writel(hsotg, gintmsk, GINTMSK);
3111		} else {
3112			/*
3113			 * Disable the Tx FIFO empty interrupt since there are
3114			 * no more transactions that need to be queued right
3115			 * now. This function is called from interrupt
3116			 * handlers to queue more transactions as transfer
3117			 * states change.
3118			 */
3119			gintmsk = dwc2_readl(hsotg, GINTMSK);
3120			gintmsk &= ~GINTSTS_NPTXFEMP;
3121			dwc2_writel(hsotg, gintmsk, GINTMSK);
3122		}
3123	}
3124}
3125
3126/**
3127 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3128 * and queues transactions for these channels to the DWC_otg controller. Called
3129 * from the HCD interrupt handler functions.
3130 *
3131 * @hsotg:   The HCD state structure
3132 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3133 *           or both)
3134 *
3135 * Must be called with interrupt disabled and spinlock held
3136 */
3137void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3138				 enum dwc2_transaction_type tr_type)
3139{
3140#ifdef DWC2_DEBUG_SOF
3141	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3142#endif
3143	/* Process host channels associated with periodic transfers */
3144	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3145	    tr_type == DWC2_TRANSACTION_ALL)
3146		dwc2_process_periodic_channels(hsotg);
3147
3148	/* Process host channels associated with non-periodic transfers */
3149	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3150	    tr_type == DWC2_TRANSACTION_ALL) {
3151		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3152			dwc2_process_non_periodic_channels(hsotg);
3153		} else {
3154			/*
3155			 * Ensure NP Tx FIFO empty interrupt is disabled when
3156			 * there are no non-periodic transfers to process
3157			 */
3158			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3159
3160			gintmsk &= ~GINTSTS_NPTXFEMP;
3161			dwc2_writel(hsotg, gintmsk, GINTMSK);
3162		}
3163	}
3164}
3165
3166static void dwc2_conn_id_status_change(struct work_struct *work)
3167{
3168	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3169						wf_otg);
3170	u32 count = 0;
3171	u32 gotgctl;
3172	unsigned long flags;
3173
3174	dev_dbg(hsotg->dev, "%s()\n", __func__);
3175
3176	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3177	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3178	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3179		!!(gotgctl & GOTGCTL_CONID_B));
3180
3181	/* B-Device connector (Device Mode) */
3182	if (gotgctl & GOTGCTL_CONID_B) {
3183		dwc2_vbus_supply_exit(hsotg);
3184		/* Wait for switch to device mode */
3185		dev_dbg(hsotg->dev, "connId B\n");
3186		if (hsotg->bus_suspended) {
3187			dev_info(hsotg->dev,
3188				 "Do port resume before switching to device mode\n");
3189			dwc2_port_resume(hsotg);
3190		}
3191		while (!dwc2_is_device_mode(hsotg)) {
3192			dev_info(hsotg->dev,
3193				 "Waiting for Peripheral Mode, Mode=%s\n",
3194				 dwc2_is_host_mode(hsotg) ? "Host" :
3195				 "Peripheral");
3196			msleep(20);
3197			/*
3198			 * Sometimes the initial GOTGCTRL read is wrong, so
3199			 * check it again and jump to host mode if that was
3200			 * the case.
3201			 */
3202			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3203			if (!(gotgctl & GOTGCTL_CONID_B))
3204				goto host;
3205			if (++count > 250)
3206				break;
3207		}
3208		if (count > 250)
3209			dev_err(hsotg->dev,
3210				"Connection id status change timed out\n");
3211		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3212		dwc2_core_init(hsotg, false);
3213		dwc2_enable_global_interrupts(hsotg);
3214		spin_lock_irqsave(&hsotg->lock, flags);
3215		dwc2_hsotg_core_init_disconnected(hsotg, false);
3216		spin_unlock_irqrestore(&hsotg->lock, flags);
3217		/* Enable ACG feature in device mode,if supported */
3218		dwc2_enable_acg(hsotg);
3219		dwc2_hsotg_core_connect(hsotg);
3220	} else {
3221host:
3222		/* A-Device connector (Host Mode) */
3223		dev_dbg(hsotg->dev, "connId A\n");
3224		while (!dwc2_is_host_mode(hsotg)) {
3225			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3226				 dwc2_is_host_mode(hsotg) ?
3227				 "Host" : "Peripheral");
3228			msleep(20);
3229			if (++count > 250)
3230				break;
3231		}
3232		if (count > 250)
3233			dev_err(hsotg->dev,
3234				"Connection id status change timed out\n");
3235
3236		spin_lock_irqsave(&hsotg->lock, flags);
3237		dwc2_hsotg_disconnect(hsotg);
3238		spin_unlock_irqrestore(&hsotg->lock, flags);
3239
3240		hsotg->op_state = OTG_STATE_A_HOST;
3241		/* Initialize the Core for Host mode */
3242		dwc2_core_init(hsotg, false);
3243		dwc2_enable_global_interrupts(hsotg);
3244		dwc2_hcd_start(hsotg);
3245	}
3246}
3247
3248static void dwc2_wakeup_detected(struct timer_list *t)
3249{
3250	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3251	u32 hprt0;
3252
3253	dev_dbg(hsotg->dev, "%s()\n", __func__);
3254
3255	/*
3256	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3257	 * so that OPT tests pass with all PHYs.)
3258	 */
3259	hprt0 = dwc2_read_hprt0(hsotg);
3260	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3261	hprt0 &= ~HPRT0_RES;
3262	dwc2_writel(hsotg, hprt0, HPRT0);
3263	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3264		dwc2_readl(hsotg, HPRT0));
3265
3266	dwc2_hcd_rem_wakeup(hsotg);
3267	hsotg->bus_suspended = false;
3268
3269	/* Change to L0 state */
3270	hsotg->lx_state = DWC2_L0;
3271}
3272
3273static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3274{
3275	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3276
3277	return hcd->self.b_hnp_enable;
3278}
3279
3280/* Must NOT be called with interrupt disabled or spinlock held */
3281static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3282{
3283	unsigned long flags;
3284	u32 hprt0;
3285	u32 pcgctl;
3286	u32 gotgctl;
3287
3288	dev_dbg(hsotg->dev, "%s()\n", __func__);
3289
3290	spin_lock_irqsave(&hsotg->lock, flags);
3291
3292	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3293		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3294		gotgctl |= GOTGCTL_HSTSETHNPEN;
3295		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3296		hsotg->op_state = OTG_STATE_A_SUSPEND;
3297	}
3298
3299	hprt0 = dwc2_read_hprt0(hsotg);
3300	hprt0 |= HPRT0_SUSP;
3301	dwc2_writel(hsotg, hprt0, HPRT0);
3302
3303	hsotg->bus_suspended = true;
3304
3305	/*
3306	 * If power_down is supported, Phy clock will be suspended
3307	 * after registers are backuped.
3308	 */
3309	if (!hsotg->params.power_down) {
3310		/* Suspend the Phy Clock */
3311		pcgctl = dwc2_readl(hsotg, PCGCTL);
3312		pcgctl |= PCGCTL_STOPPCLK;
3313		dwc2_writel(hsotg, pcgctl, PCGCTL);
3314		udelay(10);
3315	}
3316
3317	/* For HNP the bus must be suspended for at least 200ms */
3318	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3319		pcgctl = dwc2_readl(hsotg, PCGCTL);
3320		pcgctl &= ~PCGCTL_STOPPCLK;
3321		dwc2_writel(hsotg, pcgctl, PCGCTL);
3322
3323		spin_unlock_irqrestore(&hsotg->lock, flags);
3324
3325		msleep(200);
3326	} else {
3327		spin_unlock_irqrestore(&hsotg->lock, flags);
3328	}
3329}
3330
3331/* Must NOT be called with interrupt disabled or spinlock held */
3332static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3333{
3334	unsigned long flags;
3335	u32 hprt0;
3336	u32 pcgctl;
3337
3338	spin_lock_irqsave(&hsotg->lock, flags);
3339
3340	/*
3341	 * If power_down is supported, Phy clock is already resumed
3342	 * after registers restore.
3343	 */
3344	if (!hsotg->params.power_down) {
3345		pcgctl = dwc2_readl(hsotg, PCGCTL);
3346		pcgctl &= ~PCGCTL_STOPPCLK;
3347		dwc2_writel(hsotg, pcgctl, PCGCTL);
3348		spin_unlock_irqrestore(&hsotg->lock, flags);
3349		msleep(20);
3350		spin_lock_irqsave(&hsotg->lock, flags);
3351	}
3352
3353	hprt0 = dwc2_read_hprt0(hsotg);
3354	hprt0 |= HPRT0_RES;
3355	hprt0 &= ~HPRT0_SUSP;
3356	dwc2_writel(hsotg, hprt0, HPRT0);
3357	spin_unlock_irqrestore(&hsotg->lock, flags);
3358
3359	msleep(USB_RESUME_TIMEOUT);
3360
3361	spin_lock_irqsave(&hsotg->lock, flags);
3362	hprt0 = dwc2_read_hprt0(hsotg);
3363	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3364	dwc2_writel(hsotg, hprt0, HPRT0);
3365	hsotg->bus_suspended = false;
3366	spin_unlock_irqrestore(&hsotg->lock, flags);
3367}
3368
3369/* Handles hub class-specific requests */
3370static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3371				u16 wvalue, u16 windex, char *buf, u16 wlength)
3372{
3373	struct usb_hub_descriptor *hub_desc;
3374	int retval = 0;
3375	u32 hprt0;
3376	u32 port_status;
3377	u32 speed;
3378	u32 pcgctl;
3379	u32 pwr;
3380
3381	switch (typereq) {
3382	case ClearHubFeature:
3383		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3384
3385		switch (wvalue) {
3386		case C_HUB_LOCAL_POWER:
3387		case C_HUB_OVER_CURRENT:
3388			/* Nothing required here */
3389			break;
3390
3391		default:
3392			retval = -EINVAL;
3393			dev_err(hsotg->dev,
3394				"ClearHubFeature request %1xh unknown\n",
3395				wvalue);
3396		}
3397		break;
3398
3399	case ClearPortFeature:
3400		if (wvalue != USB_PORT_FEAT_L1)
3401			if (!windex || windex > 1)
3402				goto error;
3403		switch (wvalue) {
3404		case USB_PORT_FEAT_ENABLE:
3405			dev_dbg(hsotg->dev,
3406				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3407			hprt0 = dwc2_read_hprt0(hsotg);
3408			hprt0 |= HPRT0_ENA;
3409			dwc2_writel(hsotg, hprt0, HPRT0);
3410			break;
3411
3412		case USB_PORT_FEAT_SUSPEND:
3413			dev_dbg(hsotg->dev,
3414				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3415
3416			if (hsotg->bus_suspended) {
3417				if (hsotg->hibernated)
3418					dwc2_exit_hibernation(hsotg, 0, 0, 1);
3419				else
3420					dwc2_port_resume(hsotg);
3421			}
3422			break;
3423
3424		case USB_PORT_FEAT_POWER:
3425			dev_dbg(hsotg->dev,
3426				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3427			hprt0 = dwc2_read_hprt0(hsotg);
3428			pwr = hprt0 & HPRT0_PWR;
3429			hprt0 &= ~HPRT0_PWR;
3430			dwc2_writel(hsotg, hprt0, HPRT0);
3431			if (pwr)
3432				dwc2_vbus_supply_exit(hsotg);
3433			break;
3434
3435		case USB_PORT_FEAT_INDICATOR:
3436			dev_dbg(hsotg->dev,
3437				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3438			/* Port indicator not supported */
3439			break;
3440
3441		case USB_PORT_FEAT_C_CONNECTION:
3442			/*
3443			 * Clears driver's internal Connect Status Change flag
3444			 */
3445			dev_dbg(hsotg->dev,
3446				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3447			hsotg->flags.b.port_connect_status_change = 0;
3448			break;
3449
3450		case USB_PORT_FEAT_C_RESET:
3451			/* Clears driver's internal Port Reset Change flag */
3452			dev_dbg(hsotg->dev,
3453				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3454			hsotg->flags.b.port_reset_change = 0;
3455			break;
3456
3457		case USB_PORT_FEAT_C_ENABLE:
3458			/*
3459			 * Clears the driver's internal Port Enable/Disable
3460			 * Change flag
3461			 */
3462			dev_dbg(hsotg->dev,
3463				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3464			hsotg->flags.b.port_enable_change = 0;
3465			break;
3466
3467		case USB_PORT_FEAT_C_SUSPEND:
3468			/*
3469			 * Clears the driver's internal Port Suspend Change
3470			 * flag, which is set when resume signaling on the host
3471			 * port is complete
3472			 */
3473			dev_dbg(hsotg->dev,
3474				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3475			hsotg->flags.b.port_suspend_change = 0;
3476			break;
3477
3478		case USB_PORT_FEAT_C_PORT_L1:
3479			dev_dbg(hsotg->dev,
3480				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3481			hsotg->flags.b.port_l1_change = 0;
3482			break;
3483
3484		case USB_PORT_FEAT_C_OVER_CURRENT:
3485			dev_dbg(hsotg->dev,
3486				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3487			hsotg->flags.b.port_over_current_change = 0;
3488			break;
3489
3490		default:
3491			retval = -EINVAL;
3492			dev_err(hsotg->dev,
3493				"ClearPortFeature request %1xh unknown or unsupported\n",
3494				wvalue);
3495		}
3496		break;
3497
3498	case GetHubDescriptor:
3499		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3500		hub_desc = (struct usb_hub_descriptor *)buf;
3501		hub_desc->bDescLength = 9;
3502		hub_desc->bDescriptorType = USB_DT_HUB;
3503		hub_desc->bNbrPorts = 1;
3504		hub_desc->wHubCharacteristics =
3505			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3506				    HUB_CHAR_INDV_PORT_OCPM);
3507		hub_desc->bPwrOn2PwrGood = 1;
3508		hub_desc->bHubContrCurrent = 0;
3509		hub_desc->u.hs.DeviceRemovable[0] = 0;
3510		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3511		break;
3512
3513	case GetHubStatus:
3514		dev_dbg(hsotg->dev, "GetHubStatus\n");
3515		memset(buf, 0, 4);
3516		break;
3517
3518	case GetPortStatus:
3519		dev_vdbg(hsotg->dev,
3520			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3521			 hsotg->flags.d32);
3522		if (!windex || windex > 1)
3523			goto error;
3524
3525		port_status = 0;
3526		if (hsotg->flags.b.port_connect_status_change)
3527			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3528		if (hsotg->flags.b.port_enable_change)
3529			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3530		if (hsotg->flags.b.port_suspend_change)
3531			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3532		if (hsotg->flags.b.port_l1_change)
3533			port_status |= USB_PORT_STAT_C_L1 << 16;
3534		if (hsotg->flags.b.port_reset_change)
3535			port_status |= USB_PORT_STAT_C_RESET << 16;
3536		if (hsotg->flags.b.port_over_current_change) {
3537			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3538			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3539		}
3540
3541		if (!hsotg->flags.b.port_connect_status) {
3542			/*
3543			 * The port is disconnected, which means the core is
3544			 * either in device mode or it soon will be. Just
3545			 * return 0's for the remainder of the port status
3546			 * since the port register can't be read if the core
3547			 * is in device mode.
3548			 */
3549			*(__le32 *)buf = cpu_to_le32(port_status);
3550			break;
3551		}
3552
3553		hprt0 = dwc2_readl(hsotg, HPRT0);
3554		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3555
3556		if (hprt0 & HPRT0_CONNSTS)
3557			port_status |= USB_PORT_STAT_CONNECTION;
3558		if (hprt0 & HPRT0_ENA)
3559			port_status |= USB_PORT_STAT_ENABLE;
3560		if (hprt0 & HPRT0_SUSP)
3561			port_status |= USB_PORT_STAT_SUSPEND;
3562		if (hprt0 & HPRT0_OVRCURRACT)
3563			port_status |= USB_PORT_STAT_OVERCURRENT;
3564		if (hprt0 & HPRT0_RST)
3565			port_status |= USB_PORT_STAT_RESET;
3566		if (hprt0 & HPRT0_PWR)
3567			port_status |= USB_PORT_STAT_POWER;
3568
3569		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3570		if (speed == HPRT0_SPD_HIGH_SPEED)
3571			port_status |= USB_PORT_STAT_HIGH_SPEED;
3572		else if (speed == HPRT0_SPD_LOW_SPEED)
3573			port_status |= USB_PORT_STAT_LOW_SPEED;
3574
3575		if (hprt0 & HPRT0_TSTCTL_MASK)
3576			port_status |= USB_PORT_STAT_TEST;
3577		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3578
3579		if (hsotg->params.dma_desc_fs_enable) {
3580			/*
3581			 * Enable descriptor DMA only if a full speed
3582			 * device is connected.
3583			 */
3584			if (hsotg->new_connection &&
3585			    ((port_status &
3586			      (USB_PORT_STAT_CONNECTION |
3587			       USB_PORT_STAT_HIGH_SPEED |
3588			       USB_PORT_STAT_LOW_SPEED)) ==
3589			       USB_PORT_STAT_CONNECTION)) {
3590				u32 hcfg;
3591
3592				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3593				hsotg->params.dma_desc_enable = true;
3594				hcfg = dwc2_readl(hsotg, HCFG);
3595				hcfg |= HCFG_DESCDMA;
3596				dwc2_writel(hsotg, hcfg, HCFG);
3597				hsotg->new_connection = false;
3598			}
3599		}
3600
3601		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3602		*(__le32 *)buf = cpu_to_le32(port_status);
3603		break;
3604
3605	case SetHubFeature:
3606		dev_dbg(hsotg->dev, "SetHubFeature\n");
3607		/* No HUB features supported */
3608		break;
3609
3610	case SetPortFeature:
3611		dev_dbg(hsotg->dev, "SetPortFeature\n");
3612		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3613			goto error;
3614
3615		if (!hsotg->flags.b.port_connect_status) {
3616			/*
3617			 * The port is disconnected, which means the core is
3618			 * either in device mode or it soon will be. Just
3619			 * return without doing anything since the port
3620			 * register can't be written if the core is in device
3621			 * mode.
3622			 */
3623			break;
3624		}
3625
3626		switch (wvalue) {
3627		case USB_PORT_FEAT_SUSPEND:
3628			dev_dbg(hsotg->dev,
3629				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3630			if (windex != hsotg->otg_port)
3631				goto error;
3632			if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION)
3633				dwc2_enter_hibernation(hsotg, 1);
3634			else
3635				dwc2_port_suspend(hsotg, windex);
3636			break;
3637
3638		case USB_PORT_FEAT_POWER:
3639			dev_dbg(hsotg->dev,
3640				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3641			hprt0 = dwc2_read_hprt0(hsotg);
3642			pwr = hprt0 & HPRT0_PWR;
3643			hprt0 |= HPRT0_PWR;
3644			dwc2_writel(hsotg, hprt0, HPRT0);
3645			if (!pwr)
3646				dwc2_vbus_supply_init(hsotg);
3647			break;
3648
3649		case USB_PORT_FEAT_RESET:
3650			if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION &&
3651			    hsotg->hibernated)
3652				dwc2_exit_hibernation(hsotg, 0, 1, 1);
3653			hprt0 = dwc2_read_hprt0(hsotg);
3654			dev_dbg(hsotg->dev,
3655				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3656			pcgctl = dwc2_readl(hsotg, PCGCTL);
3657			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3658			dwc2_writel(hsotg, pcgctl, PCGCTL);
3659			/* ??? Original driver does this */
3660			dwc2_writel(hsotg, 0, PCGCTL);
3661
3662			hprt0 = dwc2_read_hprt0(hsotg);
3663			pwr = hprt0 & HPRT0_PWR;
3664			/* Clear suspend bit if resetting from suspend state */
3665			hprt0 &= ~HPRT0_SUSP;
3666
3667			/*
3668			 * When B-Host the Port reset bit is set in the Start
3669			 * HCD Callback function, so that the reset is started
3670			 * within 1ms of the HNP success interrupt
3671			 */
3672			if (!dwc2_hcd_is_b_host(hsotg)) {
3673				hprt0 |= HPRT0_PWR | HPRT0_RST;
3674				dev_dbg(hsotg->dev,
3675					"In host mode, hprt0=%08x\n", hprt0);
3676				dwc2_writel(hsotg, hprt0, HPRT0);
3677				if (!pwr)
3678					dwc2_vbus_supply_init(hsotg);
3679			}
3680
3681			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3682			msleep(50);
3683			hprt0 &= ~HPRT0_RST;
3684			dwc2_writel(hsotg, hprt0, HPRT0);
3685			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3686			break;
3687
3688		case USB_PORT_FEAT_INDICATOR:
3689			dev_dbg(hsotg->dev,
3690				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3691			/* Not supported */
3692			break;
3693
3694		case USB_PORT_FEAT_TEST:
3695			hprt0 = dwc2_read_hprt0(hsotg);
3696			dev_dbg(hsotg->dev,
3697				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3698			hprt0 &= ~HPRT0_TSTCTL_MASK;
3699			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3700			dwc2_writel(hsotg, hprt0, HPRT0);
3701			break;
3702
3703		default:
3704			retval = -EINVAL;
3705			dev_err(hsotg->dev,
3706				"SetPortFeature %1xh unknown or unsupported\n",
3707				wvalue);
3708			break;
3709		}
3710		break;
3711
3712	default:
3713error:
3714		retval = -EINVAL;
3715		dev_dbg(hsotg->dev,
3716			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3717			typereq, windex, wvalue);
3718		break;
3719	}
3720
3721	return retval;
3722}
3723
3724static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3725{
3726	int retval;
3727
3728	if (port != 1)
3729		return -EINVAL;
3730
3731	retval = (hsotg->flags.b.port_connect_status_change ||
3732		  hsotg->flags.b.port_reset_change ||
3733		  hsotg->flags.b.port_enable_change ||
3734		  hsotg->flags.b.port_suspend_change ||
3735		  hsotg->flags.b.port_over_current_change);
3736
3737	if (retval) {
3738		dev_dbg(hsotg->dev,
3739			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3740		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3741			hsotg->flags.b.port_connect_status_change);
3742		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3743			hsotg->flags.b.port_reset_change);
3744		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3745			hsotg->flags.b.port_enable_change);
3746		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3747			hsotg->flags.b.port_suspend_change);
3748		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3749			hsotg->flags.b.port_over_current_change);
3750	}
3751
3752	return retval;
3753}
3754
3755int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3756{
3757	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3758
3759#ifdef DWC2_DEBUG_SOF
3760	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3761		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3762#endif
3763	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3764}
3765
3766int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3767{
3768	u32 hprt = dwc2_readl(hsotg, HPRT0);
3769	u32 hfir = dwc2_readl(hsotg, HFIR);
3770	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3771	unsigned int us_per_frame;
3772	unsigned int frame_number;
3773	unsigned int remaining;
3774	unsigned int interval;
3775	unsigned int phy_clks;
3776
3777	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3778	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3779
3780	/* Extract fields */
3781	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3782	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3783	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3784
3785	/*
3786	 * Number of phy clocks since the last tick of the frame number after
3787	 * "us" has passed.
3788	 */
3789	phy_clks = (interval - remaining) +
3790		   DIV_ROUND_UP(interval * us, us_per_frame);
3791
3792	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3793}
3794
3795int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3796{
3797	return hsotg->op_state == OTG_STATE_B_HOST;
3798}
3799
3800static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3801					       int iso_desc_count,
3802					       gfp_t mem_flags)
3803{
3804	struct dwc2_hcd_urb *urb;
3805
3806	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3807	if (urb)
3808		urb->packet_count = iso_desc_count;
3809	return urb;
3810}
3811
3812static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3813				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3814				      u8 ep_num, u8 ep_type, u8 ep_dir,
3815				      u16 maxp, u16 maxp_mult)
3816{
3817	if (dbg_perio() ||
3818	    ep_type == USB_ENDPOINT_XFER_BULK ||
3819	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3820		dev_vdbg(hsotg->dev,
3821			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3822			 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3823	urb->pipe_info.dev_addr = dev_addr;
3824	urb->pipe_info.ep_num = ep_num;
3825	urb->pipe_info.pipe_type = ep_type;
3826	urb->pipe_info.pipe_dir = ep_dir;
3827	urb->pipe_info.maxp = maxp;
3828	urb->pipe_info.maxp_mult = maxp_mult;
3829}
3830
3831/*
3832 * NOTE: This function will be removed once the peripheral controller code
3833 * is integrated and the driver is stable
3834 */
3835void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3836{
3837#ifdef DEBUG
3838	struct dwc2_host_chan *chan;
3839	struct dwc2_hcd_urb *urb;
3840	struct dwc2_qtd *qtd;
3841	int num_channels;
3842	u32 np_tx_status;
3843	u32 p_tx_status;
3844	int i;
3845
3846	num_channels = hsotg->params.host_channels;
3847	dev_dbg(hsotg->dev, "\n");
3848	dev_dbg(hsotg->dev,
3849		"************************************************************\n");
3850	dev_dbg(hsotg->dev, "HCD State:\n");
3851	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3852
3853	for (i = 0; i < num_channels; i++) {
3854		chan = hsotg->hc_ptr_array[i];
3855		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3856		dev_dbg(hsotg->dev,
3857			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3858			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3859		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3860		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3861		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3862		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3863			chan->data_pid_start);
3864		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3865		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3866			chan->xfer_started);
3867		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3868		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3869			(unsigned long)chan->xfer_dma);
3870		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3871		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3872		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3873			chan->halt_on_queue);
3874		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3875			chan->halt_pending);
3876		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3877		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3878		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3879			chan->complete_split);
3880		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3881		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3882		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3883		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3884		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3885
3886		if (chan->xfer_started) {
3887			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3888
3889			hfnum = dwc2_readl(hsotg, HFNUM);
3890			hcchar = dwc2_readl(hsotg, HCCHAR(i));
3891			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3892			hcint = dwc2_readl(hsotg, HCINT(i));
3893			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3894			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3895			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3896			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3897			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3898			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3899		}
3900
3901		if (!(chan->xfer_started && chan->qh))
3902			continue;
3903
3904		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3905			if (!qtd->in_process)
3906				break;
3907			urb = qtd->urb;
3908			dev_dbg(hsotg->dev, "    URB Info:\n");
3909			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3910				qtd, urb);
3911			if (urb) {
3912				dev_dbg(hsotg->dev,
3913					"      Dev: %d, EP: %d %s\n",
3914					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3915					dwc2_hcd_get_ep_num(&urb->pipe_info),
3916					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3917					"IN" : "OUT");
3918				dev_dbg(hsotg->dev,
3919					"      Max packet size: %d (%d mult)\n",
3920					dwc2_hcd_get_maxp(&urb->pipe_info),
3921					dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3922				dev_dbg(hsotg->dev,
3923					"      transfer_buffer: %p\n",
3924					urb->buf);
3925				dev_dbg(hsotg->dev,
3926					"      transfer_dma: %08lx\n",
3927					(unsigned long)urb->dma);
3928				dev_dbg(hsotg->dev,
3929					"      transfer_buffer_length: %d\n",
3930					urb->length);
3931				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3932					urb->actual_length);
3933			}
3934		}
3935	}
3936
3937	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3938		hsotg->non_periodic_channels);
3939	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3940		hsotg->periodic_channels);
3941	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3942	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3943	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3944		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3945	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3946		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3947	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3948	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3949		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3950	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3951		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3952	dwc2_dump_global_registers(hsotg);
3953	dwc2_dump_host_registers(hsotg);
3954	dev_dbg(hsotg->dev,
3955		"************************************************************\n");
3956	dev_dbg(hsotg->dev, "\n");
3957#endif
3958}
3959
3960struct wrapper_priv_data {
3961	struct dwc2_hsotg *hsotg;
3962};
3963
3964/* Gets the dwc2_hsotg from a usb_hcd */
3965static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3966{
3967	struct wrapper_priv_data *p;
3968
3969	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3970	return p->hsotg;
3971}
3972
3973/**
3974 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3975 *
3976 * This will get the dwc2_tt structure (and ttport) associated with the given
3977 * context (which is really just a struct urb pointer).
3978 *
3979 * The first time this is called for a given TT we allocate memory for our
3980 * structure.  When everyone is done and has called dwc2_host_put_tt_info()
3981 * then the refcount for the structure will go to 0 and we'll free it.
3982 *
3983 * @hsotg:     The HCD state structure for the DWC OTG controller.
3984 * @context:   The priv pointer from a struct dwc2_hcd_urb.
3985 * @mem_flags: Flags for allocating memory.
3986 * @ttport:    We'll return this device's port number here.  That's used to
3987 *             reference into the bitmap if we're on a multi_tt hub.
3988 *
3989 * Return: a pointer to a struct dwc2_tt.  Don't forget to call
3990 *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
3991 */
3992
3993struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
3994				      gfp_t mem_flags, int *ttport)
3995{
3996	struct urb *urb = context;
3997	struct dwc2_tt *dwc_tt = NULL;
3998
3999	if (urb->dev->tt) {
4000		*ttport = urb->dev->ttport;
4001
4002		dwc_tt = urb->dev->tt->hcpriv;
4003		if (!dwc_tt) {
4004			size_t bitmap_size;
4005
4006			/*
4007			 * For single_tt we need one schedule.  For multi_tt
4008			 * we need one per port.
4009			 */
4010			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4011				      sizeof(dwc_tt->periodic_bitmaps[0]);
4012			if (urb->dev->tt->multi)
4013				bitmap_size *= urb->dev->tt->hub->maxchild;
4014
4015			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4016					 mem_flags);
4017			if (!dwc_tt)
4018				return NULL;
4019
4020			dwc_tt->usb_tt = urb->dev->tt;
4021			dwc_tt->usb_tt->hcpriv = dwc_tt;
4022		}
4023
4024		dwc_tt->refcount++;
4025	}
4026
4027	return dwc_tt;
4028}
4029
4030/**
4031 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4032 *
4033 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4034 * of the structure are done.
4035 *
4036 * It's OK to call this with NULL.
4037 *
4038 * @hsotg:     The HCD state structure for the DWC OTG controller.
4039 * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4040 */
4041void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4042{
4043	/* Model kfree and make put of NULL a no-op */
4044	if (!dwc_tt)
4045		return;
4046
4047	WARN_ON(dwc_tt->refcount < 1);
4048
4049	dwc_tt->refcount--;
4050	if (!dwc_tt->refcount) {
4051		dwc_tt->usb_tt->hcpriv = NULL;
4052		kfree(dwc_tt);
4053	}
4054}
4055
4056int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4057{
4058	struct urb *urb = context;
4059
4060	return urb->dev->speed;
4061}
4062
4063static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4064					struct urb *urb)
4065{
4066	struct usb_bus *bus = hcd_to_bus(hcd);
4067
4068	if (urb->interval)
4069		bus->bandwidth_allocated += bw / urb->interval;
4070	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4071		bus->bandwidth_isoc_reqs++;
4072	else
4073		bus->bandwidth_int_reqs++;
4074}
4075
4076static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4077				    struct urb *urb)
4078{
4079	struct usb_bus *bus = hcd_to_bus(hcd);
4080
4081	if (urb->interval)
4082		bus->bandwidth_allocated -= bw / urb->interval;
4083	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4084		bus->bandwidth_isoc_reqs--;
4085	else
4086		bus->bandwidth_int_reqs--;
4087}
4088
4089/*
4090 * Sets the final status of an URB and returns it to the upper layer. Any
4091 * required cleanup of the URB is performed.
4092 *
4093 * Must be called with interrupt disabled and spinlock held
4094 */
4095void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4096			int status)
4097{
4098	struct urb *urb;
4099	int i;
4100
4101	if (!qtd) {
4102		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4103		return;
4104	}
4105
4106	if (!qtd->urb) {
4107		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4108		return;
4109	}
4110
4111	urb = qtd->urb->priv;
4112	if (!urb) {
4113		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4114		return;
4115	}
4116
4117	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4118
4119	if (dbg_urb(urb))
4120		dev_vdbg(hsotg->dev,
4121			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4122			 __func__, urb, usb_pipedevice(urb->pipe),
4123			 usb_pipeendpoint(urb->pipe),
4124			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4125			 urb->actual_length);
4126
4127	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4128		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4129		for (i = 0; i < urb->number_of_packets; ++i) {
4130			urb->iso_frame_desc[i].actual_length =
4131				dwc2_hcd_urb_get_iso_desc_actual_length(
4132						qtd->urb, i);
4133			urb->iso_frame_desc[i].status =
4134				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4135		}
4136	}
4137
4138	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4139		for (i = 0; i < urb->number_of_packets; i++)
4140			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4141				 i, urb->iso_frame_desc[i].status);
4142	}
4143
4144	urb->status = status;
4145	if (!status) {
4146		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4147		    urb->actual_length < urb->transfer_buffer_length)
4148			urb->status = -EREMOTEIO;
4149	}
4150
4151	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4152	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4153		struct usb_host_endpoint *ep = urb->ep;
4154
4155		if (ep)
4156			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4157					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4158					urb);
4159	}
4160
4161	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4162	urb->hcpriv = NULL;
4163	kfree(qtd->urb);
4164	qtd->urb = NULL;
4165
4166	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4167}
4168
4169/*
4170 * Work queue function for starting the HCD when A-Cable is connected
4171 */
4172static void dwc2_hcd_start_func(struct work_struct *work)
4173{
4174	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4175						start_work.work);
4176
4177	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4178	dwc2_host_start(hsotg);
4179}
4180
4181/*
4182 * Reset work queue function
4183 */
4184static void dwc2_hcd_reset_func(struct work_struct *work)
4185{
4186	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4187						reset_work.work);
4188	unsigned long flags;
4189	u32 hprt0;
4190
4191	dev_dbg(hsotg->dev, "USB RESET function called\n");
4192
4193	spin_lock_irqsave(&hsotg->lock, flags);
4194
4195	hprt0 = dwc2_read_hprt0(hsotg);
4196	hprt0 &= ~HPRT0_RST;
4197	dwc2_writel(hsotg, hprt0, HPRT0);
4198	hsotg->flags.b.port_reset_change = 1;
4199
4200	spin_unlock_irqrestore(&hsotg->lock, flags);
4201}
4202
4203static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4204{
4205	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4206						phy_reset_work);
4207	int ret;
4208
4209	ret = phy_reset(hsotg->phy);
4210	if (ret)
4211		dev_warn(hsotg->dev, "PHY reset failed\n");
4212}
4213
4214/*
4215 * =========================================================================
4216 *  Linux HC Driver Functions
4217 * =========================================================================
4218 */
4219
4220/*
4221 * Initializes the DWC_otg controller and its root hub and prepares it for host
4222 * mode operation. Activates the root port. Returns 0 on success and a negative
4223 * error code on failure.
4224 */
4225static int _dwc2_hcd_start(struct usb_hcd *hcd)
4226{
4227	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4228	struct usb_bus *bus = hcd_to_bus(hcd);
4229	unsigned long flags;
4230	u32 hprt0;
4231	int ret;
4232
4233	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4234
4235	spin_lock_irqsave(&hsotg->lock, flags);
4236	hsotg->lx_state = DWC2_L0;
4237	hcd->state = HC_STATE_RUNNING;
4238	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4239
4240	if (dwc2_is_device_mode(hsotg)) {
4241		spin_unlock_irqrestore(&hsotg->lock, flags);
4242		return 0;	/* why 0 ?? */
4243	}
4244
4245	dwc2_hcd_reinit(hsotg);
4246
4247	hprt0 = dwc2_read_hprt0(hsotg);
4248	/* Has vbus power been turned on in dwc2_core_host_init ? */
4249	if (hprt0 & HPRT0_PWR) {
4250		/* Enable external vbus supply before resuming root hub */
4251		spin_unlock_irqrestore(&hsotg->lock, flags);
4252		ret = dwc2_vbus_supply_init(hsotg);
4253		if (ret)
4254			return ret;
4255		spin_lock_irqsave(&hsotg->lock, flags);
4256	}
4257
4258	/* Initialize and connect root hub if one is not already attached */
4259	if (bus->root_hub) {
4260		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4261		/* Inform the HUB driver to resume */
4262		usb_hcd_resume_root_hub(hcd);
4263	}
4264
4265	spin_unlock_irqrestore(&hsotg->lock, flags);
4266
4267	return 0;
4268}
4269
4270/*
4271 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4272 * stopped.
4273 */
4274static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4275{
4276	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4277	unsigned long flags;
4278	u32 hprt0;
4279
4280	/* Turn off all host-specific interrupts */
4281	dwc2_disable_host_interrupts(hsotg);
4282
4283	/* Wait for interrupt processing to finish */
4284	synchronize_irq(hcd->irq);
4285
4286	spin_lock_irqsave(&hsotg->lock, flags);
4287	hprt0 = dwc2_read_hprt0(hsotg);
4288	/* Ensure hcd is disconnected */
4289	dwc2_hcd_disconnect(hsotg, true);
4290	dwc2_hcd_stop(hsotg);
4291	hsotg->lx_state = DWC2_L3;
4292	hcd->state = HC_STATE_HALT;
4293	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4294	spin_unlock_irqrestore(&hsotg->lock, flags);
4295
4296	/* keep balanced supply init/exit by checking HPRT0_PWR */
4297	if (hprt0 & HPRT0_PWR)
4298		dwc2_vbus_supply_exit(hsotg);
4299
4300	usleep_range(1000, 3000);
4301}
4302
4303static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4304{
4305	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4306	unsigned long flags;
4307	int ret = 0;
4308	u32 hprt0;
4309	u32 pcgctl;
4310
4311	spin_lock_irqsave(&hsotg->lock, flags);
4312
4313	if (dwc2_is_device_mode(hsotg))
4314		goto unlock;
4315
4316	if (hsotg->lx_state != DWC2_L0)
4317		goto unlock;
4318
4319	if (!HCD_HW_ACCESSIBLE(hcd))
4320		goto unlock;
4321
4322	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4323		goto unlock;
4324
4325	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL ||
4326	    hsotg->flags.b.port_connect_status == 0)
4327		goto skip_power_saving;
4328
4329	/*
4330	 * Drive USB suspend and disable port Power
4331	 * if usb bus is not suspended.
4332	 */
4333	if (!hsotg->bus_suspended) {
4334		hprt0 = dwc2_read_hprt0(hsotg);
4335		if (hprt0 & HPRT0_CONNSTS) {
4336			hprt0 |= HPRT0_SUSP;
4337			if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL)
4338				hprt0 &= ~HPRT0_PWR;
4339			dwc2_writel(hsotg, hprt0, HPRT0);
4340		}
4341		if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4342			spin_unlock_irqrestore(&hsotg->lock, flags);
4343			dwc2_vbus_supply_exit(hsotg);
4344			spin_lock_irqsave(&hsotg->lock, flags);
4345		} else {
4346			pcgctl = readl(hsotg->regs + PCGCTL);
4347			pcgctl |= PCGCTL_STOPPCLK;
4348			writel(pcgctl, hsotg->regs + PCGCTL);
4349		}
4350	}
4351
4352	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4353		/* Enter partial_power_down */
4354		ret = dwc2_enter_partial_power_down(hsotg);
4355		if (ret) {
4356			if (ret != -ENOTSUPP)
4357				dev_err(hsotg->dev,
4358					"enter partial_power_down failed\n");
4359			goto skip_power_saving;
4360		}
4361
4362		/* After entering partial_power_down, hardware is no more accessible */
4363		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4364	}
4365
4366	/* Ask phy to be suspended */
4367	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4368		spin_unlock_irqrestore(&hsotg->lock, flags);
4369		usb_phy_set_suspend(hsotg->uphy, true);
4370		spin_lock_irqsave(&hsotg->lock, flags);
4371	}
4372
4373skip_power_saving:
4374	hsotg->lx_state = DWC2_L2;
4375unlock:
4376	spin_unlock_irqrestore(&hsotg->lock, flags);
4377
4378	return ret;
4379}
4380
4381static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4382{
4383	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4384	unsigned long flags;
4385	u32 pcgctl;
4386	int ret = 0;
4387
4388	spin_lock_irqsave(&hsotg->lock, flags);
4389
4390	if (dwc2_is_device_mode(hsotg))
4391		goto unlock;
4392
4393	if (hsotg->lx_state != DWC2_L2)
4394		goto unlock;
4395
4396	if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL) {
4397		hsotg->lx_state = DWC2_L0;
4398		goto unlock;
4399	}
4400
4401	/*
4402	 * Enable power if not already done.
4403	 * This must not be spinlocked since duration
4404	 * of this call is unknown.
4405	 */
4406	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4407		spin_unlock_irqrestore(&hsotg->lock, flags);
4408		usb_phy_set_suspend(hsotg->uphy, false);
4409		spin_lock_irqsave(&hsotg->lock, flags);
4410	}
4411
4412	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4413		/*
4414		 * Set HW accessible bit before powering on the controller
4415		 * since an interrupt may rise.
4416		 */
4417		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4418
4419
4420		/* Exit partial_power_down */
4421		ret = dwc2_exit_partial_power_down(hsotg, true);
4422		if (ret && (ret != -ENOTSUPP))
4423			dev_err(hsotg->dev, "exit partial_power_down failed\n");
4424	} else {
4425		pcgctl = readl(hsotg->regs + PCGCTL);
4426		pcgctl &= ~PCGCTL_STOPPCLK;
4427		writel(pcgctl, hsotg->regs + PCGCTL);
4428	}
4429
4430	hsotg->lx_state = DWC2_L0;
4431
4432	spin_unlock_irqrestore(&hsotg->lock, flags);
4433
4434	if (hsotg->bus_suspended) {
4435		spin_lock_irqsave(&hsotg->lock, flags);
4436		hsotg->flags.b.port_suspend_change = 1;
4437		spin_unlock_irqrestore(&hsotg->lock, flags);
4438		dwc2_port_resume(hsotg);
4439	} else {
4440		if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4441			dwc2_vbus_supply_init(hsotg);
4442
4443			/* Wait for controller to correctly update D+/D- level */
4444			usleep_range(3000, 5000);
4445		}
4446
4447		/*
4448		 * Clear Port Enable and Port Status changes.
4449		 * Enable Port Power.
4450		 */
4451		dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4452				HPRT0_ENACHG, HPRT0);
4453		/* Wait for controller to detect Port Connect */
4454		usleep_range(5000, 7000);
4455	}
4456
4457	return ret;
4458unlock:
4459	spin_unlock_irqrestore(&hsotg->lock, flags);
4460
4461	return ret;
4462}
4463
4464/* Returns the current frame number */
4465static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4466{
4467	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4468
4469	return dwc2_hcd_get_frame_number(hsotg);
4470}
4471
4472static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4473			       char *fn_name)
4474{
4475#ifdef VERBOSE_DEBUG
4476	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4477	char *pipetype = NULL;
4478	char *speed = NULL;
4479
4480	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4481	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4482		 usb_pipedevice(urb->pipe));
4483	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4484		 usb_pipeendpoint(urb->pipe),
4485		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4486
4487	switch (usb_pipetype(urb->pipe)) {
4488	case PIPE_CONTROL:
4489		pipetype = "CONTROL";
4490		break;
4491	case PIPE_BULK:
4492		pipetype = "BULK";
4493		break;
4494	case PIPE_INTERRUPT:
4495		pipetype = "INTERRUPT";
4496		break;
4497	case PIPE_ISOCHRONOUS:
4498		pipetype = "ISOCHRONOUS";
4499		break;
4500	}
4501
4502	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4503		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4504		 "IN" : "OUT");
4505
4506	switch (urb->dev->speed) {
4507	case USB_SPEED_HIGH:
4508		speed = "HIGH";
4509		break;
4510	case USB_SPEED_FULL:
4511		speed = "FULL";
4512		break;
4513	case USB_SPEED_LOW:
4514		speed = "LOW";
4515		break;
4516	default:
4517		speed = "UNKNOWN";
4518		break;
4519	}
4520
4521	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4522	dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4523		 usb_endpoint_maxp(&urb->ep->desc),
4524		 usb_endpoint_maxp_mult(&urb->ep->desc));
4525
4526	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4527		 urb->transfer_buffer_length);
4528	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4529		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4530	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4531		 urb->setup_packet, (unsigned long)urb->setup_dma);
4532	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4533
4534	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4535		int i;
4536
4537		for (i = 0; i < urb->number_of_packets; i++) {
4538			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4539			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4540				 urb->iso_frame_desc[i].offset,
4541				 urb->iso_frame_desc[i].length);
4542		}
4543	}
4544#endif
4545}
4546
4547/*
4548 * Starts processing a USB transfer request specified by a USB Request Block
4549 * (URB). mem_flags indicates the type of memory allocation to use while
4550 * processing this URB.
4551 */
4552static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4553				 gfp_t mem_flags)
4554{
4555	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4556	struct usb_host_endpoint *ep = urb->ep;
4557	struct dwc2_hcd_urb *dwc2_urb;
4558	int i;
4559	int retval;
4560	int alloc_bandwidth = 0;
4561	u8 ep_type = 0;
4562	u32 tflags = 0;
4563	void *buf;
4564	unsigned long flags;
4565	struct dwc2_qh *qh;
4566	bool qh_allocated = false;
4567	struct dwc2_qtd *qtd;
4568
4569	if (dbg_urb(urb)) {
4570		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4571		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4572	}
4573
4574	if (!ep)
4575		return -EINVAL;
4576
4577	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4578	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4579		spin_lock_irqsave(&hsotg->lock, flags);
4580		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4581			alloc_bandwidth = 1;
4582		spin_unlock_irqrestore(&hsotg->lock, flags);
4583	}
4584
4585	switch (usb_pipetype(urb->pipe)) {
4586	case PIPE_CONTROL:
4587		ep_type = USB_ENDPOINT_XFER_CONTROL;
4588		break;
4589	case PIPE_ISOCHRONOUS:
4590		ep_type = USB_ENDPOINT_XFER_ISOC;
4591		break;
4592	case PIPE_BULK:
4593		ep_type = USB_ENDPOINT_XFER_BULK;
4594		break;
4595	case PIPE_INTERRUPT:
4596		ep_type = USB_ENDPOINT_XFER_INT;
4597		break;
4598	}
4599
4600	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4601				      mem_flags);
4602	if (!dwc2_urb)
4603		return -ENOMEM;
4604
4605	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4606				  usb_pipeendpoint(urb->pipe), ep_type,
4607				  usb_pipein(urb->pipe),
4608				  usb_endpoint_maxp(&ep->desc),
4609				  usb_endpoint_maxp_mult(&ep->desc));
4610
4611	buf = urb->transfer_buffer;
4612
4613	if (hcd_uses_dma(hcd)) {
4614		if (!buf && (urb->transfer_dma & 3)) {
4615			dev_err(hsotg->dev,
4616				"%s: unaligned transfer with no transfer_buffer",
4617				__func__);
4618			retval = -EINVAL;
4619			goto fail0;
4620		}
4621	}
4622
4623	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4624		tflags |= URB_GIVEBACK_ASAP;
4625	if (urb->transfer_flags & URB_ZERO_PACKET)
4626		tflags |= URB_SEND_ZERO_PACKET;
4627
4628	dwc2_urb->priv = urb;
4629	dwc2_urb->buf = buf;
4630	dwc2_urb->dma = urb->transfer_dma;
4631	dwc2_urb->length = urb->transfer_buffer_length;
4632	dwc2_urb->setup_packet = urb->setup_packet;
4633	dwc2_urb->setup_dma = urb->setup_dma;
4634	dwc2_urb->flags = tflags;
4635	dwc2_urb->interval = urb->interval;
4636	dwc2_urb->status = -EINPROGRESS;
4637
4638	for (i = 0; i < urb->number_of_packets; ++i)
4639		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4640						 urb->iso_frame_desc[i].offset,
4641						 urb->iso_frame_desc[i].length);
4642
4643	urb->hcpriv = dwc2_urb;
4644	qh = (struct dwc2_qh *)ep->hcpriv;
4645	/* Create QH for the endpoint if it doesn't exist */
4646	if (!qh) {
4647		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4648		if (!qh) {
4649			retval = -ENOMEM;
4650			goto fail0;
4651		}
4652		ep->hcpriv = qh;
4653		qh_allocated = true;
4654	}
4655
4656	qtd = kzalloc(sizeof(*qtd), mem_flags);
4657	if (!qtd) {
4658		retval = -ENOMEM;
4659		goto fail1;
4660	}
4661
4662	spin_lock_irqsave(&hsotg->lock, flags);
4663	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4664	if (retval)
4665		goto fail2;
4666
4667	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4668	if (retval)
4669		goto fail3;
4670
4671	if (alloc_bandwidth) {
4672		dwc2_allocate_bus_bandwidth(hcd,
4673				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4674				urb);
4675	}
4676
4677	spin_unlock_irqrestore(&hsotg->lock, flags);
4678
4679	return 0;
4680
4681fail3:
4682	dwc2_urb->priv = NULL;
4683	usb_hcd_unlink_urb_from_ep(hcd, urb);
4684	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4685		qh->channel->qh = NULL;
4686fail2:
4687	urb->hcpriv = NULL;
4688	spin_unlock_irqrestore(&hsotg->lock, flags);
4689	kfree(qtd);
4690fail1:
4691	if (qh_allocated) {
4692		struct dwc2_qtd *qtd2, *qtd2_tmp;
4693
4694		ep->hcpriv = NULL;
4695		dwc2_hcd_qh_unlink(hsotg, qh);
4696		/* Free each QTD in the QH's QTD list */
4697		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4698					 qtd_list_entry)
4699			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4700		dwc2_hcd_qh_free(hsotg, qh);
4701	}
4702fail0:
4703	kfree(dwc2_urb);
4704
4705	return retval;
4706}
4707
4708/*
4709 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4710 */
4711static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4712				 int status)
4713{
4714	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4715	int rc;
4716	unsigned long flags;
4717
4718	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4719	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4720
4721	spin_lock_irqsave(&hsotg->lock, flags);
4722
4723	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4724	if (rc)
4725		goto out;
4726
4727	if (!urb->hcpriv) {
4728		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4729		goto out;
4730	}
4731
4732	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4733
4734	usb_hcd_unlink_urb_from_ep(hcd, urb);
4735
4736	kfree(urb->hcpriv);
4737	urb->hcpriv = NULL;
4738
4739	/* Higher layer software sets URB status */
4740	spin_unlock(&hsotg->lock);
4741	usb_hcd_giveback_urb(hcd, urb, status);
4742	spin_lock(&hsotg->lock);
4743
4744	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4745	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4746out:
4747	spin_unlock_irqrestore(&hsotg->lock, flags);
4748
4749	return rc;
4750}
4751
4752/*
4753 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4754 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4755 * must already be dequeued.
4756 */
4757static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4758				       struct usb_host_endpoint *ep)
4759{
4760	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4761
4762	dev_dbg(hsotg->dev,
4763		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4764		ep->desc.bEndpointAddress, ep->hcpriv);
4765	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4766}
4767
4768/*
4769 * Resets endpoint specific parameter values, in current version used to reset
4770 * the data toggle (as a WA). This function can be called from usb_clear_halt
4771 * routine.
4772 */
4773static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4774				     struct usb_host_endpoint *ep)
4775{
4776	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4777	unsigned long flags;
4778
4779	dev_dbg(hsotg->dev,
4780		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4781		ep->desc.bEndpointAddress);
4782
4783	spin_lock_irqsave(&hsotg->lock, flags);
4784	dwc2_hcd_endpoint_reset(hsotg, ep);
4785	spin_unlock_irqrestore(&hsotg->lock, flags);
4786}
4787
4788/*
4789 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4790 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4791 * interrupt.
4792 *
4793 * This function is called by the USB core when an interrupt occurs
4794 */
4795static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4796{
4797	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4798
4799	return dwc2_handle_hcd_intr(hsotg);
4800}
4801
4802/*
4803 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4804 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4805 * is the status change indicator for the single root port. Returns 1 if either
4806 * change indicator is 1, otherwise returns 0.
4807 */
4808static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4809{
4810	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4811
4812	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4813	return buf[0] != 0;
4814}
4815
4816/* Handles hub class-specific requests */
4817static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4818				 u16 windex, char *buf, u16 wlength)
4819{
4820	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4821					  wvalue, windex, buf, wlength);
4822	return retval;
4823}
4824
4825/* Handles hub TT buffer clear completions */
4826static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4827					       struct usb_host_endpoint *ep)
4828{
4829	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4830	struct dwc2_qh *qh;
4831	unsigned long flags;
4832
4833	qh = ep->hcpriv;
4834	if (!qh)
4835		return;
4836
4837	spin_lock_irqsave(&hsotg->lock, flags);
4838	qh->tt_buffer_dirty = 0;
4839
4840	if (hsotg->flags.b.port_connect_status)
4841		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4842
4843	spin_unlock_irqrestore(&hsotg->lock, flags);
4844}
4845
4846/*
4847 * HPRT0_SPD_HIGH_SPEED: high speed
4848 * HPRT0_SPD_FULL_SPEED: full speed
4849 */
4850static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4851{
4852	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4853
4854	if (hsotg->params.speed == speed)
4855		return;
4856
4857	hsotg->params.speed = speed;
4858	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4859}
4860
4861static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4862{
4863	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4864
4865	if (!hsotg->params.change_speed_quirk)
4866		return;
4867
4868	/*
4869	 * On removal, set speed to default high-speed.
4870	 */
4871	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4872	    udev->parent->speed < USB_SPEED_HIGH) {
4873		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4874		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4875	}
4876}
4877
4878static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4879{
4880	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4881
4882	if (!hsotg->params.change_speed_quirk)
4883		return 0;
4884
4885	if (udev->speed == USB_SPEED_HIGH) {
4886		dev_info(hsotg->dev, "Set speed to high-speed\n");
4887		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4888	} else if ((udev->speed == USB_SPEED_FULL ||
4889				udev->speed == USB_SPEED_LOW)) {
4890		/*
4891		 * Change speed setting to full-speed if there's
4892		 * a full-speed or low-speed device plugged in.
4893		 */
4894		dev_info(hsotg->dev, "Set speed to full-speed\n");
4895		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4896	}
4897
4898	return 0;
4899}
4900
4901static struct hc_driver dwc2_hc_driver = {
4902	.description = "dwc2_hsotg",
4903	.product_desc = "DWC OTG Controller",
4904	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4905
4906	.irq = _dwc2_hcd_irq,
4907	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4908
4909	.start = _dwc2_hcd_start,
4910	.stop = _dwc2_hcd_stop,
4911	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4912	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4913	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4914	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4915	.get_frame_number = _dwc2_hcd_get_frame_number,
4916
4917	.hub_status_data = _dwc2_hcd_hub_status_data,
4918	.hub_control = _dwc2_hcd_hub_control,
4919	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4920
4921	.bus_suspend = _dwc2_hcd_suspend,
4922	.bus_resume = _dwc2_hcd_resume,
4923
4924	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4925	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4926};
4927
4928/*
4929 * Frees secondary storage associated with the dwc2_hsotg structure contained
4930 * in the struct usb_hcd field
4931 */
4932static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4933{
4934	u32 ahbcfg;
4935	u32 dctl;
4936	int i;
4937
4938	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4939
4940	/* Free memory for QH/QTD lists */
4941	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4942	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4943	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4944	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4945	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4946	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4947	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4948
4949	/* Free memory for the host channels */
4950	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4951		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4952
4953		if (chan) {
4954			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4955				i, chan);
4956			hsotg->hc_ptr_array[i] = NULL;
4957			kfree(chan);
4958		}
4959	}
4960
4961	if (hsotg->params.host_dma) {
4962		if (hsotg->status_buf) {
4963			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4964					  hsotg->status_buf,
4965					  hsotg->status_buf_dma);
4966			hsotg->status_buf = NULL;
4967		}
4968	} else {
4969		kfree(hsotg->status_buf);
4970		hsotg->status_buf = NULL;
4971	}
4972
4973	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
4974
4975	/* Disable all interrupts */
4976	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4977	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
4978	dwc2_writel(hsotg, 0, GINTMSK);
4979
4980	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4981		dctl = dwc2_readl(hsotg, DCTL);
4982		dctl |= DCTL_SFTDISCON;
4983		dwc2_writel(hsotg, dctl, DCTL);
4984	}
4985
4986	if (hsotg->wq_otg) {
4987		if (!cancel_work_sync(&hsotg->wf_otg))
4988			flush_workqueue(hsotg->wq_otg);
4989		destroy_workqueue(hsotg->wq_otg);
4990	}
4991
4992	cancel_work_sync(&hsotg->phy_reset_work);
4993
4994	del_timer(&hsotg->wkp_timer);
4995}
4996
4997static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4998{
4999	/* Turn off all host-specific interrupts */
5000	dwc2_disable_host_interrupts(hsotg);
5001
5002	dwc2_hcd_free(hsotg);
5003}
5004
5005/*
5006 * Initializes the HCD. This function allocates memory for and initializes the
5007 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5008 * USB bus with the core and calls the hc_driver->start() function. It returns
5009 * a negative error on failure.
5010 */
5011int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5012{
5013	struct platform_device *pdev = to_platform_device(hsotg->dev);
5014	struct resource *res;
5015	struct usb_hcd *hcd;
5016	struct dwc2_host_chan *channel;
5017	u32 hcfg;
5018	int i, num_channels;
5019	int retval;
5020
5021	if (usb_disabled())
5022		return -ENODEV;
5023
5024	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5025
5026	retval = -ENOMEM;
5027
5028	hcfg = dwc2_readl(hsotg, HCFG);
5029	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5030
5031#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5032	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5033					 sizeof(*hsotg->frame_num_array),
5034					 GFP_KERNEL);
5035	if (!hsotg->frame_num_array)
5036		goto error1;
5037	hsotg->last_frame_num_array =
5038		kcalloc(FRAME_NUM_ARRAY_SIZE,
5039			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5040	if (!hsotg->last_frame_num_array)
5041		goto error1;
5042#endif
5043	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5044
5045	/* Check if the bus driver or platform code has setup a dma_mask */
5046	if (hsotg->params.host_dma &&
5047	    !hsotg->dev->dma_mask) {
5048		dev_warn(hsotg->dev,
5049			 "dma_mask not set, disabling DMA\n");
5050		hsotg->params.host_dma = false;
5051		hsotg->params.dma_desc_enable = false;
5052	}
5053
5054	/* Set device flags indicating whether the HCD supports DMA */
5055	if (hsotg->params.host_dma) {
5056		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5057			dev_warn(hsotg->dev, "can't set DMA mask\n");
5058		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5059			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5060	}
5061
5062	if (hsotg->params.change_speed_quirk) {
5063		dwc2_hc_driver.free_dev = dwc2_free_dev;
5064		dwc2_hc_driver.reset_device = dwc2_reset_device;
5065	}
5066
5067	if (hsotg->params.host_dma)
5068		dwc2_hc_driver.flags |= HCD_DMA;
5069
5070	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5071	if (!hcd)
5072		goto error1;
5073
5074	hcd->has_tt = 1;
5075
5076	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5077	if (!res) {
5078		retval = -EINVAL;
5079		goto error2;
5080	}
5081	hcd->rsrc_start = res->start;
5082	hcd->rsrc_len = resource_size(res);
5083
5084	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5085	hsotg->priv = hcd;
5086
5087	/*
5088	 * Disable the global interrupt until all the interrupt handlers are
5089	 * installed
5090	 */
5091	dwc2_disable_global_interrupts(hsotg);
5092
5093	/* Initialize the DWC_otg core, and select the Phy type */
5094	retval = dwc2_core_init(hsotg, true);
5095	if (retval)
5096		goto error2;
5097
5098	/* Create new workqueue and init work */
5099	retval = -ENOMEM;
5100	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5101	if (!hsotg->wq_otg) {
5102		dev_err(hsotg->dev, "Failed to create workqueue\n");
5103		goto error2;
5104	}
5105	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5106
5107	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5108
5109	/* Initialize the non-periodic schedule */
5110	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5111	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5112	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5113
5114	/* Initialize the periodic schedule */
5115	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5116	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5117	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5118	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5119
5120	INIT_LIST_HEAD(&hsotg->split_order);
5121
5122	/*
5123	 * Create a host channel descriptor for each host channel implemented
5124	 * in the controller. Initialize the channel descriptor array.
5125	 */
5126	INIT_LIST_HEAD(&hsotg->free_hc_list);
5127	num_channels = hsotg->params.host_channels;
5128	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5129
5130	for (i = 0; i < num_channels; i++) {
5131		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5132		if (!channel)
5133			goto error3;
5134		channel->hc_num = i;
5135		INIT_LIST_HEAD(&channel->split_order_list_entry);
5136		hsotg->hc_ptr_array[i] = channel;
5137	}
5138
5139	/* Initialize work */
5140	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5141	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5142	INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5143
5144	/*
5145	 * Allocate space for storing data on status transactions. Normally no
5146	 * data is sent, but this space acts as a bit bucket. This must be
5147	 * done after usb_add_hcd since that function allocates the DMA buffer
5148	 * pool.
5149	 */
5150	if (hsotg->params.host_dma)
5151		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5152					DWC2_HCD_STATUS_BUF_SIZE,
5153					&hsotg->status_buf_dma, GFP_KERNEL);
5154	else
5155		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5156					  GFP_KERNEL);
5157
5158	if (!hsotg->status_buf)
5159		goto error3;
5160
5161	/*
5162	 * Create kmem caches to handle descriptor buffers in descriptor
5163	 * DMA mode.
5164	 * Alignment must be set to 512 bytes.
5165	 */
5166	if (hsotg->params.dma_desc_enable ||
5167	    hsotg->params.dma_desc_fs_enable) {
5168		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5169				sizeof(struct dwc2_dma_desc) *
5170				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5171				NULL);
5172		if (!hsotg->desc_gen_cache) {
5173			dev_err(hsotg->dev,
5174				"unable to create dwc2 generic desc cache\n");
5175
5176			/*
5177			 * Disable descriptor dma mode since it will not be
5178			 * usable.
5179			 */
5180			hsotg->params.dma_desc_enable = false;
5181			hsotg->params.dma_desc_fs_enable = false;
5182		}
5183
5184		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5185				sizeof(struct dwc2_dma_desc) *
5186				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5187		if (!hsotg->desc_hsisoc_cache) {
5188			dev_err(hsotg->dev,
5189				"unable to create dwc2 hs isoc desc cache\n");
5190
5191			kmem_cache_destroy(hsotg->desc_gen_cache);
5192
5193			/*
5194			 * Disable descriptor dma mode since it will not be
5195			 * usable.
5196			 */
5197			hsotg->params.dma_desc_enable = false;
5198			hsotg->params.dma_desc_fs_enable = false;
5199		}
5200	}
5201
5202	if (hsotg->params.host_dma) {
5203		/*
5204		 * Create kmem caches to handle non-aligned buffer
5205		 * in Buffer DMA mode.
5206		 */
5207		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5208						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5209						SLAB_CACHE_DMA, NULL);
5210		if (!hsotg->unaligned_cache)
5211			dev_err(hsotg->dev,
5212				"unable to create dwc2 unaligned cache\n");
5213	}
5214
5215	hsotg->otg_port = 1;
5216	hsotg->frame_list = NULL;
5217	hsotg->frame_list_dma = 0;
5218	hsotg->periodic_qh_count = 0;
5219
5220	/* Initiate lx_state to L3 disconnected state */
5221	hsotg->lx_state = DWC2_L3;
5222
5223	hcd->self.otg_port = hsotg->otg_port;
5224
5225	/* Don't support SG list at this point */
5226	hcd->self.sg_tablesize = 0;
5227
5228	if (!IS_ERR_OR_NULL(hsotg->uphy))
5229		otg_set_host(hsotg->uphy->otg, &hcd->self);
5230
5231	/*
5232	 * Finish generic HCD initialization and start the HCD. This function
5233	 * allocates the DMA buffer pool, registers the USB bus, requests the
5234	 * IRQ line, and calls hcd_start method.
5235	 */
5236	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5237	if (retval < 0)
5238		goto error4;
5239
5240	device_wakeup_enable(hcd->self.controller);
5241
5242	dwc2_hcd_dump_state(hsotg);
5243
5244	dwc2_enable_global_interrupts(hsotg);
5245
5246	return 0;
5247
5248error4:
5249	kmem_cache_destroy(hsotg->unaligned_cache);
5250	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5251	kmem_cache_destroy(hsotg->desc_gen_cache);
5252error3:
5253	dwc2_hcd_release(hsotg);
5254error2:
5255	usb_put_hcd(hcd);
5256error1:
5257
5258#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5259	kfree(hsotg->last_frame_num_array);
5260	kfree(hsotg->frame_num_array);
5261#endif
5262
5263	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5264	return retval;
5265}
5266
5267/*
5268 * Removes the HCD.
5269 * Frees memory and resources associated with the HCD and deregisters the bus.
5270 */
5271void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5272{
5273	struct usb_hcd *hcd;
5274
5275	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5276
5277	hcd = dwc2_hsotg_to_hcd(hsotg);
5278	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5279
5280	if (!hcd) {
5281		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5282			__func__);
5283		return;
5284	}
5285
5286	if (!IS_ERR_OR_NULL(hsotg->uphy))
5287		otg_set_host(hsotg->uphy->otg, NULL);
5288
5289	usb_remove_hcd(hcd);
5290	hsotg->priv = NULL;
5291
5292	kmem_cache_destroy(hsotg->unaligned_cache);
5293	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5294	kmem_cache_destroy(hsotg->desc_gen_cache);
5295
5296	dwc2_hcd_release(hsotg);
5297	usb_put_hcd(hcd);
5298
5299#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5300	kfree(hsotg->last_frame_num_array);
5301	kfree(hsotg->frame_num_array);
5302#endif
5303}
5304
5305/**
5306 * dwc2_backup_host_registers() - Backup controller host registers.
5307 * When suspending usb bus, registers needs to be backuped
5308 * if controller power is disabled once suspended.
5309 *
5310 * @hsotg: Programming view of the DWC_otg controller
5311 */
5312int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5313{
5314	struct dwc2_hregs_backup *hr;
5315	int i;
5316
5317	dev_dbg(hsotg->dev, "%s\n", __func__);
5318
5319	/* Backup Host regs */
5320	hr = &hsotg->hr_backup;
5321	hr->hcfg = dwc2_readl(hsotg, HCFG);
5322	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5323	for (i = 0; i < hsotg->params.host_channels; ++i)
5324		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5325
5326	hr->hprt0 = dwc2_read_hprt0(hsotg);
5327	hr->hfir = dwc2_readl(hsotg, HFIR);
5328	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5329	hr->valid = true;
5330
5331	return 0;
5332}
5333
5334/**
5335 * dwc2_restore_host_registers() - Restore controller host registers.
5336 * When resuming usb bus, device registers needs to be restored
5337 * if controller power were disabled.
5338 *
5339 * @hsotg: Programming view of the DWC_otg controller
5340 */
5341int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5342{
5343	struct dwc2_hregs_backup *hr;
5344	int i;
5345
5346	dev_dbg(hsotg->dev, "%s\n", __func__);
5347
5348	/* Restore host regs */
5349	hr = &hsotg->hr_backup;
5350	if (!hr->valid) {
5351		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5352			__func__);
5353		return -EINVAL;
5354	}
5355	hr->valid = false;
5356
5357	dwc2_writel(hsotg, hr->hcfg, HCFG);
5358	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5359
5360	for (i = 0; i < hsotg->params.host_channels; ++i)
5361		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5362
5363	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5364	dwc2_writel(hsotg, hr->hfir, HFIR);
5365	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5366	hsotg->frame_number = 0;
5367
5368	return 0;
5369}
5370
5371/**
5372 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5373 *
5374 * @hsotg: Programming view of the DWC_otg controller
5375 */
5376int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5377{
5378	unsigned long flags;
5379	int ret = 0;
5380	u32 hprt0;
5381	u32 pcgcctl;
5382	u32 gusbcfg;
5383	u32 gpwrdn;
5384
5385	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5386	ret = dwc2_backup_global_registers(hsotg);
5387	if (ret) {
5388		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5389			__func__);
5390		return ret;
5391	}
5392	ret = dwc2_backup_host_registers(hsotg);
5393	if (ret) {
5394		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5395			__func__);
5396		return ret;
5397	}
5398
5399	/* Enter USB Suspend Mode */
5400	hprt0 = dwc2_readl(hsotg, HPRT0);
5401	hprt0 |= HPRT0_SUSP;
5402	hprt0 &= ~HPRT0_ENA;
5403	dwc2_writel(hsotg, hprt0, HPRT0);
5404
5405	/* Wait for the HPRT0.PrtSusp register field to be set */
5406	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5407		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5408
5409	/*
5410	 * We need to disable interrupts to prevent servicing of any IRQ
5411	 * during going to hibernation
5412	 */
5413	spin_lock_irqsave(&hsotg->lock, flags);
5414	hsotg->lx_state = DWC2_L2;
5415
5416	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5417	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5418		/* ULPI interface */
5419		/* Suspend the Phy Clock */
5420		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5421		pcgcctl |= PCGCTL_STOPPCLK;
5422		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5423		udelay(10);
5424
5425		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5426		gpwrdn |= GPWRDN_PMUACTV;
5427		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5428		udelay(10);
5429	} else {
5430		/* UTMI+ Interface */
5431		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5432		gpwrdn |= GPWRDN_PMUACTV;
5433		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5434		udelay(10);
5435
5436		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5437		pcgcctl |= PCGCTL_STOPPCLK;
5438		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5439		udelay(10);
5440	}
5441
5442	/* Enable interrupts from wake up logic */
5443	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5444	gpwrdn |= GPWRDN_PMUINTSEL;
5445	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5446	udelay(10);
5447
5448	/* Unmask host mode interrupts in GPWRDN */
5449	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5450	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5451	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5452	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5453	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5454	udelay(10);
5455
5456	/* Enable Power Down Clamp */
5457	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5458	gpwrdn |= GPWRDN_PWRDNCLMP;
5459	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5460	udelay(10);
5461
5462	/* Switch off VDD */
5463	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5464	gpwrdn |= GPWRDN_PWRDNSWTCH;
5465	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5466
5467	hsotg->hibernated = 1;
5468	hsotg->bus_suspended = 1;
5469	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5470	spin_unlock_irqrestore(&hsotg->lock, flags);
5471	return ret;
5472}
5473
5474/*
5475 * dwc2_host_exit_hibernation()
5476 *
5477 * @hsotg: Programming view of the DWC_otg controller
5478 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5479 * @param reset: indicates whether resume is initiated by Reset.
5480 *
5481 * Return: non-zero if failed to enter to hibernation.
5482 *
5483 * This function is for exiting from Host mode hibernation by
5484 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5485 */
5486int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5487			       int reset)
5488{
5489	u32 gpwrdn;
5490	u32 hprt0;
5491	int ret = 0;
5492	struct dwc2_gregs_backup *gr;
5493	struct dwc2_hregs_backup *hr;
5494
5495	gr = &hsotg->gr_backup;
5496	hr = &hsotg->hr_backup;
5497
5498	dev_dbg(hsotg->dev,
5499		"%s: called with rem_wakeup = %d reset = %d\n",
5500		__func__, rem_wakeup, reset);
5501
5502	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5503	hsotg->hibernated = 0;
5504
5505	/*
5506	 * This step is not described in functional spec but if not wait for
5507	 * this delay, mismatch interrupts occurred because just after restore
5508	 * core is in Device mode(gintsts.curmode == 0)
5509	 */
5510	mdelay(100);
5511
5512	/* Clear all pending interupts */
5513	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5514
5515	/* De-assert Restore */
5516	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5517	gpwrdn &= ~GPWRDN_RESTORE;
5518	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5519	udelay(10);
5520
5521	/* Restore GUSBCFG, HCFG */
5522	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5523	dwc2_writel(hsotg, hr->hcfg, HCFG);
5524
5525	/* De-assert Wakeup Logic */
5526	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5527	gpwrdn &= ~GPWRDN_PMUACTV;
5528	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5529	udelay(10);
5530
5531	hprt0 = hr->hprt0;
5532	hprt0 |= HPRT0_PWR;
5533	hprt0 &= ~HPRT0_ENA;
5534	hprt0 &= ~HPRT0_SUSP;
5535	dwc2_writel(hsotg, hprt0, HPRT0);
5536
5537	hprt0 = hr->hprt0;
5538	hprt0 |= HPRT0_PWR;
5539	hprt0 &= ~HPRT0_ENA;
5540	hprt0 &= ~HPRT0_SUSP;
5541
5542	if (reset) {
5543		hprt0 |= HPRT0_RST;
5544		dwc2_writel(hsotg, hprt0, HPRT0);
5545
5546		/* Wait for Resume time and then program HPRT again */
5547		mdelay(60);
5548		hprt0 &= ~HPRT0_RST;
5549		dwc2_writel(hsotg, hprt0, HPRT0);
5550	} else {
5551		hprt0 |= HPRT0_RES;
5552		dwc2_writel(hsotg, hprt0, HPRT0);
5553
5554		/* Wait for Resume time and then program HPRT again */
5555		mdelay(100);
5556		hprt0 &= ~HPRT0_RES;
5557		dwc2_writel(hsotg, hprt0, HPRT0);
5558	}
5559	/* Clear all interrupt status */
5560	hprt0 = dwc2_readl(hsotg, HPRT0);
5561	hprt0 |= HPRT0_CONNDET;
5562	hprt0 |= HPRT0_ENACHG;
5563	hprt0 &= ~HPRT0_ENA;
5564	dwc2_writel(hsotg, hprt0, HPRT0);
5565
5566	hprt0 = dwc2_readl(hsotg, HPRT0);
5567
5568	/* Clear all pending interupts */
5569	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5570
5571	/* Restore global registers */
5572	ret = dwc2_restore_global_registers(hsotg);
5573	if (ret) {
5574		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5575			__func__);
5576		return ret;
5577	}
5578
5579	/* Restore host registers */
5580	ret = dwc2_restore_host_registers(hsotg);
5581	if (ret) {
5582		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5583			__func__);
5584		return ret;
5585	}
5586
5587	if (rem_wakeup) {
5588		dwc2_hcd_rem_wakeup(hsotg);
5589		/*
5590		 * Change "port_connect_status_change" flag to re-enumerate,
5591		 * because after exit from hibernation port connection status
5592		 * is not detected.
5593		 */
5594		hsotg->flags.b.port_connect_status_change = 1;
5595	}
5596
5597	hsotg->hibernated = 0;
5598	hsotg->bus_suspended = 0;
5599	hsotg->lx_state = DWC2_L0;
5600	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5601	return ret;
5602}
5603
5604bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5605{
5606	struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5607
5608	/* If the controller isn't allowed to wakeup then we can power off. */
5609	if (!device_may_wakeup(dwc2->dev))
5610		return true;
5611
5612	/*
5613	 * We don't want to power off the PHY if something under the
5614	 * root hub has wakeup enabled.
5615	 */
5616	if (usb_wakeup_enabled_descendants(root_hub))
5617		return false;
5618
5619	/* No reason to keep the PHY powered, so allow poweroff */
5620	return true;
5621}
5622