1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 *		http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 *      Ben Dooks <ben@simtec.co.uk>
9 *      http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/platform_device.h>
19#include <linux/dma-mapping.h>
20#include <linux/mutex.h>
21#include <linux/seq_file.h>
22#include <linux/delay.h>
23#include <linux/io.h>
24#include <linux/slab.h>
25#include <linux/of_platform.h>
26
27#include <linux/usb/ch9.h>
28#include <linux/usb/gadget.h>
29#include <linux/usb/phy.h>
30#include <linux/usb/composite.h>
31
32
33#include "core.h"
34#include "hw.h"
35
36/* conversion functions */
37static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38{
39	return container_of(req, struct dwc2_hsotg_req, req);
40}
41
42static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43{
44	return container_of(ep, struct dwc2_hsotg_ep, ep);
45}
46
47static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48{
49	return container_of(gadget, struct dwc2_hsotg, gadget);
50}
51
52static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53{
54	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55}
56
57static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58{
59	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60}
61
62static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63						u32 ep_index, u32 dir_in)
64{
65	if (dir_in)
66		return hsotg->eps_in[ep_index];
67	else
68		return hsotg->eps_out[ep_index];
69}
70
71/* forward declaration of functions */
72static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73
74/**
75 * using_dma - return the DMA status of the driver.
76 * @hsotg: The driver state.
77 *
78 * Return true if we're using DMA.
79 *
80 * Currently, we have the DMA support code worked into everywhere
81 * that needs it, but the AMBA DMA implementation in the hardware can
82 * only DMA from 32bit aligned addresses. This means that gadgets such
83 * as the CDC Ethernet cannot work as they often pass packets which are
84 * not 32bit aligned.
85 *
86 * Unfortunately the choice to use DMA or not is global to the controller
87 * and seems to be only settable when the controller is being put through
88 * a core reset. This means we either need to fix the gadgets to take
89 * account of DMA alignment, or add bounce buffers (yuerk).
90 *
91 * g_using_dma is set depending on dts flag.
92 */
93static inline bool using_dma(struct dwc2_hsotg *hsotg)
94{
95	return hsotg->params.g_dma;
96}
97
98/*
99 * using_desc_dma - return the descriptor DMA status of the driver.
100 * @hsotg: The driver state.
101 *
102 * Return true if we're using descriptor DMA.
103 */
104static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105{
106	return hsotg->params.g_dma_desc;
107}
108
109/**
110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111 * @hs_ep: The endpoint
112 *
113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115 */
116static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117{
118	struct dwc2_hsotg *hsotg = hs_ep->parent;
119	u16 limit = DSTS_SOFFN_LIMIT;
120
121	if (hsotg->gadget.speed != USB_SPEED_HIGH)
122		limit >>= 3;
123
124	hs_ep->target_frame += hs_ep->interval;
125	if (hs_ep->target_frame > limit) {
126		hs_ep->frame_overrun = true;
127		hs_ep->target_frame &= limit;
128	} else {
129		hs_ep->frame_overrun = false;
130	}
131}
132
133/**
134 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
135 *                                    by one.
136 * @hs_ep: The endpoint.
137 *
138 * This function used in service interval based scheduling flow to calculate
139 * descriptor frame number filed value. For service interval mode frame
140 * number in descriptor should point to last (u)frame in the interval.
141 *
142 */
143static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
144{
145	struct dwc2_hsotg *hsotg = hs_ep->parent;
146	u16 limit = DSTS_SOFFN_LIMIT;
147
148	if (hsotg->gadget.speed != USB_SPEED_HIGH)
149		limit >>= 3;
150
151	if (hs_ep->target_frame)
152		hs_ep->target_frame -= 1;
153	else
154		hs_ep->target_frame = limit;
155}
156
157/**
158 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
159 * @hsotg: The device state
160 * @ints: A bitmask of the interrupts to enable
161 */
162static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
163{
164	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
165	u32 new_gsintmsk;
166
167	new_gsintmsk = gsintmsk | ints;
168
169	if (new_gsintmsk != gsintmsk) {
170		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
171		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
172	}
173}
174
175/**
176 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
177 * @hsotg: The device state
178 * @ints: A bitmask of the interrupts to enable
179 */
180static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
181{
182	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
183	u32 new_gsintmsk;
184
185	new_gsintmsk = gsintmsk & ~ints;
186
187	if (new_gsintmsk != gsintmsk)
188		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
189}
190
191/**
192 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
193 * @hsotg: The device state
194 * @ep: The endpoint index
195 * @dir_in: True if direction is in.
196 * @en: The enable value, true to enable
197 *
198 * Set or clear the mask for an individual endpoint's interrupt
199 * request.
200 */
201static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
202				  unsigned int ep, unsigned int dir_in,
203				 unsigned int en)
204{
205	unsigned long flags;
206	u32 bit = 1 << ep;
207	u32 daint;
208
209	if (!dir_in)
210		bit <<= 16;
211
212	local_irq_save(flags);
213	daint = dwc2_readl(hsotg, DAINTMSK);
214	if (en)
215		daint |= bit;
216	else
217		daint &= ~bit;
218	dwc2_writel(hsotg, daint, DAINTMSK);
219	local_irq_restore(flags);
220}
221
222/**
223 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
224 *
225 * @hsotg: Programming view of the DWC_otg controller
226 */
227int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
228{
229	if (hsotg->hw_params.en_multiple_tx_fifo)
230		/* In dedicated FIFO mode we need count of IN EPs */
231		return hsotg->hw_params.num_dev_in_eps;
232	else
233		/* In shared FIFO mode we need count of Periodic IN EPs */
234		return hsotg->hw_params.num_dev_perio_in_ep;
235}
236
237/**
238 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
239 * device mode TX FIFOs
240 *
241 * @hsotg: Programming view of the DWC_otg controller
242 */
243int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
244{
245	int addr;
246	int tx_addr_max;
247	u32 np_tx_fifo_size;
248
249	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
250				hsotg->params.g_np_tx_fifo_size);
251
252	/* Get Endpoint Info Control block size in DWORDs. */
253	tx_addr_max = hsotg->hw_params.total_fifo_size;
254
255	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
256	if (tx_addr_max <= addr)
257		return 0;
258
259	return tx_addr_max - addr;
260}
261
262/**
263 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
264 *
265 * @hsotg: Programming view of the DWC_otg controller
266 *
267 */
268static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
269{
270	u32 gintsts2;
271	u32 gintmsk2;
272
273	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
274	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
275	gintsts2 &= gintmsk2;
276
277	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
278		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
279		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
280		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
281	}
282}
283
284/**
285 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
286 * TX FIFOs
287 *
288 * @hsotg: Programming view of the DWC_otg controller
289 */
290int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
291{
292	int tx_fifo_count;
293	int tx_fifo_depth;
294
295	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
296
297	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
298
299	if (!tx_fifo_count)
300		return tx_fifo_depth;
301	else
302		return tx_fifo_depth / tx_fifo_count;
303}
304
305/**
306 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
307 * @hsotg: The device instance.
308 */
309static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
310{
311	unsigned int ep;
312	unsigned int addr;
313	int timeout;
314
315	u32 val;
316	u32 *txfsz = hsotg->params.g_tx_fifo_size;
317
318	/* Reset fifo map if not correctly cleared during previous session */
319	WARN_ON(hsotg->fifo_map);
320	hsotg->fifo_map = 0;
321
322	/* set RX/NPTX FIFO sizes */
323	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
324	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
325		    FIFOSIZE_STARTADDR_SHIFT) |
326		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
327		    GNPTXFSIZ);
328
329	/*
330	 * arange all the rest of the TX FIFOs, as some versions of this
331	 * block have overlapping default addresses. This also ensures
332	 * that if the settings have been changed, then they are set to
333	 * known values.
334	 */
335
336	/* start at the end of the GNPTXFSIZ, rounded up */
337	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
338
339	/*
340	 * Configure fifos sizes from provided configuration and assign
341	 * them to endpoints dynamically according to maxpacket size value of
342	 * given endpoint.
343	 */
344	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
345		if (!txfsz[ep])
346			continue;
347		val = addr;
348		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
349		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
350			  "insufficient fifo memory");
351		addr += txfsz[ep];
352
353		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
354		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
355	}
356
357	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
358		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
359		    GDFIFOCFG);
360	/*
361	 * according to p428 of the design guide, we need to ensure that
362	 * all fifos are flushed before continuing
363	 */
364
365	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
366	       GRSTCTL_RXFFLSH, GRSTCTL);
367
368	/* wait until the fifos are both flushed */
369	timeout = 100;
370	while (1) {
371		val = dwc2_readl(hsotg, GRSTCTL);
372
373		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
374			break;
375
376		if (--timeout == 0) {
377			dev_err(hsotg->dev,
378				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
379				__func__, val);
380			break;
381		}
382
383		udelay(1);
384	}
385
386	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
387}
388
389/**
390 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
391 * @ep: USB endpoint to allocate request for.
392 * @flags: Allocation flags
393 *
394 * Allocate a new USB request structure appropriate for the specified endpoint
395 */
396static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
397						       gfp_t flags)
398{
399	struct dwc2_hsotg_req *req;
400
401	req = kzalloc(sizeof(*req), flags);
402	if (!req)
403		return NULL;
404
405	INIT_LIST_HEAD(&req->queue);
406
407	return &req->req;
408}
409
410/**
411 * is_ep_periodic - return true if the endpoint is in periodic mode.
412 * @hs_ep: The endpoint to query.
413 *
414 * Returns true if the endpoint is in periodic mode, meaning it is being
415 * used for an Interrupt or ISO transfer.
416 */
417static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
418{
419	return hs_ep->periodic;
420}
421
422/**
423 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
424 * @hsotg: The device state.
425 * @hs_ep: The endpoint for the request
426 * @hs_req: The request being processed.
427 *
428 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
429 * of a request to ensure the buffer is ready for access by the caller.
430 */
431static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
432				 struct dwc2_hsotg_ep *hs_ep,
433				struct dwc2_hsotg_req *hs_req)
434{
435	struct usb_request *req = &hs_req->req;
436
437	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
438}
439
440/*
441 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
442 * for Control endpoint
443 * @hsotg: The device state.
444 *
445 * This function will allocate 4 descriptor chains for EP 0: 2 for
446 * Setup stage, per one for IN and OUT data/status transactions.
447 */
448static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
449{
450	hsotg->setup_desc[0] =
451		dmam_alloc_coherent(hsotg->dev,
452				    sizeof(struct dwc2_dma_desc),
453				    &hsotg->setup_desc_dma[0],
454				    GFP_KERNEL);
455	if (!hsotg->setup_desc[0])
456		goto fail;
457
458	hsotg->setup_desc[1] =
459		dmam_alloc_coherent(hsotg->dev,
460				    sizeof(struct dwc2_dma_desc),
461				    &hsotg->setup_desc_dma[1],
462				    GFP_KERNEL);
463	if (!hsotg->setup_desc[1])
464		goto fail;
465
466	hsotg->ctrl_in_desc =
467		dmam_alloc_coherent(hsotg->dev,
468				    sizeof(struct dwc2_dma_desc),
469				    &hsotg->ctrl_in_desc_dma,
470				    GFP_KERNEL);
471	if (!hsotg->ctrl_in_desc)
472		goto fail;
473
474	hsotg->ctrl_out_desc =
475		dmam_alloc_coherent(hsotg->dev,
476				    sizeof(struct dwc2_dma_desc),
477				    &hsotg->ctrl_out_desc_dma,
478				    GFP_KERNEL);
479	if (!hsotg->ctrl_out_desc)
480		goto fail;
481
482	return 0;
483
484fail:
485	return -ENOMEM;
486}
487
488/**
489 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
490 * @hsotg: The controller state.
491 * @hs_ep: The endpoint we're going to write for.
492 * @hs_req: The request to write data for.
493 *
494 * This is called when the TxFIFO has some space in it to hold a new
495 * transmission and we have something to give it. The actual setup of
496 * the data size is done elsewhere, so all we have to do is to actually
497 * write the data.
498 *
499 * The return value is zero if there is more space (or nothing was done)
500 * otherwise -ENOSPC is returned if the FIFO space was used up.
501 *
502 * This routine is only needed for PIO
503 */
504static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
505				 struct dwc2_hsotg_ep *hs_ep,
506				struct dwc2_hsotg_req *hs_req)
507{
508	bool periodic = is_ep_periodic(hs_ep);
509	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
510	int buf_pos = hs_req->req.actual;
511	int to_write = hs_ep->size_loaded;
512	void *data;
513	int can_write;
514	int pkt_round;
515	int max_transfer;
516
517	to_write -= (buf_pos - hs_ep->last_load);
518
519	/* if there's nothing to write, get out early */
520	if (to_write == 0)
521		return 0;
522
523	if (periodic && !hsotg->dedicated_fifos) {
524		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
525		int size_left;
526		int size_done;
527
528		/*
529		 * work out how much data was loaded so we can calculate
530		 * how much data is left in the fifo.
531		 */
532
533		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
534
535		/*
536		 * if shared fifo, we cannot write anything until the
537		 * previous data has been completely sent.
538		 */
539		if (hs_ep->fifo_load != 0) {
540			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
541			return -ENOSPC;
542		}
543
544		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
545			__func__, size_left,
546			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
547
548		/* how much of the data has moved */
549		size_done = hs_ep->size_loaded - size_left;
550
551		/* how much data is left in the fifo */
552		can_write = hs_ep->fifo_load - size_done;
553		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
554			__func__, can_write);
555
556		can_write = hs_ep->fifo_size - can_write;
557		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
558			__func__, can_write);
559
560		if (can_write <= 0) {
561			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
562			return -ENOSPC;
563		}
564	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
565		can_write = dwc2_readl(hsotg,
566				       DTXFSTS(hs_ep->fifo_index));
567
568		can_write &= 0xffff;
569		can_write *= 4;
570	} else {
571		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
572			dev_dbg(hsotg->dev,
573				"%s: no queue slots available (0x%08x)\n",
574				__func__, gnptxsts);
575
576			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
577			return -ENOSPC;
578		}
579
580		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
581		can_write *= 4;	/* fifo size is in 32bit quantities. */
582	}
583
584	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
585
586	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
587		__func__, gnptxsts, can_write, to_write, max_transfer);
588
589	/*
590	 * limit to 512 bytes of data, it seems at least on the non-periodic
591	 * FIFO, requests of >512 cause the endpoint to get stuck with a
592	 * fragment of the end of the transfer in it.
593	 */
594	if (can_write > 512 && !periodic)
595		can_write = 512;
596
597	/*
598	 * limit the write to one max-packet size worth of data, but allow
599	 * the transfer to return that it did not run out of fifo space
600	 * doing it.
601	 */
602	if (to_write > max_transfer) {
603		to_write = max_transfer;
604
605		/* it's needed only when we do not use dedicated fifos */
606		if (!hsotg->dedicated_fifos)
607			dwc2_hsotg_en_gsint(hsotg,
608					    periodic ? GINTSTS_PTXFEMP :
609					   GINTSTS_NPTXFEMP);
610	}
611
612	/* see if we can write data */
613
614	if (to_write > can_write) {
615		to_write = can_write;
616		pkt_round = to_write % max_transfer;
617
618		/*
619		 * Round the write down to an
620		 * exact number of packets.
621		 *
622		 * Note, we do not currently check to see if we can ever
623		 * write a full packet or not to the FIFO.
624		 */
625
626		if (pkt_round)
627			to_write -= pkt_round;
628
629		/*
630		 * enable correct FIFO interrupt to alert us when there
631		 * is more room left.
632		 */
633
634		/* it's needed only when we do not use dedicated fifos */
635		if (!hsotg->dedicated_fifos)
636			dwc2_hsotg_en_gsint(hsotg,
637					    periodic ? GINTSTS_PTXFEMP :
638					   GINTSTS_NPTXFEMP);
639	}
640
641	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
642		to_write, hs_req->req.length, can_write, buf_pos);
643
644	if (to_write <= 0)
645		return -ENOSPC;
646
647	hs_req->req.actual = buf_pos + to_write;
648	hs_ep->total_data += to_write;
649
650	if (periodic)
651		hs_ep->fifo_load += to_write;
652
653	to_write = DIV_ROUND_UP(to_write, 4);
654	data = hs_req->req.buf + buf_pos;
655
656	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
657
658	return (to_write >= can_write) ? -ENOSPC : 0;
659}
660
661/**
662 * get_ep_limit - get the maximum data legnth for this endpoint
663 * @hs_ep: The endpoint
664 *
665 * Return the maximum data that can be queued in one go on a given endpoint
666 * so that transfers that are too long can be split.
667 */
668static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
669{
670	int index = hs_ep->index;
671	unsigned int maxsize;
672	unsigned int maxpkt;
673
674	if (index != 0) {
675		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
676		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
677	} else {
678		maxsize = 64 + 64;
679		if (hs_ep->dir_in)
680			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
681		else
682			maxpkt = 2;
683	}
684
685	/* we made the constant loading easier above by using +1 */
686	maxpkt--;
687	maxsize--;
688
689	/*
690	 * constrain by packet count if maxpkts*pktsize is greater
691	 * than the length register size.
692	 */
693
694	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
695		maxsize = maxpkt * hs_ep->ep.maxpacket;
696
697	return maxsize;
698}
699
700/**
701 * dwc2_hsotg_read_frameno - read current frame number
702 * @hsotg: The device instance
703 *
704 * Return the current frame number
705 */
706static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
707{
708	u32 dsts;
709
710	dsts = dwc2_readl(hsotg, DSTS);
711	dsts &= DSTS_SOFFN_MASK;
712	dsts >>= DSTS_SOFFN_SHIFT;
713
714	return dsts;
715}
716
717/**
718 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
719 * DMA descriptor chain prepared for specific endpoint
720 * @hs_ep: The endpoint
721 *
722 * Return the maximum data that can be queued in one go on a given endpoint
723 * depending on its descriptor chain capacity so that transfers that
724 * are too long can be split.
725 */
726static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
727{
728	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
729	int is_isoc = hs_ep->isochronous;
730	unsigned int maxsize;
731	u32 mps = hs_ep->ep.maxpacket;
732	int dir_in = hs_ep->dir_in;
733
734	if (is_isoc)
735		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
736					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
737					   MAX_DMA_DESC_NUM_HS_ISOC;
738	else
739		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
740
741	/* Interrupt OUT EP with mps not multiple of 4 */
742	if (hs_ep->index)
743		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
744			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
745
746	return maxsize;
747}
748
749/*
750 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
751 * @hs_ep: The endpoint
752 * @mask: RX/TX bytes mask to be defined
753 *
754 * Returns maximum data payload for one descriptor after analyzing endpoint
755 * characteristics.
756 * DMA descriptor transfer bytes limit depends on EP type:
757 * Control out - MPS,
758 * Isochronous - descriptor rx/tx bytes bitfield limit,
759 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
760 * have concatenations from various descriptors within one packet.
761 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
762 * to a single descriptor.
763 *
764 * Selects corresponding mask for RX/TX bytes as well.
765 */
766static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
767{
768	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
769	u32 mps = hs_ep->ep.maxpacket;
770	int dir_in = hs_ep->dir_in;
771	u32 desc_size = 0;
772
773	if (!hs_ep->index && !dir_in) {
774		desc_size = mps;
775		*mask = DEV_DMA_NBYTES_MASK;
776	} else if (hs_ep->isochronous) {
777		if (dir_in) {
778			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
779			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
780		} else {
781			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
782			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
783		}
784	} else {
785		desc_size = DEV_DMA_NBYTES_LIMIT;
786		*mask = DEV_DMA_NBYTES_MASK;
787
788		/* Round down desc_size to be mps multiple */
789		desc_size -= desc_size % mps;
790	}
791
792	/* Interrupt OUT EP with mps not multiple of 4 */
793	if (hs_ep->index)
794		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
795			desc_size = mps;
796			*mask = DEV_DMA_NBYTES_MASK;
797		}
798
799	return desc_size;
800}
801
802static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
803						 struct dwc2_dma_desc **desc,
804						 dma_addr_t dma_buff,
805						 unsigned int len,
806						 bool true_last)
807{
808	int dir_in = hs_ep->dir_in;
809	u32 mps = hs_ep->ep.maxpacket;
810	u32 maxsize = 0;
811	u32 offset = 0;
812	u32 mask = 0;
813	int i;
814
815	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
816
817	hs_ep->desc_count = (len / maxsize) +
818				((len % maxsize) ? 1 : 0);
819	if (len == 0)
820		hs_ep->desc_count = 1;
821
822	for (i = 0; i < hs_ep->desc_count; ++i) {
823		(*desc)->status = 0;
824		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
825				 << DEV_DMA_BUFF_STS_SHIFT);
826
827		if (len > maxsize) {
828			if (!hs_ep->index && !dir_in)
829				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
830
831			(*desc)->status |=
832				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
833			(*desc)->buf = dma_buff + offset;
834
835			len -= maxsize;
836			offset += maxsize;
837		} else {
838			if (true_last)
839				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
840
841			if (dir_in)
842				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
843					((hs_ep->send_zlp && true_last) ?
844					DEV_DMA_SHORT : 0);
845
846			(*desc)->status |=
847				len << DEV_DMA_NBYTES_SHIFT & mask;
848			(*desc)->buf = dma_buff + offset;
849		}
850
851		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
852		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
853				 << DEV_DMA_BUFF_STS_SHIFT);
854		(*desc)++;
855	}
856}
857
858/*
859 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
860 * @hs_ep: The endpoint
861 * @ureq: Request to transfer
862 * @offset: offset in bytes
863 * @len: Length of the transfer
864 *
865 * This function will iterate over descriptor chain and fill its entries
866 * with corresponding information based on transfer data.
867 */
868static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
869						 dma_addr_t dma_buff,
870						 unsigned int len)
871{
872	struct usb_request *ureq = NULL;
873	struct dwc2_dma_desc *desc = hs_ep->desc_list;
874	struct scatterlist *sg;
875	int i;
876	u8 desc_count = 0;
877
878	if (hs_ep->req)
879		ureq = &hs_ep->req->req;
880
881	/* non-DMA sg buffer */
882	if (!ureq || !ureq->num_sgs) {
883		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
884			dma_buff, len, true);
885		return;
886	}
887
888	/* DMA sg buffer */
889	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
890		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
891			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
892			sg_is_last(sg));
893		desc_count += hs_ep->desc_count;
894	}
895
896	hs_ep->desc_count = desc_count;
897}
898
899/*
900 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
901 * @hs_ep: The isochronous endpoint.
902 * @dma_buff: usb requests dma buffer.
903 * @len: usb request transfer length.
904 *
905 * Fills next free descriptor with the data of the arrived usb request,
906 * frame info, sets Last and IOC bits increments next_desc. If filled
907 * descriptor is not the first one, removes L bit from the previous descriptor
908 * status.
909 */
910static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
911				      dma_addr_t dma_buff, unsigned int len)
912{
913	struct dwc2_dma_desc *desc;
914	struct dwc2_hsotg *hsotg = hs_ep->parent;
915	u32 index;
916	u32 mask = 0;
917	u8 pid = 0;
918
919	dwc2_gadget_get_desc_params(hs_ep, &mask);
920
921	index = hs_ep->next_desc;
922	desc = &hs_ep->desc_list[index];
923
924	/* Check if descriptor chain full */
925	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
926	    DEV_DMA_BUFF_STS_HREADY) {
927		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
928		return 1;
929	}
930
931	/* Clear L bit of previous desc if more than one entries in the chain */
932	if (hs_ep->next_desc)
933		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
934
935	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
936		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
937
938	desc->status = 0;
939	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
940
941	desc->buf = dma_buff;
942	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
943			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
944
945	if (hs_ep->dir_in) {
946		if (len)
947			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
948		else
949			pid = 1;
950		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
951				 DEV_DMA_ISOC_PID_MASK) |
952				((len % hs_ep->ep.maxpacket) ?
953				 DEV_DMA_SHORT : 0) |
954				((hs_ep->target_frame <<
955				  DEV_DMA_ISOC_FRNUM_SHIFT) &
956				 DEV_DMA_ISOC_FRNUM_MASK);
957	}
958
959	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
960	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
961
962	/* Increment frame number by interval for IN */
963	if (hs_ep->dir_in)
964		dwc2_gadget_incr_frame_num(hs_ep);
965
966	/* Update index of last configured entry in the chain */
967	hs_ep->next_desc++;
968	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
969		hs_ep->next_desc = 0;
970
971	return 0;
972}
973
974/*
975 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
976 * @hs_ep: The isochronous endpoint.
977 *
978 * Prepare descriptor chain for isochronous endpoints. Afterwards
979 * write DMA address to HW and enable the endpoint.
980 */
981static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
982{
983	struct dwc2_hsotg *hsotg = hs_ep->parent;
984	struct dwc2_hsotg_req *hs_req, *treq;
985	int index = hs_ep->index;
986	int ret;
987	int i;
988	u32 dma_reg;
989	u32 depctl;
990	u32 ctrl;
991	struct dwc2_dma_desc *desc;
992
993	if (list_empty(&hs_ep->queue)) {
994		hs_ep->target_frame = TARGET_FRAME_INITIAL;
995		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
996		return;
997	}
998
999	/* Initialize descriptor chain by Host Busy status */
1000	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1001		desc = &hs_ep->desc_list[i];
1002		desc->status = 0;
1003		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1004				    << DEV_DMA_BUFF_STS_SHIFT);
1005	}
1006
1007	hs_ep->next_desc = 0;
1008	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1009		dma_addr_t dma_addr = hs_req->req.dma;
1010
1011		if (hs_req->req.num_sgs) {
1012			WARN_ON(hs_req->req.num_sgs > 1);
1013			dma_addr = sg_dma_address(hs_req->req.sg);
1014		}
1015		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1016						 hs_req->req.length);
1017		if (ret)
1018			break;
1019	}
1020
1021	hs_ep->compl_desc = 0;
1022	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1023	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1024
1025	/* write descriptor chain address to control register */
1026	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1027
1028	ctrl = dwc2_readl(hsotg, depctl);
1029	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1030	dwc2_writel(hsotg, ctrl, depctl);
1031}
1032
1033static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1034static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1035					struct dwc2_hsotg_ep *hs_ep,
1036				       struct dwc2_hsotg_req *hs_req,
1037				       int result);
1038
1039/**
1040 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1041 * @hsotg: The controller state.
1042 * @hs_ep: The endpoint to process a request for
1043 * @hs_req: The request to start.
1044 * @continuing: True if we are doing more for the current request.
1045 *
1046 * Start the given request running by setting the endpoint registers
1047 * appropriately, and writing any data to the FIFOs.
1048 */
1049static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1050				 struct dwc2_hsotg_ep *hs_ep,
1051				struct dwc2_hsotg_req *hs_req,
1052				bool continuing)
1053{
1054	struct usb_request *ureq = &hs_req->req;
1055	int index = hs_ep->index;
1056	int dir_in = hs_ep->dir_in;
1057	u32 epctrl_reg;
1058	u32 epsize_reg;
1059	u32 epsize;
1060	u32 ctrl;
1061	unsigned int length;
1062	unsigned int packets;
1063	unsigned int maxreq;
1064	unsigned int dma_reg;
1065
1066	if (index != 0) {
1067		if (hs_ep->req && !continuing) {
1068			dev_err(hsotg->dev, "%s: active request\n", __func__);
1069			WARN_ON(1);
1070			return;
1071		} else if (hs_ep->req != hs_req && continuing) {
1072			dev_err(hsotg->dev,
1073				"%s: continue different req\n", __func__);
1074			WARN_ON(1);
1075			return;
1076		}
1077	}
1078
1079	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1080	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1081	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1082
1083	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1084		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1085		hs_ep->dir_in ? "in" : "out");
1086
1087	/* If endpoint is stalled, we will restart request later */
1088	ctrl = dwc2_readl(hsotg, epctrl_reg);
1089
1090	if (index && ctrl & DXEPCTL_STALL) {
1091		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1092		return;
1093	}
1094
1095	length = ureq->length - ureq->actual;
1096	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1097		ureq->length, ureq->actual);
1098
1099	if (!using_desc_dma(hsotg))
1100		maxreq = get_ep_limit(hs_ep);
1101	else
1102		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1103
1104	if (length > maxreq) {
1105		int round = maxreq % hs_ep->ep.maxpacket;
1106
1107		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1108			__func__, length, maxreq, round);
1109
1110		/* round down to multiple of packets */
1111		if (round)
1112			maxreq -= round;
1113
1114		length = maxreq;
1115	}
1116
1117	if (length)
1118		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1119	else
1120		packets = 1;	/* send one packet if length is zero. */
1121
1122	if (dir_in && index != 0)
1123		if (hs_ep->isochronous)
1124			epsize = DXEPTSIZ_MC(packets);
1125		else
1126			epsize = DXEPTSIZ_MC(1);
1127	else
1128		epsize = 0;
1129
1130	/*
1131	 * zero length packet should be programmed on its own and should not
1132	 * be counted in DIEPTSIZ.PktCnt with other packets.
1133	 */
1134	if (dir_in && ureq->zero && !continuing) {
1135		/* Test if zlp is actually required. */
1136		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1137		    !(ureq->length % hs_ep->ep.maxpacket))
1138			hs_ep->send_zlp = 1;
1139	}
1140
1141	epsize |= DXEPTSIZ_PKTCNT(packets);
1142	epsize |= DXEPTSIZ_XFERSIZE(length);
1143
1144	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1145		__func__, packets, length, ureq->length, epsize, epsize_reg);
1146
1147	/* store the request as the current one we're doing */
1148	hs_ep->req = hs_req;
1149
1150	if (using_desc_dma(hsotg)) {
1151		u32 offset = 0;
1152		u32 mps = hs_ep->ep.maxpacket;
1153
1154		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1155		if (!dir_in) {
1156			if (!index)
1157				length = mps;
1158			else if (length % mps)
1159				length += (mps - (length % mps));
1160		}
1161
1162		if (continuing)
1163			offset = ureq->actual;
1164
1165		/* Fill DDMA chain entries */
1166		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1167						     length);
1168
1169		/* write descriptor chain address to control register */
1170		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1171
1172		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1173			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1174	} else {
1175		/* write size / packets */
1176		dwc2_writel(hsotg, epsize, epsize_reg);
1177
1178		if (using_dma(hsotg) && !continuing && (length != 0)) {
1179			/*
1180			 * write DMA address to control register, buffer
1181			 * already synced by dwc2_hsotg_ep_queue().
1182			 */
1183
1184			dwc2_writel(hsotg, ureq->dma, dma_reg);
1185
1186			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1187				__func__, &ureq->dma, dma_reg);
1188		}
1189	}
1190
1191	if (hs_ep->isochronous) {
1192		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1193			if (hs_ep->interval == 1) {
1194				if (hs_ep->target_frame & 0x1)
1195					ctrl |= DXEPCTL_SETODDFR;
1196				else
1197					ctrl |= DXEPCTL_SETEVENFR;
1198			}
1199			ctrl |= DXEPCTL_CNAK;
1200		} else {
1201			hs_req->req.frame_number = hs_ep->target_frame;
1202			hs_req->req.actual = 0;
1203			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1204			return;
1205		}
1206	}
1207
1208	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1209
1210	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1211
1212	/* For Setup request do not clear NAK */
1213	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1214		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1215
1216	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1217	dwc2_writel(hsotg, ctrl, epctrl_reg);
1218
1219	/*
1220	 * set these, it seems that DMA support increments past the end
1221	 * of the packet buffer so we need to calculate the length from
1222	 * this information.
1223	 */
1224	hs_ep->size_loaded = length;
1225	hs_ep->last_load = ureq->actual;
1226
1227	if (dir_in && !using_dma(hsotg)) {
1228		/* set these anyway, we may need them for non-periodic in */
1229		hs_ep->fifo_load = 0;
1230
1231		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1232	}
1233
1234	/*
1235	 * Note, trying to clear the NAK here causes problems with transmit
1236	 * on the S3C6400 ending up with the TXFIFO becoming full.
1237	 */
1238
1239	/* check ep is enabled */
1240	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1241		dev_dbg(hsotg->dev,
1242			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1243			 index, dwc2_readl(hsotg, epctrl_reg));
1244
1245	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1246		__func__, dwc2_readl(hsotg, epctrl_reg));
1247
1248	/* enable ep interrupts */
1249	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1250}
1251
1252/**
1253 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1254 * @hsotg: The device state.
1255 * @hs_ep: The endpoint the request is on.
1256 * @req: The request being processed.
1257 *
1258 * We've been asked to queue a request, so ensure that the memory buffer
1259 * is correctly setup for DMA. If we've been passed an extant DMA address
1260 * then ensure the buffer has been synced to memory. If our buffer has no
1261 * DMA memory, then we map the memory and mark our request to allow us to
1262 * cleanup on completion.
1263 */
1264static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1265			      struct dwc2_hsotg_ep *hs_ep,
1266			     struct usb_request *req)
1267{
1268	int ret;
1269
1270	hs_ep->map_dir = hs_ep->dir_in;
1271	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1272	if (ret)
1273		goto dma_error;
1274
1275	return 0;
1276
1277dma_error:
1278	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1279		__func__, req->buf, req->length);
1280
1281	return -EIO;
1282}
1283
1284static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1285						 struct dwc2_hsotg_ep *hs_ep,
1286						 struct dwc2_hsotg_req *hs_req)
1287{
1288	void *req_buf = hs_req->req.buf;
1289
1290	/* If dma is not being used or buffer is aligned */
1291	if (!using_dma(hsotg) || !((long)req_buf & 3))
1292		return 0;
1293
1294	WARN_ON(hs_req->saved_req_buf);
1295
1296	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1297		hs_ep->ep.name, req_buf, hs_req->req.length);
1298
1299	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1300	if (!hs_req->req.buf) {
1301		hs_req->req.buf = req_buf;
1302		dev_err(hsotg->dev,
1303			"%s: unable to allocate memory for bounce buffer\n",
1304			__func__);
1305		return -ENOMEM;
1306	}
1307
1308	/* Save actual buffer */
1309	hs_req->saved_req_buf = req_buf;
1310
1311	if (hs_ep->dir_in)
1312		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1313	return 0;
1314}
1315
1316static void
1317dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1318					 struct dwc2_hsotg_ep *hs_ep,
1319					 struct dwc2_hsotg_req *hs_req)
1320{
1321	/* If dma is not being used or buffer was aligned */
1322	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1323		return;
1324
1325	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1326		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1327
1328	/* Copy data from bounce buffer on successful out transfer */
1329	if (!hs_ep->dir_in && !hs_req->req.status)
1330		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1331		       hs_req->req.actual);
1332
1333	/* Free bounce buffer */
1334	kfree(hs_req->req.buf);
1335
1336	hs_req->req.buf = hs_req->saved_req_buf;
1337	hs_req->saved_req_buf = NULL;
1338}
1339
1340/**
1341 * dwc2_gadget_target_frame_elapsed - Checks target frame
1342 * @hs_ep: The driver endpoint to check
1343 *
1344 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1345 * corresponding transfer.
1346 */
1347static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1348{
1349	struct dwc2_hsotg *hsotg = hs_ep->parent;
1350	u32 target_frame = hs_ep->target_frame;
1351	u32 current_frame = hsotg->frame_number;
1352	bool frame_overrun = hs_ep->frame_overrun;
1353	u16 limit = DSTS_SOFFN_LIMIT;
1354
1355	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1356		limit >>= 3;
1357
1358	if (!frame_overrun && current_frame >= target_frame)
1359		return true;
1360
1361	if (frame_overrun && current_frame >= target_frame &&
1362	    ((current_frame - target_frame) < limit / 2))
1363		return true;
1364
1365	return false;
1366}
1367
1368/*
1369 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1370 * @hsotg: The driver state
1371 * @hs_ep: the ep descriptor chain is for
1372 *
1373 * Called to update EP0 structure's pointers depend on stage of
1374 * control transfer.
1375 */
1376static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1377					  struct dwc2_hsotg_ep *hs_ep)
1378{
1379	switch (hsotg->ep0_state) {
1380	case DWC2_EP0_SETUP:
1381	case DWC2_EP0_STATUS_OUT:
1382		hs_ep->desc_list = hsotg->setup_desc[0];
1383		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1384		break;
1385	case DWC2_EP0_DATA_IN:
1386	case DWC2_EP0_STATUS_IN:
1387		hs_ep->desc_list = hsotg->ctrl_in_desc;
1388		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1389		break;
1390	case DWC2_EP0_DATA_OUT:
1391		hs_ep->desc_list = hsotg->ctrl_out_desc;
1392		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1393		break;
1394	default:
1395		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1396			hsotg->ep0_state);
1397		return -EINVAL;
1398	}
1399
1400	return 0;
1401}
1402
1403static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1404			       gfp_t gfp_flags)
1405{
1406	struct dwc2_hsotg_req *hs_req = our_req(req);
1407	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1408	struct dwc2_hsotg *hs = hs_ep->parent;
1409	bool first;
1410	int ret;
1411	u32 maxsize = 0;
1412	u32 mask = 0;
1413
1414
1415	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1416		ep->name, req, req->length, req->buf, req->no_interrupt,
1417		req->zero, req->short_not_ok);
1418
1419	/* Prevent new request submission when controller is suspended */
1420	if (hs->lx_state != DWC2_L0) {
1421		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1422			__func__);
1423		return -EAGAIN;
1424	}
1425
1426	/* initialise status of the request */
1427	INIT_LIST_HEAD(&hs_req->queue);
1428	req->actual = 0;
1429	req->status = -EINPROGRESS;
1430
1431	/* Don't queue ISOC request if length greater than mps*mc */
1432	if (hs_ep->isochronous &&
1433	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1434		dev_err(hs->dev, "req length > maxpacket*mc\n");
1435		return -EINVAL;
1436	}
1437
1438	/* In DDMA mode for ISOC's don't queue request if length greater
1439	 * than descriptor limits.
1440	 */
1441	if (using_desc_dma(hs) && hs_ep->isochronous) {
1442		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1443		if (hs_ep->dir_in && req->length > maxsize) {
1444			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1445				req->length, maxsize);
1446			return -EINVAL;
1447		}
1448
1449		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1450			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1451				req->length, hs_ep->ep.maxpacket);
1452			return -EINVAL;
1453		}
1454	}
1455
1456	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1457	if (ret)
1458		return ret;
1459
1460	/* if we're using DMA, sync the buffers as necessary */
1461	if (using_dma(hs)) {
1462		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1463		if (ret)
1464			return ret;
1465	}
1466	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1467	if (using_desc_dma(hs) && !hs_ep->index) {
1468		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1469		if (ret)
1470			return ret;
1471	}
1472
1473	first = list_empty(&hs_ep->queue);
1474	list_add_tail(&hs_req->queue, &hs_ep->queue);
1475
1476	/*
1477	 * Handle DDMA isochronous transfers separately - just add new entry
1478	 * to the descriptor chain.
1479	 * Transfer will be started once SW gets either one of NAK or
1480	 * OutTknEpDis interrupts.
1481	 */
1482	if (using_desc_dma(hs) && hs_ep->isochronous) {
1483		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1484			dma_addr_t dma_addr = hs_req->req.dma;
1485
1486			if (hs_req->req.num_sgs) {
1487				WARN_ON(hs_req->req.num_sgs > 1);
1488				dma_addr = sg_dma_address(hs_req->req.sg);
1489			}
1490			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1491						   hs_req->req.length);
1492		}
1493		return 0;
1494	}
1495
1496	/* Change EP direction if status phase request is after data out */
1497	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1498	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1499		hs_ep->dir_in = 1;
1500
1501	if (first) {
1502		if (!hs_ep->isochronous) {
1503			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1504			return 0;
1505		}
1506
1507		/* Update current frame number value. */
1508		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1509		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1510			dwc2_gadget_incr_frame_num(hs_ep);
1511			/* Update current frame number value once more as it
1512			 * changes here.
1513			 */
1514			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1515		}
1516
1517		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1518			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1519	}
1520	return 0;
1521}
1522
1523static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1524				    gfp_t gfp_flags)
1525{
1526	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1527	struct dwc2_hsotg *hs = hs_ep->parent;
1528	unsigned long flags = 0;
1529	int ret = 0;
1530
1531	spin_lock_irqsave(&hs->lock, flags);
1532	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1533	spin_unlock_irqrestore(&hs->lock, flags);
1534
1535	return ret;
1536}
1537
1538static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1539				       struct usb_request *req)
1540{
1541	struct dwc2_hsotg_req *hs_req = our_req(req);
1542
1543	kfree(hs_req);
1544}
1545
1546/**
1547 * dwc2_hsotg_complete_oursetup - setup completion callback
1548 * @ep: The endpoint the request was on.
1549 * @req: The request completed.
1550 *
1551 * Called on completion of any requests the driver itself
1552 * submitted that need cleaning up.
1553 */
1554static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1555					 struct usb_request *req)
1556{
1557	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1558	struct dwc2_hsotg *hsotg = hs_ep->parent;
1559
1560	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1561
1562	dwc2_hsotg_ep_free_request(ep, req);
1563}
1564
1565/**
1566 * ep_from_windex - convert control wIndex value to endpoint
1567 * @hsotg: The driver state.
1568 * @windex: The control request wIndex field (in host order).
1569 *
1570 * Convert the given wIndex into a pointer to an driver endpoint
1571 * structure, or return NULL if it is not a valid endpoint.
1572 */
1573static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1574					    u32 windex)
1575{
1576	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1577	int idx = windex & 0x7F;
1578
1579	if (windex >= 0x100)
1580		return NULL;
1581
1582	if (idx > hsotg->num_of_eps)
1583		return NULL;
1584
1585	return index_to_ep(hsotg, idx, dir);
1586}
1587
1588/**
1589 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1590 * @hsotg: The driver state.
1591 * @testmode: requested usb test mode
1592 * Enable usb Test Mode requested by the Host.
1593 */
1594int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1595{
1596	int dctl = dwc2_readl(hsotg, DCTL);
1597
1598	dctl &= ~DCTL_TSTCTL_MASK;
1599	switch (testmode) {
1600	case USB_TEST_J:
1601	case USB_TEST_K:
1602	case USB_TEST_SE0_NAK:
1603	case USB_TEST_PACKET:
1604	case USB_TEST_FORCE_ENABLE:
1605		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1606		break;
1607	default:
1608		return -EINVAL;
1609	}
1610	dwc2_writel(hsotg, dctl, DCTL);
1611	return 0;
1612}
1613
1614/**
1615 * dwc2_hsotg_send_reply - send reply to control request
1616 * @hsotg: The device state
1617 * @ep: Endpoint 0
1618 * @buff: Buffer for request
1619 * @length: Length of reply.
1620 *
1621 * Create a request and queue it on the given endpoint. This is useful as
1622 * an internal method of sending replies to certain control requests, etc.
1623 */
1624static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1625				 struct dwc2_hsotg_ep *ep,
1626				void *buff,
1627				int length)
1628{
1629	struct usb_request *req;
1630	int ret;
1631
1632	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1633
1634	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1635	hsotg->ep0_reply = req;
1636	if (!req) {
1637		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1638		return -ENOMEM;
1639	}
1640
1641	req->buf = hsotg->ep0_buff;
1642	req->length = length;
1643	/*
1644	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1645	 * STATUS stage.
1646	 */
1647	req->zero = 0;
1648	req->complete = dwc2_hsotg_complete_oursetup;
1649
1650	if (length)
1651		memcpy(req->buf, buff, length);
1652
1653	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1654	if (ret) {
1655		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1656		return ret;
1657	}
1658
1659	return 0;
1660}
1661
1662/**
1663 * dwc2_hsotg_process_req_status - process request GET_STATUS
1664 * @hsotg: The device state
1665 * @ctrl: USB control request
1666 */
1667static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1668					 struct usb_ctrlrequest *ctrl)
1669{
1670	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1671	struct dwc2_hsotg_ep *ep;
1672	__le16 reply;
1673	u16 status;
1674	int ret;
1675
1676	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1677
1678	if (!ep0->dir_in) {
1679		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1680		return -EINVAL;
1681	}
1682
1683	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1684	case USB_RECIP_DEVICE:
1685		status = hsotg->gadget.is_selfpowered <<
1686			 USB_DEVICE_SELF_POWERED;
1687		status |= hsotg->remote_wakeup_allowed <<
1688			  USB_DEVICE_REMOTE_WAKEUP;
1689		reply = cpu_to_le16(status);
1690		break;
1691
1692	case USB_RECIP_INTERFACE:
1693		/* currently, the data result should be zero */
1694		reply = cpu_to_le16(0);
1695		break;
1696
1697	case USB_RECIP_ENDPOINT:
1698		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1699		if (!ep)
1700			return -ENOENT;
1701
1702		reply = cpu_to_le16(ep->halted ? 1 : 0);
1703		break;
1704
1705	default:
1706		return 0;
1707	}
1708
1709	if (le16_to_cpu(ctrl->wLength) != 2)
1710		return -EINVAL;
1711
1712	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1713	if (ret) {
1714		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1715		return ret;
1716	}
1717
1718	return 1;
1719}
1720
1721static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1722
1723/**
1724 * get_ep_head - return the first request on the endpoint
1725 * @hs_ep: The controller endpoint to get
1726 *
1727 * Get the first request on the endpoint.
1728 */
1729static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1730{
1731	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1732					queue);
1733}
1734
1735/**
1736 * dwc2_gadget_start_next_request - Starts next request from ep queue
1737 * @hs_ep: Endpoint structure
1738 *
1739 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1740 * in its handler. Hence we need to unmask it here to be able to do
1741 * resynchronization.
1742 */
1743static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1744{
1745	struct dwc2_hsotg *hsotg = hs_ep->parent;
1746	int dir_in = hs_ep->dir_in;
1747	struct dwc2_hsotg_req *hs_req;
1748
1749	if (!list_empty(&hs_ep->queue)) {
1750		hs_req = get_ep_head(hs_ep);
1751		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1752		return;
1753	}
1754	if (!hs_ep->isochronous)
1755		return;
1756
1757	if (dir_in) {
1758		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1759			__func__);
1760	} else {
1761		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1762			__func__);
1763	}
1764}
1765
1766/**
1767 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1768 * @hsotg: The device state
1769 * @ctrl: USB control request
1770 */
1771static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1772					  struct usb_ctrlrequest *ctrl)
1773{
1774	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1775	struct dwc2_hsotg_req *hs_req;
1776	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1777	struct dwc2_hsotg_ep *ep;
1778	int ret;
1779	bool halted;
1780	u32 recip;
1781	u32 wValue;
1782	u32 wIndex;
1783
1784	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1785		__func__, set ? "SET" : "CLEAR");
1786
1787	wValue = le16_to_cpu(ctrl->wValue);
1788	wIndex = le16_to_cpu(ctrl->wIndex);
1789	recip = ctrl->bRequestType & USB_RECIP_MASK;
1790
1791	switch (recip) {
1792	case USB_RECIP_DEVICE:
1793		switch (wValue) {
1794		case USB_DEVICE_REMOTE_WAKEUP:
1795			if (set)
1796				hsotg->remote_wakeup_allowed = 1;
1797			else
1798				hsotg->remote_wakeup_allowed = 0;
1799			break;
1800
1801		case USB_DEVICE_TEST_MODE:
1802			if ((wIndex & 0xff) != 0)
1803				return -EINVAL;
1804			if (!set)
1805				return -EINVAL;
1806
1807			hsotg->test_mode = wIndex >> 8;
1808			break;
1809		default:
1810			return -ENOENT;
1811		}
1812
1813		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1814		if (ret) {
1815			dev_err(hsotg->dev,
1816				"%s: failed to send reply\n", __func__);
1817			return ret;
1818		}
1819		break;
1820
1821	case USB_RECIP_ENDPOINT:
1822		ep = ep_from_windex(hsotg, wIndex);
1823		if (!ep) {
1824			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1825				__func__, wIndex);
1826			return -ENOENT;
1827		}
1828
1829		switch (wValue) {
1830		case USB_ENDPOINT_HALT:
1831			halted = ep->halted;
1832
1833			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1834
1835			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1836			if (ret) {
1837				dev_err(hsotg->dev,
1838					"%s: failed to send reply\n", __func__);
1839				return ret;
1840			}
1841
1842			/*
1843			 * we have to complete all requests for ep if it was
1844			 * halted, and the halt was cleared by CLEAR_FEATURE
1845			 */
1846
1847			if (!set && halted) {
1848				/*
1849				 * If we have request in progress,
1850				 * then complete it
1851				 */
1852				if (ep->req) {
1853					hs_req = ep->req;
1854					ep->req = NULL;
1855					list_del_init(&hs_req->queue);
1856					if (hs_req->req.complete) {
1857						spin_unlock(&hsotg->lock);
1858						usb_gadget_giveback_request(
1859							&ep->ep, &hs_req->req);
1860						spin_lock(&hsotg->lock);
1861					}
1862				}
1863
1864				/* If we have pending request, then start it */
1865				if (!ep->req)
1866					dwc2_gadget_start_next_request(ep);
1867			}
1868
1869			break;
1870
1871		default:
1872			return -ENOENT;
1873		}
1874		break;
1875	default:
1876		return -ENOENT;
1877	}
1878	return 1;
1879}
1880
1881static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1882
1883/**
1884 * dwc2_hsotg_stall_ep0 - stall ep0
1885 * @hsotg: The device state
1886 *
1887 * Set stall for ep0 as response for setup request.
1888 */
1889static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1890{
1891	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1892	u32 reg;
1893	u32 ctrl;
1894
1895	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1896	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1897
1898	/*
1899	 * DxEPCTL_Stall will be cleared by EP once it has
1900	 * taken effect, so no need to clear later.
1901	 */
1902
1903	ctrl = dwc2_readl(hsotg, reg);
1904	ctrl |= DXEPCTL_STALL;
1905	ctrl |= DXEPCTL_CNAK;
1906	dwc2_writel(hsotg, ctrl, reg);
1907
1908	dev_dbg(hsotg->dev,
1909		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1910		ctrl, reg, dwc2_readl(hsotg, reg));
1911
1912	 /*
1913	  * complete won't be called, so we enqueue
1914	  * setup request here
1915	  */
1916	 dwc2_hsotg_enqueue_setup(hsotg);
1917}
1918
1919/**
1920 * dwc2_hsotg_process_control - process a control request
1921 * @hsotg: The device state
1922 * @ctrl: The control request received
1923 *
1924 * The controller has received the SETUP phase of a control request, and
1925 * needs to work out what to do next (and whether to pass it on to the
1926 * gadget driver).
1927 */
1928static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1929				       struct usb_ctrlrequest *ctrl)
1930{
1931	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1932	int ret = 0;
1933	u32 dcfg;
1934
1935	dev_dbg(hsotg->dev,
1936		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1937		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1938		ctrl->wIndex, ctrl->wLength);
1939
1940	if (ctrl->wLength == 0) {
1941		ep0->dir_in = 1;
1942		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1943	} else if (ctrl->bRequestType & USB_DIR_IN) {
1944		ep0->dir_in = 1;
1945		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1946	} else {
1947		ep0->dir_in = 0;
1948		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1949	}
1950
1951	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1952		switch (ctrl->bRequest) {
1953		case USB_REQ_SET_ADDRESS:
1954			hsotg->connected = 1;
1955			dcfg = dwc2_readl(hsotg, DCFG);
1956			dcfg &= ~DCFG_DEVADDR_MASK;
1957			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1958				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1959			dwc2_writel(hsotg, dcfg, DCFG);
1960
1961			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1962
1963			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1964			return;
1965
1966		case USB_REQ_GET_STATUS:
1967			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1968			break;
1969
1970		case USB_REQ_CLEAR_FEATURE:
1971		case USB_REQ_SET_FEATURE:
1972			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1973			break;
1974		}
1975	}
1976
1977	/* as a fallback, try delivering it to the driver to deal with */
1978
1979	if (ret == 0 && hsotg->driver) {
1980		spin_unlock(&hsotg->lock);
1981		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1982		spin_lock(&hsotg->lock);
1983		if (ret < 0)
1984			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1985	}
1986
1987	hsotg->delayed_status = false;
1988	if (ret == USB_GADGET_DELAYED_STATUS)
1989		hsotg->delayed_status = true;
1990
1991	/*
1992	 * the request is either unhandlable, or is not formatted correctly
1993	 * so respond with a STALL for the status stage to indicate failure.
1994	 */
1995
1996	if (ret < 0)
1997		dwc2_hsotg_stall_ep0(hsotg);
1998}
1999
2000/**
2001 * dwc2_hsotg_complete_setup - completion of a setup transfer
2002 * @ep: The endpoint the request was on.
2003 * @req: The request completed.
2004 *
2005 * Called on completion of any requests the driver itself submitted for
2006 * EP0 setup packets
2007 */
2008static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2009				      struct usb_request *req)
2010{
2011	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2012	struct dwc2_hsotg *hsotg = hs_ep->parent;
2013
2014	if (req->status < 0) {
2015		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2016		return;
2017	}
2018
2019	spin_lock(&hsotg->lock);
2020	if (req->actual == 0)
2021		dwc2_hsotg_enqueue_setup(hsotg);
2022	else
2023		dwc2_hsotg_process_control(hsotg, req->buf);
2024	spin_unlock(&hsotg->lock);
2025}
2026
2027/**
2028 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2029 * @hsotg: The device state.
2030 *
2031 * Enqueue a request on EP0 if necessary to received any SETUP packets
2032 * received from the host.
2033 */
2034static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2035{
2036	struct usb_request *req = hsotg->ctrl_req;
2037	struct dwc2_hsotg_req *hs_req = our_req(req);
2038	int ret;
2039
2040	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2041
2042	req->zero = 0;
2043	req->length = 8;
2044	req->buf = hsotg->ctrl_buff;
2045	req->complete = dwc2_hsotg_complete_setup;
2046
2047	if (!list_empty(&hs_req->queue)) {
2048		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2049		return;
2050	}
2051
2052	hsotg->eps_out[0]->dir_in = 0;
2053	hsotg->eps_out[0]->send_zlp = 0;
2054	hsotg->ep0_state = DWC2_EP0_SETUP;
2055
2056	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2057	if (ret < 0) {
2058		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2059		/*
2060		 * Don't think there's much we can do other than watch the
2061		 * driver fail.
2062		 */
2063	}
2064}
2065
2066static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2067				   struct dwc2_hsotg_ep *hs_ep)
2068{
2069	u32 ctrl;
2070	u8 index = hs_ep->index;
2071	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2072	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2073
2074	if (hs_ep->dir_in)
2075		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2076			index);
2077	else
2078		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2079			index);
2080	if (using_desc_dma(hsotg)) {
2081		/* Not specific buffer needed for ep0 ZLP */
2082		dma_addr_t dma = hs_ep->desc_list_dma;
2083
2084		if (!index)
2085			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2086
2087		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2088	} else {
2089		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2090			    DXEPTSIZ_XFERSIZE(0),
2091			    epsiz_reg);
2092	}
2093
2094	ctrl = dwc2_readl(hsotg, epctl_reg);
2095	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2096	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2097	ctrl |= DXEPCTL_USBACTEP;
2098	dwc2_writel(hsotg, ctrl, epctl_reg);
2099}
2100
2101/**
2102 * dwc2_hsotg_complete_request - complete a request given to us
2103 * @hsotg: The device state.
2104 * @hs_ep: The endpoint the request was on.
2105 * @hs_req: The request to complete.
2106 * @result: The result code (0 => Ok, otherwise errno)
2107 *
2108 * The given request has finished, so call the necessary completion
2109 * if it has one and then look to see if we can start a new request
2110 * on the endpoint.
2111 *
2112 * Note, expects the ep to already be locked as appropriate.
2113 */
2114static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2115					struct dwc2_hsotg_ep *hs_ep,
2116				       struct dwc2_hsotg_req *hs_req,
2117				       int result)
2118{
2119	if (!hs_req) {
2120		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2121		return;
2122	}
2123
2124	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2125		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2126
2127	/*
2128	 * only replace the status if we've not already set an error
2129	 * from a previous transaction
2130	 */
2131
2132	if (hs_req->req.status == -EINPROGRESS)
2133		hs_req->req.status = result;
2134
2135	if (using_dma(hsotg))
2136		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2137
2138	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2139
2140	hs_ep->req = NULL;
2141	list_del_init(&hs_req->queue);
2142
2143	/*
2144	 * call the complete request with the locks off, just in case the
2145	 * request tries to queue more work for this endpoint.
2146	 */
2147
2148	if (hs_req->req.complete) {
2149		spin_unlock(&hsotg->lock);
2150		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2151		spin_lock(&hsotg->lock);
2152	}
2153
2154	/* In DDMA don't need to proceed to starting of next ISOC request */
2155	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2156		return;
2157
2158	/*
2159	 * Look to see if there is anything else to do. Note, the completion
2160	 * of the previous request may have caused a new request to be started
2161	 * so be careful when doing this.
2162	 */
2163
2164	if (!hs_ep->req && result >= 0)
2165		dwc2_gadget_start_next_request(hs_ep);
2166}
2167
2168/*
2169 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2170 * @hs_ep: The endpoint the request was on.
2171 *
2172 * Get first request from the ep queue, determine descriptor on which complete
2173 * happened. SW discovers which descriptor currently in use by HW, adjusts
2174 * dma_address and calculates index of completed descriptor based on the value
2175 * of DEPDMA register. Update actual length of request, giveback to gadget.
2176 */
2177static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2178{
2179	struct dwc2_hsotg *hsotg = hs_ep->parent;
2180	struct dwc2_hsotg_req *hs_req;
2181	struct usb_request *ureq;
2182	u32 desc_sts;
2183	u32 mask;
2184
2185	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2186
2187	/* Process only descriptors with buffer status set to DMA done */
2188	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2189		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2190
2191		hs_req = get_ep_head(hs_ep);
2192		if (!hs_req) {
2193			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2194			return;
2195		}
2196		ureq = &hs_req->req;
2197
2198		/* Check completion status */
2199		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2200			DEV_DMA_STS_SUCC) {
2201			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2202				DEV_DMA_ISOC_RX_NBYTES_MASK;
2203			ureq->actual = ureq->length - ((desc_sts & mask) >>
2204				DEV_DMA_ISOC_NBYTES_SHIFT);
2205
2206			/* Adjust actual len for ISOC Out if len is
2207			 * not align of 4
2208			 */
2209			if (!hs_ep->dir_in && ureq->length & 0x3)
2210				ureq->actual += 4 - (ureq->length & 0x3);
2211
2212			/* Set actual frame number for completed transfers */
2213			ureq->frame_number =
2214				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2215				DEV_DMA_ISOC_FRNUM_SHIFT;
2216		}
2217
2218		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2219
2220		hs_ep->compl_desc++;
2221		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2222			hs_ep->compl_desc = 0;
2223		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2224	}
2225}
2226
2227/*
2228 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2229 * @hs_ep: The isochronous endpoint.
2230 *
2231 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2232 * interrupt. Reset target frame and next_desc to allow to start
2233 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2234 * interrupt for OUT direction.
2235 */
2236static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2237{
2238	struct dwc2_hsotg *hsotg = hs_ep->parent;
2239
2240	if (!hs_ep->dir_in)
2241		dwc2_flush_rx_fifo(hsotg);
2242	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2243
2244	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2245	hs_ep->next_desc = 0;
2246	hs_ep->compl_desc = 0;
2247}
2248
2249/**
2250 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2251 * @hsotg: The device state.
2252 * @ep_idx: The endpoint index for the data
2253 * @size: The size of data in the fifo, in bytes
2254 *
2255 * The FIFO status shows there is data to read from the FIFO for a given
2256 * endpoint, so sort out whether we need to read the data into a request
2257 * that has been made for that endpoint.
2258 */
2259static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2260{
2261	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2262	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2263	int to_read;
2264	int max_req;
2265	int read_ptr;
2266
2267	if (!hs_req) {
2268		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2269		int ptr;
2270
2271		dev_dbg(hsotg->dev,
2272			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2273			 __func__, size, ep_idx, epctl);
2274
2275		/* dump the data from the FIFO, we've nothing we can do */
2276		for (ptr = 0; ptr < size; ptr += 4)
2277			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2278
2279		return;
2280	}
2281
2282	to_read = size;
2283	read_ptr = hs_req->req.actual;
2284	max_req = hs_req->req.length - read_ptr;
2285
2286	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2287		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2288
2289	if (to_read > max_req) {
2290		/*
2291		 * more data appeared than we where willing
2292		 * to deal with in this request.
2293		 */
2294
2295		/* currently we don't deal this */
2296		WARN_ON_ONCE(1);
2297	}
2298
2299	hs_ep->total_data += to_read;
2300	hs_req->req.actual += to_read;
2301	to_read = DIV_ROUND_UP(to_read, 4);
2302
2303	/*
2304	 * note, we might over-write the buffer end by 3 bytes depending on
2305	 * alignment of the data.
2306	 */
2307	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2308		       hs_req->req.buf + read_ptr, to_read);
2309}
2310
2311/**
2312 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2313 * @hsotg: The device instance
2314 * @dir_in: If IN zlp
2315 *
2316 * Generate a zero-length IN packet request for terminating a SETUP
2317 * transaction.
2318 *
2319 * Note, since we don't write any data to the TxFIFO, then it is
2320 * currently believed that we do not need to wait for any space in
2321 * the TxFIFO.
2322 */
2323static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2324{
2325	/* eps_out[0] is used in both directions */
2326	hsotg->eps_out[0]->dir_in = dir_in;
2327	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2328
2329	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2330}
2331
2332/*
2333 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2334 * @hs_ep - The endpoint on which transfer went
2335 *
2336 * Iterate over endpoints descriptor chain and get info on bytes remained
2337 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2338 */
2339static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2340{
2341	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2342	struct dwc2_hsotg *hsotg = hs_ep->parent;
2343	unsigned int bytes_rem = 0;
2344	unsigned int bytes_rem_correction = 0;
2345	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2346	int i;
2347	u32 status;
2348	u32 mps = hs_ep->ep.maxpacket;
2349	int dir_in = hs_ep->dir_in;
2350
2351	if (!desc)
2352		return -EINVAL;
2353
2354	/* Interrupt OUT EP with mps not multiple of 4 */
2355	if (hs_ep->index)
2356		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2357			bytes_rem_correction = 4 - (mps % 4);
2358
2359	for (i = 0; i < hs_ep->desc_count; ++i) {
2360		status = desc->status;
2361		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2362		bytes_rem -= bytes_rem_correction;
2363
2364		if (status & DEV_DMA_STS_MASK)
2365			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2366				i, status & DEV_DMA_STS_MASK);
2367
2368		if (status & DEV_DMA_L)
2369			break;
2370
2371		desc++;
2372	}
2373
2374	return bytes_rem;
2375}
2376
2377/**
2378 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2379 * @hsotg: The device instance
2380 * @epnum: The endpoint received from
2381 *
2382 * The RXFIFO has delivered an OutDone event, which means that the data
2383 * transfer for an OUT endpoint has been completed, either by a short
2384 * packet or by the finish of a transfer.
2385 */
2386static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2387{
2388	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2389	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2390	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2391	struct usb_request *req = &hs_req->req;
2392	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2393	int result = 0;
2394
2395	if (!hs_req) {
2396		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2397		return;
2398	}
2399
2400	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2401		dev_dbg(hsotg->dev, "zlp packet received\n");
2402		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2403		dwc2_hsotg_enqueue_setup(hsotg);
2404		return;
2405	}
2406
2407	if (using_desc_dma(hsotg))
2408		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2409
2410	if (using_dma(hsotg)) {
2411		unsigned int size_done;
2412
2413		/*
2414		 * Calculate the size of the transfer by checking how much
2415		 * is left in the endpoint size register and then working it
2416		 * out from the amount we loaded for the transfer.
2417		 *
2418		 * We need to do this as DMA pointers are always 32bit aligned
2419		 * so may overshoot/undershoot the transfer.
2420		 */
2421
2422		size_done = hs_ep->size_loaded - size_left;
2423		size_done += hs_ep->last_load;
2424
2425		req->actual = size_done;
2426	}
2427
2428	/* if there is more request to do, schedule new transfer */
2429	if (req->actual < req->length && size_left == 0) {
2430		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2431		return;
2432	}
2433
2434	if (req->actual < req->length && req->short_not_ok) {
2435		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2436			__func__, req->actual, req->length);
2437
2438		/*
2439		 * todo - what should we return here? there's no one else
2440		 * even bothering to check the status.
2441		 */
2442	}
2443
2444	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2445	if (!using_desc_dma(hsotg) && epnum == 0 &&
2446	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2447		/* Move to STATUS IN */
2448		if (!hsotg->delayed_status)
2449			dwc2_hsotg_ep0_zlp(hsotg, true);
2450	}
2451
2452	/* Set actual frame number for completed transfers */
2453	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2454		req->frame_number = hs_ep->target_frame;
2455		dwc2_gadget_incr_frame_num(hs_ep);
2456	}
2457
2458	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2459}
2460
2461/**
2462 * dwc2_hsotg_handle_rx - RX FIFO has data
2463 * @hsotg: The device instance
2464 *
2465 * The IRQ handler has detected that the RX FIFO has some data in it
2466 * that requires processing, so find out what is in there and do the
2467 * appropriate read.
2468 *
2469 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2470 * chunks, so if you have x packets received on an endpoint you'll get x
2471 * FIFO events delivered, each with a packet's worth of data in it.
2472 *
2473 * When using DMA, we should not be processing events from the RXFIFO
2474 * as the actual data should be sent to the memory directly and we turn
2475 * on the completion interrupts to get notifications of transfer completion.
2476 */
2477static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2478{
2479	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2480	u32 epnum, status, size;
2481
2482	WARN_ON(using_dma(hsotg));
2483
2484	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2485	status = grxstsr & GRXSTS_PKTSTS_MASK;
2486
2487	size = grxstsr & GRXSTS_BYTECNT_MASK;
2488	size >>= GRXSTS_BYTECNT_SHIFT;
2489
2490	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2491		__func__, grxstsr, size, epnum);
2492
2493	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2494	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2495		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2496		break;
2497
2498	case GRXSTS_PKTSTS_OUTDONE:
2499		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2500			dwc2_hsotg_read_frameno(hsotg));
2501
2502		if (!using_dma(hsotg))
2503			dwc2_hsotg_handle_outdone(hsotg, epnum);
2504		break;
2505
2506	case GRXSTS_PKTSTS_SETUPDONE:
2507		dev_dbg(hsotg->dev,
2508			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2509			dwc2_hsotg_read_frameno(hsotg),
2510			dwc2_readl(hsotg, DOEPCTL(0)));
2511		/*
2512		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2513		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2514		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2515		 */
2516		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2517			dwc2_hsotg_handle_outdone(hsotg, epnum);
2518		break;
2519
2520	case GRXSTS_PKTSTS_OUTRX:
2521		dwc2_hsotg_rx_data(hsotg, epnum, size);
2522		break;
2523
2524	case GRXSTS_PKTSTS_SETUPRX:
2525		dev_dbg(hsotg->dev,
2526			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2527			dwc2_hsotg_read_frameno(hsotg),
2528			dwc2_readl(hsotg, DOEPCTL(0)));
2529
2530		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2531
2532		dwc2_hsotg_rx_data(hsotg, epnum, size);
2533		break;
2534
2535	default:
2536		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2537			 __func__, grxstsr);
2538
2539		dwc2_hsotg_dump(hsotg);
2540		break;
2541	}
2542}
2543
2544/**
2545 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2546 * @mps: The maximum packet size in bytes.
2547 */
2548static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2549{
2550	switch (mps) {
2551	case 64:
2552		return D0EPCTL_MPS_64;
2553	case 32:
2554		return D0EPCTL_MPS_32;
2555	case 16:
2556		return D0EPCTL_MPS_16;
2557	case 8:
2558		return D0EPCTL_MPS_8;
2559	}
2560
2561	/* bad max packet size, warn and return invalid result */
2562	WARN_ON(1);
2563	return (u32)-1;
2564}
2565
2566/**
2567 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2568 * @hsotg: The driver state.
2569 * @ep: The index number of the endpoint
2570 * @mps: The maximum packet size in bytes
2571 * @mc: The multicount value
2572 * @dir_in: True if direction is in.
2573 *
2574 * Configure the maximum packet size for the given endpoint, updating
2575 * the hardware control registers to reflect this.
2576 */
2577static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2578					unsigned int ep, unsigned int mps,
2579					unsigned int mc, unsigned int dir_in)
2580{
2581	struct dwc2_hsotg_ep *hs_ep;
2582	u32 reg;
2583
2584	hs_ep = index_to_ep(hsotg, ep, dir_in);
2585	if (!hs_ep)
2586		return;
2587
2588	if (ep == 0) {
2589		u32 mps_bytes = mps;
2590
2591		/* EP0 is a special case */
2592		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2593		if (mps > 3)
2594			goto bad_mps;
2595		hs_ep->ep.maxpacket = mps_bytes;
2596		hs_ep->mc = 1;
2597	} else {
2598		if (mps > 1024)
2599			goto bad_mps;
2600		hs_ep->mc = mc;
2601		if (mc > 3)
2602			goto bad_mps;
2603		hs_ep->ep.maxpacket = mps;
2604	}
2605
2606	if (dir_in) {
2607		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2608		reg &= ~DXEPCTL_MPS_MASK;
2609		reg |= mps;
2610		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2611	} else {
2612		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2613		reg &= ~DXEPCTL_MPS_MASK;
2614		reg |= mps;
2615		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2616	}
2617
2618	return;
2619
2620bad_mps:
2621	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2622}
2623
2624/**
2625 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2626 * @hsotg: The driver state
2627 * @idx: The index for the endpoint (0..15)
2628 */
2629static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2630{
2631	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2632		    GRSTCTL);
2633
2634	/* wait until the fifo is flushed */
2635	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2636		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2637			 __func__);
2638}
2639
2640/**
2641 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2642 * @hsotg: The driver state
2643 * @hs_ep: The driver endpoint to check.
2644 *
2645 * Check to see if there is a request that has data to send, and if so
2646 * make an attempt to write data into the FIFO.
2647 */
2648static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2649			    struct dwc2_hsotg_ep *hs_ep)
2650{
2651	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2652
2653	if (!hs_ep->dir_in || !hs_req) {
2654		/**
2655		 * if request is not enqueued, we disable interrupts
2656		 * for endpoints, excepting ep0
2657		 */
2658		if (hs_ep->index != 0)
2659			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2660					      hs_ep->dir_in, 0);
2661		return 0;
2662	}
2663
2664	if (hs_req->req.actual < hs_req->req.length) {
2665		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2666			hs_ep->index);
2667		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2668	}
2669
2670	return 0;
2671}
2672
2673/**
2674 * dwc2_hsotg_complete_in - complete IN transfer
2675 * @hsotg: The device state.
2676 * @hs_ep: The endpoint that has just completed.
2677 *
2678 * An IN transfer has been completed, update the transfer's state and then
2679 * call the relevant completion routines.
2680 */
2681static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2682				   struct dwc2_hsotg_ep *hs_ep)
2683{
2684	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2685	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2686	int size_left, size_done;
2687
2688	if (!hs_req) {
2689		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2690		return;
2691	}
2692
2693	/* Finish ZLP handling for IN EP0 transactions */
2694	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2695		dev_dbg(hsotg->dev, "zlp packet sent\n");
2696
2697		/*
2698		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2699		 * changed to IN. Change back to complete OUT transfer request
2700		 */
2701		hs_ep->dir_in = 0;
2702
2703		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2704		if (hsotg->test_mode) {
2705			int ret;
2706
2707			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2708			if (ret < 0) {
2709				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2710					hsotg->test_mode);
2711				dwc2_hsotg_stall_ep0(hsotg);
2712				return;
2713			}
2714		}
2715		dwc2_hsotg_enqueue_setup(hsotg);
2716		return;
2717	}
2718
2719	/*
2720	 * Calculate the size of the transfer by checking how much is left
2721	 * in the endpoint size register and then working it out from
2722	 * the amount we loaded for the transfer.
2723	 *
2724	 * We do this even for DMA, as the transfer may have incremented
2725	 * past the end of the buffer (DMA transfers are always 32bit
2726	 * aligned).
2727	 */
2728	if (using_desc_dma(hsotg)) {
2729		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2730		if (size_left < 0)
2731			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2732				size_left);
2733	} else {
2734		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2735	}
2736
2737	size_done = hs_ep->size_loaded - size_left;
2738	size_done += hs_ep->last_load;
2739
2740	if (hs_req->req.actual != size_done)
2741		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2742			__func__, hs_req->req.actual, size_done);
2743
2744	hs_req->req.actual = size_done;
2745	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2746		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2747
2748	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2749		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2750		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2751		return;
2752	}
2753
2754	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2755	if (hs_ep->send_zlp) {
2756		hs_ep->send_zlp = 0;
2757		if (!using_desc_dma(hsotg)) {
2758			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2759			/* transfer will be completed on next complete interrupt */
2760			return;
2761		}
2762	}
2763
2764	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2765		/* Move to STATUS OUT */
2766		dwc2_hsotg_ep0_zlp(hsotg, false);
2767		return;
2768	}
2769
2770	/* Set actual frame number for completed transfers */
2771	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2772		hs_req->req.frame_number = hs_ep->target_frame;
2773		dwc2_gadget_incr_frame_num(hs_ep);
2774	}
2775
2776	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2777}
2778
2779/**
2780 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2781 * @hsotg: The device state.
2782 * @idx: Index of ep.
2783 * @dir_in: Endpoint direction 1-in 0-out.
2784 *
2785 * Reads for endpoint with given index and direction, by masking
2786 * epint_reg with coresponding mask.
2787 */
2788static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2789					  unsigned int idx, int dir_in)
2790{
2791	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2792	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2793	u32 ints;
2794	u32 mask;
2795	u32 diepempmsk;
2796
2797	mask = dwc2_readl(hsotg, epmsk_reg);
2798	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2799	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2800	mask |= DXEPINT_SETUP_RCVD;
2801
2802	ints = dwc2_readl(hsotg, epint_reg);
2803	ints &= mask;
2804	return ints;
2805}
2806
2807/**
2808 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2809 * @hs_ep: The endpoint on which interrupt is asserted.
2810 *
2811 * This interrupt indicates that the endpoint has been disabled per the
2812 * application's request.
2813 *
2814 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2815 * in case of ISOC completes current request.
2816 *
2817 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2818 * request starts it.
2819 */
2820static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2821{
2822	struct dwc2_hsotg *hsotg = hs_ep->parent;
2823	struct dwc2_hsotg_req *hs_req;
2824	unsigned char idx = hs_ep->index;
2825	int dir_in = hs_ep->dir_in;
2826	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2827	int dctl = dwc2_readl(hsotg, DCTL);
2828
2829	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2830
2831	if (dir_in) {
2832		int epctl = dwc2_readl(hsotg, epctl_reg);
2833
2834		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2835
2836		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2837			int dctl = dwc2_readl(hsotg, DCTL);
2838
2839			dctl |= DCTL_CGNPINNAK;
2840			dwc2_writel(hsotg, dctl, DCTL);
2841		}
2842	} else {
2843
2844		if (dctl & DCTL_GOUTNAKSTS) {
2845			dctl |= DCTL_CGOUTNAK;
2846			dwc2_writel(hsotg, dctl, DCTL);
2847		}
2848	}
2849
2850	if (!hs_ep->isochronous)
2851		return;
2852
2853	if (list_empty(&hs_ep->queue)) {
2854		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2855			__func__, hs_ep);
2856		return;
2857	}
2858
2859	do {
2860		hs_req = get_ep_head(hs_ep);
2861		if (hs_req) {
2862			hs_req->req.frame_number = hs_ep->target_frame;
2863			hs_req->req.actual = 0;
2864			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2865						    -ENODATA);
2866		}
2867		dwc2_gadget_incr_frame_num(hs_ep);
2868		/* Update current frame number value. */
2869		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2870	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2871}
2872
2873/**
2874 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2875 * @ep: The endpoint on which interrupt is asserted.
2876 *
2877 * This is starting point for ISOC-OUT transfer, synchronization done with
2878 * first out token received from host while corresponding EP is disabled.
2879 *
2880 * Device does not know initial frame in which out token will come. For this
2881 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2882 * getting this interrupt SW starts calculation for next transfer frame.
2883 */
2884static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2885{
2886	struct dwc2_hsotg *hsotg = ep->parent;
2887	struct dwc2_hsotg_req *hs_req;
2888	int dir_in = ep->dir_in;
2889
2890	if (dir_in || !ep->isochronous)
2891		return;
2892
2893	if (using_desc_dma(hsotg)) {
2894		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2895			/* Start first ISO Out */
2896			ep->target_frame = hsotg->frame_number;
2897			dwc2_gadget_start_isoc_ddma(ep);
2898		}
2899		return;
2900	}
2901
2902	if (ep->target_frame == TARGET_FRAME_INITIAL) {
2903		u32 ctrl;
2904
2905		ep->target_frame = hsotg->frame_number;
2906		if (ep->interval > 1) {
2907			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2908			if (ep->target_frame & 0x1)
2909				ctrl |= DXEPCTL_SETODDFR;
2910			else
2911				ctrl |= DXEPCTL_SETEVENFR;
2912
2913			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2914		}
2915	}
2916
2917	while (dwc2_gadget_target_frame_elapsed(ep)) {
2918		hs_req = get_ep_head(ep);
2919		if (hs_req) {
2920			hs_req->req.frame_number = ep->target_frame;
2921			hs_req->req.actual = 0;
2922			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2923		}
2924
2925		dwc2_gadget_incr_frame_num(ep);
2926		/* Update current frame number value. */
2927		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2928	}
2929
2930	if (!ep->req)
2931		dwc2_gadget_start_next_request(ep);
2932
2933}
2934
2935static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2936				   struct dwc2_hsotg_ep *hs_ep);
2937
2938/**
2939 * dwc2_gadget_handle_nak - handle NAK interrupt
2940 * @hs_ep: The endpoint on which interrupt is asserted.
2941 *
2942 * This is starting point for ISOC-IN transfer, synchronization done with
2943 * first IN token received from host while corresponding EP is disabled.
2944 *
2945 * Device does not know when first one token will arrive from host. On first
2946 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2947 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2948 * sent in response to that as there was no data in FIFO. SW is basing on this
2949 * interrupt to obtain frame in which token has come and then based on the
2950 * interval calculates next frame for transfer.
2951 */
2952static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2953{
2954	struct dwc2_hsotg *hsotg = hs_ep->parent;
2955	struct dwc2_hsotg_req *hs_req;
2956	int dir_in = hs_ep->dir_in;
2957	u32 ctrl;
2958
2959	if (!dir_in || !hs_ep->isochronous)
2960		return;
2961
2962	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2963
2964		if (using_desc_dma(hsotg)) {
2965			hs_ep->target_frame = hsotg->frame_number;
2966			dwc2_gadget_incr_frame_num(hs_ep);
2967
2968			/* In service interval mode target_frame must
2969			 * be set to last (u)frame of the service interval.
2970			 */
2971			if (hsotg->params.service_interval) {
2972				/* Set target_frame to the first (u)frame of
2973				 * the service interval
2974				 */
2975				hs_ep->target_frame &= ~hs_ep->interval + 1;
2976
2977				/* Set target_frame to the last (u)frame of
2978				 * the service interval
2979				 */
2980				dwc2_gadget_incr_frame_num(hs_ep);
2981				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2982			}
2983
2984			dwc2_gadget_start_isoc_ddma(hs_ep);
2985			return;
2986		}
2987
2988		hs_ep->target_frame = hsotg->frame_number;
2989		if (hs_ep->interval > 1) {
2990			u32 ctrl = dwc2_readl(hsotg,
2991					      DIEPCTL(hs_ep->index));
2992			if (hs_ep->target_frame & 0x1)
2993				ctrl |= DXEPCTL_SETODDFR;
2994			else
2995				ctrl |= DXEPCTL_SETEVENFR;
2996
2997			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2998		}
2999	}
3000
3001	if (using_desc_dma(hsotg))
3002		return;
3003
3004	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3005	if (ctrl & DXEPCTL_EPENA)
3006		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3007	else
3008		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3009
3010	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3011		hs_req = get_ep_head(hs_ep);
3012		if (hs_req) {
3013			hs_req->req.frame_number = hs_ep->target_frame;
3014			hs_req->req.actual = 0;
3015			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3016		}
3017
3018		dwc2_gadget_incr_frame_num(hs_ep);
3019		/* Update current frame number value. */
3020		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3021	}
3022
3023	if (!hs_ep->req)
3024		dwc2_gadget_start_next_request(hs_ep);
3025}
3026
3027/**
3028 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3029 * @hsotg: The driver state
3030 * @idx: The index for the endpoint (0..15)
3031 * @dir_in: Set if this is an IN endpoint
3032 *
3033 * Process and clear any interrupt pending for an individual endpoint
3034 */
3035static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3036			     int dir_in)
3037{
3038	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3039	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3040	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3041	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3042	u32 ints;
3043
3044	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3045
3046	/* Clear endpoint interrupts */
3047	dwc2_writel(hsotg, ints, epint_reg);
3048
3049	if (!hs_ep) {
3050		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3051			__func__, idx, dir_in ? "in" : "out");
3052		return;
3053	}
3054
3055	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3056		__func__, idx, dir_in ? "in" : "out", ints);
3057
3058	/* Don't process XferCompl interrupt if it is a setup packet */
3059	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3060		ints &= ~DXEPINT_XFERCOMPL;
3061
3062	/*
3063	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3064	 * stage and xfercomplete was generated without SETUP phase done
3065	 * interrupt. SW should parse received setup packet only after host's
3066	 * exit from setup phase of control transfer.
3067	 */
3068	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3069	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3070		ints &= ~DXEPINT_XFERCOMPL;
3071
3072	if (ints & DXEPINT_XFERCOMPL) {
3073		dev_dbg(hsotg->dev,
3074			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3075			__func__, dwc2_readl(hsotg, epctl_reg),
3076			dwc2_readl(hsotg, epsiz_reg));
3077
3078		/* In DDMA handle isochronous requests separately */
3079		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3080			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3081		} else if (dir_in) {
3082			/*
3083			 * We get OutDone from the FIFO, so we only
3084			 * need to look at completing IN requests here
3085			 * if operating slave mode
3086			 */
3087			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3088				dwc2_hsotg_complete_in(hsotg, hs_ep);
3089
3090			if (idx == 0 && !hs_ep->req)
3091				dwc2_hsotg_enqueue_setup(hsotg);
3092		} else if (using_dma(hsotg)) {
3093			/*
3094			 * We're using DMA, we need to fire an OutDone here
3095			 * as we ignore the RXFIFO.
3096			 */
3097			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3098				dwc2_hsotg_handle_outdone(hsotg, idx);
3099		}
3100	}
3101
3102	if (ints & DXEPINT_EPDISBLD)
3103		dwc2_gadget_handle_ep_disabled(hs_ep);
3104
3105	if (ints & DXEPINT_OUTTKNEPDIS)
3106		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3107
3108	if (ints & DXEPINT_NAKINTRPT)
3109		dwc2_gadget_handle_nak(hs_ep);
3110
3111	if (ints & DXEPINT_AHBERR)
3112		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3113
3114	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3115		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3116
3117		if (using_dma(hsotg) && idx == 0) {
3118			/*
3119			 * this is the notification we've received a
3120			 * setup packet. In non-DMA mode we'd get this
3121			 * from the RXFIFO, instead we need to process
3122			 * the setup here.
3123			 */
3124
3125			if (dir_in)
3126				WARN_ON_ONCE(1);
3127			else
3128				dwc2_hsotg_handle_outdone(hsotg, 0);
3129		}
3130	}
3131
3132	if (ints & DXEPINT_STSPHSERCVD) {
3133		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3134
3135		/* Safety check EP0 state when STSPHSERCVD asserted */
3136		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3137			/* Move to STATUS IN for DDMA */
3138			if (using_desc_dma(hsotg)) {
3139				if (!hsotg->delayed_status)
3140					dwc2_hsotg_ep0_zlp(hsotg, true);
3141				else
3142				/* In case of 3 stage Control Write with delayed
3143				 * status, when Status IN transfer started
3144				 * before STSPHSERCVD asserted, NAKSTS bit not
3145				 * cleared by CNAK in dwc2_hsotg_start_req()
3146				 * function. Clear now NAKSTS to allow complete
3147				 * transfer.
3148				 */
3149					dwc2_set_bit(hsotg, DIEPCTL(0),
3150						     DXEPCTL_CNAK);
3151			}
3152		}
3153
3154	}
3155
3156	if (ints & DXEPINT_BACK2BACKSETUP)
3157		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3158
3159	if (ints & DXEPINT_BNAINTR) {
3160		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3161		if (hs_ep->isochronous)
3162			dwc2_gadget_handle_isoc_bna(hs_ep);
3163	}
3164
3165	if (dir_in && !hs_ep->isochronous) {
3166		/* not sure if this is important, but we'll clear it anyway */
3167		if (ints & DXEPINT_INTKNTXFEMP) {
3168			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3169				__func__, idx);
3170		}
3171
3172		/* this probably means something bad is happening */
3173		if (ints & DXEPINT_INTKNEPMIS) {
3174			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3175				 __func__, idx);
3176		}
3177
3178		/* FIFO has space or is empty (see GAHBCFG) */
3179		if (hsotg->dedicated_fifos &&
3180		    ints & DXEPINT_TXFEMP) {
3181			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3182				__func__, idx);
3183			if (!using_dma(hsotg))
3184				dwc2_hsotg_trytx(hsotg, hs_ep);
3185		}
3186	}
3187}
3188
3189/**
3190 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3191 * @hsotg: The device state.
3192 *
3193 * Handle updating the device settings after the enumeration phase has
3194 * been completed.
3195 */
3196static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3197{
3198	u32 dsts = dwc2_readl(hsotg, DSTS);
3199	int ep0_mps = 0, ep_mps = 8;
3200
3201	/*
3202	 * This should signal the finish of the enumeration phase
3203	 * of the USB handshaking, so we should now know what rate
3204	 * we connected at.
3205	 */
3206
3207	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3208
3209	/*
3210	 * note, since we're limited by the size of transfer on EP0, and
3211	 * it seems IN transfers must be a even number of packets we do
3212	 * not advertise a 64byte MPS on EP0.
3213	 */
3214
3215	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3216	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3217	case DSTS_ENUMSPD_FS:
3218	case DSTS_ENUMSPD_FS48:
3219		hsotg->gadget.speed = USB_SPEED_FULL;
3220		ep0_mps = EP0_MPS_LIMIT;
3221		ep_mps = 1023;
3222		break;
3223
3224	case DSTS_ENUMSPD_HS:
3225		hsotg->gadget.speed = USB_SPEED_HIGH;
3226		ep0_mps = EP0_MPS_LIMIT;
3227		ep_mps = 1024;
3228		break;
3229
3230	case DSTS_ENUMSPD_LS:
3231		hsotg->gadget.speed = USB_SPEED_LOW;
3232		ep0_mps = 8;
3233		ep_mps = 8;
3234		/*
3235		 * note, we don't actually support LS in this driver at the
3236		 * moment, and the documentation seems to imply that it isn't
3237		 * supported by the PHYs on some of the devices.
3238		 */
3239		break;
3240	}
3241	dev_info(hsotg->dev, "new device is %s\n",
3242		 usb_speed_string(hsotg->gadget.speed));
3243
3244	/*
3245	 * we should now know the maximum packet size for an
3246	 * endpoint, so set the endpoints to a default value.
3247	 */
3248
3249	if (ep0_mps) {
3250		int i;
3251		/* Initialize ep0 for both in and out directions */
3252		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3253		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3254		for (i = 1; i < hsotg->num_of_eps; i++) {
3255			if (hsotg->eps_in[i])
3256				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3257							    0, 1);
3258			if (hsotg->eps_out[i])
3259				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3260							    0, 0);
3261		}
3262	}
3263
3264	/* ensure after enumeration our EP0 is active */
3265
3266	dwc2_hsotg_enqueue_setup(hsotg);
3267
3268	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3269		dwc2_readl(hsotg, DIEPCTL0),
3270		dwc2_readl(hsotg, DOEPCTL0));
3271}
3272
3273/**
3274 * kill_all_requests - remove all requests from the endpoint's queue
3275 * @hsotg: The device state.
3276 * @ep: The endpoint the requests may be on.
3277 * @result: The result code to use.
3278 *
3279 * Go through the requests on the given endpoint and mark them
3280 * completed with the given result code.
3281 */
3282static void kill_all_requests(struct dwc2_hsotg *hsotg,
3283			      struct dwc2_hsotg_ep *ep,
3284			      int result)
3285{
3286	unsigned int size;
3287
3288	ep->req = NULL;
3289
3290	while (!list_empty(&ep->queue)) {
3291		struct dwc2_hsotg_req *req = get_ep_head(ep);
3292
3293		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3294	}
3295
3296	if (!hsotg->dedicated_fifos)
3297		return;
3298	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3299	if (size < ep->fifo_size)
3300		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3301}
3302
3303/**
3304 * dwc2_hsotg_disconnect - disconnect service
3305 * @hsotg: The device state.
3306 *
3307 * The device has been disconnected. Remove all current
3308 * transactions and signal the gadget driver that this
3309 * has happened.
3310 */
3311void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3312{
3313	unsigned int ep;
3314
3315	if (!hsotg->connected)
3316		return;
3317
3318	hsotg->connected = 0;
3319	hsotg->test_mode = 0;
3320
3321	/* all endpoints should be shutdown */
3322	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3323		if (hsotg->eps_in[ep])
3324			kill_all_requests(hsotg, hsotg->eps_in[ep],
3325					  -ESHUTDOWN);
3326		if (hsotg->eps_out[ep])
3327			kill_all_requests(hsotg, hsotg->eps_out[ep],
3328					  -ESHUTDOWN);
3329	}
3330
3331	call_gadget(hsotg, disconnect);
3332	hsotg->lx_state = DWC2_L3;
3333
3334	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3335}
3336
3337/**
3338 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3339 * @hsotg: The device state:
3340 * @periodic: True if this is a periodic FIFO interrupt
3341 */
3342static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3343{
3344	struct dwc2_hsotg_ep *ep;
3345	int epno, ret;
3346
3347	/* look through for any more data to transmit */
3348	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3349		ep = index_to_ep(hsotg, epno, 1);
3350
3351		if (!ep)
3352			continue;
3353
3354		if (!ep->dir_in)
3355			continue;
3356
3357		if ((periodic && !ep->periodic) ||
3358		    (!periodic && ep->periodic))
3359			continue;
3360
3361		ret = dwc2_hsotg_trytx(hsotg, ep);
3362		if (ret < 0)
3363			break;
3364	}
3365}
3366
3367/* IRQ flags which will trigger a retry around the IRQ loop */
3368#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3369			GINTSTS_PTXFEMP |  \
3370			GINTSTS_RXFLVL)
3371
3372static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3373/**
3374 * dwc2_hsotg_core_init - issue softreset to the core
3375 * @hsotg: The device state
3376 * @is_usb_reset: Usb resetting flag
3377 *
3378 * Issue a soft reset to the core, and await the core finishing it.
3379 */
3380void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3381				       bool is_usb_reset)
3382{
3383	u32 intmsk;
3384	u32 val;
3385	u32 usbcfg;
3386	u32 dcfg = 0;
3387	int ep;
3388
3389	/* Kill any ep0 requests as controller will be reinitialized */
3390	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3391
3392	if (!is_usb_reset) {
3393		if (dwc2_core_reset(hsotg, true))
3394			return;
3395	} else {
3396		/* all endpoints should be shutdown */
3397		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3398			if (hsotg->eps_in[ep])
3399				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3400			if (hsotg->eps_out[ep])
3401				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3402		}
3403	}
3404
3405	/*
3406	 * we must now enable ep0 ready for host detection and then
3407	 * set configuration.
3408	 */
3409
3410	/* keep other bits untouched (so e.g. forced modes are not lost) */
3411	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3412	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3413	usbcfg |= GUSBCFG_TOUTCAL(7);
3414
3415	/* remove the HNP/SRP and set the PHY */
3416	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3417        dwc2_writel(hsotg, usbcfg, GUSBCFG);
3418
3419	dwc2_phy_init(hsotg, true);
3420
3421	dwc2_hsotg_init_fifo(hsotg);
3422
3423	if (!is_usb_reset)
3424		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3425
3426	dcfg |= DCFG_EPMISCNT(1);
3427
3428	switch (hsotg->params.speed) {
3429	case DWC2_SPEED_PARAM_LOW:
3430		dcfg |= DCFG_DEVSPD_LS;
3431		break;
3432	case DWC2_SPEED_PARAM_FULL:
3433		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3434			dcfg |= DCFG_DEVSPD_FS48;
3435		else
3436			dcfg |= DCFG_DEVSPD_FS;
3437		break;
3438	default:
3439		dcfg |= DCFG_DEVSPD_HS;
3440	}
3441
3442	if (hsotg->params.ipg_isoc_en)
3443		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3444
3445	dwc2_writel(hsotg, dcfg,  DCFG);
3446
3447	/* Clear any pending OTG interrupts */
3448	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3449
3450	/* Clear any pending interrupts */
3451	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3452	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3453		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3454		GINTSTS_USBRST | GINTSTS_RESETDET |
3455		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3456		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3457		GINTSTS_LPMTRANRCVD;
3458
3459	if (!using_desc_dma(hsotg))
3460		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3461
3462	if (!hsotg->params.external_id_pin_ctl)
3463		intmsk |= GINTSTS_CONIDSTSCHNG;
3464
3465	dwc2_writel(hsotg, intmsk, GINTMSK);
3466
3467	if (using_dma(hsotg)) {
3468		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3469			    hsotg->params.ahbcfg,
3470			    GAHBCFG);
3471
3472		/* Set DDMA mode support in the core if needed */
3473		if (using_desc_dma(hsotg))
3474			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3475
3476	} else {
3477		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3478						(GAHBCFG_NP_TXF_EMP_LVL |
3479						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3480			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3481	}
3482
3483	/*
3484	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3485	 * when we have no data to transfer. Otherwise we get being flooded by
3486	 * interrupts.
3487	 */
3488
3489	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3490		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3491		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3492		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3493		DIEPMSK);
3494
3495	/*
3496	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3497	 * DMA mode we may need this and StsPhseRcvd.
3498	 */
3499	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3500		DOEPMSK_STSPHSERCVDMSK) : 0) |
3501		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3502		DOEPMSK_SETUPMSK,
3503		DOEPMSK);
3504
3505	/* Enable BNA interrupt for DDMA */
3506	if (using_desc_dma(hsotg)) {
3507		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3508		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3509	}
3510
3511	/* Enable Service Interval mode if supported */
3512	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3513		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3514
3515	dwc2_writel(hsotg, 0, DAINTMSK);
3516
3517	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3518		dwc2_readl(hsotg, DIEPCTL0),
3519		dwc2_readl(hsotg, DOEPCTL0));
3520
3521	/* enable in and out endpoint interrupts */
3522	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3523
3524	/*
3525	 * Enable the RXFIFO when in slave mode, as this is how we collect
3526	 * the data. In DMA mode, we get events from the FIFO but also
3527	 * things we cannot process, so do not use it.
3528	 */
3529	if (!using_dma(hsotg))
3530		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3531
3532	/* Enable interrupts for EP0 in and out */
3533	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3534	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3535
3536	if (!is_usb_reset) {
3537		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3538		udelay(10);  /* see openiboot */
3539		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3540	}
3541
3542	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3543
3544	/*
3545	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3546	 * writing to the EPCTL register..
3547	 */
3548
3549	/* set to read 1 8byte packet */
3550	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3551	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3552
3553	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3554	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3555	       DXEPCTL_USBACTEP,
3556	       DOEPCTL0);
3557
3558	/* enable, but don't activate EP0in */
3559	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3560	       DXEPCTL_USBACTEP, DIEPCTL0);
3561
3562	/* clear global NAKs */
3563	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3564	if (!is_usb_reset)
3565		val |= DCTL_SFTDISCON;
3566	dwc2_set_bit(hsotg, DCTL, val);
3567
3568	/* configure the core to support LPM */
3569	dwc2_gadget_init_lpm(hsotg);
3570
3571	/* program GREFCLK register if needed */
3572	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3573		dwc2_gadget_program_ref_clk(hsotg);
3574
3575	/* must be at-least 3ms to allow bus to see disconnect */
3576	mdelay(3);
3577
3578	hsotg->lx_state = DWC2_L0;
3579
3580	dwc2_hsotg_enqueue_setup(hsotg);
3581
3582	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3583		dwc2_readl(hsotg, DIEPCTL0),
3584		dwc2_readl(hsotg, DOEPCTL0));
3585}
3586
3587void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3588{
3589	/* set the soft-disconnect bit */
3590	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3591}
3592
3593void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3594{
3595	/* remove the soft-disconnect and let's go */
3596	if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3597		dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3598}
3599
3600/**
3601 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3602 * @hsotg: The device state:
3603 *
3604 * This interrupt indicates one of the following conditions occurred while
3605 * transmitting an ISOC transaction.
3606 * - Corrupted IN Token for ISOC EP.
3607 * - Packet not complete in FIFO.
3608 *
3609 * The following actions will be taken:
3610 * - Determine the EP
3611 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3612 */
3613static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3614{
3615	struct dwc2_hsotg_ep *hs_ep;
3616	u32 epctrl;
3617	u32 daintmsk;
3618	u32 idx;
3619
3620	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3621
3622	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3623
3624	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3625		hs_ep = hsotg->eps_in[idx];
3626		/* Proceed only unmasked ISOC EPs */
3627		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3628			continue;
3629
3630		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3631		if ((epctrl & DXEPCTL_EPENA) &&
3632		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3633			epctrl |= DXEPCTL_SNAK;
3634			epctrl |= DXEPCTL_EPDIS;
3635			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3636		}
3637	}
3638
3639	/* Clear interrupt */
3640	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3641}
3642
3643/**
3644 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3645 * @hsotg: The device state:
3646 *
3647 * This interrupt indicates one of the following conditions occurred while
3648 * transmitting an ISOC transaction.
3649 * - Corrupted OUT Token for ISOC EP.
3650 * - Packet not complete in FIFO.
3651 *
3652 * The following actions will be taken:
3653 * - Determine the EP
3654 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3655 */
3656static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3657{
3658	u32 gintsts;
3659	u32 gintmsk;
3660	u32 daintmsk;
3661	u32 epctrl;
3662	struct dwc2_hsotg_ep *hs_ep;
3663	int idx;
3664
3665	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3666
3667	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3668	daintmsk >>= DAINT_OUTEP_SHIFT;
3669
3670	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3671		hs_ep = hsotg->eps_out[idx];
3672		/* Proceed only unmasked ISOC EPs */
3673		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3674			continue;
3675
3676		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3677		if ((epctrl & DXEPCTL_EPENA) &&
3678		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3679			/* Unmask GOUTNAKEFF interrupt */
3680			gintmsk = dwc2_readl(hsotg, GINTMSK);
3681			gintmsk |= GINTSTS_GOUTNAKEFF;
3682			dwc2_writel(hsotg, gintmsk, GINTMSK);
3683
3684			gintsts = dwc2_readl(hsotg, GINTSTS);
3685			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3686				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3687				break;
3688			}
3689		}
3690	}
3691
3692	/* Clear interrupt */
3693	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3694}
3695
3696/**
3697 * dwc2_hsotg_irq - handle device interrupt
3698 * @irq: The IRQ number triggered
3699 * @pw: The pw value when registered the handler.
3700 */
3701static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3702{
3703	struct dwc2_hsotg *hsotg = pw;
3704	int retry_count = 8;
3705	u32 gintsts;
3706	u32 gintmsk;
3707
3708	if (!dwc2_is_device_mode(hsotg))
3709		return IRQ_NONE;
3710
3711	spin_lock(&hsotg->lock);
3712irq_retry:
3713	gintsts = dwc2_readl(hsotg, GINTSTS);
3714	gintmsk = dwc2_readl(hsotg, GINTMSK);
3715
3716	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3717		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3718
3719	gintsts &= gintmsk;
3720
3721	if (gintsts & GINTSTS_RESETDET) {
3722		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3723
3724		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3725
3726		/* This event must be used only if controller is suspended */
3727		if (hsotg->lx_state == DWC2_L2) {
3728			dwc2_exit_partial_power_down(hsotg, true);
3729			hsotg->lx_state = DWC2_L0;
3730		}
3731	}
3732
3733	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3734		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3735		u32 connected = hsotg->connected;
3736
3737		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3738		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3739			dwc2_readl(hsotg, GNPTXSTS));
3740
3741		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3742
3743		/* Report disconnection if it is not already done. */
3744		dwc2_hsotg_disconnect(hsotg);
3745
3746		/* Reset device address to zero */
3747		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3748
3749		if (usb_status & GOTGCTL_BSESVLD && connected)
3750			dwc2_hsotg_core_init_disconnected(hsotg, true);
3751	}
3752
3753	if (gintsts & GINTSTS_ENUMDONE) {
3754		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3755
3756		dwc2_hsotg_irq_enumdone(hsotg);
3757	}
3758
3759	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3760		u32 daint = dwc2_readl(hsotg, DAINT);
3761		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3762		u32 daint_out, daint_in;
3763		int ep;
3764
3765		daint &= daintmsk;
3766		daint_out = daint >> DAINT_OUTEP_SHIFT;
3767		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3768
3769		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3770
3771		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3772						ep++, daint_out >>= 1) {
3773			if (daint_out & 1)
3774				dwc2_hsotg_epint(hsotg, ep, 0);
3775		}
3776
3777		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3778						ep++, daint_in >>= 1) {
3779			if (daint_in & 1)
3780				dwc2_hsotg_epint(hsotg, ep, 1);
3781		}
3782	}
3783
3784	/* check both FIFOs */
3785
3786	if (gintsts & GINTSTS_NPTXFEMP) {
3787		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3788
3789		/*
3790		 * Disable the interrupt to stop it happening again
3791		 * unless one of these endpoint routines decides that
3792		 * it needs re-enabling
3793		 */
3794
3795		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3796		dwc2_hsotg_irq_fifoempty(hsotg, false);
3797	}
3798
3799	if (gintsts & GINTSTS_PTXFEMP) {
3800		dev_dbg(hsotg->dev, "PTxFEmp\n");
3801
3802		/* See note in GINTSTS_NPTxFEmp */
3803
3804		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3805		dwc2_hsotg_irq_fifoempty(hsotg, true);
3806	}
3807
3808	if (gintsts & GINTSTS_RXFLVL) {
3809		/*
3810		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3811		 * we need to retry dwc2_hsotg_handle_rx if this is still
3812		 * set.
3813		 */
3814
3815		dwc2_hsotg_handle_rx(hsotg);
3816	}
3817
3818	if (gintsts & GINTSTS_ERLYSUSP) {
3819		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3820		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3821	}
3822
3823	/*
3824	 * these next two seem to crop-up occasionally causing the core
3825	 * to shutdown the USB transfer, so try clearing them and logging
3826	 * the occurrence.
3827	 */
3828
3829	if (gintsts & GINTSTS_GOUTNAKEFF) {
3830		u8 idx;
3831		u32 epctrl;
3832		u32 gintmsk;
3833		u32 daintmsk;
3834		struct dwc2_hsotg_ep *hs_ep;
3835
3836		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3837		daintmsk >>= DAINT_OUTEP_SHIFT;
3838		/* Mask this interrupt */
3839		gintmsk = dwc2_readl(hsotg, GINTMSK);
3840		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3841		dwc2_writel(hsotg, gintmsk, GINTMSK);
3842
3843		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3844		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3845			hs_ep = hsotg->eps_out[idx];
3846			/* Proceed only unmasked ISOC EPs */
3847			if (BIT(idx) & ~daintmsk)
3848				continue;
3849
3850			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3851
3852			//ISOC Ep's only
3853			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3854				epctrl |= DXEPCTL_SNAK;
3855				epctrl |= DXEPCTL_EPDIS;
3856				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3857				continue;
3858			}
3859
3860			//Non-ISOC EP's
3861			if (hs_ep->halted) {
3862				if (!(epctrl & DXEPCTL_EPENA))
3863					epctrl |= DXEPCTL_EPENA;
3864				epctrl |= DXEPCTL_EPDIS;
3865				epctrl |= DXEPCTL_STALL;
3866				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3867			}
3868		}
3869
3870		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3871	}
3872
3873	if (gintsts & GINTSTS_GINNAKEFF) {
3874		dev_info(hsotg->dev, "GINNakEff triggered\n");
3875
3876		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3877
3878		dwc2_hsotg_dump(hsotg);
3879	}
3880
3881	if (gintsts & GINTSTS_INCOMPL_SOIN)
3882		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3883
3884	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3885		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3886
3887	/*
3888	 * if we've had fifo events, we should try and go around the
3889	 * loop again to see if there's any point in returning yet.
3890	 */
3891
3892	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3893		goto irq_retry;
3894
3895	/* Check WKUP_ALERT interrupt*/
3896	if (hsotg->params.service_interval)
3897		dwc2_gadget_wkup_alert_handler(hsotg);
3898
3899	spin_unlock(&hsotg->lock);
3900
3901	return IRQ_HANDLED;
3902}
3903
3904static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3905				   struct dwc2_hsotg_ep *hs_ep)
3906{
3907	u32 epctrl_reg;
3908	u32 epint_reg;
3909
3910	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3911		DOEPCTL(hs_ep->index);
3912	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3913		DOEPINT(hs_ep->index);
3914
3915	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3916		hs_ep->name);
3917
3918	if (hs_ep->dir_in) {
3919		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3920			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3921			/* Wait for Nak effect */
3922			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3923						    DXEPINT_INEPNAKEFF, 100))
3924				dev_warn(hsotg->dev,
3925					 "%s: timeout DIEPINT.NAKEFF\n",
3926					 __func__);
3927		} else {
3928			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3929			/* Wait for Nak effect */
3930			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3931						    GINTSTS_GINNAKEFF, 100))
3932				dev_warn(hsotg->dev,
3933					 "%s: timeout GINTSTS.GINNAKEFF\n",
3934					 __func__);
3935		}
3936	} else {
3937		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3938		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3939
3940		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3941			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3942
3943		if (!using_dma(hsotg)) {
3944			/* Wait for GINTSTS_RXFLVL interrupt */
3945			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3946						    GINTSTS_RXFLVL, 100)) {
3947				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3948					 __func__);
3949			} else {
3950				/*
3951				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3952				 * to assert GOUTNAKEFF interrupt
3953				 */
3954				dwc2_readl(hsotg, GRXSTSP);
3955			}
3956		}
3957
3958		/* Wait for global nak to take effect */
3959		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3960					    GINTSTS_GOUTNAKEFF, 100))
3961			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3962				 __func__);
3963	}
3964
3965	/* Disable ep */
3966	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3967
3968	/* Wait for ep to be disabled */
3969	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3970		dev_warn(hsotg->dev,
3971			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3972
3973	/* Clear EPDISBLD interrupt */
3974	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3975
3976	if (hs_ep->dir_in) {
3977		unsigned short fifo_index;
3978
3979		if (hsotg->dedicated_fifos || hs_ep->periodic)
3980			fifo_index = hs_ep->fifo_index;
3981		else
3982			fifo_index = 0;
3983
3984		/* Flush TX FIFO */
3985		dwc2_flush_tx_fifo(hsotg, fifo_index);
3986
3987		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3988		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3989			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3990
3991	} else {
3992		/* Remove global NAKs */
3993		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3994	}
3995}
3996
3997/**
3998 * dwc2_hsotg_ep_enable - enable the given endpoint
3999 * @ep: The USB endpint to configure
4000 * @desc: The USB endpoint descriptor to configure with.
4001 *
4002 * This is called from the USB gadget code's usb_ep_enable().
4003 */
4004static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4005				const struct usb_endpoint_descriptor *desc)
4006{
4007	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4008	struct dwc2_hsotg *hsotg = hs_ep->parent;
4009	unsigned long flags;
4010	unsigned int index = hs_ep->index;
4011	u32 epctrl_reg;
4012	u32 epctrl;
4013	u32 mps;
4014	u32 mc;
4015	u32 mask;
4016	unsigned int dir_in;
4017	unsigned int i, val, size;
4018	int ret = 0;
4019	unsigned char ep_type;
4020	int desc_num;
4021
4022	dev_dbg(hsotg->dev,
4023		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4024		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4025		desc->wMaxPacketSize, desc->bInterval);
4026
4027	/* not to be called for EP0 */
4028	if (index == 0) {
4029		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4030		return -EINVAL;
4031	}
4032
4033	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4034	if (dir_in != hs_ep->dir_in) {
4035		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4036		return -EINVAL;
4037	}
4038
4039	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4040	mps = usb_endpoint_maxp(desc);
4041	mc = usb_endpoint_maxp_mult(desc);
4042
4043	/* ISOC IN in DDMA supported bInterval up to 10 */
4044	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4045	    dir_in && desc->bInterval > 10) {
4046		dev_err(hsotg->dev,
4047			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4048		return -EINVAL;
4049	}
4050
4051	/* High bandwidth ISOC OUT in DDMA not supported */
4052	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4053	    !dir_in && mc > 1) {
4054		dev_err(hsotg->dev,
4055			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4056		return -EINVAL;
4057	}
4058
4059	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4060
4061	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4062	epctrl = dwc2_readl(hsotg, epctrl_reg);
4063
4064	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4065		__func__, epctrl, epctrl_reg);
4066
4067	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4068		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4069	else
4070		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4071
4072	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4073	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4074		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4075			desc_num * sizeof(struct dwc2_dma_desc),
4076			&hs_ep->desc_list_dma, GFP_ATOMIC);
4077		if (!hs_ep->desc_list) {
4078			ret = -ENOMEM;
4079			goto error2;
4080		}
4081	}
4082
4083	spin_lock_irqsave(&hsotg->lock, flags);
4084
4085	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4086	epctrl |= DXEPCTL_MPS(mps);
4087
4088	/*
4089	 * mark the endpoint as active, otherwise the core may ignore
4090	 * transactions entirely for this endpoint
4091	 */
4092	epctrl |= DXEPCTL_USBACTEP;
4093
4094	/* update the endpoint state */
4095	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4096
4097	/* default, set to non-periodic */
4098	hs_ep->isochronous = 0;
4099	hs_ep->periodic = 0;
4100	hs_ep->halted = 0;
4101	hs_ep->interval = desc->bInterval;
4102
4103	switch (ep_type) {
4104	case USB_ENDPOINT_XFER_ISOC:
4105		epctrl |= DXEPCTL_EPTYPE_ISO;
4106		epctrl |= DXEPCTL_SETEVENFR;
4107		hs_ep->isochronous = 1;
4108		hs_ep->interval = 1 << (desc->bInterval - 1);
4109		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4110		hs_ep->next_desc = 0;
4111		hs_ep->compl_desc = 0;
4112		if (dir_in) {
4113			hs_ep->periodic = 1;
4114			mask = dwc2_readl(hsotg, DIEPMSK);
4115			mask |= DIEPMSK_NAKMSK;
4116			dwc2_writel(hsotg, mask, DIEPMSK);
4117		} else {
4118			epctrl |= DXEPCTL_SNAK;
4119			mask = dwc2_readl(hsotg, DOEPMSK);
4120			mask |= DOEPMSK_OUTTKNEPDISMSK;
4121			dwc2_writel(hsotg, mask, DOEPMSK);
4122		}
4123		break;
4124
4125	case USB_ENDPOINT_XFER_BULK:
4126		epctrl |= DXEPCTL_EPTYPE_BULK;
4127		break;
4128
4129	case USB_ENDPOINT_XFER_INT:
4130		if (dir_in)
4131			hs_ep->periodic = 1;
4132
4133		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4134			hs_ep->interval = 1 << (desc->bInterval - 1);
4135
4136		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4137		break;
4138
4139	case USB_ENDPOINT_XFER_CONTROL:
4140		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4141		break;
4142	}
4143
4144	/*
4145	 * if the hardware has dedicated fifos, we must give each IN EP
4146	 * a unique tx-fifo even if it is non-periodic.
4147	 */
4148	if (dir_in && hsotg->dedicated_fifos) {
4149		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4150		u32 fifo_index = 0;
4151		u32 fifo_size = UINT_MAX;
4152
4153		size = hs_ep->ep.maxpacket * hs_ep->mc;
4154		for (i = 1; i <= fifo_count; ++i) {
4155			if (hsotg->fifo_map & (1 << i))
4156				continue;
4157			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4158			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4159			if (val < size)
4160				continue;
4161			/* Search for smallest acceptable fifo */
4162			if (val < fifo_size) {
4163				fifo_size = val;
4164				fifo_index = i;
4165			}
4166		}
4167		if (!fifo_index) {
4168			dev_err(hsotg->dev,
4169				"%s: No suitable fifo found\n", __func__);
4170			ret = -ENOMEM;
4171			goto error1;
4172		}
4173		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4174		hsotg->fifo_map |= 1 << fifo_index;
4175		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4176		hs_ep->fifo_index = fifo_index;
4177		hs_ep->fifo_size = fifo_size;
4178	}
4179
4180	/* for non control endpoints, set PID to D0 */
4181	if (index && !hs_ep->isochronous)
4182		epctrl |= DXEPCTL_SETD0PID;
4183
4184	/* WA for Full speed ISOC IN in DDMA mode.
4185	 * By Clear NAK status of EP, core will send ZLP
4186	 * to IN token and assert NAK interrupt relying
4187	 * on TxFIFO status only
4188	 */
4189
4190	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4191	    hs_ep->isochronous && dir_in) {
4192		/* The WA applies only to core versions from 2.72a
4193		 * to 4.00a (including both). Also for FS_IOT_1.00a
4194		 * and HS_IOT_1.00a.
4195		 */
4196		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4197
4198		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4199		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4200		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4201		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4202			epctrl |= DXEPCTL_CNAK;
4203	}
4204
4205	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4206		__func__, epctrl);
4207
4208	dwc2_writel(hsotg, epctrl, epctrl_reg);
4209	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4210		__func__, dwc2_readl(hsotg, epctrl_reg));
4211
4212	/* enable the endpoint interrupt */
4213	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4214
4215error1:
4216	spin_unlock_irqrestore(&hsotg->lock, flags);
4217
4218error2:
4219	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4220		dmam_free_coherent(hsotg->dev, desc_num *
4221			sizeof(struct dwc2_dma_desc),
4222			hs_ep->desc_list, hs_ep->desc_list_dma);
4223		hs_ep->desc_list = NULL;
4224	}
4225
4226	return ret;
4227}
4228
4229/**
4230 * dwc2_hsotg_ep_disable - disable given endpoint
4231 * @ep: The endpoint to disable.
4232 */
4233static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4234{
4235	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4236	struct dwc2_hsotg *hsotg = hs_ep->parent;
4237	int dir_in = hs_ep->dir_in;
4238	int index = hs_ep->index;
4239	u32 epctrl_reg;
4240	u32 ctrl;
4241
4242	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4243
4244	if (ep == &hsotg->eps_out[0]->ep) {
4245		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4246		return -EINVAL;
4247	}
4248
4249	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4250		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4251		return -EINVAL;
4252	}
4253
4254	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4255
4256	ctrl = dwc2_readl(hsotg, epctrl_reg);
4257
4258	if (ctrl & DXEPCTL_EPENA)
4259		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4260
4261	ctrl &= ~DXEPCTL_EPENA;
4262	ctrl &= ~DXEPCTL_USBACTEP;
4263	ctrl |= DXEPCTL_SNAK;
4264
4265	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4266	dwc2_writel(hsotg, ctrl, epctrl_reg);
4267
4268	/* disable endpoint interrupts */
4269	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4270
4271	/* terminate all requests with shutdown */
4272	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4273
4274	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4275	hs_ep->fifo_index = 0;
4276	hs_ep->fifo_size = 0;
4277
4278	return 0;
4279}
4280
4281static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4282{
4283	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4284	struct dwc2_hsotg *hsotg = hs_ep->parent;
4285	unsigned long flags;
4286	int ret;
4287
4288	spin_lock_irqsave(&hsotg->lock, flags);
4289	ret = dwc2_hsotg_ep_disable(ep);
4290	spin_unlock_irqrestore(&hsotg->lock, flags);
4291	return ret;
4292}
4293
4294/**
4295 * on_list - check request is on the given endpoint
4296 * @ep: The endpoint to check.
4297 * @test: The request to test if it is on the endpoint.
4298 */
4299static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4300{
4301	struct dwc2_hsotg_req *req, *treq;
4302
4303	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4304		if (req == test)
4305			return true;
4306	}
4307
4308	return false;
4309}
4310
4311/**
4312 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4313 * @ep: The endpoint to dequeue.
4314 * @req: The request to be removed from a queue.
4315 */
4316static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4317{
4318	struct dwc2_hsotg_req *hs_req = our_req(req);
4319	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4320	struct dwc2_hsotg *hs = hs_ep->parent;
4321	unsigned long flags;
4322
4323	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4324
4325	spin_lock_irqsave(&hs->lock, flags);
4326
4327	if (!on_list(hs_ep, hs_req)) {
4328		spin_unlock_irqrestore(&hs->lock, flags);
4329		return -EINVAL;
4330	}
4331
4332	/* Dequeue already started request */
4333	if (req == &hs_ep->req->req)
4334		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4335
4336	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4337	spin_unlock_irqrestore(&hs->lock, flags);
4338
4339	return 0;
4340}
4341
4342/**
4343 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4344 * @ep: The endpoint to set halt.
4345 * @value: Set or unset the halt.
4346 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4347 *       the endpoint is busy processing requests.
4348 *
4349 * We need to stall the endpoint immediately if request comes from set_feature
4350 * protocol command handler.
4351 */
4352static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4353{
4354	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4355	struct dwc2_hsotg *hs = hs_ep->parent;
4356	int index = hs_ep->index;
4357	u32 epreg;
4358	u32 epctl;
4359	u32 xfertype;
4360
4361	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4362
4363	if (index == 0) {
4364		if (value)
4365			dwc2_hsotg_stall_ep0(hs);
4366		else
4367			dev_warn(hs->dev,
4368				 "%s: can't clear halt on ep0\n", __func__);
4369		return 0;
4370	}
4371
4372	if (hs_ep->isochronous) {
4373		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4374		return -EINVAL;
4375	}
4376
4377	if (!now && value && !list_empty(&hs_ep->queue)) {
4378		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4379			ep->name);
4380		return -EAGAIN;
4381	}
4382
4383	if (hs_ep->dir_in) {
4384		epreg = DIEPCTL(index);
4385		epctl = dwc2_readl(hs, epreg);
4386
4387		if (value) {
4388			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4389			if (epctl & DXEPCTL_EPENA)
4390				epctl |= DXEPCTL_EPDIS;
4391		} else {
4392			epctl &= ~DXEPCTL_STALL;
4393			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4394			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4395			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4396				epctl |= DXEPCTL_SETD0PID;
4397		}
4398		dwc2_writel(hs, epctl, epreg);
4399	} else {
4400		epreg = DOEPCTL(index);
4401		epctl = dwc2_readl(hs, epreg);
4402
4403		if (value) {
4404			/* Unmask GOUTNAKEFF interrupt */
4405			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4406
4407			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4408				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4409			// STALL bit will be set in GOUTNAKEFF interrupt handler
4410		} else {
4411			epctl &= ~DXEPCTL_STALL;
4412			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4413			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4414			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4415				epctl |= DXEPCTL_SETD0PID;
4416			dwc2_writel(hs, epctl, epreg);
4417		}
4418	}
4419
4420	hs_ep->halted = value;
4421	return 0;
4422}
4423
4424/**
4425 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4426 * @ep: The endpoint to set halt.
4427 * @value: Set or unset the halt.
4428 */
4429static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4430{
4431	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4432	struct dwc2_hsotg *hs = hs_ep->parent;
4433	unsigned long flags = 0;
4434	int ret = 0;
4435
4436	spin_lock_irqsave(&hs->lock, flags);
4437	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4438	spin_unlock_irqrestore(&hs->lock, flags);
4439
4440	return ret;
4441}
4442
4443static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4444	.enable		= dwc2_hsotg_ep_enable,
4445	.disable	= dwc2_hsotg_ep_disable_lock,
4446	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4447	.free_request	= dwc2_hsotg_ep_free_request,
4448	.queue		= dwc2_hsotg_ep_queue_lock,
4449	.dequeue	= dwc2_hsotg_ep_dequeue,
4450	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4451	/* note, don't believe we have any call for the fifo routines */
4452};
4453
4454/**
4455 * dwc2_hsotg_init - initialize the usb core
4456 * @hsotg: The driver state
4457 */
4458static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4459{
4460	/* unmask subset of endpoint interrupts */
4461
4462	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4463		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4464		    DIEPMSK);
4465
4466	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4467		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4468		    DOEPMSK);
4469
4470	dwc2_writel(hsotg, 0, DAINTMSK);
4471
4472	/* Be in disconnected state until gadget is registered */
4473	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4474
4475	/* setup fifos */
4476
4477	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4478		dwc2_readl(hsotg, GRXFSIZ),
4479		dwc2_readl(hsotg, GNPTXFSIZ));
4480
4481	dwc2_hsotg_init_fifo(hsotg);
4482
4483	if (using_dma(hsotg))
4484		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4485}
4486
4487/**
4488 * dwc2_hsotg_udc_start - prepare the udc for work
4489 * @gadget: The usb gadget state
4490 * @driver: The usb gadget driver
4491 *
4492 * Perform initialization to prepare udc device and driver
4493 * to work.
4494 */
4495static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4496				struct usb_gadget_driver *driver)
4497{
4498	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4499	unsigned long flags;
4500	int ret;
4501
4502	if (!hsotg) {
4503		pr_err("%s: called with no device\n", __func__);
4504		return -ENODEV;
4505	}
4506
4507	if (!driver) {
4508		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4509		return -EINVAL;
4510	}
4511
4512	if (driver->max_speed < USB_SPEED_FULL)
4513		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4514
4515	if (!driver->setup) {
4516		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4517		return -EINVAL;
4518	}
4519
4520	WARN_ON(hsotg->driver);
4521
4522	hsotg->driver = driver;
4523	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4524	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4525
4526	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4527		ret = dwc2_lowlevel_hw_enable(hsotg);
4528		if (ret)
4529			goto err;
4530	}
4531
4532	if (!IS_ERR_OR_NULL(hsotg->uphy))
4533		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4534
4535	spin_lock_irqsave(&hsotg->lock, flags);
4536	if (dwc2_hw_is_device(hsotg)) {
4537		dwc2_hsotg_init(hsotg);
4538		dwc2_hsotg_core_init_disconnected(hsotg, false);
4539	}
4540
4541	hsotg->enabled = 0;
4542	spin_unlock_irqrestore(&hsotg->lock, flags);
4543
4544	gadget->sg_supported = using_desc_dma(hsotg);
4545	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4546
4547	return 0;
4548
4549err:
4550	hsotg->driver = NULL;
4551	return ret;
4552}
4553
4554/**
4555 * dwc2_hsotg_udc_stop - stop the udc
4556 * @gadget: The usb gadget state
4557 *
4558 * Stop udc hw block and stay tunned for future transmissions
4559 */
4560static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4561{
4562	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4563	unsigned long flags = 0;
4564	int ep;
4565
4566	if (!hsotg)
4567		return -ENODEV;
4568
4569	/* all endpoints should be shutdown */
4570	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4571		if (hsotg->eps_in[ep])
4572			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4573		if (hsotg->eps_out[ep])
4574			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4575	}
4576
4577	spin_lock_irqsave(&hsotg->lock, flags);
4578
4579	hsotg->driver = NULL;
4580	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4581	hsotg->enabled = 0;
4582
4583	spin_unlock_irqrestore(&hsotg->lock, flags);
4584
4585	if (!IS_ERR_OR_NULL(hsotg->uphy))
4586		otg_set_peripheral(hsotg->uphy->otg, NULL);
4587
4588	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4589		dwc2_lowlevel_hw_disable(hsotg);
4590
4591	return 0;
4592}
4593
4594/**
4595 * dwc2_hsotg_gadget_getframe - read the frame number
4596 * @gadget: The usb gadget state
4597 *
4598 * Read the {micro} frame number
4599 */
4600static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4601{
4602	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4603}
4604
4605/**
4606 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4607 * @gadget: The usb gadget state
4608 * @is_selfpowered: Whether the device is self-powered
4609 *
4610 * Set if the device is self or bus powered.
4611 */
4612static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4613				      int is_selfpowered)
4614{
4615	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4616	unsigned long flags;
4617
4618	spin_lock_irqsave(&hsotg->lock, flags);
4619	gadget->is_selfpowered = !!is_selfpowered;
4620	spin_unlock_irqrestore(&hsotg->lock, flags);
4621
4622	return 0;
4623}
4624
4625/**
4626 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4627 * @gadget: The usb gadget state
4628 * @is_on: Current state of the USB PHY
4629 *
4630 * Connect/Disconnect the USB PHY pullup
4631 */
4632static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4633{
4634	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4635	unsigned long flags = 0;
4636
4637	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4638		hsotg->op_state);
4639
4640	/* Don't modify pullup state while in host mode */
4641	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4642		hsotg->enabled = is_on;
4643		return 0;
4644	}
4645
4646	spin_lock_irqsave(&hsotg->lock, flags);
4647	if (is_on) {
4648		hsotg->enabled = 1;
4649		dwc2_hsotg_core_init_disconnected(hsotg, false);
4650		/* Enable ACG feature in device mode,if supported */
4651		dwc2_enable_acg(hsotg);
4652		dwc2_hsotg_core_connect(hsotg);
4653	} else {
4654		dwc2_hsotg_core_disconnect(hsotg);
4655		dwc2_hsotg_disconnect(hsotg);
4656		hsotg->enabled = 0;
4657	}
4658
4659	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4660	spin_unlock_irqrestore(&hsotg->lock, flags);
4661
4662	return 0;
4663}
4664
4665static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4666{
4667	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4668	unsigned long flags;
4669
4670	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4671	spin_lock_irqsave(&hsotg->lock, flags);
4672
4673	/*
4674	 * If controller is hibernated, it must exit from power_down
4675	 * before being initialized / de-initialized
4676	 */
4677	if (hsotg->lx_state == DWC2_L2)
4678		dwc2_exit_partial_power_down(hsotg, false);
4679
4680	if (is_active) {
4681		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4682
4683		dwc2_hsotg_core_init_disconnected(hsotg, false);
4684		if (hsotg->enabled) {
4685			/* Enable ACG feature in device mode,if supported */
4686			dwc2_enable_acg(hsotg);
4687			dwc2_hsotg_core_connect(hsotg);
4688		}
4689	} else {
4690		dwc2_hsotg_core_disconnect(hsotg);
4691		dwc2_hsotg_disconnect(hsotg);
4692	}
4693
4694	spin_unlock_irqrestore(&hsotg->lock, flags);
4695	return 0;
4696}
4697
4698/**
4699 * dwc2_hsotg_vbus_draw - report bMaxPower field
4700 * @gadget: The usb gadget state
4701 * @mA: Amount of current
4702 *
4703 * Report how much power the device may consume to the phy.
4704 */
4705static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4706{
4707	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4708
4709	if (IS_ERR_OR_NULL(hsotg->uphy))
4710		return -ENOTSUPP;
4711	return usb_phy_set_power(hsotg->uphy, mA);
4712}
4713
4714static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4715	.get_frame	= dwc2_hsotg_gadget_getframe,
4716	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4717	.udc_start		= dwc2_hsotg_udc_start,
4718	.udc_stop		= dwc2_hsotg_udc_stop,
4719	.pullup                 = dwc2_hsotg_pullup,
4720	.vbus_session		= dwc2_hsotg_vbus_session,
4721	.vbus_draw		= dwc2_hsotg_vbus_draw,
4722};
4723
4724/**
4725 * dwc2_hsotg_initep - initialise a single endpoint
4726 * @hsotg: The device state.
4727 * @hs_ep: The endpoint to be initialised.
4728 * @epnum: The endpoint number
4729 * @dir_in: True if direction is in.
4730 *
4731 * Initialise the given endpoint (as part of the probe and device state
4732 * creation) to give to the gadget driver. Setup the endpoint name, any
4733 * direction information and other state that may be required.
4734 */
4735static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4736			      struct dwc2_hsotg_ep *hs_ep,
4737				       int epnum,
4738				       bool dir_in)
4739{
4740	char *dir;
4741
4742	if (epnum == 0)
4743		dir = "";
4744	else if (dir_in)
4745		dir = "in";
4746	else
4747		dir = "out";
4748
4749	hs_ep->dir_in = dir_in;
4750	hs_ep->index = epnum;
4751
4752	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4753
4754	INIT_LIST_HEAD(&hs_ep->queue);
4755	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4756
4757	/* add to the list of endpoints known by the gadget driver */
4758	if (epnum)
4759		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4760
4761	hs_ep->parent = hsotg;
4762	hs_ep->ep.name = hs_ep->name;
4763
4764	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4765		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4766	else
4767		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4768					   epnum ? 1024 : EP0_MPS_LIMIT);
4769	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4770
4771	if (epnum == 0) {
4772		hs_ep->ep.caps.type_control = true;
4773	} else {
4774		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4775			hs_ep->ep.caps.type_iso = true;
4776			hs_ep->ep.caps.type_bulk = true;
4777		}
4778		hs_ep->ep.caps.type_int = true;
4779	}
4780
4781	if (dir_in)
4782		hs_ep->ep.caps.dir_in = true;
4783	else
4784		hs_ep->ep.caps.dir_out = true;
4785
4786	/*
4787	 * if we're using dma, we need to set the next-endpoint pointer
4788	 * to be something valid.
4789	 */
4790
4791	if (using_dma(hsotg)) {
4792		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4793
4794		if (dir_in)
4795			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4796		else
4797			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4798	}
4799}
4800
4801/**
4802 * dwc2_hsotg_hw_cfg - read HW configuration registers
4803 * @hsotg: Programming view of the DWC_otg controller
4804 *
4805 * Read the USB core HW configuration registers
4806 */
4807static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4808{
4809	u32 cfg;
4810	u32 ep_type;
4811	u32 i;
4812
4813	/* check hardware configuration */
4814
4815	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4816
4817	/* Add ep0 */
4818	hsotg->num_of_eps++;
4819
4820	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4821					sizeof(struct dwc2_hsotg_ep),
4822					GFP_KERNEL);
4823	if (!hsotg->eps_in[0])
4824		return -ENOMEM;
4825	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4826	hsotg->eps_out[0] = hsotg->eps_in[0];
4827
4828	cfg = hsotg->hw_params.dev_ep_dirs;
4829	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4830		ep_type = cfg & 3;
4831		/* Direction in or both */
4832		if (!(ep_type & 2)) {
4833			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4834				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4835			if (!hsotg->eps_in[i])
4836				return -ENOMEM;
4837		}
4838		/* Direction out or both */
4839		if (!(ep_type & 1)) {
4840			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4841				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4842			if (!hsotg->eps_out[i])
4843				return -ENOMEM;
4844		}
4845	}
4846
4847	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4848	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4849
4850	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4851		 hsotg->num_of_eps,
4852		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4853		 hsotg->fifo_mem);
4854	return 0;
4855}
4856
4857/**
4858 * dwc2_hsotg_dump - dump state of the udc
4859 * @hsotg: Programming view of the DWC_otg controller
4860 *
4861 */
4862static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4863{
4864#ifdef DEBUG
4865	struct device *dev = hsotg->dev;
4866	u32 val;
4867	int idx;
4868
4869	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4870		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4871		 dwc2_readl(hsotg, DIEPMSK));
4872
4873	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4874		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4875
4876	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4877		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4878
4879	/* show periodic fifo settings */
4880
4881	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4882		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4883		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4884			 val >> FIFOSIZE_DEPTH_SHIFT,
4885			 val & FIFOSIZE_STARTADDR_MASK);
4886	}
4887
4888	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4889		dev_info(dev,
4890			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4891			 dwc2_readl(hsotg, DIEPCTL(idx)),
4892			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4893			 dwc2_readl(hsotg, DIEPDMA(idx)));
4894
4895		val = dwc2_readl(hsotg, DOEPCTL(idx));
4896		dev_info(dev,
4897			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4898			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4899			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4900			 dwc2_readl(hsotg, DOEPDMA(idx)));
4901	}
4902
4903	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4904		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4905#endif
4906}
4907
4908/**
4909 * dwc2_gadget_init - init function for gadget
4910 * @hsotg: Programming view of the DWC_otg controller
4911 *
4912 */
4913int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4914{
4915	struct device *dev = hsotg->dev;
4916	int epnum;
4917	int ret;
4918
4919	/* Dump fifo information */
4920	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4921		hsotg->params.g_np_tx_fifo_size);
4922	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4923
4924	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4925	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4926	hsotg->gadget.name = dev_name(dev);
4927	hsotg->remote_wakeup_allowed = 0;
4928
4929	if (hsotg->params.lpm)
4930		hsotg->gadget.lpm_capable = true;
4931
4932	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4933		hsotg->gadget.is_otg = 1;
4934	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4935		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4936
4937	ret = dwc2_hsotg_hw_cfg(hsotg);
4938	if (ret) {
4939		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4940		return ret;
4941	}
4942
4943	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4944			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4945	if (!hsotg->ctrl_buff)
4946		return -ENOMEM;
4947
4948	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4949			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4950	if (!hsotg->ep0_buff)
4951		return -ENOMEM;
4952
4953	if (using_desc_dma(hsotg)) {
4954		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4955		if (ret < 0)
4956			return ret;
4957	}
4958
4959	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4960			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4961	if (ret < 0) {
4962		dev_err(dev, "cannot claim IRQ for gadget\n");
4963		return ret;
4964	}
4965
4966	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4967
4968	if (hsotg->num_of_eps == 0) {
4969		dev_err(dev, "wrong number of EPs (zero)\n");
4970		return -EINVAL;
4971	}
4972
4973	/* setup endpoint information */
4974
4975	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4976	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4977
4978	/* allocate EP0 request */
4979
4980	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4981						     GFP_KERNEL);
4982	if (!hsotg->ctrl_req) {
4983		dev_err(dev, "failed to allocate ctrl req\n");
4984		return -ENOMEM;
4985	}
4986
4987	/* initialise the endpoints now the core has been initialised */
4988	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4989		if (hsotg->eps_in[epnum])
4990			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4991					  epnum, 1);
4992		if (hsotg->eps_out[epnum])
4993			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4994					  epnum, 0);
4995	}
4996
4997	dwc2_hsotg_dump(hsotg);
4998
4999	return 0;
5000}
5001
5002/**
5003 * dwc2_hsotg_remove - remove function for hsotg driver
5004 * @hsotg: Programming view of the DWC_otg controller
5005 *
5006 */
5007int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5008{
5009	usb_del_gadget_udc(&hsotg->gadget);
5010	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5011
5012	return 0;
5013}
5014
5015int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5016{
5017	unsigned long flags;
5018
5019	if (hsotg->lx_state != DWC2_L0)
5020		return 0;
5021
5022	if (hsotg->driver) {
5023		int ep;
5024
5025		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5026			 hsotg->driver->driver.name);
5027
5028		spin_lock_irqsave(&hsotg->lock, flags);
5029		if (hsotg->enabled)
5030			dwc2_hsotg_core_disconnect(hsotg);
5031		dwc2_hsotg_disconnect(hsotg);
5032		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5033		spin_unlock_irqrestore(&hsotg->lock, flags);
5034
5035		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5036			if (hsotg->eps_in[ep])
5037				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5038			if (hsotg->eps_out[ep])
5039				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5040		}
5041	}
5042
5043	return 0;
5044}
5045
5046int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5047{
5048	unsigned long flags;
5049
5050	if (hsotg->lx_state == DWC2_L2)
5051		return 0;
5052
5053	if (hsotg->driver) {
5054		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5055			 hsotg->driver->driver.name);
5056
5057		spin_lock_irqsave(&hsotg->lock, flags);
5058		dwc2_hsotg_core_init_disconnected(hsotg, false);
5059		if (hsotg->enabled) {
5060			/* Enable ACG feature in device mode,if supported */
5061			dwc2_enable_acg(hsotg);
5062			dwc2_hsotg_core_connect(hsotg);
5063		}
5064		spin_unlock_irqrestore(&hsotg->lock, flags);
5065	}
5066
5067	return 0;
5068}
5069
5070/**
5071 * dwc2_backup_device_registers() - Backup controller device registers.
5072 * When suspending usb bus, registers needs to be backuped
5073 * if controller power is disabled once suspended.
5074 *
5075 * @hsotg: Programming view of the DWC_otg controller
5076 */
5077int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5078{
5079	struct dwc2_dregs_backup *dr;
5080	int i;
5081
5082	dev_dbg(hsotg->dev, "%s\n", __func__);
5083
5084	/* Backup dev regs */
5085	dr = &hsotg->dr_backup;
5086
5087	dr->dcfg = dwc2_readl(hsotg, DCFG);
5088	dr->dctl = dwc2_readl(hsotg, DCTL);
5089	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5090	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5091	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5092
5093	for (i = 0; i < hsotg->num_of_eps; i++) {
5094		/* Backup IN EPs */
5095		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5096
5097		/* Ensure DATA PID is correctly configured */
5098		if (dr->diepctl[i] & DXEPCTL_DPID)
5099			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5100		else
5101			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5102
5103		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5104		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5105
5106		/* Backup OUT EPs */
5107		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5108
5109		/* Ensure DATA PID is correctly configured */
5110		if (dr->doepctl[i] & DXEPCTL_DPID)
5111			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5112		else
5113			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5114
5115		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5116		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5117		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5118	}
5119	dr->valid = true;
5120	return 0;
5121}
5122
5123/**
5124 * dwc2_restore_device_registers() - Restore controller device registers.
5125 * When resuming usb bus, device registers needs to be restored
5126 * if controller power were disabled.
5127 *
5128 * @hsotg: Programming view of the DWC_otg controller
5129 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5130 *
5131 * Return: 0 if successful, negative error code otherwise
5132 */
5133int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5134{
5135	struct dwc2_dregs_backup *dr;
5136	int i;
5137
5138	dev_dbg(hsotg->dev, "%s\n", __func__);
5139
5140	/* Restore dev regs */
5141	dr = &hsotg->dr_backup;
5142	if (!dr->valid) {
5143		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5144			__func__);
5145		return -EINVAL;
5146	}
5147	dr->valid = false;
5148
5149	if (!remote_wakeup)
5150		dwc2_writel(hsotg, dr->dctl, DCTL);
5151
5152	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5153	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5154	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5155
5156	for (i = 0; i < hsotg->num_of_eps; i++) {
5157		/* Restore IN EPs */
5158		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5159		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5160		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5161		/** WA for enabled EPx's IN in DDMA mode. On entering to
5162		 * hibernation wrong value read and saved from DIEPDMAx,
5163		 * as result BNA interrupt asserted on hibernation exit
5164		 * by restoring from saved area.
5165		 */
5166		if (hsotg->params.g_dma_desc &&
5167		    (dr->diepctl[i] & DXEPCTL_EPENA))
5168			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5169		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5170		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5171		/* Restore OUT EPs */
5172		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5173		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5174		 * hibernation wrong value read and saved from DOEPDMAx,
5175		 * as result BNA interrupt asserted on hibernation exit
5176		 * by restoring from saved area.
5177		 */
5178		if (hsotg->params.g_dma_desc &&
5179		    (dr->doepctl[i] & DXEPCTL_EPENA))
5180			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5181		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5182		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5183	}
5184
5185	return 0;
5186}
5187
5188/**
5189 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5190 *
5191 * @hsotg: Programming view of DWC_otg controller
5192 *
5193 */
5194void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5195{
5196	u32 val;
5197
5198	if (!hsotg->params.lpm)
5199		return;
5200
5201	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5202	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5203	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5204	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5205	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5206	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5207	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5208	dwc2_writel(hsotg, val, GLPMCFG);
5209	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5210
5211	/* Unmask WKUP_ALERT Interrupt */
5212	if (hsotg->params.service_interval)
5213		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5214}
5215
5216/**
5217 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5218 *
5219 * @hsotg: Programming view of DWC_otg controller
5220 *
5221 */
5222void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5223{
5224	u32 val = 0;
5225
5226	val |= GREFCLK_REF_CLK_MODE;
5227	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5228	val |= hsotg->params.sof_cnt_wkup_alert <<
5229	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5230
5231	dwc2_writel(hsotg, val, GREFCLK);
5232	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5233}
5234
5235/**
5236 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5237 *
5238 * @hsotg: Programming view of the DWC_otg controller
5239 *
5240 * Return non-zero if failed to enter to hibernation.
5241 */
5242int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5243{
5244	u32 gpwrdn;
5245	int ret = 0;
5246
5247	/* Change to L2(suspend) state */
5248	hsotg->lx_state = DWC2_L2;
5249	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5250	ret = dwc2_backup_global_registers(hsotg);
5251	if (ret) {
5252		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5253			__func__);
5254		return ret;
5255	}
5256	ret = dwc2_backup_device_registers(hsotg);
5257	if (ret) {
5258		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5259			__func__);
5260		return ret;
5261	}
5262
5263	gpwrdn = GPWRDN_PWRDNRSTN;
5264	gpwrdn |= GPWRDN_PMUACTV;
5265	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5266	udelay(10);
5267
5268	/* Set flag to indicate that we are in hibernation */
5269	hsotg->hibernated = 1;
5270
5271	/* Enable interrupts from wake up logic */
5272	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5273	gpwrdn |= GPWRDN_PMUINTSEL;
5274	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5275	udelay(10);
5276
5277	/* Unmask device mode interrupts in GPWRDN */
5278	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5279	gpwrdn |= GPWRDN_RST_DET_MSK;
5280	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5281	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5282	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5283	udelay(10);
5284
5285	/* Enable Power Down Clamp */
5286	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5287	gpwrdn |= GPWRDN_PWRDNCLMP;
5288	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5289	udelay(10);
5290
5291	/* Switch off VDD */
5292	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5293	gpwrdn |= GPWRDN_PWRDNSWTCH;
5294	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5295	udelay(10);
5296
5297	/* Save gpwrdn register for further usage if stschng interrupt */
5298	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5299	dev_dbg(hsotg->dev, "Hibernation completed\n");
5300
5301	return ret;
5302}
5303
5304/**
5305 * dwc2_gadget_exit_hibernation()
5306 * This function is for exiting from Device mode hibernation by host initiated
5307 * resume/reset and device initiated remote-wakeup.
5308 *
5309 * @hsotg: Programming view of the DWC_otg controller
5310 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5311 * @reset: indicates whether resume is initiated by Reset.
5312 *
5313 * Return non-zero if failed to exit from hibernation.
5314 */
5315int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5316				 int rem_wakeup, int reset)
5317{
5318	u32 pcgcctl;
5319	u32 gpwrdn;
5320	u32 dctl;
5321	int ret = 0;
5322	struct dwc2_gregs_backup *gr;
5323	struct dwc2_dregs_backup *dr;
5324
5325	gr = &hsotg->gr_backup;
5326	dr = &hsotg->dr_backup;
5327
5328	if (!hsotg->hibernated) {
5329		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5330		return 1;
5331	}
5332	dev_dbg(hsotg->dev,
5333		"%s: called with rem_wakeup = %d reset = %d\n",
5334		__func__, rem_wakeup, reset);
5335
5336	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5337
5338	if (!reset) {
5339		/* Clear all pending interupts */
5340		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5341	}
5342
5343	/* De-assert Restore */
5344	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5345	gpwrdn &= ~GPWRDN_RESTORE;
5346	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5347	udelay(10);
5348
5349	if (!rem_wakeup) {
5350		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5351		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5352		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5353	}
5354
5355	/* Restore GUSBCFG, DCFG and DCTL */
5356	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5357	dwc2_writel(hsotg, dr->dcfg, DCFG);
5358	dwc2_writel(hsotg, dr->dctl, DCTL);
5359
5360	/* De-assert Wakeup Logic */
5361	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5362	gpwrdn &= ~GPWRDN_PMUACTV;
5363	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5364
5365	if (rem_wakeup) {
5366		udelay(10);
5367		/* Start Remote Wakeup Signaling */
5368		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5369	} else {
5370		udelay(50);
5371		/* Set Device programming done bit */
5372		dctl = dwc2_readl(hsotg, DCTL);
5373		dctl |= DCTL_PWRONPRGDONE;
5374		dwc2_writel(hsotg, dctl, DCTL);
5375	}
5376	/* Wait for interrupts which must be cleared */
5377	mdelay(2);
5378	/* Clear all pending interupts */
5379	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5380
5381	/* Restore global registers */
5382	ret = dwc2_restore_global_registers(hsotg);
5383	if (ret) {
5384		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5385			__func__);
5386		return ret;
5387	}
5388
5389	/* Restore device registers */
5390	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5391	if (ret) {
5392		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5393			__func__);
5394		return ret;
5395	}
5396
5397	if (rem_wakeup) {
5398		mdelay(10);
5399		dctl = dwc2_readl(hsotg, DCTL);
5400		dctl &= ~DCTL_RMTWKUPSIG;
5401		dwc2_writel(hsotg, dctl, DCTL);
5402	}
5403
5404	hsotg->hibernated = 0;
5405	hsotg->lx_state = DWC2_L0;
5406	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5407
5408	return ret;
5409}
5410