1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14#include <linux/kernel.h> 15#include <linux/module.h> 16#include <linux/spinlock.h> 17#include <linux/interrupt.h> 18#include <linux/platform_device.h> 19#include <linux/dma-mapping.h> 20#include <linux/mutex.h> 21#include <linux/seq_file.h> 22#include <linux/delay.h> 23#include <linux/io.h> 24#include <linux/slab.h> 25#include <linux/of_platform.h> 26 27#include <linux/usb/ch9.h> 28#include <linux/usb/gadget.h> 29#include <linux/usb/phy.h> 30#include <linux/usb/composite.h> 31 32 33#include "core.h" 34#include "hw.h" 35 36/* conversion functions */ 37static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 38{ 39 return container_of(req, struct dwc2_hsotg_req, req); 40} 41 42static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 43{ 44 return container_of(ep, struct dwc2_hsotg_ep, ep); 45} 46 47static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 48{ 49 return container_of(gadget, struct dwc2_hsotg, gadget); 50} 51 52static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 53{ 54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); 55} 56 57static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) 58{ 59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); 60} 61 62static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 63 u32 ep_index, u32 dir_in) 64{ 65 if (dir_in) 66 return hsotg->eps_in[ep_index]; 67 else 68 return hsotg->eps_out[ep_index]; 69} 70 71/* forward declaration of functions */ 72static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 73 74/** 75 * using_dma - return the DMA status of the driver. 76 * @hsotg: The driver state. 77 * 78 * Return true if we're using DMA. 79 * 80 * Currently, we have the DMA support code worked into everywhere 81 * that needs it, but the AMBA DMA implementation in the hardware can 82 * only DMA from 32bit aligned addresses. This means that gadgets such 83 * as the CDC Ethernet cannot work as they often pass packets which are 84 * not 32bit aligned. 85 * 86 * Unfortunately the choice to use DMA or not is global to the controller 87 * and seems to be only settable when the controller is being put through 88 * a core reset. This means we either need to fix the gadgets to take 89 * account of DMA alignment, or add bounce buffers (yuerk). 90 * 91 * g_using_dma is set depending on dts flag. 92 */ 93static inline bool using_dma(struct dwc2_hsotg *hsotg) 94{ 95 return hsotg->params.g_dma; 96} 97 98/* 99 * using_desc_dma - return the descriptor DMA status of the driver. 100 * @hsotg: The driver state. 101 * 102 * Return true if we're using descriptor DMA. 103 */ 104static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 105{ 106 return hsotg->params.g_dma_desc; 107} 108 109/** 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 111 * @hs_ep: The endpoint 112 * 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 115 */ 116static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 117{ 118 struct dwc2_hsotg *hsotg = hs_ep->parent; 119 u16 limit = DSTS_SOFFN_LIMIT; 120 121 if (hsotg->gadget.speed != USB_SPEED_HIGH) 122 limit >>= 3; 123 124 hs_ep->target_frame += hs_ep->interval; 125 if (hs_ep->target_frame > limit) { 126 hs_ep->frame_overrun = true; 127 hs_ep->target_frame &= limit; 128 } else { 129 hs_ep->frame_overrun = false; 130 } 131} 132 133/** 134 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number 135 * by one. 136 * @hs_ep: The endpoint. 137 * 138 * This function used in service interval based scheduling flow to calculate 139 * descriptor frame number filed value. For service interval mode frame 140 * number in descriptor should point to last (u)frame in the interval. 141 * 142 */ 143static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) 144{ 145 struct dwc2_hsotg *hsotg = hs_ep->parent; 146 u16 limit = DSTS_SOFFN_LIMIT; 147 148 if (hsotg->gadget.speed != USB_SPEED_HIGH) 149 limit >>= 3; 150 151 if (hs_ep->target_frame) 152 hs_ep->target_frame -= 1; 153 else 154 hs_ep->target_frame = limit; 155} 156 157/** 158 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 159 * @hsotg: The device state 160 * @ints: A bitmask of the interrupts to enable 161 */ 162static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 163{ 164 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 165 u32 new_gsintmsk; 166 167 new_gsintmsk = gsintmsk | ints; 168 169 if (new_gsintmsk != gsintmsk) { 170 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 171 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 172 } 173} 174 175/** 176 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 177 * @hsotg: The device state 178 * @ints: A bitmask of the interrupts to enable 179 */ 180static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 181{ 182 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); 183 u32 new_gsintmsk; 184 185 new_gsintmsk = gsintmsk & ~ints; 186 187 if (new_gsintmsk != gsintmsk) 188 dwc2_writel(hsotg, new_gsintmsk, GINTMSK); 189} 190 191/** 192 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 193 * @hsotg: The device state 194 * @ep: The endpoint index 195 * @dir_in: True if direction is in. 196 * @en: The enable value, true to enable 197 * 198 * Set or clear the mask for an individual endpoint's interrupt 199 * request. 200 */ 201static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 202 unsigned int ep, unsigned int dir_in, 203 unsigned int en) 204{ 205 unsigned long flags; 206 u32 bit = 1 << ep; 207 u32 daint; 208 209 if (!dir_in) 210 bit <<= 16; 211 212 local_irq_save(flags); 213 daint = dwc2_readl(hsotg, DAINTMSK); 214 if (en) 215 daint |= bit; 216 else 217 daint &= ~bit; 218 dwc2_writel(hsotg, daint, DAINTMSK); 219 local_irq_restore(flags); 220} 221 222/** 223 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 224 * 225 * @hsotg: Programming view of the DWC_otg controller 226 */ 227int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 228{ 229 if (hsotg->hw_params.en_multiple_tx_fifo) 230 /* In dedicated FIFO mode we need count of IN EPs */ 231 return hsotg->hw_params.num_dev_in_eps; 232 else 233 /* In shared FIFO mode we need count of Periodic IN EPs */ 234 return hsotg->hw_params.num_dev_perio_in_ep; 235} 236 237/** 238 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 239 * device mode TX FIFOs 240 * 241 * @hsotg: Programming view of the DWC_otg controller 242 */ 243int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 244{ 245 int addr; 246 int tx_addr_max; 247 u32 np_tx_fifo_size; 248 249 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 250 hsotg->params.g_np_tx_fifo_size); 251 252 /* Get Endpoint Info Control block size in DWORDs. */ 253 tx_addr_max = hsotg->hw_params.total_fifo_size; 254 255 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 256 if (tx_addr_max <= addr) 257 return 0; 258 259 return tx_addr_max - addr; 260} 261 262/** 263 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt 264 * 265 * @hsotg: Programming view of the DWC_otg controller 266 * 267 */ 268static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) 269{ 270 u32 gintsts2; 271 u32 gintmsk2; 272 273 gintsts2 = dwc2_readl(hsotg, GINTSTS2); 274 gintmsk2 = dwc2_readl(hsotg, GINTMSK2); 275 gintsts2 &= gintmsk2; 276 277 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { 278 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); 279 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); 280 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); 281 } 282} 283 284/** 285 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 286 * TX FIFOs 287 * 288 * @hsotg: Programming view of the DWC_otg controller 289 */ 290int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 291{ 292 int tx_fifo_count; 293 int tx_fifo_depth; 294 295 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 296 297 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 298 299 if (!tx_fifo_count) 300 return tx_fifo_depth; 301 else 302 return tx_fifo_depth / tx_fifo_count; 303} 304 305/** 306 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 307 * @hsotg: The device instance. 308 */ 309static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 310{ 311 unsigned int ep; 312 unsigned int addr; 313 int timeout; 314 315 u32 val; 316 u32 *txfsz = hsotg->params.g_tx_fifo_size; 317 318 /* Reset fifo map if not correctly cleared during previous session */ 319 WARN_ON(hsotg->fifo_map); 320 hsotg->fifo_map = 0; 321 322 /* set RX/NPTX FIFO sizes */ 323 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); 324 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << 325 FIFOSIZE_STARTADDR_SHIFT) | 326 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 327 GNPTXFSIZ); 328 329 /* 330 * arange all the rest of the TX FIFOs, as some versions of this 331 * block have overlapping default addresses. This also ensures 332 * that if the settings have been changed, then they are set to 333 * known values. 334 */ 335 336 /* start at the end of the GNPTXFSIZ, rounded up */ 337 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 338 339 /* 340 * Configure fifos sizes from provided configuration and assign 341 * them to endpoints dynamically according to maxpacket size value of 342 * given endpoint. 343 */ 344 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 345 if (!txfsz[ep]) 346 continue; 347 val = addr; 348 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 349 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 350 "insufficient fifo memory"); 351 addr += txfsz[ep]; 352 353 dwc2_writel(hsotg, val, DPTXFSIZN(ep)); 354 val = dwc2_readl(hsotg, DPTXFSIZN(ep)); 355 } 356 357 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | 358 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 359 GDFIFOCFG); 360 /* 361 * according to p428 of the design guide, we need to ensure that 362 * all fifos are flushed before continuing 363 */ 364 365 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 366 GRSTCTL_RXFFLSH, GRSTCTL); 367 368 /* wait until the fifos are both flushed */ 369 timeout = 100; 370 while (1) { 371 val = dwc2_readl(hsotg, GRSTCTL); 372 373 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 374 break; 375 376 if (--timeout == 0) { 377 dev_err(hsotg->dev, 378 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 379 __func__, val); 380 break; 381 } 382 383 udelay(1); 384 } 385 386 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 387} 388 389/** 390 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure 391 * @ep: USB endpoint to allocate request for. 392 * @flags: Allocation flags 393 * 394 * Allocate a new USB request structure appropriate for the specified endpoint 395 */ 396static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 397 gfp_t flags) 398{ 399 struct dwc2_hsotg_req *req; 400 401 req = kzalloc(sizeof(*req), flags); 402 if (!req) 403 return NULL; 404 405 INIT_LIST_HEAD(&req->queue); 406 407 return &req->req; 408} 409 410/** 411 * is_ep_periodic - return true if the endpoint is in periodic mode. 412 * @hs_ep: The endpoint to query. 413 * 414 * Returns true if the endpoint is in periodic mode, meaning it is being 415 * used for an Interrupt or ISO transfer. 416 */ 417static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 418{ 419 return hs_ep->periodic; 420} 421 422/** 423 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 424 * @hsotg: The device state. 425 * @hs_ep: The endpoint for the request 426 * @hs_req: The request being processed. 427 * 428 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 429 * of a request to ensure the buffer is ready for access by the caller. 430 */ 431static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 432 struct dwc2_hsotg_ep *hs_ep, 433 struct dwc2_hsotg_req *hs_req) 434{ 435 struct usb_request *req = &hs_req->req; 436 437 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir); 438} 439 440/* 441 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 442 * for Control endpoint 443 * @hsotg: The device state. 444 * 445 * This function will allocate 4 descriptor chains for EP 0: 2 for 446 * Setup stage, per one for IN and OUT data/status transactions. 447 */ 448static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 449{ 450 hsotg->setup_desc[0] = 451 dmam_alloc_coherent(hsotg->dev, 452 sizeof(struct dwc2_dma_desc), 453 &hsotg->setup_desc_dma[0], 454 GFP_KERNEL); 455 if (!hsotg->setup_desc[0]) 456 goto fail; 457 458 hsotg->setup_desc[1] = 459 dmam_alloc_coherent(hsotg->dev, 460 sizeof(struct dwc2_dma_desc), 461 &hsotg->setup_desc_dma[1], 462 GFP_KERNEL); 463 if (!hsotg->setup_desc[1]) 464 goto fail; 465 466 hsotg->ctrl_in_desc = 467 dmam_alloc_coherent(hsotg->dev, 468 sizeof(struct dwc2_dma_desc), 469 &hsotg->ctrl_in_desc_dma, 470 GFP_KERNEL); 471 if (!hsotg->ctrl_in_desc) 472 goto fail; 473 474 hsotg->ctrl_out_desc = 475 dmam_alloc_coherent(hsotg->dev, 476 sizeof(struct dwc2_dma_desc), 477 &hsotg->ctrl_out_desc_dma, 478 GFP_KERNEL); 479 if (!hsotg->ctrl_out_desc) 480 goto fail; 481 482 return 0; 483 484fail: 485 return -ENOMEM; 486} 487 488/** 489 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 490 * @hsotg: The controller state. 491 * @hs_ep: The endpoint we're going to write for. 492 * @hs_req: The request to write data for. 493 * 494 * This is called when the TxFIFO has some space in it to hold a new 495 * transmission and we have something to give it. The actual setup of 496 * the data size is done elsewhere, so all we have to do is to actually 497 * write the data. 498 * 499 * The return value is zero if there is more space (or nothing was done) 500 * otherwise -ENOSPC is returned if the FIFO space was used up. 501 * 502 * This routine is only needed for PIO 503 */ 504static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 505 struct dwc2_hsotg_ep *hs_ep, 506 struct dwc2_hsotg_req *hs_req) 507{ 508 bool periodic = is_ep_periodic(hs_ep); 509 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); 510 int buf_pos = hs_req->req.actual; 511 int to_write = hs_ep->size_loaded; 512 void *data; 513 int can_write; 514 int pkt_round; 515 int max_transfer; 516 517 to_write -= (buf_pos - hs_ep->last_load); 518 519 /* if there's nothing to write, get out early */ 520 if (to_write == 0) 521 return 0; 522 523 if (periodic && !hsotg->dedicated_fifos) { 524 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 525 int size_left; 526 int size_done; 527 528 /* 529 * work out how much data was loaded so we can calculate 530 * how much data is left in the fifo. 531 */ 532 533 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 534 535 /* 536 * if shared fifo, we cannot write anything until the 537 * previous data has been completely sent. 538 */ 539 if (hs_ep->fifo_load != 0) { 540 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 541 return -ENOSPC; 542 } 543 544 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 545 __func__, size_left, 546 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 547 548 /* how much of the data has moved */ 549 size_done = hs_ep->size_loaded - size_left; 550 551 /* how much data is left in the fifo */ 552 can_write = hs_ep->fifo_load - size_done; 553 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 554 __func__, can_write); 555 556 can_write = hs_ep->fifo_size - can_write; 557 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 558 __func__, can_write); 559 560 if (can_write <= 0) { 561 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 562 return -ENOSPC; 563 } 564 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 565 can_write = dwc2_readl(hsotg, 566 DTXFSTS(hs_ep->fifo_index)); 567 568 can_write &= 0xffff; 569 can_write *= 4; 570 } else { 571 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 572 dev_dbg(hsotg->dev, 573 "%s: no queue slots available (0x%08x)\n", 574 __func__, gnptxsts); 575 576 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 577 return -ENOSPC; 578 } 579 580 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 581 can_write *= 4; /* fifo size is in 32bit quantities. */ 582 } 583 584 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 585 586 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 587 __func__, gnptxsts, can_write, to_write, max_transfer); 588 589 /* 590 * limit to 512 bytes of data, it seems at least on the non-periodic 591 * FIFO, requests of >512 cause the endpoint to get stuck with a 592 * fragment of the end of the transfer in it. 593 */ 594 if (can_write > 512 && !periodic) 595 can_write = 512; 596 597 /* 598 * limit the write to one max-packet size worth of data, but allow 599 * the transfer to return that it did not run out of fifo space 600 * doing it. 601 */ 602 if (to_write > max_transfer) { 603 to_write = max_transfer; 604 605 /* it's needed only when we do not use dedicated fifos */ 606 if (!hsotg->dedicated_fifos) 607 dwc2_hsotg_en_gsint(hsotg, 608 periodic ? GINTSTS_PTXFEMP : 609 GINTSTS_NPTXFEMP); 610 } 611 612 /* see if we can write data */ 613 614 if (to_write > can_write) { 615 to_write = can_write; 616 pkt_round = to_write % max_transfer; 617 618 /* 619 * Round the write down to an 620 * exact number of packets. 621 * 622 * Note, we do not currently check to see if we can ever 623 * write a full packet or not to the FIFO. 624 */ 625 626 if (pkt_round) 627 to_write -= pkt_round; 628 629 /* 630 * enable correct FIFO interrupt to alert us when there 631 * is more room left. 632 */ 633 634 /* it's needed only when we do not use dedicated fifos */ 635 if (!hsotg->dedicated_fifos) 636 dwc2_hsotg_en_gsint(hsotg, 637 periodic ? GINTSTS_PTXFEMP : 638 GINTSTS_NPTXFEMP); 639 } 640 641 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 642 to_write, hs_req->req.length, can_write, buf_pos); 643 644 if (to_write <= 0) 645 return -ENOSPC; 646 647 hs_req->req.actual = buf_pos + to_write; 648 hs_ep->total_data += to_write; 649 650 if (periodic) 651 hs_ep->fifo_load += to_write; 652 653 to_write = DIV_ROUND_UP(to_write, 4); 654 data = hs_req->req.buf + buf_pos; 655 656 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); 657 658 return (to_write >= can_write) ? -ENOSPC : 0; 659} 660 661/** 662 * get_ep_limit - get the maximum data legnth for this endpoint 663 * @hs_ep: The endpoint 664 * 665 * Return the maximum data that can be queued in one go on a given endpoint 666 * so that transfers that are too long can be split. 667 */ 668static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 669{ 670 int index = hs_ep->index; 671 unsigned int maxsize; 672 unsigned int maxpkt; 673 674 if (index != 0) { 675 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 676 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 677 } else { 678 maxsize = 64 + 64; 679 if (hs_ep->dir_in) 680 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 681 else 682 maxpkt = 2; 683 } 684 685 /* we made the constant loading easier above by using +1 */ 686 maxpkt--; 687 maxsize--; 688 689 /* 690 * constrain by packet count if maxpkts*pktsize is greater 691 * than the length register size. 692 */ 693 694 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 695 maxsize = maxpkt * hs_ep->ep.maxpacket; 696 697 return maxsize; 698} 699 700/** 701 * dwc2_hsotg_read_frameno - read current frame number 702 * @hsotg: The device instance 703 * 704 * Return the current frame number 705 */ 706static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 707{ 708 u32 dsts; 709 710 dsts = dwc2_readl(hsotg, DSTS); 711 dsts &= DSTS_SOFFN_MASK; 712 dsts >>= DSTS_SOFFN_SHIFT; 713 714 return dsts; 715} 716 717/** 718 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 719 * DMA descriptor chain prepared for specific endpoint 720 * @hs_ep: The endpoint 721 * 722 * Return the maximum data that can be queued in one go on a given endpoint 723 * depending on its descriptor chain capacity so that transfers that 724 * are too long can be split. 725 */ 726static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 727{ 728 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 729 int is_isoc = hs_ep->isochronous; 730 unsigned int maxsize; 731 u32 mps = hs_ep->ep.maxpacket; 732 int dir_in = hs_ep->dir_in; 733 734 if (is_isoc) 735 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 736 DEV_DMA_ISOC_RX_NBYTES_LIMIT) * 737 MAX_DMA_DESC_NUM_HS_ISOC; 738 else 739 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; 740 741 /* Interrupt OUT EP with mps not multiple of 4 */ 742 if (hs_ep->index) 743 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 744 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC; 745 746 return maxsize; 747} 748 749/* 750 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 751 * @hs_ep: The endpoint 752 * @mask: RX/TX bytes mask to be defined 753 * 754 * Returns maximum data payload for one descriptor after analyzing endpoint 755 * characteristics. 756 * DMA descriptor transfer bytes limit depends on EP type: 757 * Control out - MPS, 758 * Isochronous - descriptor rx/tx bytes bitfield limit, 759 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 760 * have concatenations from various descriptors within one packet. 761 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds 762 * to a single descriptor. 763 * 764 * Selects corresponding mask for RX/TX bytes as well. 765 */ 766static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 767{ 768 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 769 u32 mps = hs_ep->ep.maxpacket; 770 int dir_in = hs_ep->dir_in; 771 u32 desc_size = 0; 772 773 if (!hs_ep->index && !dir_in) { 774 desc_size = mps; 775 *mask = DEV_DMA_NBYTES_MASK; 776 } else if (hs_ep->isochronous) { 777 if (dir_in) { 778 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 779 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 780 } else { 781 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 782 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 783 } 784 } else { 785 desc_size = DEV_DMA_NBYTES_LIMIT; 786 *mask = DEV_DMA_NBYTES_MASK; 787 788 /* Round down desc_size to be mps multiple */ 789 desc_size -= desc_size % mps; 790 } 791 792 /* Interrupt OUT EP with mps not multiple of 4 */ 793 if (hs_ep->index) 794 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) { 795 desc_size = mps; 796 *mask = DEV_DMA_NBYTES_MASK; 797 } 798 799 return desc_size; 800} 801 802static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, 803 struct dwc2_dma_desc **desc, 804 dma_addr_t dma_buff, 805 unsigned int len, 806 bool true_last) 807{ 808 int dir_in = hs_ep->dir_in; 809 u32 mps = hs_ep->ep.maxpacket; 810 u32 maxsize = 0; 811 u32 offset = 0; 812 u32 mask = 0; 813 int i; 814 815 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 816 817 hs_ep->desc_count = (len / maxsize) + 818 ((len % maxsize) ? 1 : 0); 819 if (len == 0) 820 hs_ep->desc_count = 1; 821 822 for (i = 0; i < hs_ep->desc_count; ++i) { 823 (*desc)->status = 0; 824 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY 825 << DEV_DMA_BUFF_STS_SHIFT); 826 827 if (len > maxsize) { 828 if (!hs_ep->index && !dir_in) 829 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 830 831 (*desc)->status |= 832 maxsize << DEV_DMA_NBYTES_SHIFT & mask; 833 (*desc)->buf = dma_buff + offset; 834 835 len -= maxsize; 836 offset += maxsize; 837 } else { 838 if (true_last) 839 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); 840 841 if (dir_in) 842 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : 843 ((hs_ep->send_zlp && true_last) ? 844 DEV_DMA_SHORT : 0); 845 846 (*desc)->status |= 847 len << DEV_DMA_NBYTES_SHIFT & mask; 848 (*desc)->buf = dma_buff + offset; 849 } 850 851 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; 852 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY 853 << DEV_DMA_BUFF_STS_SHIFT); 854 (*desc)++; 855 } 856} 857 858/* 859 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 860 * @hs_ep: The endpoint 861 * @ureq: Request to transfer 862 * @offset: offset in bytes 863 * @len: Length of the transfer 864 * 865 * This function will iterate over descriptor chain and fill its entries 866 * with corresponding information based on transfer data. 867 */ 868static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 869 dma_addr_t dma_buff, 870 unsigned int len) 871{ 872 struct usb_request *ureq = NULL; 873 struct dwc2_dma_desc *desc = hs_ep->desc_list; 874 struct scatterlist *sg; 875 int i; 876 u8 desc_count = 0; 877 878 if (hs_ep->req) 879 ureq = &hs_ep->req->req; 880 881 /* non-DMA sg buffer */ 882 if (!ureq || !ureq->num_sgs) { 883 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 884 dma_buff, len, true); 885 return; 886 } 887 888 /* DMA sg buffer */ 889 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { 890 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, 891 sg_dma_address(sg) + sg->offset, sg_dma_len(sg), 892 sg_is_last(sg)); 893 desc_count += hs_ep->desc_count; 894 } 895 896 hs_ep->desc_count = desc_count; 897} 898 899/* 900 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 901 * @hs_ep: The isochronous endpoint. 902 * @dma_buff: usb requests dma buffer. 903 * @len: usb request transfer length. 904 * 905 * Fills next free descriptor with the data of the arrived usb request, 906 * frame info, sets Last and IOC bits increments next_desc. If filled 907 * descriptor is not the first one, removes L bit from the previous descriptor 908 * status. 909 */ 910static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 911 dma_addr_t dma_buff, unsigned int len) 912{ 913 struct dwc2_dma_desc *desc; 914 struct dwc2_hsotg *hsotg = hs_ep->parent; 915 u32 index; 916 u32 mask = 0; 917 u8 pid = 0; 918 919 dwc2_gadget_get_desc_params(hs_ep, &mask); 920 921 index = hs_ep->next_desc; 922 desc = &hs_ep->desc_list[index]; 923 924 /* Check if descriptor chain full */ 925 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == 926 DEV_DMA_BUFF_STS_HREADY) { 927 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 928 return 1; 929 } 930 931 /* Clear L bit of previous desc if more than one entries in the chain */ 932 if (hs_ep->next_desc) 933 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 934 935 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 936 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 937 938 desc->status = 0; 939 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 940 941 desc->buf = dma_buff; 942 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 943 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 944 945 if (hs_ep->dir_in) { 946 if (len) 947 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); 948 else 949 pid = 1; 950 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & 951 DEV_DMA_ISOC_PID_MASK) | 952 ((len % hs_ep->ep.maxpacket) ? 953 DEV_DMA_SHORT : 0) | 954 ((hs_ep->target_frame << 955 DEV_DMA_ISOC_FRNUM_SHIFT) & 956 DEV_DMA_ISOC_FRNUM_MASK); 957 } 958 959 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 960 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 961 962 /* Increment frame number by interval for IN */ 963 if (hs_ep->dir_in) 964 dwc2_gadget_incr_frame_num(hs_ep); 965 966 /* Update index of last configured entry in the chain */ 967 hs_ep->next_desc++; 968 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) 969 hs_ep->next_desc = 0; 970 971 return 0; 972} 973 974/* 975 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 976 * @hs_ep: The isochronous endpoint. 977 * 978 * Prepare descriptor chain for isochronous endpoints. Afterwards 979 * write DMA address to HW and enable the endpoint. 980 */ 981static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 982{ 983 struct dwc2_hsotg *hsotg = hs_ep->parent; 984 struct dwc2_hsotg_req *hs_req, *treq; 985 int index = hs_ep->index; 986 int ret; 987 int i; 988 u32 dma_reg; 989 u32 depctl; 990 u32 ctrl; 991 struct dwc2_dma_desc *desc; 992 993 if (list_empty(&hs_ep->queue)) { 994 hs_ep->target_frame = TARGET_FRAME_INITIAL; 995 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 996 return; 997 } 998 999 /* Initialize descriptor chain by Host Busy status */ 1000 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { 1001 desc = &hs_ep->desc_list[i]; 1002 desc->status = 0; 1003 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 1004 << DEV_DMA_BUFF_STS_SHIFT); 1005 } 1006 1007 hs_ep->next_desc = 0; 1008 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 1009 dma_addr_t dma_addr = hs_req->req.dma; 1010 1011 if (hs_req->req.num_sgs) { 1012 WARN_ON(hs_req->req.num_sgs > 1); 1013 dma_addr = sg_dma_address(hs_req->req.sg); 1014 } 1015 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1016 hs_req->req.length); 1017 if (ret) 1018 break; 1019 } 1020 1021 hs_ep->compl_desc = 0; 1022 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1023 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 1024 1025 /* write descriptor chain address to control register */ 1026 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1027 1028 ctrl = dwc2_readl(hsotg, depctl); 1029 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 1030 dwc2_writel(hsotg, ctrl, depctl); 1031} 1032 1033static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep); 1034static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1035 struct dwc2_hsotg_ep *hs_ep, 1036 struct dwc2_hsotg_req *hs_req, 1037 int result); 1038 1039/** 1040 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 1041 * @hsotg: The controller state. 1042 * @hs_ep: The endpoint to process a request for 1043 * @hs_req: The request to start. 1044 * @continuing: True if we are doing more for the current request. 1045 * 1046 * Start the given request running by setting the endpoint registers 1047 * appropriately, and writing any data to the FIFOs. 1048 */ 1049static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 1050 struct dwc2_hsotg_ep *hs_ep, 1051 struct dwc2_hsotg_req *hs_req, 1052 bool continuing) 1053{ 1054 struct usb_request *ureq = &hs_req->req; 1055 int index = hs_ep->index; 1056 int dir_in = hs_ep->dir_in; 1057 u32 epctrl_reg; 1058 u32 epsize_reg; 1059 u32 epsize; 1060 u32 ctrl; 1061 unsigned int length; 1062 unsigned int packets; 1063 unsigned int maxreq; 1064 unsigned int dma_reg; 1065 1066 if (index != 0) { 1067 if (hs_ep->req && !continuing) { 1068 dev_err(hsotg->dev, "%s: active request\n", __func__); 1069 WARN_ON(1); 1070 return; 1071 } else if (hs_ep->req != hs_req && continuing) { 1072 dev_err(hsotg->dev, 1073 "%s: continue different req\n", __func__); 1074 WARN_ON(1); 1075 return; 1076 } 1077 } 1078 1079 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 1080 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 1081 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1082 1083 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 1084 __func__, dwc2_readl(hsotg, epctrl_reg), index, 1085 hs_ep->dir_in ? "in" : "out"); 1086 1087 /* If endpoint is stalled, we will restart request later */ 1088 ctrl = dwc2_readl(hsotg, epctrl_reg); 1089 1090 if (index && ctrl & DXEPCTL_STALL) { 1091 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 1092 return; 1093 } 1094 1095 length = ureq->length - ureq->actual; 1096 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 1097 ureq->length, ureq->actual); 1098 1099 if (!using_desc_dma(hsotg)) 1100 maxreq = get_ep_limit(hs_ep); 1101 else 1102 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 1103 1104 if (length > maxreq) { 1105 int round = maxreq % hs_ep->ep.maxpacket; 1106 1107 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 1108 __func__, length, maxreq, round); 1109 1110 /* round down to multiple of packets */ 1111 if (round) 1112 maxreq -= round; 1113 1114 length = maxreq; 1115 } 1116 1117 if (length) 1118 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1119 else 1120 packets = 1; /* send one packet if length is zero. */ 1121 1122 if (dir_in && index != 0) 1123 if (hs_ep->isochronous) 1124 epsize = DXEPTSIZ_MC(packets); 1125 else 1126 epsize = DXEPTSIZ_MC(1); 1127 else 1128 epsize = 0; 1129 1130 /* 1131 * zero length packet should be programmed on its own and should not 1132 * be counted in DIEPTSIZ.PktCnt with other packets. 1133 */ 1134 if (dir_in && ureq->zero && !continuing) { 1135 /* Test if zlp is actually required. */ 1136 if ((ureq->length >= hs_ep->ep.maxpacket) && 1137 !(ureq->length % hs_ep->ep.maxpacket)) 1138 hs_ep->send_zlp = 1; 1139 } 1140 1141 epsize |= DXEPTSIZ_PKTCNT(packets); 1142 epsize |= DXEPTSIZ_XFERSIZE(length); 1143 1144 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1145 __func__, packets, length, ureq->length, epsize, epsize_reg); 1146 1147 /* store the request as the current one we're doing */ 1148 hs_ep->req = hs_req; 1149 1150 if (using_desc_dma(hsotg)) { 1151 u32 offset = 0; 1152 u32 mps = hs_ep->ep.maxpacket; 1153 1154 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1155 if (!dir_in) { 1156 if (!index) 1157 length = mps; 1158 else if (length % mps) 1159 length += (mps - (length % mps)); 1160 } 1161 1162 if (continuing) 1163 offset = ureq->actual; 1164 1165 /* Fill DDMA chain entries */ 1166 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1167 length); 1168 1169 /* write descriptor chain address to control register */ 1170 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); 1171 1172 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1173 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1174 } else { 1175 /* write size / packets */ 1176 dwc2_writel(hsotg, epsize, epsize_reg); 1177 1178 if (using_dma(hsotg) && !continuing && (length != 0)) { 1179 /* 1180 * write DMA address to control register, buffer 1181 * already synced by dwc2_hsotg_ep_queue(). 1182 */ 1183 1184 dwc2_writel(hsotg, ureq->dma, dma_reg); 1185 1186 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1187 __func__, &ureq->dma, dma_reg); 1188 } 1189 } 1190 1191 if (hs_ep->isochronous) { 1192 if (!dwc2_gadget_target_frame_elapsed(hs_ep)) { 1193 if (hs_ep->interval == 1) { 1194 if (hs_ep->target_frame & 0x1) 1195 ctrl |= DXEPCTL_SETODDFR; 1196 else 1197 ctrl |= DXEPCTL_SETEVENFR; 1198 } 1199 ctrl |= DXEPCTL_CNAK; 1200 } else { 1201 hs_req->req.frame_number = hs_ep->target_frame; 1202 hs_req->req.actual = 0; 1203 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA); 1204 return; 1205 } 1206 } 1207 1208 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1209 1210 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1211 1212 /* For Setup request do not clear NAK */ 1213 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1214 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1215 1216 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1217 dwc2_writel(hsotg, ctrl, epctrl_reg); 1218 1219 /* 1220 * set these, it seems that DMA support increments past the end 1221 * of the packet buffer so we need to calculate the length from 1222 * this information. 1223 */ 1224 hs_ep->size_loaded = length; 1225 hs_ep->last_load = ureq->actual; 1226 1227 if (dir_in && !using_dma(hsotg)) { 1228 /* set these anyway, we may need them for non-periodic in */ 1229 hs_ep->fifo_load = 0; 1230 1231 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1232 } 1233 1234 /* 1235 * Note, trying to clear the NAK here causes problems with transmit 1236 * on the S3C6400 ending up with the TXFIFO becoming full. 1237 */ 1238 1239 /* check ep is enabled */ 1240 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) 1241 dev_dbg(hsotg->dev, 1242 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1243 index, dwc2_readl(hsotg, epctrl_reg)); 1244 1245 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1246 __func__, dwc2_readl(hsotg, epctrl_reg)); 1247 1248 /* enable ep interrupts */ 1249 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1250} 1251 1252/** 1253 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1254 * @hsotg: The device state. 1255 * @hs_ep: The endpoint the request is on. 1256 * @req: The request being processed. 1257 * 1258 * We've been asked to queue a request, so ensure that the memory buffer 1259 * is correctly setup for DMA. If we've been passed an extant DMA address 1260 * then ensure the buffer has been synced to memory. If our buffer has no 1261 * DMA memory, then we map the memory and mark our request to allow us to 1262 * cleanup on completion. 1263 */ 1264static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1265 struct dwc2_hsotg_ep *hs_ep, 1266 struct usb_request *req) 1267{ 1268 int ret; 1269 1270 hs_ep->map_dir = hs_ep->dir_in; 1271 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1272 if (ret) 1273 goto dma_error; 1274 1275 return 0; 1276 1277dma_error: 1278 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1279 __func__, req->buf, req->length); 1280 1281 return -EIO; 1282} 1283 1284static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1285 struct dwc2_hsotg_ep *hs_ep, 1286 struct dwc2_hsotg_req *hs_req) 1287{ 1288 void *req_buf = hs_req->req.buf; 1289 1290 /* If dma is not being used or buffer is aligned */ 1291 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1292 return 0; 1293 1294 WARN_ON(hs_req->saved_req_buf); 1295 1296 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1297 hs_ep->ep.name, req_buf, hs_req->req.length); 1298 1299 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1300 if (!hs_req->req.buf) { 1301 hs_req->req.buf = req_buf; 1302 dev_err(hsotg->dev, 1303 "%s: unable to allocate memory for bounce buffer\n", 1304 __func__); 1305 return -ENOMEM; 1306 } 1307 1308 /* Save actual buffer */ 1309 hs_req->saved_req_buf = req_buf; 1310 1311 if (hs_ep->dir_in) 1312 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1313 return 0; 1314} 1315 1316static void 1317dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1318 struct dwc2_hsotg_ep *hs_ep, 1319 struct dwc2_hsotg_req *hs_req) 1320{ 1321 /* If dma is not being used or buffer was aligned */ 1322 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1323 return; 1324 1325 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1326 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1327 1328 /* Copy data from bounce buffer on successful out transfer */ 1329 if (!hs_ep->dir_in && !hs_req->req.status) 1330 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1331 hs_req->req.actual); 1332 1333 /* Free bounce buffer */ 1334 kfree(hs_req->req.buf); 1335 1336 hs_req->req.buf = hs_req->saved_req_buf; 1337 hs_req->saved_req_buf = NULL; 1338} 1339 1340/** 1341 * dwc2_gadget_target_frame_elapsed - Checks target frame 1342 * @hs_ep: The driver endpoint to check 1343 * 1344 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1345 * corresponding transfer. 1346 */ 1347static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1348{ 1349 struct dwc2_hsotg *hsotg = hs_ep->parent; 1350 u32 target_frame = hs_ep->target_frame; 1351 u32 current_frame = hsotg->frame_number; 1352 bool frame_overrun = hs_ep->frame_overrun; 1353 u16 limit = DSTS_SOFFN_LIMIT; 1354 1355 if (hsotg->gadget.speed != USB_SPEED_HIGH) 1356 limit >>= 3; 1357 1358 if (!frame_overrun && current_frame >= target_frame) 1359 return true; 1360 1361 if (frame_overrun && current_frame >= target_frame && 1362 ((current_frame - target_frame) < limit / 2)) 1363 return true; 1364 1365 return false; 1366} 1367 1368/* 1369 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1370 * @hsotg: The driver state 1371 * @hs_ep: the ep descriptor chain is for 1372 * 1373 * Called to update EP0 structure's pointers depend on stage of 1374 * control transfer. 1375 */ 1376static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1377 struct dwc2_hsotg_ep *hs_ep) 1378{ 1379 switch (hsotg->ep0_state) { 1380 case DWC2_EP0_SETUP: 1381 case DWC2_EP0_STATUS_OUT: 1382 hs_ep->desc_list = hsotg->setup_desc[0]; 1383 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1384 break; 1385 case DWC2_EP0_DATA_IN: 1386 case DWC2_EP0_STATUS_IN: 1387 hs_ep->desc_list = hsotg->ctrl_in_desc; 1388 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1389 break; 1390 case DWC2_EP0_DATA_OUT: 1391 hs_ep->desc_list = hsotg->ctrl_out_desc; 1392 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1393 break; 1394 default: 1395 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1396 hsotg->ep0_state); 1397 return -EINVAL; 1398 } 1399 1400 return 0; 1401} 1402 1403static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1404 gfp_t gfp_flags) 1405{ 1406 struct dwc2_hsotg_req *hs_req = our_req(req); 1407 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1408 struct dwc2_hsotg *hs = hs_ep->parent; 1409 bool first; 1410 int ret; 1411 u32 maxsize = 0; 1412 u32 mask = 0; 1413 1414 1415 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1416 ep->name, req, req->length, req->buf, req->no_interrupt, 1417 req->zero, req->short_not_ok); 1418 1419 /* Prevent new request submission when controller is suspended */ 1420 if (hs->lx_state != DWC2_L0) { 1421 dev_dbg(hs->dev, "%s: submit request only in active state\n", 1422 __func__); 1423 return -EAGAIN; 1424 } 1425 1426 /* initialise status of the request */ 1427 INIT_LIST_HEAD(&hs_req->queue); 1428 req->actual = 0; 1429 req->status = -EINPROGRESS; 1430 1431 /* Don't queue ISOC request if length greater than mps*mc */ 1432 if (hs_ep->isochronous && 1433 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1434 dev_err(hs->dev, "req length > maxpacket*mc\n"); 1435 return -EINVAL; 1436 } 1437 1438 /* In DDMA mode for ISOC's don't queue request if length greater 1439 * than descriptor limits. 1440 */ 1441 if (using_desc_dma(hs) && hs_ep->isochronous) { 1442 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 1443 if (hs_ep->dir_in && req->length > maxsize) { 1444 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", 1445 req->length, maxsize); 1446 return -EINVAL; 1447 } 1448 1449 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { 1450 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", 1451 req->length, hs_ep->ep.maxpacket); 1452 return -EINVAL; 1453 } 1454 } 1455 1456 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1457 if (ret) 1458 return ret; 1459 1460 /* if we're using DMA, sync the buffers as necessary */ 1461 if (using_dma(hs)) { 1462 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1463 if (ret) 1464 return ret; 1465 } 1466 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1467 if (using_desc_dma(hs) && !hs_ep->index) { 1468 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1469 if (ret) 1470 return ret; 1471 } 1472 1473 first = list_empty(&hs_ep->queue); 1474 list_add_tail(&hs_req->queue, &hs_ep->queue); 1475 1476 /* 1477 * Handle DDMA isochronous transfers separately - just add new entry 1478 * to the descriptor chain. 1479 * Transfer will be started once SW gets either one of NAK or 1480 * OutTknEpDis interrupts. 1481 */ 1482 if (using_desc_dma(hs) && hs_ep->isochronous) { 1483 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1484 dma_addr_t dma_addr = hs_req->req.dma; 1485 1486 if (hs_req->req.num_sgs) { 1487 WARN_ON(hs_req->req.num_sgs > 1); 1488 dma_addr = sg_dma_address(hs_req->req.sg); 1489 } 1490 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, 1491 hs_req->req.length); 1492 } 1493 return 0; 1494 } 1495 1496 /* Change EP direction if status phase request is after data out */ 1497 if (!hs_ep->index && !req->length && !hs_ep->dir_in && 1498 hs->ep0_state == DWC2_EP0_DATA_OUT) 1499 hs_ep->dir_in = 1; 1500 1501 if (first) { 1502 if (!hs_ep->isochronous) { 1503 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1504 return 0; 1505 } 1506 1507 /* Update current frame number value. */ 1508 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1509 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 1510 dwc2_gadget_incr_frame_num(hs_ep); 1511 /* Update current frame number value once more as it 1512 * changes here. 1513 */ 1514 hs->frame_number = dwc2_hsotg_read_frameno(hs); 1515 } 1516 1517 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1518 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1519 } 1520 return 0; 1521} 1522 1523static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1524 gfp_t gfp_flags) 1525{ 1526 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1527 struct dwc2_hsotg *hs = hs_ep->parent; 1528 unsigned long flags = 0; 1529 int ret = 0; 1530 1531 spin_lock_irqsave(&hs->lock, flags); 1532 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1533 spin_unlock_irqrestore(&hs->lock, flags); 1534 1535 return ret; 1536} 1537 1538static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1539 struct usb_request *req) 1540{ 1541 struct dwc2_hsotg_req *hs_req = our_req(req); 1542 1543 kfree(hs_req); 1544} 1545 1546/** 1547 * dwc2_hsotg_complete_oursetup - setup completion callback 1548 * @ep: The endpoint the request was on. 1549 * @req: The request completed. 1550 * 1551 * Called on completion of any requests the driver itself 1552 * submitted that need cleaning up. 1553 */ 1554static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1555 struct usb_request *req) 1556{ 1557 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1558 struct dwc2_hsotg *hsotg = hs_ep->parent; 1559 1560 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1561 1562 dwc2_hsotg_ep_free_request(ep, req); 1563} 1564 1565/** 1566 * ep_from_windex - convert control wIndex value to endpoint 1567 * @hsotg: The driver state. 1568 * @windex: The control request wIndex field (in host order). 1569 * 1570 * Convert the given wIndex into a pointer to an driver endpoint 1571 * structure, or return NULL if it is not a valid endpoint. 1572 */ 1573static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1574 u32 windex) 1575{ 1576 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1577 int idx = windex & 0x7F; 1578 1579 if (windex >= 0x100) 1580 return NULL; 1581 1582 if (idx > hsotg->num_of_eps) 1583 return NULL; 1584 1585 return index_to_ep(hsotg, idx, dir); 1586} 1587 1588/** 1589 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1590 * @hsotg: The driver state. 1591 * @testmode: requested usb test mode 1592 * Enable usb Test Mode requested by the Host. 1593 */ 1594int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1595{ 1596 int dctl = dwc2_readl(hsotg, DCTL); 1597 1598 dctl &= ~DCTL_TSTCTL_MASK; 1599 switch (testmode) { 1600 case USB_TEST_J: 1601 case USB_TEST_K: 1602 case USB_TEST_SE0_NAK: 1603 case USB_TEST_PACKET: 1604 case USB_TEST_FORCE_ENABLE: 1605 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1606 break; 1607 default: 1608 return -EINVAL; 1609 } 1610 dwc2_writel(hsotg, dctl, DCTL); 1611 return 0; 1612} 1613 1614/** 1615 * dwc2_hsotg_send_reply - send reply to control request 1616 * @hsotg: The device state 1617 * @ep: Endpoint 0 1618 * @buff: Buffer for request 1619 * @length: Length of reply. 1620 * 1621 * Create a request and queue it on the given endpoint. This is useful as 1622 * an internal method of sending replies to certain control requests, etc. 1623 */ 1624static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1625 struct dwc2_hsotg_ep *ep, 1626 void *buff, 1627 int length) 1628{ 1629 struct usb_request *req; 1630 int ret; 1631 1632 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1633 1634 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1635 hsotg->ep0_reply = req; 1636 if (!req) { 1637 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1638 return -ENOMEM; 1639 } 1640 1641 req->buf = hsotg->ep0_buff; 1642 req->length = length; 1643 /* 1644 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1645 * STATUS stage. 1646 */ 1647 req->zero = 0; 1648 req->complete = dwc2_hsotg_complete_oursetup; 1649 1650 if (length) 1651 memcpy(req->buf, buff, length); 1652 1653 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1654 if (ret) { 1655 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1656 return ret; 1657 } 1658 1659 return 0; 1660} 1661 1662/** 1663 * dwc2_hsotg_process_req_status - process request GET_STATUS 1664 * @hsotg: The device state 1665 * @ctrl: USB control request 1666 */ 1667static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1668 struct usb_ctrlrequest *ctrl) 1669{ 1670 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1671 struct dwc2_hsotg_ep *ep; 1672 __le16 reply; 1673 u16 status; 1674 int ret; 1675 1676 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1677 1678 if (!ep0->dir_in) { 1679 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1680 return -EINVAL; 1681 } 1682 1683 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1684 case USB_RECIP_DEVICE: 1685 status = hsotg->gadget.is_selfpowered << 1686 USB_DEVICE_SELF_POWERED; 1687 status |= hsotg->remote_wakeup_allowed << 1688 USB_DEVICE_REMOTE_WAKEUP; 1689 reply = cpu_to_le16(status); 1690 break; 1691 1692 case USB_RECIP_INTERFACE: 1693 /* currently, the data result should be zero */ 1694 reply = cpu_to_le16(0); 1695 break; 1696 1697 case USB_RECIP_ENDPOINT: 1698 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1699 if (!ep) 1700 return -ENOENT; 1701 1702 reply = cpu_to_le16(ep->halted ? 1 : 0); 1703 break; 1704 1705 default: 1706 return 0; 1707 } 1708 1709 if (le16_to_cpu(ctrl->wLength) != 2) 1710 return -EINVAL; 1711 1712 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1713 if (ret) { 1714 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1715 return ret; 1716 } 1717 1718 return 1; 1719} 1720 1721static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1722 1723/** 1724 * get_ep_head - return the first request on the endpoint 1725 * @hs_ep: The controller endpoint to get 1726 * 1727 * Get the first request on the endpoint. 1728 */ 1729static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1730{ 1731 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1732 queue); 1733} 1734 1735/** 1736 * dwc2_gadget_start_next_request - Starts next request from ep queue 1737 * @hs_ep: Endpoint structure 1738 * 1739 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1740 * in its handler. Hence we need to unmask it here to be able to do 1741 * resynchronization. 1742 */ 1743static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1744{ 1745 struct dwc2_hsotg *hsotg = hs_ep->parent; 1746 int dir_in = hs_ep->dir_in; 1747 struct dwc2_hsotg_req *hs_req; 1748 1749 if (!list_empty(&hs_ep->queue)) { 1750 hs_req = get_ep_head(hs_ep); 1751 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1752 return; 1753 } 1754 if (!hs_ep->isochronous) 1755 return; 1756 1757 if (dir_in) { 1758 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1759 __func__); 1760 } else { 1761 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1762 __func__); 1763 } 1764} 1765 1766/** 1767 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1768 * @hsotg: The device state 1769 * @ctrl: USB control request 1770 */ 1771static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1772 struct usb_ctrlrequest *ctrl) 1773{ 1774 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1775 struct dwc2_hsotg_req *hs_req; 1776 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1777 struct dwc2_hsotg_ep *ep; 1778 int ret; 1779 bool halted; 1780 u32 recip; 1781 u32 wValue; 1782 u32 wIndex; 1783 1784 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1785 __func__, set ? "SET" : "CLEAR"); 1786 1787 wValue = le16_to_cpu(ctrl->wValue); 1788 wIndex = le16_to_cpu(ctrl->wIndex); 1789 recip = ctrl->bRequestType & USB_RECIP_MASK; 1790 1791 switch (recip) { 1792 case USB_RECIP_DEVICE: 1793 switch (wValue) { 1794 case USB_DEVICE_REMOTE_WAKEUP: 1795 if (set) 1796 hsotg->remote_wakeup_allowed = 1; 1797 else 1798 hsotg->remote_wakeup_allowed = 0; 1799 break; 1800 1801 case USB_DEVICE_TEST_MODE: 1802 if ((wIndex & 0xff) != 0) 1803 return -EINVAL; 1804 if (!set) 1805 return -EINVAL; 1806 1807 hsotg->test_mode = wIndex >> 8; 1808 break; 1809 default: 1810 return -ENOENT; 1811 } 1812 1813 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1814 if (ret) { 1815 dev_err(hsotg->dev, 1816 "%s: failed to send reply\n", __func__); 1817 return ret; 1818 } 1819 break; 1820 1821 case USB_RECIP_ENDPOINT: 1822 ep = ep_from_windex(hsotg, wIndex); 1823 if (!ep) { 1824 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1825 __func__, wIndex); 1826 return -ENOENT; 1827 } 1828 1829 switch (wValue) { 1830 case USB_ENDPOINT_HALT: 1831 halted = ep->halted; 1832 1833 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1834 1835 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1836 if (ret) { 1837 dev_err(hsotg->dev, 1838 "%s: failed to send reply\n", __func__); 1839 return ret; 1840 } 1841 1842 /* 1843 * we have to complete all requests for ep if it was 1844 * halted, and the halt was cleared by CLEAR_FEATURE 1845 */ 1846 1847 if (!set && halted) { 1848 /* 1849 * If we have request in progress, 1850 * then complete it 1851 */ 1852 if (ep->req) { 1853 hs_req = ep->req; 1854 ep->req = NULL; 1855 list_del_init(&hs_req->queue); 1856 if (hs_req->req.complete) { 1857 spin_unlock(&hsotg->lock); 1858 usb_gadget_giveback_request( 1859 &ep->ep, &hs_req->req); 1860 spin_lock(&hsotg->lock); 1861 } 1862 } 1863 1864 /* If we have pending request, then start it */ 1865 if (!ep->req) 1866 dwc2_gadget_start_next_request(ep); 1867 } 1868 1869 break; 1870 1871 default: 1872 return -ENOENT; 1873 } 1874 break; 1875 default: 1876 return -ENOENT; 1877 } 1878 return 1; 1879} 1880 1881static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1882 1883/** 1884 * dwc2_hsotg_stall_ep0 - stall ep0 1885 * @hsotg: The device state 1886 * 1887 * Set stall for ep0 as response for setup request. 1888 */ 1889static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1890{ 1891 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1892 u32 reg; 1893 u32 ctrl; 1894 1895 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1896 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1897 1898 /* 1899 * DxEPCTL_Stall will be cleared by EP once it has 1900 * taken effect, so no need to clear later. 1901 */ 1902 1903 ctrl = dwc2_readl(hsotg, reg); 1904 ctrl |= DXEPCTL_STALL; 1905 ctrl |= DXEPCTL_CNAK; 1906 dwc2_writel(hsotg, ctrl, reg); 1907 1908 dev_dbg(hsotg->dev, 1909 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1910 ctrl, reg, dwc2_readl(hsotg, reg)); 1911 1912 /* 1913 * complete won't be called, so we enqueue 1914 * setup request here 1915 */ 1916 dwc2_hsotg_enqueue_setup(hsotg); 1917} 1918 1919/** 1920 * dwc2_hsotg_process_control - process a control request 1921 * @hsotg: The device state 1922 * @ctrl: The control request received 1923 * 1924 * The controller has received the SETUP phase of a control request, and 1925 * needs to work out what to do next (and whether to pass it on to the 1926 * gadget driver). 1927 */ 1928static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1929 struct usb_ctrlrequest *ctrl) 1930{ 1931 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1932 int ret = 0; 1933 u32 dcfg; 1934 1935 dev_dbg(hsotg->dev, 1936 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1937 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1938 ctrl->wIndex, ctrl->wLength); 1939 1940 if (ctrl->wLength == 0) { 1941 ep0->dir_in = 1; 1942 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1943 } else if (ctrl->bRequestType & USB_DIR_IN) { 1944 ep0->dir_in = 1; 1945 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1946 } else { 1947 ep0->dir_in = 0; 1948 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1949 } 1950 1951 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1952 switch (ctrl->bRequest) { 1953 case USB_REQ_SET_ADDRESS: 1954 hsotg->connected = 1; 1955 dcfg = dwc2_readl(hsotg, DCFG); 1956 dcfg &= ~DCFG_DEVADDR_MASK; 1957 dcfg |= (le16_to_cpu(ctrl->wValue) << 1958 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1959 dwc2_writel(hsotg, dcfg, DCFG); 1960 1961 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1962 1963 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1964 return; 1965 1966 case USB_REQ_GET_STATUS: 1967 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1968 break; 1969 1970 case USB_REQ_CLEAR_FEATURE: 1971 case USB_REQ_SET_FEATURE: 1972 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1973 break; 1974 } 1975 } 1976 1977 /* as a fallback, try delivering it to the driver to deal with */ 1978 1979 if (ret == 0 && hsotg->driver) { 1980 spin_unlock(&hsotg->lock); 1981 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1982 spin_lock(&hsotg->lock); 1983 if (ret < 0) 1984 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1985 } 1986 1987 hsotg->delayed_status = false; 1988 if (ret == USB_GADGET_DELAYED_STATUS) 1989 hsotg->delayed_status = true; 1990 1991 /* 1992 * the request is either unhandlable, or is not formatted correctly 1993 * so respond with a STALL for the status stage to indicate failure. 1994 */ 1995 1996 if (ret < 0) 1997 dwc2_hsotg_stall_ep0(hsotg); 1998} 1999 2000/** 2001 * dwc2_hsotg_complete_setup - completion of a setup transfer 2002 * @ep: The endpoint the request was on. 2003 * @req: The request completed. 2004 * 2005 * Called on completion of any requests the driver itself submitted for 2006 * EP0 setup packets 2007 */ 2008static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 2009 struct usb_request *req) 2010{ 2011 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 2012 struct dwc2_hsotg *hsotg = hs_ep->parent; 2013 2014 if (req->status < 0) { 2015 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 2016 return; 2017 } 2018 2019 spin_lock(&hsotg->lock); 2020 if (req->actual == 0) 2021 dwc2_hsotg_enqueue_setup(hsotg); 2022 else 2023 dwc2_hsotg_process_control(hsotg, req->buf); 2024 spin_unlock(&hsotg->lock); 2025} 2026 2027/** 2028 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 2029 * @hsotg: The device state. 2030 * 2031 * Enqueue a request on EP0 if necessary to received any SETUP packets 2032 * received from the host. 2033 */ 2034static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 2035{ 2036 struct usb_request *req = hsotg->ctrl_req; 2037 struct dwc2_hsotg_req *hs_req = our_req(req); 2038 int ret; 2039 2040 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 2041 2042 req->zero = 0; 2043 req->length = 8; 2044 req->buf = hsotg->ctrl_buff; 2045 req->complete = dwc2_hsotg_complete_setup; 2046 2047 if (!list_empty(&hs_req->queue)) { 2048 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 2049 return; 2050 } 2051 2052 hsotg->eps_out[0]->dir_in = 0; 2053 hsotg->eps_out[0]->send_zlp = 0; 2054 hsotg->ep0_state = DWC2_EP0_SETUP; 2055 2056 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 2057 if (ret < 0) { 2058 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 2059 /* 2060 * Don't think there's much we can do other than watch the 2061 * driver fail. 2062 */ 2063 } 2064} 2065 2066static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 2067 struct dwc2_hsotg_ep *hs_ep) 2068{ 2069 u32 ctrl; 2070 u8 index = hs_ep->index; 2071 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2072 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 2073 2074 if (hs_ep->dir_in) 2075 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 2076 index); 2077 else 2078 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 2079 index); 2080 if (using_desc_dma(hsotg)) { 2081 /* Not specific buffer needed for ep0 ZLP */ 2082 dma_addr_t dma = hs_ep->desc_list_dma; 2083 2084 if (!index) 2085 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 2086 2087 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 2088 } else { 2089 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 2090 DXEPTSIZ_XFERSIZE(0), 2091 epsiz_reg); 2092 } 2093 2094 ctrl = dwc2_readl(hsotg, epctl_reg); 2095 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 2096 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 2097 ctrl |= DXEPCTL_USBACTEP; 2098 dwc2_writel(hsotg, ctrl, epctl_reg); 2099} 2100 2101/** 2102 * dwc2_hsotg_complete_request - complete a request given to us 2103 * @hsotg: The device state. 2104 * @hs_ep: The endpoint the request was on. 2105 * @hs_req: The request to complete. 2106 * @result: The result code (0 => Ok, otherwise errno) 2107 * 2108 * The given request has finished, so call the necessary completion 2109 * if it has one and then look to see if we can start a new request 2110 * on the endpoint. 2111 * 2112 * Note, expects the ep to already be locked as appropriate. 2113 */ 2114static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 2115 struct dwc2_hsotg_ep *hs_ep, 2116 struct dwc2_hsotg_req *hs_req, 2117 int result) 2118{ 2119 if (!hs_req) { 2120 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 2121 return; 2122 } 2123 2124 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 2125 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 2126 2127 /* 2128 * only replace the status if we've not already set an error 2129 * from a previous transaction 2130 */ 2131 2132 if (hs_req->req.status == -EINPROGRESS) 2133 hs_req->req.status = result; 2134 2135 if (using_dma(hsotg)) 2136 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 2137 2138 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 2139 2140 hs_ep->req = NULL; 2141 list_del_init(&hs_req->queue); 2142 2143 /* 2144 * call the complete request with the locks off, just in case the 2145 * request tries to queue more work for this endpoint. 2146 */ 2147 2148 if (hs_req->req.complete) { 2149 spin_unlock(&hsotg->lock); 2150 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 2151 spin_lock(&hsotg->lock); 2152 } 2153 2154 /* In DDMA don't need to proceed to starting of next ISOC request */ 2155 if (using_desc_dma(hsotg) && hs_ep->isochronous) 2156 return; 2157 2158 /* 2159 * Look to see if there is anything else to do. Note, the completion 2160 * of the previous request may have caused a new request to be started 2161 * so be careful when doing this. 2162 */ 2163 2164 if (!hs_ep->req && result >= 0) 2165 dwc2_gadget_start_next_request(hs_ep); 2166} 2167 2168/* 2169 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2170 * @hs_ep: The endpoint the request was on. 2171 * 2172 * Get first request from the ep queue, determine descriptor on which complete 2173 * happened. SW discovers which descriptor currently in use by HW, adjusts 2174 * dma_address and calculates index of completed descriptor based on the value 2175 * of DEPDMA register. Update actual length of request, giveback to gadget. 2176 */ 2177static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2178{ 2179 struct dwc2_hsotg *hsotg = hs_ep->parent; 2180 struct dwc2_hsotg_req *hs_req; 2181 struct usb_request *ureq; 2182 u32 desc_sts; 2183 u32 mask; 2184 2185 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2186 2187 /* Process only descriptors with buffer status set to DMA done */ 2188 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> 2189 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { 2190 2191 hs_req = get_ep_head(hs_ep); 2192 if (!hs_req) { 2193 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2194 return; 2195 } 2196 ureq = &hs_req->req; 2197 2198 /* Check completion status */ 2199 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == 2200 DEV_DMA_STS_SUCC) { 2201 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2202 DEV_DMA_ISOC_RX_NBYTES_MASK; 2203 ureq->actual = ureq->length - ((desc_sts & mask) >> 2204 DEV_DMA_ISOC_NBYTES_SHIFT); 2205 2206 /* Adjust actual len for ISOC Out if len is 2207 * not align of 4 2208 */ 2209 if (!hs_ep->dir_in && ureq->length & 0x3) 2210 ureq->actual += 4 - (ureq->length & 0x3); 2211 2212 /* Set actual frame number for completed transfers */ 2213 ureq->frame_number = 2214 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> 2215 DEV_DMA_ISOC_FRNUM_SHIFT; 2216 } 2217 2218 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2219 2220 hs_ep->compl_desc++; 2221 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) 2222 hs_ep->compl_desc = 0; 2223 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; 2224 } 2225} 2226 2227/* 2228 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. 2229 * @hs_ep: The isochronous endpoint. 2230 * 2231 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA 2232 * interrupt. Reset target frame and next_desc to allow to start 2233 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS 2234 * interrupt for OUT direction. 2235 */ 2236static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) 2237{ 2238 struct dwc2_hsotg *hsotg = hs_ep->parent; 2239 2240 if (!hs_ep->dir_in) 2241 dwc2_flush_rx_fifo(hsotg); 2242 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); 2243 2244 hs_ep->target_frame = TARGET_FRAME_INITIAL; 2245 hs_ep->next_desc = 0; 2246 hs_ep->compl_desc = 0; 2247} 2248 2249/** 2250 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2251 * @hsotg: The device state. 2252 * @ep_idx: The endpoint index for the data 2253 * @size: The size of data in the fifo, in bytes 2254 * 2255 * The FIFO status shows there is data to read from the FIFO for a given 2256 * endpoint, so sort out whether we need to read the data into a request 2257 * that has been made for that endpoint. 2258 */ 2259static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2260{ 2261 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2262 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2263 int to_read; 2264 int max_req; 2265 int read_ptr; 2266 2267 if (!hs_req) { 2268 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); 2269 int ptr; 2270 2271 dev_dbg(hsotg->dev, 2272 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2273 __func__, size, ep_idx, epctl); 2274 2275 /* dump the data from the FIFO, we've nothing we can do */ 2276 for (ptr = 0; ptr < size; ptr += 4) 2277 (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); 2278 2279 return; 2280 } 2281 2282 to_read = size; 2283 read_ptr = hs_req->req.actual; 2284 max_req = hs_req->req.length - read_ptr; 2285 2286 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2287 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2288 2289 if (to_read > max_req) { 2290 /* 2291 * more data appeared than we where willing 2292 * to deal with in this request. 2293 */ 2294 2295 /* currently we don't deal this */ 2296 WARN_ON_ONCE(1); 2297 } 2298 2299 hs_ep->total_data += to_read; 2300 hs_req->req.actual += to_read; 2301 to_read = DIV_ROUND_UP(to_read, 4); 2302 2303 /* 2304 * note, we might over-write the buffer end by 3 bytes depending on 2305 * alignment of the data. 2306 */ 2307 dwc2_readl_rep(hsotg, EPFIFO(ep_idx), 2308 hs_req->req.buf + read_ptr, to_read); 2309} 2310 2311/** 2312 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2313 * @hsotg: The device instance 2314 * @dir_in: If IN zlp 2315 * 2316 * Generate a zero-length IN packet request for terminating a SETUP 2317 * transaction. 2318 * 2319 * Note, since we don't write any data to the TxFIFO, then it is 2320 * currently believed that we do not need to wait for any space in 2321 * the TxFIFO. 2322 */ 2323static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2324{ 2325 /* eps_out[0] is used in both directions */ 2326 hsotg->eps_out[0]->dir_in = dir_in; 2327 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2328 2329 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2330} 2331 2332/* 2333 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2334 * @hs_ep - The endpoint on which transfer went 2335 * 2336 * Iterate over endpoints descriptor chain and get info on bytes remained 2337 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2338 */ 2339static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2340{ 2341 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; 2342 struct dwc2_hsotg *hsotg = hs_ep->parent; 2343 unsigned int bytes_rem = 0; 2344 unsigned int bytes_rem_correction = 0; 2345 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2346 int i; 2347 u32 status; 2348 u32 mps = hs_ep->ep.maxpacket; 2349 int dir_in = hs_ep->dir_in; 2350 2351 if (!desc) 2352 return -EINVAL; 2353 2354 /* Interrupt OUT EP with mps not multiple of 4 */ 2355 if (hs_ep->index) 2356 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) 2357 bytes_rem_correction = 4 - (mps % 4); 2358 2359 for (i = 0; i < hs_ep->desc_count; ++i) { 2360 status = desc->status; 2361 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2362 bytes_rem -= bytes_rem_correction; 2363 2364 if (status & DEV_DMA_STS_MASK) 2365 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2366 i, status & DEV_DMA_STS_MASK); 2367 2368 if (status & DEV_DMA_L) 2369 break; 2370 2371 desc++; 2372 } 2373 2374 return bytes_rem; 2375} 2376 2377/** 2378 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2379 * @hsotg: The device instance 2380 * @epnum: The endpoint received from 2381 * 2382 * The RXFIFO has delivered an OutDone event, which means that the data 2383 * transfer for an OUT endpoint has been completed, either by a short 2384 * packet or by the finish of a transfer. 2385 */ 2386static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2387{ 2388 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); 2389 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2390 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2391 struct usb_request *req = &hs_req->req; 2392 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2393 int result = 0; 2394 2395 if (!hs_req) { 2396 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2397 return; 2398 } 2399 2400 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2401 dev_dbg(hsotg->dev, "zlp packet received\n"); 2402 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2403 dwc2_hsotg_enqueue_setup(hsotg); 2404 return; 2405 } 2406 2407 if (using_desc_dma(hsotg)) 2408 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2409 2410 if (using_dma(hsotg)) { 2411 unsigned int size_done; 2412 2413 /* 2414 * Calculate the size of the transfer by checking how much 2415 * is left in the endpoint size register and then working it 2416 * out from the amount we loaded for the transfer. 2417 * 2418 * We need to do this as DMA pointers are always 32bit aligned 2419 * so may overshoot/undershoot the transfer. 2420 */ 2421 2422 size_done = hs_ep->size_loaded - size_left; 2423 size_done += hs_ep->last_load; 2424 2425 req->actual = size_done; 2426 } 2427 2428 /* if there is more request to do, schedule new transfer */ 2429 if (req->actual < req->length && size_left == 0) { 2430 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2431 return; 2432 } 2433 2434 if (req->actual < req->length && req->short_not_ok) { 2435 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2436 __func__, req->actual, req->length); 2437 2438 /* 2439 * todo - what should we return here? there's no one else 2440 * even bothering to check the status. 2441 */ 2442 } 2443 2444 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2445 if (!using_desc_dma(hsotg) && epnum == 0 && 2446 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2447 /* Move to STATUS IN */ 2448 if (!hsotg->delayed_status) 2449 dwc2_hsotg_ep0_zlp(hsotg, true); 2450 } 2451 2452 /* Set actual frame number for completed transfers */ 2453 if (!using_desc_dma(hsotg) && hs_ep->isochronous) { 2454 req->frame_number = hs_ep->target_frame; 2455 dwc2_gadget_incr_frame_num(hs_ep); 2456 } 2457 2458 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2459} 2460 2461/** 2462 * dwc2_hsotg_handle_rx - RX FIFO has data 2463 * @hsotg: The device instance 2464 * 2465 * The IRQ handler has detected that the RX FIFO has some data in it 2466 * that requires processing, so find out what is in there and do the 2467 * appropriate read. 2468 * 2469 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2470 * chunks, so if you have x packets received on an endpoint you'll get x 2471 * FIFO events delivered, each with a packet's worth of data in it. 2472 * 2473 * When using DMA, we should not be processing events from the RXFIFO 2474 * as the actual data should be sent to the memory directly and we turn 2475 * on the completion interrupts to get notifications of transfer completion. 2476 */ 2477static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2478{ 2479 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); 2480 u32 epnum, status, size; 2481 2482 WARN_ON(using_dma(hsotg)); 2483 2484 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2485 status = grxstsr & GRXSTS_PKTSTS_MASK; 2486 2487 size = grxstsr & GRXSTS_BYTECNT_MASK; 2488 size >>= GRXSTS_BYTECNT_SHIFT; 2489 2490 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2491 __func__, grxstsr, size, epnum); 2492 2493 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2494 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2495 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2496 break; 2497 2498 case GRXSTS_PKTSTS_OUTDONE: 2499 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2500 dwc2_hsotg_read_frameno(hsotg)); 2501 2502 if (!using_dma(hsotg)) 2503 dwc2_hsotg_handle_outdone(hsotg, epnum); 2504 break; 2505 2506 case GRXSTS_PKTSTS_SETUPDONE: 2507 dev_dbg(hsotg->dev, 2508 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2509 dwc2_hsotg_read_frameno(hsotg), 2510 dwc2_readl(hsotg, DOEPCTL(0))); 2511 /* 2512 * Call dwc2_hsotg_handle_outdone here if it was not called from 2513 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2514 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2515 */ 2516 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2517 dwc2_hsotg_handle_outdone(hsotg, epnum); 2518 break; 2519 2520 case GRXSTS_PKTSTS_OUTRX: 2521 dwc2_hsotg_rx_data(hsotg, epnum, size); 2522 break; 2523 2524 case GRXSTS_PKTSTS_SETUPRX: 2525 dev_dbg(hsotg->dev, 2526 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2527 dwc2_hsotg_read_frameno(hsotg), 2528 dwc2_readl(hsotg, DOEPCTL(0))); 2529 2530 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2531 2532 dwc2_hsotg_rx_data(hsotg, epnum, size); 2533 break; 2534 2535 default: 2536 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2537 __func__, grxstsr); 2538 2539 dwc2_hsotg_dump(hsotg); 2540 break; 2541 } 2542} 2543 2544/** 2545 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2546 * @mps: The maximum packet size in bytes. 2547 */ 2548static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2549{ 2550 switch (mps) { 2551 case 64: 2552 return D0EPCTL_MPS_64; 2553 case 32: 2554 return D0EPCTL_MPS_32; 2555 case 16: 2556 return D0EPCTL_MPS_16; 2557 case 8: 2558 return D0EPCTL_MPS_8; 2559 } 2560 2561 /* bad max packet size, warn and return invalid result */ 2562 WARN_ON(1); 2563 return (u32)-1; 2564} 2565 2566/** 2567 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2568 * @hsotg: The driver state. 2569 * @ep: The index number of the endpoint 2570 * @mps: The maximum packet size in bytes 2571 * @mc: The multicount value 2572 * @dir_in: True if direction is in. 2573 * 2574 * Configure the maximum packet size for the given endpoint, updating 2575 * the hardware control registers to reflect this. 2576 */ 2577static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2578 unsigned int ep, unsigned int mps, 2579 unsigned int mc, unsigned int dir_in) 2580{ 2581 struct dwc2_hsotg_ep *hs_ep; 2582 u32 reg; 2583 2584 hs_ep = index_to_ep(hsotg, ep, dir_in); 2585 if (!hs_ep) 2586 return; 2587 2588 if (ep == 0) { 2589 u32 mps_bytes = mps; 2590 2591 /* EP0 is a special case */ 2592 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2593 if (mps > 3) 2594 goto bad_mps; 2595 hs_ep->ep.maxpacket = mps_bytes; 2596 hs_ep->mc = 1; 2597 } else { 2598 if (mps > 1024) 2599 goto bad_mps; 2600 hs_ep->mc = mc; 2601 if (mc > 3) 2602 goto bad_mps; 2603 hs_ep->ep.maxpacket = mps; 2604 } 2605 2606 if (dir_in) { 2607 reg = dwc2_readl(hsotg, DIEPCTL(ep)); 2608 reg &= ~DXEPCTL_MPS_MASK; 2609 reg |= mps; 2610 dwc2_writel(hsotg, reg, DIEPCTL(ep)); 2611 } else { 2612 reg = dwc2_readl(hsotg, DOEPCTL(ep)); 2613 reg &= ~DXEPCTL_MPS_MASK; 2614 reg |= mps; 2615 dwc2_writel(hsotg, reg, DOEPCTL(ep)); 2616 } 2617 2618 return; 2619 2620bad_mps: 2621 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2622} 2623 2624/** 2625 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2626 * @hsotg: The driver state 2627 * @idx: The index for the endpoint (0..15) 2628 */ 2629static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2630{ 2631 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2632 GRSTCTL); 2633 2634 /* wait until the fifo is flushed */ 2635 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2636 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2637 __func__); 2638} 2639 2640/** 2641 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2642 * @hsotg: The driver state 2643 * @hs_ep: The driver endpoint to check. 2644 * 2645 * Check to see if there is a request that has data to send, and if so 2646 * make an attempt to write data into the FIFO. 2647 */ 2648static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2649 struct dwc2_hsotg_ep *hs_ep) 2650{ 2651 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2652 2653 if (!hs_ep->dir_in || !hs_req) { 2654 /** 2655 * if request is not enqueued, we disable interrupts 2656 * for endpoints, excepting ep0 2657 */ 2658 if (hs_ep->index != 0) 2659 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2660 hs_ep->dir_in, 0); 2661 return 0; 2662 } 2663 2664 if (hs_req->req.actual < hs_req->req.length) { 2665 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2666 hs_ep->index); 2667 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2668 } 2669 2670 return 0; 2671} 2672 2673/** 2674 * dwc2_hsotg_complete_in - complete IN transfer 2675 * @hsotg: The device state. 2676 * @hs_ep: The endpoint that has just completed. 2677 * 2678 * An IN transfer has been completed, update the transfer's state and then 2679 * call the relevant completion routines. 2680 */ 2681static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2682 struct dwc2_hsotg_ep *hs_ep) 2683{ 2684 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2685 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); 2686 int size_left, size_done; 2687 2688 if (!hs_req) { 2689 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2690 return; 2691 } 2692 2693 /* Finish ZLP handling for IN EP0 transactions */ 2694 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2695 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2696 2697 /* 2698 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2699 * changed to IN. Change back to complete OUT transfer request 2700 */ 2701 hs_ep->dir_in = 0; 2702 2703 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2704 if (hsotg->test_mode) { 2705 int ret; 2706 2707 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2708 if (ret < 0) { 2709 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2710 hsotg->test_mode); 2711 dwc2_hsotg_stall_ep0(hsotg); 2712 return; 2713 } 2714 } 2715 dwc2_hsotg_enqueue_setup(hsotg); 2716 return; 2717 } 2718 2719 /* 2720 * Calculate the size of the transfer by checking how much is left 2721 * in the endpoint size register and then working it out from 2722 * the amount we loaded for the transfer. 2723 * 2724 * We do this even for DMA, as the transfer may have incremented 2725 * past the end of the buffer (DMA transfers are always 32bit 2726 * aligned). 2727 */ 2728 if (using_desc_dma(hsotg)) { 2729 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2730 if (size_left < 0) 2731 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2732 size_left); 2733 } else { 2734 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2735 } 2736 2737 size_done = hs_ep->size_loaded - size_left; 2738 size_done += hs_ep->last_load; 2739 2740 if (hs_req->req.actual != size_done) 2741 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2742 __func__, hs_req->req.actual, size_done); 2743 2744 hs_req->req.actual = size_done; 2745 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2746 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2747 2748 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2749 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2750 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2751 return; 2752 } 2753 2754 /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */ 2755 if (hs_ep->send_zlp) { 2756 hs_ep->send_zlp = 0; 2757 if (!using_desc_dma(hsotg)) { 2758 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2759 /* transfer will be completed on next complete interrupt */ 2760 return; 2761 } 2762 } 2763 2764 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2765 /* Move to STATUS OUT */ 2766 dwc2_hsotg_ep0_zlp(hsotg, false); 2767 return; 2768 } 2769 2770 /* Set actual frame number for completed transfers */ 2771 if (!using_desc_dma(hsotg) && hs_ep->isochronous) { 2772 hs_req->req.frame_number = hs_ep->target_frame; 2773 dwc2_gadget_incr_frame_num(hs_ep); 2774 } 2775 2776 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2777} 2778 2779/** 2780 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2781 * @hsotg: The device state. 2782 * @idx: Index of ep. 2783 * @dir_in: Endpoint direction 1-in 0-out. 2784 * 2785 * Reads for endpoint with given index and direction, by masking 2786 * epint_reg with coresponding mask. 2787 */ 2788static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2789 unsigned int idx, int dir_in) 2790{ 2791 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2792 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2793 u32 ints; 2794 u32 mask; 2795 u32 diepempmsk; 2796 2797 mask = dwc2_readl(hsotg, epmsk_reg); 2798 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); 2799 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2800 mask |= DXEPINT_SETUP_RCVD; 2801 2802 ints = dwc2_readl(hsotg, epint_reg); 2803 ints &= mask; 2804 return ints; 2805} 2806 2807/** 2808 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2809 * @hs_ep: The endpoint on which interrupt is asserted. 2810 * 2811 * This interrupt indicates that the endpoint has been disabled per the 2812 * application's request. 2813 * 2814 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2815 * in case of ISOC completes current request. 2816 * 2817 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2818 * request starts it. 2819 */ 2820static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2821{ 2822 struct dwc2_hsotg *hsotg = hs_ep->parent; 2823 struct dwc2_hsotg_req *hs_req; 2824 unsigned char idx = hs_ep->index; 2825 int dir_in = hs_ep->dir_in; 2826 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2827 int dctl = dwc2_readl(hsotg, DCTL); 2828 2829 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2830 2831 if (dir_in) { 2832 int epctl = dwc2_readl(hsotg, epctl_reg); 2833 2834 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2835 2836 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2837 int dctl = dwc2_readl(hsotg, DCTL); 2838 2839 dctl |= DCTL_CGNPINNAK; 2840 dwc2_writel(hsotg, dctl, DCTL); 2841 } 2842 } else { 2843 2844 if (dctl & DCTL_GOUTNAKSTS) { 2845 dctl |= DCTL_CGOUTNAK; 2846 dwc2_writel(hsotg, dctl, DCTL); 2847 } 2848 } 2849 2850 if (!hs_ep->isochronous) 2851 return; 2852 2853 if (list_empty(&hs_ep->queue)) { 2854 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2855 __func__, hs_ep); 2856 return; 2857 } 2858 2859 do { 2860 hs_req = get_ep_head(hs_ep); 2861 if (hs_req) { 2862 hs_req->req.frame_number = hs_ep->target_frame; 2863 hs_req->req.actual = 0; 2864 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2865 -ENODATA); 2866 } 2867 dwc2_gadget_incr_frame_num(hs_ep); 2868 /* Update current frame number value. */ 2869 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2870 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2871} 2872 2873/** 2874 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2875 * @ep: The endpoint on which interrupt is asserted. 2876 * 2877 * This is starting point for ISOC-OUT transfer, synchronization done with 2878 * first out token received from host while corresponding EP is disabled. 2879 * 2880 * Device does not know initial frame in which out token will come. For this 2881 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2882 * getting this interrupt SW starts calculation for next transfer frame. 2883 */ 2884static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2885{ 2886 struct dwc2_hsotg *hsotg = ep->parent; 2887 struct dwc2_hsotg_req *hs_req; 2888 int dir_in = ep->dir_in; 2889 2890 if (dir_in || !ep->isochronous) 2891 return; 2892 2893 if (using_desc_dma(hsotg)) { 2894 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2895 /* Start first ISO Out */ 2896 ep->target_frame = hsotg->frame_number; 2897 dwc2_gadget_start_isoc_ddma(ep); 2898 } 2899 return; 2900 } 2901 2902 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2903 u32 ctrl; 2904 2905 ep->target_frame = hsotg->frame_number; 2906 if (ep->interval > 1) { 2907 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); 2908 if (ep->target_frame & 0x1) 2909 ctrl |= DXEPCTL_SETODDFR; 2910 else 2911 ctrl |= DXEPCTL_SETEVENFR; 2912 2913 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); 2914 } 2915 } 2916 2917 while (dwc2_gadget_target_frame_elapsed(ep)) { 2918 hs_req = get_ep_head(ep); 2919 if (hs_req) { 2920 hs_req->req.frame_number = ep->target_frame; 2921 hs_req->req.actual = 0; 2922 dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA); 2923 } 2924 2925 dwc2_gadget_incr_frame_num(ep); 2926 /* Update current frame number value. */ 2927 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 2928 } 2929 2930 if (!ep->req) 2931 dwc2_gadget_start_next_request(ep); 2932 2933} 2934 2935static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 2936 struct dwc2_hsotg_ep *hs_ep); 2937 2938/** 2939 * dwc2_gadget_handle_nak - handle NAK interrupt 2940 * @hs_ep: The endpoint on which interrupt is asserted. 2941 * 2942 * This is starting point for ISOC-IN transfer, synchronization done with 2943 * first IN token received from host while corresponding EP is disabled. 2944 * 2945 * Device does not know when first one token will arrive from host. On first 2946 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2947 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2948 * sent in response to that as there was no data in FIFO. SW is basing on this 2949 * interrupt to obtain frame in which token has come and then based on the 2950 * interval calculates next frame for transfer. 2951 */ 2952static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2953{ 2954 struct dwc2_hsotg *hsotg = hs_ep->parent; 2955 struct dwc2_hsotg_req *hs_req; 2956 int dir_in = hs_ep->dir_in; 2957 u32 ctrl; 2958 2959 if (!dir_in || !hs_ep->isochronous) 2960 return; 2961 2962 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2963 2964 if (using_desc_dma(hsotg)) { 2965 hs_ep->target_frame = hsotg->frame_number; 2966 dwc2_gadget_incr_frame_num(hs_ep); 2967 2968 /* In service interval mode target_frame must 2969 * be set to last (u)frame of the service interval. 2970 */ 2971 if (hsotg->params.service_interval) { 2972 /* Set target_frame to the first (u)frame of 2973 * the service interval 2974 */ 2975 hs_ep->target_frame &= ~hs_ep->interval + 1; 2976 2977 /* Set target_frame to the last (u)frame of 2978 * the service interval 2979 */ 2980 dwc2_gadget_incr_frame_num(hs_ep); 2981 dwc2_gadget_dec_frame_num_by_one(hs_ep); 2982 } 2983 2984 dwc2_gadget_start_isoc_ddma(hs_ep); 2985 return; 2986 } 2987 2988 hs_ep->target_frame = hsotg->frame_number; 2989 if (hs_ep->interval > 1) { 2990 u32 ctrl = dwc2_readl(hsotg, 2991 DIEPCTL(hs_ep->index)); 2992 if (hs_ep->target_frame & 0x1) 2993 ctrl |= DXEPCTL_SETODDFR; 2994 else 2995 ctrl |= DXEPCTL_SETEVENFR; 2996 2997 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); 2998 } 2999 } 3000 3001 if (using_desc_dma(hsotg)) 3002 return; 3003 3004 ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index)); 3005 if (ctrl & DXEPCTL_EPENA) 3006 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 3007 else 3008 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 3009 3010 while (dwc2_gadget_target_frame_elapsed(hs_ep)) { 3011 hs_req = get_ep_head(hs_ep); 3012 if (hs_req) { 3013 hs_req->req.frame_number = hs_ep->target_frame; 3014 hs_req->req.actual = 0; 3015 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA); 3016 } 3017 3018 dwc2_gadget_incr_frame_num(hs_ep); 3019 /* Update current frame number value. */ 3020 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); 3021 } 3022 3023 if (!hs_ep->req) 3024 dwc2_gadget_start_next_request(hs_ep); 3025} 3026 3027/** 3028 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 3029 * @hsotg: The driver state 3030 * @idx: The index for the endpoint (0..15) 3031 * @dir_in: Set if this is an IN endpoint 3032 * 3033 * Process and clear any interrupt pending for an individual endpoint 3034 */ 3035static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 3036 int dir_in) 3037{ 3038 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 3039 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 3040 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 3041 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 3042 u32 ints; 3043 3044 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 3045 3046 /* Clear endpoint interrupts */ 3047 dwc2_writel(hsotg, ints, epint_reg); 3048 3049 if (!hs_ep) { 3050 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 3051 __func__, idx, dir_in ? "in" : "out"); 3052 return; 3053 } 3054 3055 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 3056 __func__, idx, dir_in ? "in" : "out", ints); 3057 3058 /* Don't process XferCompl interrupt if it is a setup packet */ 3059 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 3060 ints &= ~DXEPINT_XFERCOMPL; 3061 3062 /* 3063 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 3064 * stage and xfercomplete was generated without SETUP phase done 3065 * interrupt. SW should parse received setup packet only after host's 3066 * exit from setup phase of control transfer. 3067 */ 3068 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 3069 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 3070 ints &= ~DXEPINT_XFERCOMPL; 3071 3072 if (ints & DXEPINT_XFERCOMPL) { 3073 dev_dbg(hsotg->dev, 3074 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 3075 __func__, dwc2_readl(hsotg, epctl_reg), 3076 dwc2_readl(hsotg, epsiz_reg)); 3077 3078 /* In DDMA handle isochronous requests separately */ 3079 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 3080 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 3081 } else if (dir_in) { 3082 /* 3083 * We get OutDone from the FIFO, so we only 3084 * need to look at completing IN requests here 3085 * if operating slave mode 3086 */ 3087 if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT)) 3088 dwc2_hsotg_complete_in(hsotg, hs_ep); 3089 3090 if (idx == 0 && !hs_ep->req) 3091 dwc2_hsotg_enqueue_setup(hsotg); 3092 } else if (using_dma(hsotg)) { 3093 /* 3094 * We're using DMA, we need to fire an OutDone here 3095 * as we ignore the RXFIFO. 3096 */ 3097 if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS)) 3098 dwc2_hsotg_handle_outdone(hsotg, idx); 3099 } 3100 } 3101 3102 if (ints & DXEPINT_EPDISBLD) 3103 dwc2_gadget_handle_ep_disabled(hs_ep); 3104 3105 if (ints & DXEPINT_OUTTKNEPDIS) 3106 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 3107 3108 if (ints & DXEPINT_NAKINTRPT) 3109 dwc2_gadget_handle_nak(hs_ep); 3110 3111 if (ints & DXEPINT_AHBERR) 3112 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 3113 3114 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 3115 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 3116 3117 if (using_dma(hsotg) && idx == 0) { 3118 /* 3119 * this is the notification we've received a 3120 * setup packet. In non-DMA mode we'd get this 3121 * from the RXFIFO, instead we need to process 3122 * the setup here. 3123 */ 3124 3125 if (dir_in) 3126 WARN_ON_ONCE(1); 3127 else 3128 dwc2_hsotg_handle_outdone(hsotg, 0); 3129 } 3130 } 3131 3132 if (ints & DXEPINT_STSPHSERCVD) { 3133 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 3134 3135 /* Safety check EP0 state when STSPHSERCVD asserted */ 3136 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 3137 /* Move to STATUS IN for DDMA */ 3138 if (using_desc_dma(hsotg)) { 3139 if (!hsotg->delayed_status) 3140 dwc2_hsotg_ep0_zlp(hsotg, true); 3141 else 3142 /* In case of 3 stage Control Write with delayed 3143 * status, when Status IN transfer started 3144 * before STSPHSERCVD asserted, NAKSTS bit not 3145 * cleared by CNAK in dwc2_hsotg_start_req() 3146 * function. Clear now NAKSTS to allow complete 3147 * transfer. 3148 */ 3149 dwc2_set_bit(hsotg, DIEPCTL(0), 3150 DXEPCTL_CNAK); 3151 } 3152 } 3153 3154 } 3155 3156 if (ints & DXEPINT_BACK2BACKSETUP) 3157 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 3158 3159 if (ints & DXEPINT_BNAINTR) { 3160 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 3161 if (hs_ep->isochronous) 3162 dwc2_gadget_handle_isoc_bna(hs_ep); 3163 } 3164 3165 if (dir_in && !hs_ep->isochronous) { 3166 /* not sure if this is important, but we'll clear it anyway */ 3167 if (ints & DXEPINT_INTKNTXFEMP) { 3168 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 3169 __func__, idx); 3170 } 3171 3172 /* this probably means something bad is happening */ 3173 if (ints & DXEPINT_INTKNEPMIS) { 3174 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 3175 __func__, idx); 3176 } 3177 3178 /* FIFO has space or is empty (see GAHBCFG) */ 3179 if (hsotg->dedicated_fifos && 3180 ints & DXEPINT_TXFEMP) { 3181 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3182 __func__, idx); 3183 if (!using_dma(hsotg)) 3184 dwc2_hsotg_trytx(hsotg, hs_ep); 3185 } 3186 } 3187} 3188 3189/** 3190 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3191 * @hsotg: The device state. 3192 * 3193 * Handle updating the device settings after the enumeration phase has 3194 * been completed. 3195 */ 3196static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3197{ 3198 u32 dsts = dwc2_readl(hsotg, DSTS); 3199 int ep0_mps = 0, ep_mps = 8; 3200 3201 /* 3202 * This should signal the finish of the enumeration phase 3203 * of the USB handshaking, so we should now know what rate 3204 * we connected at. 3205 */ 3206 3207 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3208 3209 /* 3210 * note, since we're limited by the size of transfer on EP0, and 3211 * it seems IN transfers must be a even number of packets we do 3212 * not advertise a 64byte MPS on EP0. 3213 */ 3214 3215 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3216 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3217 case DSTS_ENUMSPD_FS: 3218 case DSTS_ENUMSPD_FS48: 3219 hsotg->gadget.speed = USB_SPEED_FULL; 3220 ep0_mps = EP0_MPS_LIMIT; 3221 ep_mps = 1023; 3222 break; 3223 3224 case DSTS_ENUMSPD_HS: 3225 hsotg->gadget.speed = USB_SPEED_HIGH; 3226 ep0_mps = EP0_MPS_LIMIT; 3227 ep_mps = 1024; 3228 break; 3229 3230 case DSTS_ENUMSPD_LS: 3231 hsotg->gadget.speed = USB_SPEED_LOW; 3232 ep0_mps = 8; 3233 ep_mps = 8; 3234 /* 3235 * note, we don't actually support LS in this driver at the 3236 * moment, and the documentation seems to imply that it isn't 3237 * supported by the PHYs on some of the devices. 3238 */ 3239 break; 3240 } 3241 dev_info(hsotg->dev, "new device is %s\n", 3242 usb_speed_string(hsotg->gadget.speed)); 3243 3244 /* 3245 * we should now know the maximum packet size for an 3246 * endpoint, so set the endpoints to a default value. 3247 */ 3248 3249 if (ep0_mps) { 3250 int i; 3251 /* Initialize ep0 for both in and out directions */ 3252 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3253 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3254 for (i = 1; i < hsotg->num_of_eps; i++) { 3255 if (hsotg->eps_in[i]) 3256 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3257 0, 1); 3258 if (hsotg->eps_out[i]) 3259 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3260 0, 0); 3261 } 3262 } 3263 3264 /* ensure after enumeration our EP0 is active */ 3265 3266 dwc2_hsotg_enqueue_setup(hsotg); 3267 3268 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3269 dwc2_readl(hsotg, DIEPCTL0), 3270 dwc2_readl(hsotg, DOEPCTL0)); 3271} 3272 3273/** 3274 * kill_all_requests - remove all requests from the endpoint's queue 3275 * @hsotg: The device state. 3276 * @ep: The endpoint the requests may be on. 3277 * @result: The result code to use. 3278 * 3279 * Go through the requests on the given endpoint and mark them 3280 * completed with the given result code. 3281 */ 3282static void kill_all_requests(struct dwc2_hsotg *hsotg, 3283 struct dwc2_hsotg_ep *ep, 3284 int result) 3285{ 3286 unsigned int size; 3287 3288 ep->req = NULL; 3289 3290 while (!list_empty(&ep->queue)) { 3291 struct dwc2_hsotg_req *req = get_ep_head(ep); 3292 3293 dwc2_hsotg_complete_request(hsotg, ep, req, result); 3294 } 3295 3296 if (!hsotg->dedicated_fifos) 3297 return; 3298 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3299 if (size < ep->fifo_size) 3300 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3301} 3302 3303/** 3304 * dwc2_hsotg_disconnect - disconnect service 3305 * @hsotg: The device state. 3306 * 3307 * The device has been disconnected. Remove all current 3308 * transactions and signal the gadget driver that this 3309 * has happened. 3310 */ 3311void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3312{ 3313 unsigned int ep; 3314 3315 if (!hsotg->connected) 3316 return; 3317 3318 hsotg->connected = 0; 3319 hsotg->test_mode = 0; 3320 3321 /* all endpoints should be shutdown */ 3322 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3323 if (hsotg->eps_in[ep]) 3324 kill_all_requests(hsotg, hsotg->eps_in[ep], 3325 -ESHUTDOWN); 3326 if (hsotg->eps_out[ep]) 3327 kill_all_requests(hsotg, hsotg->eps_out[ep], 3328 -ESHUTDOWN); 3329 } 3330 3331 call_gadget(hsotg, disconnect); 3332 hsotg->lx_state = DWC2_L3; 3333 3334 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3335} 3336 3337/** 3338 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3339 * @hsotg: The device state: 3340 * @periodic: True if this is a periodic FIFO interrupt 3341 */ 3342static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3343{ 3344 struct dwc2_hsotg_ep *ep; 3345 int epno, ret; 3346 3347 /* look through for any more data to transmit */ 3348 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3349 ep = index_to_ep(hsotg, epno, 1); 3350 3351 if (!ep) 3352 continue; 3353 3354 if (!ep->dir_in) 3355 continue; 3356 3357 if ((periodic && !ep->periodic) || 3358 (!periodic && ep->periodic)) 3359 continue; 3360 3361 ret = dwc2_hsotg_trytx(hsotg, ep); 3362 if (ret < 0) 3363 break; 3364 } 3365} 3366 3367/* IRQ flags which will trigger a retry around the IRQ loop */ 3368#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3369 GINTSTS_PTXFEMP | \ 3370 GINTSTS_RXFLVL) 3371 3372static int dwc2_hsotg_ep_disable(struct usb_ep *ep); 3373/** 3374 * dwc2_hsotg_core_init - issue softreset to the core 3375 * @hsotg: The device state 3376 * @is_usb_reset: Usb resetting flag 3377 * 3378 * Issue a soft reset to the core, and await the core finishing it. 3379 */ 3380void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3381 bool is_usb_reset) 3382{ 3383 u32 intmsk; 3384 u32 val; 3385 u32 usbcfg; 3386 u32 dcfg = 0; 3387 int ep; 3388 3389 /* Kill any ep0 requests as controller will be reinitialized */ 3390 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3391 3392 if (!is_usb_reset) { 3393 if (dwc2_core_reset(hsotg, true)) 3394 return; 3395 } else { 3396 /* all endpoints should be shutdown */ 3397 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 3398 if (hsotg->eps_in[ep]) 3399 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 3400 if (hsotg->eps_out[ep]) 3401 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 3402 } 3403 } 3404 3405 /* 3406 * we must now enable ep0 ready for host detection and then 3407 * set configuration. 3408 */ 3409 3410 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3411 usbcfg = dwc2_readl(hsotg, GUSBCFG); 3412 usbcfg &= ~GUSBCFG_TOUTCAL_MASK; 3413 usbcfg |= GUSBCFG_TOUTCAL(7); 3414 3415 /* remove the HNP/SRP and set the PHY */ 3416 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); 3417 dwc2_writel(hsotg, usbcfg, GUSBCFG); 3418 3419 dwc2_phy_init(hsotg, true); 3420 3421 dwc2_hsotg_init_fifo(hsotg); 3422 3423 if (!is_usb_reset) 3424 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3425 3426 dcfg |= DCFG_EPMISCNT(1); 3427 3428 switch (hsotg->params.speed) { 3429 case DWC2_SPEED_PARAM_LOW: 3430 dcfg |= DCFG_DEVSPD_LS; 3431 break; 3432 case DWC2_SPEED_PARAM_FULL: 3433 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3434 dcfg |= DCFG_DEVSPD_FS48; 3435 else 3436 dcfg |= DCFG_DEVSPD_FS; 3437 break; 3438 default: 3439 dcfg |= DCFG_DEVSPD_HS; 3440 } 3441 3442 if (hsotg->params.ipg_isoc_en) 3443 dcfg |= DCFG_IPG_ISOC_SUPPORDED; 3444 3445 dwc2_writel(hsotg, dcfg, DCFG); 3446 3447 /* Clear any pending OTG interrupts */ 3448 dwc2_writel(hsotg, 0xffffffff, GOTGINT); 3449 3450 /* Clear any pending interrupts */ 3451 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 3452 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3453 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3454 GINTSTS_USBRST | GINTSTS_RESETDET | 3455 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3456 GINTSTS_USBSUSP | GINTSTS_WKUPINT | 3457 GINTSTS_LPMTRANRCVD; 3458 3459 if (!using_desc_dma(hsotg)) 3460 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3461 3462 if (!hsotg->params.external_id_pin_ctl) 3463 intmsk |= GINTSTS_CONIDSTSCHNG; 3464 3465 dwc2_writel(hsotg, intmsk, GINTMSK); 3466 3467 if (using_dma(hsotg)) { 3468 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3469 hsotg->params.ahbcfg, 3470 GAHBCFG); 3471 3472 /* Set DDMA mode support in the core if needed */ 3473 if (using_desc_dma(hsotg)) 3474 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); 3475 3476 } else { 3477 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? 3478 (GAHBCFG_NP_TXF_EMP_LVL | 3479 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3480 GAHBCFG_GLBL_INTR_EN, GAHBCFG); 3481 } 3482 3483 /* 3484 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3485 * when we have no data to transfer. Otherwise we get being flooded by 3486 * interrupts. 3487 */ 3488 3489 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3490 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3491 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3492 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3493 DIEPMSK); 3494 3495 /* 3496 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3497 * DMA mode we may need this and StsPhseRcvd. 3498 */ 3499 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3500 DOEPMSK_STSPHSERCVDMSK) : 0) | 3501 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3502 DOEPMSK_SETUPMSK, 3503 DOEPMSK); 3504 3505 /* Enable BNA interrupt for DDMA */ 3506 if (using_desc_dma(hsotg)) { 3507 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); 3508 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); 3509 } 3510 3511 /* Enable Service Interval mode if supported */ 3512 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3513 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); 3514 3515 dwc2_writel(hsotg, 0, DAINTMSK); 3516 3517 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3518 dwc2_readl(hsotg, DIEPCTL0), 3519 dwc2_readl(hsotg, DOEPCTL0)); 3520 3521 /* enable in and out endpoint interrupts */ 3522 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3523 3524 /* 3525 * Enable the RXFIFO when in slave mode, as this is how we collect 3526 * the data. In DMA mode, we get events from the FIFO but also 3527 * things we cannot process, so do not use it. 3528 */ 3529 if (!using_dma(hsotg)) 3530 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3531 3532 /* Enable interrupts for EP0 in and out */ 3533 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3534 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3535 3536 if (!is_usb_reset) { 3537 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3538 udelay(10); /* see openiboot */ 3539 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); 3540 } 3541 3542 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); 3543 3544 /* 3545 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3546 * writing to the EPCTL register.. 3547 */ 3548 3549 /* set to read 1 8byte packet */ 3550 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3551 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); 3552 3553 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3554 DXEPCTL_CNAK | DXEPCTL_EPENA | 3555 DXEPCTL_USBACTEP, 3556 DOEPCTL0); 3557 3558 /* enable, but don't activate EP0in */ 3559 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3560 DXEPCTL_USBACTEP, DIEPCTL0); 3561 3562 /* clear global NAKs */ 3563 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3564 if (!is_usb_reset) 3565 val |= DCTL_SFTDISCON; 3566 dwc2_set_bit(hsotg, DCTL, val); 3567 3568 /* configure the core to support LPM */ 3569 dwc2_gadget_init_lpm(hsotg); 3570 3571 /* program GREFCLK register if needed */ 3572 if (using_desc_dma(hsotg) && hsotg->params.service_interval) 3573 dwc2_gadget_program_ref_clk(hsotg); 3574 3575 /* must be at-least 3ms to allow bus to see disconnect */ 3576 mdelay(3); 3577 3578 hsotg->lx_state = DWC2_L0; 3579 3580 dwc2_hsotg_enqueue_setup(hsotg); 3581 3582 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3583 dwc2_readl(hsotg, DIEPCTL0), 3584 dwc2_readl(hsotg, DOEPCTL0)); 3585} 3586 3587void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3588{ 3589 /* set the soft-disconnect bit */ 3590 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 3591} 3592 3593void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3594{ 3595 /* remove the soft-disconnect and let's go */ 3596 if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD)) 3597 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); 3598} 3599 3600/** 3601 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3602 * @hsotg: The device state: 3603 * 3604 * This interrupt indicates one of the following conditions occurred while 3605 * transmitting an ISOC transaction. 3606 * - Corrupted IN Token for ISOC EP. 3607 * - Packet not complete in FIFO. 3608 * 3609 * The following actions will be taken: 3610 * - Determine the EP 3611 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3612 */ 3613static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3614{ 3615 struct dwc2_hsotg_ep *hs_ep; 3616 u32 epctrl; 3617 u32 daintmsk; 3618 u32 idx; 3619 3620 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3621 3622 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3623 3624 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3625 hs_ep = hsotg->eps_in[idx]; 3626 /* Proceed only unmasked ISOC EPs */ 3627 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3628 continue; 3629 3630 epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); 3631 if ((epctrl & DXEPCTL_EPENA) && 3632 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3633 epctrl |= DXEPCTL_SNAK; 3634 epctrl |= DXEPCTL_EPDIS; 3635 dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); 3636 } 3637 } 3638 3639 /* Clear interrupt */ 3640 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); 3641} 3642 3643/** 3644 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3645 * @hsotg: The device state: 3646 * 3647 * This interrupt indicates one of the following conditions occurred while 3648 * transmitting an ISOC transaction. 3649 * - Corrupted OUT Token for ISOC EP. 3650 * - Packet not complete in FIFO. 3651 * 3652 * The following actions will be taken: 3653 * - Determine the EP 3654 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3655 */ 3656static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3657{ 3658 u32 gintsts; 3659 u32 gintmsk; 3660 u32 daintmsk; 3661 u32 epctrl; 3662 struct dwc2_hsotg_ep *hs_ep; 3663 int idx; 3664 3665 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3666 3667 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3668 daintmsk >>= DAINT_OUTEP_SHIFT; 3669 3670 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3671 hs_ep = hsotg->eps_out[idx]; 3672 /* Proceed only unmasked ISOC EPs */ 3673 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) 3674 continue; 3675 3676 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3677 if ((epctrl & DXEPCTL_EPENA) && 3678 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3679 /* Unmask GOUTNAKEFF interrupt */ 3680 gintmsk = dwc2_readl(hsotg, GINTMSK); 3681 gintmsk |= GINTSTS_GOUTNAKEFF; 3682 dwc2_writel(hsotg, gintmsk, GINTMSK); 3683 3684 gintsts = dwc2_readl(hsotg, GINTSTS); 3685 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3686 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3687 break; 3688 } 3689 } 3690 } 3691 3692 /* Clear interrupt */ 3693 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); 3694} 3695 3696/** 3697 * dwc2_hsotg_irq - handle device interrupt 3698 * @irq: The IRQ number triggered 3699 * @pw: The pw value when registered the handler. 3700 */ 3701static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3702{ 3703 struct dwc2_hsotg *hsotg = pw; 3704 int retry_count = 8; 3705 u32 gintsts; 3706 u32 gintmsk; 3707 3708 if (!dwc2_is_device_mode(hsotg)) 3709 return IRQ_NONE; 3710 3711 spin_lock(&hsotg->lock); 3712irq_retry: 3713 gintsts = dwc2_readl(hsotg, GINTSTS); 3714 gintmsk = dwc2_readl(hsotg, GINTMSK); 3715 3716 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3717 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3718 3719 gintsts &= gintmsk; 3720 3721 if (gintsts & GINTSTS_RESETDET) { 3722 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3723 3724 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); 3725 3726 /* This event must be used only if controller is suspended */ 3727 if (hsotg->lx_state == DWC2_L2) { 3728 dwc2_exit_partial_power_down(hsotg, true); 3729 hsotg->lx_state = DWC2_L0; 3730 } 3731 } 3732 3733 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3734 u32 usb_status = dwc2_readl(hsotg, GOTGCTL); 3735 u32 connected = hsotg->connected; 3736 3737 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3738 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3739 dwc2_readl(hsotg, GNPTXSTS)); 3740 3741 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); 3742 3743 /* Report disconnection if it is not already done. */ 3744 dwc2_hsotg_disconnect(hsotg); 3745 3746 /* Reset device address to zero */ 3747 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); 3748 3749 if (usb_status & GOTGCTL_BSESVLD && connected) 3750 dwc2_hsotg_core_init_disconnected(hsotg, true); 3751 } 3752 3753 if (gintsts & GINTSTS_ENUMDONE) { 3754 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); 3755 3756 dwc2_hsotg_irq_enumdone(hsotg); 3757 } 3758 3759 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3760 u32 daint = dwc2_readl(hsotg, DAINT); 3761 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3762 u32 daint_out, daint_in; 3763 int ep; 3764 3765 daint &= daintmsk; 3766 daint_out = daint >> DAINT_OUTEP_SHIFT; 3767 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3768 3769 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3770 3771 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3772 ep++, daint_out >>= 1) { 3773 if (daint_out & 1) 3774 dwc2_hsotg_epint(hsotg, ep, 0); 3775 } 3776 3777 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3778 ep++, daint_in >>= 1) { 3779 if (daint_in & 1) 3780 dwc2_hsotg_epint(hsotg, ep, 1); 3781 } 3782 } 3783 3784 /* check both FIFOs */ 3785 3786 if (gintsts & GINTSTS_NPTXFEMP) { 3787 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3788 3789 /* 3790 * Disable the interrupt to stop it happening again 3791 * unless one of these endpoint routines decides that 3792 * it needs re-enabling 3793 */ 3794 3795 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3796 dwc2_hsotg_irq_fifoempty(hsotg, false); 3797 } 3798 3799 if (gintsts & GINTSTS_PTXFEMP) { 3800 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3801 3802 /* See note in GINTSTS_NPTxFEmp */ 3803 3804 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3805 dwc2_hsotg_irq_fifoempty(hsotg, true); 3806 } 3807 3808 if (gintsts & GINTSTS_RXFLVL) { 3809 /* 3810 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3811 * we need to retry dwc2_hsotg_handle_rx if this is still 3812 * set. 3813 */ 3814 3815 dwc2_hsotg_handle_rx(hsotg); 3816 } 3817 3818 if (gintsts & GINTSTS_ERLYSUSP) { 3819 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3820 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); 3821 } 3822 3823 /* 3824 * these next two seem to crop-up occasionally causing the core 3825 * to shutdown the USB transfer, so try clearing them and logging 3826 * the occurrence. 3827 */ 3828 3829 if (gintsts & GINTSTS_GOUTNAKEFF) { 3830 u8 idx; 3831 u32 epctrl; 3832 u32 gintmsk; 3833 u32 daintmsk; 3834 struct dwc2_hsotg_ep *hs_ep; 3835 3836 daintmsk = dwc2_readl(hsotg, DAINTMSK); 3837 daintmsk >>= DAINT_OUTEP_SHIFT; 3838 /* Mask this interrupt */ 3839 gintmsk = dwc2_readl(hsotg, GINTMSK); 3840 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3841 dwc2_writel(hsotg, gintmsk, GINTMSK); 3842 3843 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3844 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 3845 hs_ep = hsotg->eps_out[idx]; 3846 /* Proceed only unmasked ISOC EPs */ 3847 if (BIT(idx) & ~daintmsk) 3848 continue; 3849 3850 epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); 3851 3852 //ISOC Ep's only 3853 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { 3854 epctrl |= DXEPCTL_SNAK; 3855 epctrl |= DXEPCTL_EPDIS; 3856 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3857 continue; 3858 } 3859 3860 //Non-ISOC EP's 3861 if (hs_ep->halted) { 3862 if (!(epctrl & DXEPCTL_EPENA)) 3863 epctrl |= DXEPCTL_EPENA; 3864 epctrl |= DXEPCTL_EPDIS; 3865 epctrl |= DXEPCTL_STALL; 3866 dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); 3867 } 3868 } 3869 3870 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3871 } 3872 3873 if (gintsts & GINTSTS_GINNAKEFF) { 3874 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3875 3876 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3877 3878 dwc2_hsotg_dump(hsotg); 3879 } 3880 3881 if (gintsts & GINTSTS_INCOMPL_SOIN) 3882 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3883 3884 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3885 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3886 3887 /* 3888 * if we've had fifo events, we should try and go around the 3889 * loop again to see if there's any point in returning yet. 3890 */ 3891 3892 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3893 goto irq_retry; 3894 3895 /* Check WKUP_ALERT interrupt*/ 3896 if (hsotg->params.service_interval) 3897 dwc2_gadget_wkup_alert_handler(hsotg); 3898 3899 spin_unlock(&hsotg->lock); 3900 3901 return IRQ_HANDLED; 3902} 3903 3904static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3905 struct dwc2_hsotg_ep *hs_ep) 3906{ 3907 u32 epctrl_reg; 3908 u32 epint_reg; 3909 3910 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3911 DOEPCTL(hs_ep->index); 3912 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3913 DOEPINT(hs_ep->index); 3914 3915 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3916 hs_ep->name); 3917 3918 if (hs_ep->dir_in) { 3919 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3920 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); 3921 /* Wait for Nak effect */ 3922 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3923 DXEPINT_INEPNAKEFF, 100)) 3924 dev_warn(hsotg->dev, 3925 "%s: timeout DIEPINT.NAKEFF\n", 3926 __func__); 3927 } else { 3928 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); 3929 /* Wait for Nak effect */ 3930 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3931 GINTSTS_GINNAKEFF, 100)) 3932 dev_warn(hsotg->dev, 3933 "%s: timeout GINTSTS.GINNAKEFF\n", 3934 __func__); 3935 } 3936 } else { 3937 /* Mask GINTSTS_GOUTNAKEFF interrupt */ 3938 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF); 3939 3940 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) 3941 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); 3942 3943 if (!using_dma(hsotg)) { 3944 /* Wait for GINTSTS_RXFLVL interrupt */ 3945 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3946 GINTSTS_RXFLVL, 100)) { 3947 dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n", 3948 __func__); 3949 } else { 3950 /* 3951 * Pop GLOBAL OUT NAK status packet from RxFIFO 3952 * to assert GOUTNAKEFF interrupt 3953 */ 3954 dwc2_readl(hsotg, GRXSTSP); 3955 } 3956 } 3957 3958 /* Wait for global nak to take effect */ 3959 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3960 GINTSTS_GOUTNAKEFF, 100)) 3961 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3962 __func__); 3963 } 3964 3965 /* Disable ep */ 3966 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3967 3968 /* Wait for ep to be disabled */ 3969 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3970 dev_warn(hsotg->dev, 3971 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3972 3973 /* Clear EPDISBLD interrupt */ 3974 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); 3975 3976 if (hs_ep->dir_in) { 3977 unsigned short fifo_index; 3978 3979 if (hsotg->dedicated_fifos || hs_ep->periodic) 3980 fifo_index = hs_ep->fifo_index; 3981 else 3982 fifo_index = 0; 3983 3984 /* Flush TX FIFO */ 3985 dwc2_flush_tx_fifo(hsotg, fifo_index); 3986 3987 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3988 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3989 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); 3990 3991 } else { 3992 /* Remove global NAKs */ 3993 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); 3994 } 3995} 3996 3997/** 3998 * dwc2_hsotg_ep_enable - enable the given endpoint 3999 * @ep: The USB endpint to configure 4000 * @desc: The USB endpoint descriptor to configure with. 4001 * 4002 * This is called from the USB gadget code's usb_ep_enable(). 4003 */ 4004static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 4005 const struct usb_endpoint_descriptor *desc) 4006{ 4007 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4008 struct dwc2_hsotg *hsotg = hs_ep->parent; 4009 unsigned long flags; 4010 unsigned int index = hs_ep->index; 4011 u32 epctrl_reg; 4012 u32 epctrl; 4013 u32 mps; 4014 u32 mc; 4015 u32 mask; 4016 unsigned int dir_in; 4017 unsigned int i, val, size; 4018 int ret = 0; 4019 unsigned char ep_type; 4020 int desc_num; 4021 4022 dev_dbg(hsotg->dev, 4023 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 4024 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 4025 desc->wMaxPacketSize, desc->bInterval); 4026 4027 /* not to be called for EP0 */ 4028 if (index == 0) { 4029 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 4030 return -EINVAL; 4031 } 4032 4033 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 4034 if (dir_in != hs_ep->dir_in) { 4035 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 4036 return -EINVAL; 4037 } 4038 4039 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 4040 mps = usb_endpoint_maxp(desc); 4041 mc = usb_endpoint_maxp_mult(desc); 4042 4043 /* ISOC IN in DDMA supported bInterval up to 10 */ 4044 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4045 dir_in && desc->bInterval > 10) { 4046 dev_err(hsotg->dev, 4047 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); 4048 return -EINVAL; 4049 } 4050 4051 /* High bandwidth ISOC OUT in DDMA not supported */ 4052 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && 4053 !dir_in && mc > 1) { 4054 dev_err(hsotg->dev, 4055 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); 4056 return -EINVAL; 4057 } 4058 4059 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 4060 4061 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4062 epctrl = dwc2_readl(hsotg, epctrl_reg); 4063 4064 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 4065 __func__, epctrl, epctrl_reg); 4066 4067 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) 4068 desc_num = MAX_DMA_DESC_NUM_HS_ISOC; 4069 else 4070 desc_num = MAX_DMA_DESC_NUM_GENERIC; 4071 4072 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 4073 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 4074 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 4075 desc_num * sizeof(struct dwc2_dma_desc), 4076 &hs_ep->desc_list_dma, GFP_ATOMIC); 4077 if (!hs_ep->desc_list) { 4078 ret = -ENOMEM; 4079 goto error2; 4080 } 4081 } 4082 4083 spin_lock_irqsave(&hsotg->lock, flags); 4084 4085 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 4086 epctrl |= DXEPCTL_MPS(mps); 4087 4088 /* 4089 * mark the endpoint as active, otherwise the core may ignore 4090 * transactions entirely for this endpoint 4091 */ 4092 epctrl |= DXEPCTL_USBACTEP; 4093 4094 /* update the endpoint state */ 4095 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 4096 4097 /* default, set to non-periodic */ 4098 hs_ep->isochronous = 0; 4099 hs_ep->periodic = 0; 4100 hs_ep->halted = 0; 4101 hs_ep->interval = desc->bInterval; 4102 4103 switch (ep_type) { 4104 case USB_ENDPOINT_XFER_ISOC: 4105 epctrl |= DXEPCTL_EPTYPE_ISO; 4106 epctrl |= DXEPCTL_SETEVENFR; 4107 hs_ep->isochronous = 1; 4108 hs_ep->interval = 1 << (desc->bInterval - 1); 4109 hs_ep->target_frame = TARGET_FRAME_INITIAL; 4110 hs_ep->next_desc = 0; 4111 hs_ep->compl_desc = 0; 4112 if (dir_in) { 4113 hs_ep->periodic = 1; 4114 mask = dwc2_readl(hsotg, DIEPMSK); 4115 mask |= DIEPMSK_NAKMSK; 4116 dwc2_writel(hsotg, mask, DIEPMSK); 4117 } else { 4118 epctrl |= DXEPCTL_SNAK; 4119 mask = dwc2_readl(hsotg, DOEPMSK); 4120 mask |= DOEPMSK_OUTTKNEPDISMSK; 4121 dwc2_writel(hsotg, mask, DOEPMSK); 4122 } 4123 break; 4124 4125 case USB_ENDPOINT_XFER_BULK: 4126 epctrl |= DXEPCTL_EPTYPE_BULK; 4127 break; 4128 4129 case USB_ENDPOINT_XFER_INT: 4130 if (dir_in) 4131 hs_ep->periodic = 1; 4132 4133 if (hsotg->gadget.speed == USB_SPEED_HIGH) 4134 hs_ep->interval = 1 << (desc->bInterval - 1); 4135 4136 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 4137 break; 4138 4139 case USB_ENDPOINT_XFER_CONTROL: 4140 epctrl |= DXEPCTL_EPTYPE_CONTROL; 4141 break; 4142 } 4143 4144 /* 4145 * if the hardware has dedicated fifos, we must give each IN EP 4146 * a unique tx-fifo even if it is non-periodic. 4147 */ 4148 if (dir_in && hsotg->dedicated_fifos) { 4149 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 4150 u32 fifo_index = 0; 4151 u32 fifo_size = UINT_MAX; 4152 4153 size = hs_ep->ep.maxpacket * hs_ep->mc; 4154 for (i = 1; i <= fifo_count; ++i) { 4155 if (hsotg->fifo_map & (1 << i)) 4156 continue; 4157 val = dwc2_readl(hsotg, DPTXFSIZN(i)); 4158 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 4159 if (val < size) 4160 continue; 4161 /* Search for smallest acceptable fifo */ 4162 if (val < fifo_size) { 4163 fifo_size = val; 4164 fifo_index = i; 4165 } 4166 } 4167 if (!fifo_index) { 4168 dev_err(hsotg->dev, 4169 "%s: No suitable fifo found\n", __func__); 4170 ret = -ENOMEM; 4171 goto error1; 4172 } 4173 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); 4174 hsotg->fifo_map |= 1 << fifo_index; 4175 epctrl |= DXEPCTL_TXFNUM(fifo_index); 4176 hs_ep->fifo_index = fifo_index; 4177 hs_ep->fifo_size = fifo_size; 4178 } 4179 4180 /* for non control endpoints, set PID to D0 */ 4181 if (index && !hs_ep->isochronous) 4182 epctrl |= DXEPCTL_SETD0PID; 4183 4184 /* WA for Full speed ISOC IN in DDMA mode. 4185 * By Clear NAK status of EP, core will send ZLP 4186 * to IN token and assert NAK interrupt relying 4187 * on TxFIFO status only 4188 */ 4189 4190 if (hsotg->gadget.speed == USB_SPEED_FULL && 4191 hs_ep->isochronous && dir_in) { 4192 /* The WA applies only to core versions from 2.72a 4193 * to 4.00a (including both). Also for FS_IOT_1.00a 4194 * and HS_IOT_1.00a. 4195 */ 4196 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); 4197 4198 if ((gsnpsid >= DWC2_CORE_REV_2_72a && 4199 gsnpsid <= DWC2_CORE_REV_4_00a) || 4200 gsnpsid == DWC2_FS_IOT_REV_1_00a || 4201 gsnpsid == DWC2_HS_IOT_REV_1_00a) 4202 epctrl |= DXEPCTL_CNAK; 4203 } 4204 4205 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 4206 __func__, epctrl); 4207 4208 dwc2_writel(hsotg, epctrl, epctrl_reg); 4209 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 4210 __func__, dwc2_readl(hsotg, epctrl_reg)); 4211 4212 /* enable the endpoint interrupt */ 4213 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 4214 4215error1: 4216 spin_unlock_irqrestore(&hsotg->lock, flags); 4217 4218error2: 4219 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 4220 dmam_free_coherent(hsotg->dev, desc_num * 4221 sizeof(struct dwc2_dma_desc), 4222 hs_ep->desc_list, hs_ep->desc_list_dma); 4223 hs_ep->desc_list = NULL; 4224 } 4225 4226 return ret; 4227} 4228 4229/** 4230 * dwc2_hsotg_ep_disable - disable given endpoint 4231 * @ep: The endpoint to disable. 4232 */ 4233static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 4234{ 4235 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4236 struct dwc2_hsotg *hsotg = hs_ep->parent; 4237 int dir_in = hs_ep->dir_in; 4238 int index = hs_ep->index; 4239 u32 epctrl_reg; 4240 u32 ctrl; 4241 4242 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 4243 4244 if (ep == &hsotg->eps_out[0]->ep) { 4245 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 4246 return -EINVAL; 4247 } 4248 4249 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4250 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 4251 return -EINVAL; 4252 } 4253 4254 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 4255 4256 ctrl = dwc2_readl(hsotg, epctrl_reg); 4257 4258 if (ctrl & DXEPCTL_EPENA) 4259 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 4260 4261 ctrl &= ~DXEPCTL_EPENA; 4262 ctrl &= ~DXEPCTL_USBACTEP; 4263 ctrl |= DXEPCTL_SNAK; 4264 4265 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 4266 dwc2_writel(hsotg, ctrl, epctrl_reg); 4267 4268 /* disable endpoint interrupts */ 4269 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 4270 4271 /* terminate all requests with shutdown */ 4272 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 4273 4274 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 4275 hs_ep->fifo_index = 0; 4276 hs_ep->fifo_size = 0; 4277 4278 return 0; 4279} 4280 4281static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) 4282{ 4283 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4284 struct dwc2_hsotg *hsotg = hs_ep->parent; 4285 unsigned long flags; 4286 int ret; 4287 4288 spin_lock_irqsave(&hsotg->lock, flags); 4289 ret = dwc2_hsotg_ep_disable(ep); 4290 spin_unlock_irqrestore(&hsotg->lock, flags); 4291 return ret; 4292} 4293 4294/** 4295 * on_list - check request is on the given endpoint 4296 * @ep: The endpoint to check. 4297 * @test: The request to test if it is on the endpoint. 4298 */ 4299static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4300{ 4301 struct dwc2_hsotg_req *req, *treq; 4302 4303 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4304 if (req == test) 4305 return true; 4306 } 4307 4308 return false; 4309} 4310 4311/** 4312 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4313 * @ep: The endpoint to dequeue. 4314 * @req: The request to be removed from a queue. 4315 */ 4316static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4317{ 4318 struct dwc2_hsotg_req *hs_req = our_req(req); 4319 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4320 struct dwc2_hsotg *hs = hs_ep->parent; 4321 unsigned long flags; 4322 4323 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4324 4325 spin_lock_irqsave(&hs->lock, flags); 4326 4327 if (!on_list(hs_ep, hs_req)) { 4328 spin_unlock_irqrestore(&hs->lock, flags); 4329 return -EINVAL; 4330 } 4331 4332 /* Dequeue already started request */ 4333 if (req == &hs_ep->req->req) 4334 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4335 4336 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4337 spin_unlock_irqrestore(&hs->lock, flags); 4338 4339 return 0; 4340} 4341 4342/** 4343 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4344 * @ep: The endpoint to set halt. 4345 * @value: Set or unset the halt. 4346 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4347 * the endpoint is busy processing requests. 4348 * 4349 * We need to stall the endpoint immediately if request comes from set_feature 4350 * protocol command handler. 4351 */ 4352static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4353{ 4354 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4355 struct dwc2_hsotg *hs = hs_ep->parent; 4356 int index = hs_ep->index; 4357 u32 epreg; 4358 u32 epctl; 4359 u32 xfertype; 4360 4361 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4362 4363 if (index == 0) { 4364 if (value) 4365 dwc2_hsotg_stall_ep0(hs); 4366 else 4367 dev_warn(hs->dev, 4368 "%s: can't clear halt on ep0\n", __func__); 4369 return 0; 4370 } 4371 4372 if (hs_ep->isochronous) { 4373 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4374 return -EINVAL; 4375 } 4376 4377 if (!now && value && !list_empty(&hs_ep->queue)) { 4378 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4379 ep->name); 4380 return -EAGAIN; 4381 } 4382 4383 if (hs_ep->dir_in) { 4384 epreg = DIEPCTL(index); 4385 epctl = dwc2_readl(hs, epreg); 4386 4387 if (value) { 4388 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4389 if (epctl & DXEPCTL_EPENA) 4390 epctl |= DXEPCTL_EPDIS; 4391 } else { 4392 epctl &= ~DXEPCTL_STALL; 4393 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4394 if (xfertype == DXEPCTL_EPTYPE_BULK || 4395 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4396 epctl |= DXEPCTL_SETD0PID; 4397 } 4398 dwc2_writel(hs, epctl, epreg); 4399 } else { 4400 epreg = DOEPCTL(index); 4401 epctl = dwc2_readl(hs, epreg); 4402 4403 if (value) { 4404 /* Unmask GOUTNAKEFF interrupt */ 4405 dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF); 4406 4407 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) 4408 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); 4409 // STALL bit will be set in GOUTNAKEFF interrupt handler 4410 } else { 4411 epctl &= ~DXEPCTL_STALL; 4412 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4413 if (xfertype == DXEPCTL_EPTYPE_BULK || 4414 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4415 epctl |= DXEPCTL_SETD0PID; 4416 dwc2_writel(hs, epctl, epreg); 4417 } 4418 } 4419 4420 hs_ep->halted = value; 4421 return 0; 4422} 4423 4424/** 4425 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4426 * @ep: The endpoint to set halt. 4427 * @value: Set or unset the halt. 4428 */ 4429static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4430{ 4431 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4432 struct dwc2_hsotg *hs = hs_ep->parent; 4433 unsigned long flags = 0; 4434 int ret = 0; 4435 4436 spin_lock_irqsave(&hs->lock, flags); 4437 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4438 spin_unlock_irqrestore(&hs->lock, flags); 4439 4440 return ret; 4441} 4442 4443static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4444 .enable = dwc2_hsotg_ep_enable, 4445 .disable = dwc2_hsotg_ep_disable_lock, 4446 .alloc_request = dwc2_hsotg_ep_alloc_request, 4447 .free_request = dwc2_hsotg_ep_free_request, 4448 .queue = dwc2_hsotg_ep_queue_lock, 4449 .dequeue = dwc2_hsotg_ep_dequeue, 4450 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4451 /* note, don't believe we have any call for the fifo routines */ 4452}; 4453 4454/** 4455 * dwc2_hsotg_init - initialize the usb core 4456 * @hsotg: The driver state 4457 */ 4458static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4459{ 4460 /* unmask subset of endpoint interrupts */ 4461 4462 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4463 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4464 DIEPMSK); 4465 4466 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4467 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4468 DOEPMSK); 4469 4470 dwc2_writel(hsotg, 0, DAINTMSK); 4471 4472 /* Be in disconnected state until gadget is registered */ 4473 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); 4474 4475 /* setup fifos */ 4476 4477 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4478 dwc2_readl(hsotg, GRXFSIZ), 4479 dwc2_readl(hsotg, GNPTXFSIZ)); 4480 4481 dwc2_hsotg_init_fifo(hsotg); 4482 4483 if (using_dma(hsotg)) 4484 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); 4485} 4486 4487/** 4488 * dwc2_hsotg_udc_start - prepare the udc for work 4489 * @gadget: The usb gadget state 4490 * @driver: The usb gadget driver 4491 * 4492 * Perform initialization to prepare udc device and driver 4493 * to work. 4494 */ 4495static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4496 struct usb_gadget_driver *driver) 4497{ 4498 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4499 unsigned long flags; 4500 int ret; 4501 4502 if (!hsotg) { 4503 pr_err("%s: called with no device\n", __func__); 4504 return -ENODEV; 4505 } 4506 4507 if (!driver) { 4508 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4509 return -EINVAL; 4510 } 4511 4512 if (driver->max_speed < USB_SPEED_FULL) 4513 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4514 4515 if (!driver->setup) { 4516 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4517 return -EINVAL; 4518 } 4519 4520 WARN_ON(hsotg->driver); 4521 4522 hsotg->driver = driver; 4523 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4524 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4525 4526 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4527 ret = dwc2_lowlevel_hw_enable(hsotg); 4528 if (ret) 4529 goto err; 4530 } 4531 4532 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4533 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4534 4535 spin_lock_irqsave(&hsotg->lock, flags); 4536 if (dwc2_hw_is_device(hsotg)) { 4537 dwc2_hsotg_init(hsotg); 4538 dwc2_hsotg_core_init_disconnected(hsotg, false); 4539 } 4540 4541 hsotg->enabled = 0; 4542 spin_unlock_irqrestore(&hsotg->lock, flags); 4543 4544 gadget->sg_supported = using_desc_dma(hsotg); 4545 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4546 4547 return 0; 4548 4549err: 4550 hsotg->driver = NULL; 4551 return ret; 4552} 4553 4554/** 4555 * dwc2_hsotg_udc_stop - stop the udc 4556 * @gadget: The usb gadget state 4557 * 4558 * Stop udc hw block and stay tunned for future transmissions 4559 */ 4560static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4561{ 4562 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4563 unsigned long flags = 0; 4564 int ep; 4565 4566 if (!hsotg) 4567 return -ENODEV; 4568 4569 /* all endpoints should be shutdown */ 4570 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4571 if (hsotg->eps_in[ep]) 4572 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 4573 if (hsotg->eps_out[ep]) 4574 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 4575 } 4576 4577 spin_lock_irqsave(&hsotg->lock, flags); 4578 4579 hsotg->driver = NULL; 4580 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4581 hsotg->enabled = 0; 4582 4583 spin_unlock_irqrestore(&hsotg->lock, flags); 4584 4585 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4586 otg_set_peripheral(hsotg->uphy->otg, NULL); 4587 4588 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4589 dwc2_lowlevel_hw_disable(hsotg); 4590 4591 return 0; 4592} 4593 4594/** 4595 * dwc2_hsotg_gadget_getframe - read the frame number 4596 * @gadget: The usb gadget state 4597 * 4598 * Read the {micro} frame number 4599 */ 4600static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4601{ 4602 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4603} 4604 4605/** 4606 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered 4607 * @gadget: The usb gadget state 4608 * @is_selfpowered: Whether the device is self-powered 4609 * 4610 * Set if the device is self or bus powered. 4611 */ 4612static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget, 4613 int is_selfpowered) 4614{ 4615 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4616 unsigned long flags; 4617 4618 spin_lock_irqsave(&hsotg->lock, flags); 4619 gadget->is_selfpowered = !!is_selfpowered; 4620 spin_unlock_irqrestore(&hsotg->lock, flags); 4621 4622 return 0; 4623} 4624 4625/** 4626 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4627 * @gadget: The usb gadget state 4628 * @is_on: Current state of the USB PHY 4629 * 4630 * Connect/Disconnect the USB PHY pullup 4631 */ 4632static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4633{ 4634 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4635 unsigned long flags = 0; 4636 4637 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4638 hsotg->op_state); 4639 4640 /* Don't modify pullup state while in host mode */ 4641 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4642 hsotg->enabled = is_on; 4643 return 0; 4644 } 4645 4646 spin_lock_irqsave(&hsotg->lock, flags); 4647 if (is_on) { 4648 hsotg->enabled = 1; 4649 dwc2_hsotg_core_init_disconnected(hsotg, false); 4650 /* Enable ACG feature in device mode,if supported */ 4651 dwc2_enable_acg(hsotg); 4652 dwc2_hsotg_core_connect(hsotg); 4653 } else { 4654 dwc2_hsotg_core_disconnect(hsotg); 4655 dwc2_hsotg_disconnect(hsotg); 4656 hsotg->enabled = 0; 4657 } 4658 4659 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4660 spin_unlock_irqrestore(&hsotg->lock, flags); 4661 4662 return 0; 4663} 4664 4665static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4666{ 4667 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4668 unsigned long flags; 4669 4670 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4671 spin_lock_irqsave(&hsotg->lock, flags); 4672 4673 /* 4674 * If controller is hibernated, it must exit from power_down 4675 * before being initialized / de-initialized 4676 */ 4677 if (hsotg->lx_state == DWC2_L2) 4678 dwc2_exit_partial_power_down(hsotg, false); 4679 4680 if (is_active) { 4681 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4682 4683 dwc2_hsotg_core_init_disconnected(hsotg, false); 4684 if (hsotg->enabled) { 4685 /* Enable ACG feature in device mode,if supported */ 4686 dwc2_enable_acg(hsotg); 4687 dwc2_hsotg_core_connect(hsotg); 4688 } 4689 } else { 4690 dwc2_hsotg_core_disconnect(hsotg); 4691 dwc2_hsotg_disconnect(hsotg); 4692 } 4693 4694 spin_unlock_irqrestore(&hsotg->lock, flags); 4695 return 0; 4696} 4697 4698/** 4699 * dwc2_hsotg_vbus_draw - report bMaxPower field 4700 * @gadget: The usb gadget state 4701 * @mA: Amount of current 4702 * 4703 * Report how much power the device may consume to the phy. 4704 */ 4705static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4706{ 4707 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4708 4709 if (IS_ERR_OR_NULL(hsotg->uphy)) 4710 return -ENOTSUPP; 4711 return usb_phy_set_power(hsotg->uphy, mA); 4712} 4713 4714static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4715 .get_frame = dwc2_hsotg_gadget_getframe, 4716 .set_selfpowered = dwc2_hsotg_set_selfpowered, 4717 .udc_start = dwc2_hsotg_udc_start, 4718 .udc_stop = dwc2_hsotg_udc_stop, 4719 .pullup = dwc2_hsotg_pullup, 4720 .vbus_session = dwc2_hsotg_vbus_session, 4721 .vbus_draw = dwc2_hsotg_vbus_draw, 4722}; 4723 4724/** 4725 * dwc2_hsotg_initep - initialise a single endpoint 4726 * @hsotg: The device state. 4727 * @hs_ep: The endpoint to be initialised. 4728 * @epnum: The endpoint number 4729 * @dir_in: True if direction is in. 4730 * 4731 * Initialise the given endpoint (as part of the probe and device state 4732 * creation) to give to the gadget driver. Setup the endpoint name, any 4733 * direction information and other state that may be required. 4734 */ 4735static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4736 struct dwc2_hsotg_ep *hs_ep, 4737 int epnum, 4738 bool dir_in) 4739{ 4740 char *dir; 4741 4742 if (epnum == 0) 4743 dir = ""; 4744 else if (dir_in) 4745 dir = "in"; 4746 else 4747 dir = "out"; 4748 4749 hs_ep->dir_in = dir_in; 4750 hs_ep->index = epnum; 4751 4752 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4753 4754 INIT_LIST_HEAD(&hs_ep->queue); 4755 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4756 4757 /* add to the list of endpoints known by the gadget driver */ 4758 if (epnum) 4759 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4760 4761 hs_ep->parent = hsotg; 4762 hs_ep->ep.name = hs_ep->name; 4763 4764 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4765 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4766 else 4767 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4768 epnum ? 1024 : EP0_MPS_LIMIT); 4769 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4770 4771 if (epnum == 0) { 4772 hs_ep->ep.caps.type_control = true; 4773 } else { 4774 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4775 hs_ep->ep.caps.type_iso = true; 4776 hs_ep->ep.caps.type_bulk = true; 4777 } 4778 hs_ep->ep.caps.type_int = true; 4779 } 4780 4781 if (dir_in) 4782 hs_ep->ep.caps.dir_in = true; 4783 else 4784 hs_ep->ep.caps.dir_out = true; 4785 4786 /* 4787 * if we're using dma, we need to set the next-endpoint pointer 4788 * to be something valid. 4789 */ 4790 4791 if (using_dma(hsotg)) { 4792 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4793 4794 if (dir_in) 4795 dwc2_writel(hsotg, next, DIEPCTL(epnum)); 4796 else 4797 dwc2_writel(hsotg, next, DOEPCTL(epnum)); 4798 } 4799} 4800 4801/** 4802 * dwc2_hsotg_hw_cfg - read HW configuration registers 4803 * @hsotg: Programming view of the DWC_otg controller 4804 * 4805 * Read the USB core HW configuration registers 4806 */ 4807static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4808{ 4809 u32 cfg; 4810 u32 ep_type; 4811 u32 i; 4812 4813 /* check hardware configuration */ 4814 4815 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4816 4817 /* Add ep0 */ 4818 hsotg->num_of_eps++; 4819 4820 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4821 sizeof(struct dwc2_hsotg_ep), 4822 GFP_KERNEL); 4823 if (!hsotg->eps_in[0]) 4824 return -ENOMEM; 4825 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4826 hsotg->eps_out[0] = hsotg->eps_in[0]; 4827 4828 cfg = hsotg->hw_params.dev_ep_dirs; 4829 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4830 ep_type = cfg & 3; 4831 /* Direction in or both */ 4832 if (!(ep_type & 2)) { 4833 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4834 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4835 if (!hsotg->eps_in[i]) 4836 return -ENOMEM; 4837 } 4838 /* Direction out or both */ 4839 if (!(ep_type & 1)) { 4840 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4841 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4842 if (!hsotg->eps_out[i]) 4843 return -ENOMEM; 4844 } 4845 } 4846 4847 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4848 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4849 4850 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4851 hsotg->num_of_eps, 4852 hsotg->dedicated_fifos ? "dedicated" : "shared", 4853 hsotg->fifo_mem); 4854 return 0; 4855} 4856 4857/** 4858 * dwc2_hsotg_dump - dump state of the udc 4859 * @hsotg: Programming view of the DWC_otg controller 4860 * 4861 */ 4862static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4863{ 4864#ifdef DEBUG 4865 struct device *dev = hsotg->dev; 4866 u32 val; 4867 int idx; 4868 4869 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4870 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), 4871 dwc2_readl(hsotg, DIEPMSK)); 4872 4873 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4874 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); 4875 4876 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4877 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); 4878 4879 /* show periodic fifo settings */ 4880 4881 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4882 val = dwc2_readl(hsotg, DPTXFSIZN(idx)); 4883 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4884 val >> FIFOSIZE_DEPTH_SHIFT, 4885 val & FIFOSIZE_STARTADDR_MASK); 4886 } 4887 4888 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4889 dev_info(dev, 4890 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4891 dwc2_readl(hsotg, DIEPCTL(idx)), 4892 dwc2_readl(hsotg, DIEPTSIZ(idx)), 4893 dwc2_readl(hsotg, DIEPDMA(idx))); 4894 4895 val = dwc2_readl(hsotg, DOEPCTL(idx)); 4896 dev_info(dev, 4897 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4898 idx, dwc2_readl(hsotg, DOEPCTL(idx)), 4899 dwc2_readl(hsotg, DOEPTSIZ(idx)), 4900 dwc2_readl(hsotg, DOEPDMA(idx))); 4901 } 4902 4903 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4904 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); 4905#endif 4906} 4907 4908/** 4909 * dwc2_gadget_init - init function for gadget 4910 * @hsotg: Programming view of the DWC_otg controller 4911 * 4912 */ 4913int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4914{ 4915 struct device *dev = hsotg->dev; 4916 int epnum; 4917 int ret; 4918 4919 /* Dump fifo information */ 4920 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4921 hsotg->params.g_np_tx_fifo_size); 4922 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4923 4924 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4925 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4926 hsotg->gadget.name = dev_name(dev); 4927 hsotg->remote_wakeup_allowed = 0; 4928 4929 if (hsotg->params.lpm) 4930 hsotg->gadget.lpm_capable = true; 4931 4932 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4933 hsotg->gadget.is_otg = 1; 4934 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4935 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4936 4937 ret = dwc2_hsotg_hw_cfg(hsotg); 4938 if (ret) { 4939 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4940 return ret; 4941 } 4942 4943 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4944 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4945 if (!hsotg->ctrl_buff) 4946 return -ENOMEM; 4947 4948 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4949 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4950 if (!hsotg->ep0_buff) 4951 return -ENOMEM; 4952 4953 if (using_desc_dma(hsotg)) { 4954 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4955 if (ret < 0) 4956 return ret; 4957 } 4958 4959 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4960 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4961 if (ret < 0) { 4962 dev_err(dev, "cannot claim IRQ for gadget\n"); 4963 return ret; 4964 } 4965 4966 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4967 4968 if (hsotg->num_of_eps == 0) { 4969 dev_err(dev, "wrong number of EPs (zero)\n"); 4970 return -EINVAL; 4971 } 4972 4973 /* setup endpoint information */ 4974 4975 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4976 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4977 4978 /* allocate EP0 request */ 4979 4980 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4981 GFP_KERNEL); 4982 if (!hsotg->ctrl_req) { 4983 dev_err(dev, "failed to allocate ctrl req\n"); 4984 return -ENOMEM; 4985 } 4986 4987 /* initialise the endpoints now the core has been initialised */ 4988 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4989 if (hsotg->eps_in[epnum]) 4990 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4991 epnum, 1); 4992 if (hsotg->eps_out[epnum]) 4993 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4994 epnum, 0); 4995 } 4996 4997 dwc2_hsotg_dump(hsotg); 4998 4999 return 0; 5000} 5001 5002/** 5003 * dwc2_hsotg_remove - remove function for hsotg driver 5004 * @hsotg: Programming view of the DWC_otg controller 5005 * 5006 */ 5007int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 5008{ 5009 usb_del_gadget_udc(&hsotg->gadget); 5010 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); 5011 5012 return 0; 5013} 5014 5015int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 5016{ 5017 unsigned long flags; 5018 5019 if (hsotg->lx_state != DWC2_L0) 5020 return 0; 5021 5022 if (hsotg->driver) { 5023 int ep; 5024 5025 dev_info(hsotg->dev, "suspending usb gadget %s\n", 5026 hsotg->driver->driver.name); 5027 5028 spin_lock_irqsave(&hsotg->lock, flags); 5029 if (hsotg->enabled) 5030 dwc2_hsotg_core_disconnect(hsotg); 5031 dwc2_hsotg_disconnect(hsotg); 5032 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 5033 spin_unlock_irqrestore(&hsotg->lock, flags); 5034 5035 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 5036 if (hsotg->eps_in[ep]) 5037 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); 5038 if (hsotg->eps_out[ep]) 5039 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); 5040 } 5041 } 5042 5043 return 0; 5044} 5045 5046int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 5047{ 5048 unsigned long flags; 5049 5050 if (hsotg->lx_state == DWC2_L2) 5051 return 0; 5052 5053 if (hsotg->driver) { 5054 dev_info(hsotg->dev, "resuming usb gadget %s\n", 5055 hsotg->driver->driver.name); 5056 5057 spin_lock_irqsave(&hsotg->lock, flags); 5058 dwc2_hsotg_core_init_disconnected(hsotg, false); 5059 if (hsotg->enabled) { 5060 /* Enable ACG feature in device mode,if supported */ 5061 dwc2_enable_acg(hsotg); 5062 dwc2_hsotg_core_connect(hsotg); 5063 } 5064 spin_unlock_irqrestore(&hsotg->lock, flags); 5065 } 5066 5067 return 0; 5068} 5069 5070/** 5071 * dwc2_backup_device_registers() - Backup controller device registers. 5072 * When suspending usb bus, registers needs to be backuped 5073 * if controller power is disabled once suspended. 5074 * 5075 * @hsotg: Programming view of the DWC_otg controller 5076 */ 5077int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 5078{ 5079 struct dwc2_dregs_backup *dr; 5080 int i; 5081 5082 dev_dbg(hsotg->dev, "%s\n", __func__); 5083 5084 /* Backup dev regs */ 5085 dr = &hsotg->dr_backup; 5086 5087 dr->dcfg = dwc2_readl(hsotg, DCFG); 5088 dr->dctl = dwc2_readl(hsotg, DCTL); 5089 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); 5090 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); 5091 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); 5092 5093 for (i = 0; i < hsotg->num_of_eps; i++) { 5094 /* Backup IN EPs */ 5095 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); 5096 5097 /* Ensure DATA PID is correctly configured */ 5098 if (dr->diepctl[i] & DXEPCTL_DPID) 5099 dr->diepctl[i] |= DXEPCTL_SETD1PID; 5100 else 5101 dr->diepctl[i] |= DXEPCTL_SETD0PID; 5102 5103 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); 5104 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); 5105 5106 /* Backup OUT EPs */ 5107 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); 5108 5109 /* Ensure DATA PID is correctly configured */ 5110 if (dr->doepctl[i] & DXEPCTL_DPID) 5111 dr->doepctl[i] |= DXEPCTL_SETD1PID; 5112 else 5113 dr->doepctl[i] |= DXEPCTL_SETD0PID; 5114 5115 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); 5116 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); 5117 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); 5118 } 5119 dr->valid = true; 5120 return 0; 5121} 5122 5123/** 5124 * dwc2_restore_device_registers() - Restore controller device registers. 5125 * When resuming usb bus, device registers needs to be restored 5126 * if controller power were disabled. 5127 * 5128 * @hsotg: Programming view of the DWC_otg controller 5129 * @remote_wakeup: Indicates whether resume is initiated by Device or Host. 5130 * 5131 * Return: 0 if successful, negative error code otherwise 5132 */ 5133int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) 5134{ 5135 struct dwc2_dregs_backup *dr; 5136 int i; 5137 5138 dev_dbg(hsotg->dev, "%s\n", __func__); 5139 5140 /* Restore dev regs */ 5141 dr = &hsotg->dr_backup; 5142 if (!dr->valid) { 5143 dev_err(hsotg->dev, "%s: no device registers to restore\n", 5144 __func__); 5145 return -EINVAL; 5146 } 5147 dr->valid = false; 5148 5149 if (!remote_wakeup) 5150 dwc2_writel(hsotg, dr->dctl, DCTL); 5151 5152 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); 5153 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); 5154 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); 5155 5156 for (i = 0; i < hsotg->num_of_eps; i++) { 5157 /* Restore IN EPs */ 5158 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); 5159 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); 5160 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5161 /** WA for enabled EPx's IN in DDMA mode. On entering to 5162 * hibernation wrong value read and saved from DIEPDMAx, 5163 * as result BNA interrupt asserted on hibernation exit 5164 * by restoring from saved area. 5165 */ 5166 if (hsotg->params.g_dma_desc && 5167 (dr->diepctl[i] & DXEPCTL_EPENA)) 5168 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; 5169 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); 5170 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); 5171 /* Restore OUT EPs */ 5172 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); 5173 /* WA for enabled EPx's OUT in DDMA mode. On entering to 5174 * hibernation wrong value read and saved from DOEPDMAx, 5175 * as result BNA interrupt asserted on hibernation exit 5176 * by restoring from saved area. 5177 */ 5178 if (hsotg->params.g_dma_desc && 5179 (dr->doepctl[i] & DXEPCTL_EPENA)) 5180 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; 5181 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); 5182 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); 5183 } 5184 5185 return 0; 5186} 5187 5188/** 5189 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode 5190 * 5191 * @hsotg: Programming view of DWC_otg controller 5192 * 5193 */ 5194void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) 5195{ 5196 u32 val; 5197 5198 if (!hsotg->params.lpm) 5199 return; 5200 5201 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; 5202 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; 5203 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; 5204 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; 5205 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; 5206 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; 5207 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; 5208 dwc2_writel(hsotg, val, GLPMCFG); 5209 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); 5210 5211 /* Unmask WKUP_ALERT Interrupt */ 5212 if (hsotg->params.service_interval) 5213 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); 5214} 5215 5216/** 5217 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode 5218 * 5219 * @hsotg: Programming view of DWC_otg controller 5220 * 5221 */ 5222void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) 5223{ 5224 u32 val = 0; 5225 5226 val |= GREFCLK_REF_CLK_MODE; 5227 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; 5228 val |= hsotg->params.sof_cnt_wkup_alert << 5229 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; 5230 5231 dwc2_writel(hsotg, val, GREFCLK); 5232 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); 5233} 5234 5235/** 5236 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. 5237 * 5238 * @hsotg: Programming view of the DWC_otg controller 5239 * 5240 * Return non-zero if failed to enter to hibernation. 5241 */ 5242int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 5243{ 5244 u32 gpwrdn; 5245 int ret = 0; 5246 5247 /* Change to L2(suspend) state */ 5248 hsotg->lx_state = DWC2_L2; 5249 dev_dbg(hsotg->dev, "Start of hibernation completed\n"); 5250 ret = dwc2_backup_global_registers(hsotg); 5251 if (ret) { 5252 dev_err(hsotg->dev, "%s: failed to backup global registers\n", 5253 __func__); 5254 return ret; 5255 } 5256 ret = dwc2_backup_device_registers(hsotg); 5257 if (ret) { 5258 dev_err(hsotg->dev, "%s: failed to backup device registers\n", 5259 __func__); 5260 return ret; 5261 } 5262 5263 gpwrdn = GPWRDN_PWRDNRSTN; 5264 gpwrdn |= GPWRDN_PMUACTV; 5265 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5266 udelay(10); 5267 5268 /* Set flag to indicate that we are in hibernation */ 5269 hsotg->hibernated = 1; 5270 5271 /* Enable interrupts from wake up logic */ 5272 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5273 gpwrdn |= GPWRDN_PMUINTSEL; 5274 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5275 udelay(10); 5276 5277 /* Unmask device mode interrupts in GPWRDN */ 5278 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5279 gpwrdn |= GPWRDN_RST_DET_MSK; 5280 gpwrdn |= GPWRDN_LNSTSCHG_MSK; 5281 gpwrdn |= GPWRDN_STS_CHGINT_MSK; 5282 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5283 udelay(10); 5284 5285 /* Enable Power Down Clamp */ 5286 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5287 gpwrdn |= GPWRDN_PWRDNCLMP; 5288 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5289 udelay(10); 5290 5291 /* Switch off VDD */ 5292 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5293 gpwrdn |= GPWRDN_PWRDNSWTCH; 5294 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5295 udelay(10); 5296 5297 /* Save gpwrdn register for further usage if stschng interrupt */ 5298 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); 5299 dev_dbg(hsotg->dev, "Hibernation completed\n"); 5300 5301 return ret; 5302} 5303 5304/** 5305 * dwc2_gadget_exit_hibernation() 5306 * This function is for exiting from Device mode hibernation by host initiated 5307 * resume/reset and device initiated remote-wakeup. 5308 * 5309 * @hsotg: Programming view of the DWC_otg controller 5310 * @rem_wakeup: indicates whether resume is initiated by Device or Host. 5311 * @reset: indicates whether resume is initiated by Reset. 5312 * 5313 * Return non-zero if failed to exit from hibernation. 5314 */ 5315int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 5316 int rem_wakeup, int reset) 5317{ 5318 u32 pcgcctl; 5319 u32 gpwrdn; 5320 u32 dctl; 5321 int ret = 0; 5322 struct dwc2_gregs_backup *gr; 5323 struct dwc2_dregs_backup *dr; 5324 5325 gr = &hsotg->gr_backup; 5326 dr = &hsotg->dr_backup; 5327 5328 if (!hsotg->hibernated) { 5329 dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); 5330 return 1; 5331 } 5332 dev_dbg(hsotg->dev, 5333 "%s: called with rem_wakeup = %d reset = %d\n", 5334 __func__, rem_wakeup, reset); 5335 5336 dwc2_hib_restore_common(hsotg, rem_wakeup, 0); 5337 5338 if (!reset) { 5339 /* Clear all pending interupts */ 5340 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5341 } 5342 5343 /* De-assert Restore */ 5344 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5345 gpwrdn &= ~GPWRDN_RESTORE; 5346 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5347 udelay(10); 5348 5349 if (!rem_wakeup) { 5350 pcgcctl = dwc2_readl(hsotg, PCGCTL); 5351 pcgcctl &= ~PCGCTL_RSTPDWNMODULE; 5352 dwc2_writel(hsotg, pcgcctl, PCGCTL); 5353 } 5354 5355 /* Restore GUSBCFG, DCFG and DCTL */ 5356 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); 5357 dwc2_writel(hsotg, dr->dcfg, DCFG); 5358 dwc2_writel(hsotg, dr->dctl, DCTL); 5359 5360 /* De-assert Wakeup Logic */ 5361 gpwrdn = dwc2_readl(hsotg, GPWRDN); 5362 gpwrdn &= ~GPWRDN_PMUACTV; 5363 dwc2_writel(hsotg, gpwrdn, GPWRDN); 5364 5365 if (rem_wakeup) { 5366 udelay(10); 5367 /* Start Remote Wakeup Signaling */ 5368 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); 5369 } else { 5370 udelay(50); 5371 /* Set Device programming done bit */ 5372 dctl = dwc2_readl(hsotg, DCTL); 5373 dctl |= DCTL_PWRONPRGDONE; 5374 dwc2_writel(hsotg, dctl, DCTL); 5375 } 5376 /* Wait for interrupts which must be cleared */ 5377 mdelay(2); 5378 /* Clear all pending interupts */ 5379 dwc2_writel(hsotg, 0xffffffff, GINTSTS); 5380 5381 /* Restore global registers */ 5382 ret = dwc2_restore_global_registers(hsotg); 5383 if (ret) { 5384 dev_err(hsotg->dev, "%s: failed to restore registers\n", 5385 __func__); 5386 return ret; 5387 } 5388 5389 /* Restore device registers */ 5390 ret = dwc2_restore_device_registers(hsotg, rem_wakeup); 5391 if (ret) { 5392 dev_err(hsotg->dev, "%s: failed to restore device registers\n", 5393 __func__); 5394 return ret; 5395 } 5396 5397 if (rem_wakeup) { 5398 mdelay(10); 5399 dctl = dwc2_readl(hsotg, DCTL); 5400 dctl &= ~DCTL_RMTWKUPSIG; 5401 dwc2_writel(hsotg, dctl, DCTL); 5402 } 5403 5404 hsotg->hibernated = 0; 5405 hsotg->lx_state = DWC2_L0; 5406 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); 5407 5408 return ret; 5409} 5410