xref: /kernel/linux/linux-5.10/drivers/usb/dwc2/core.h (revision 8c2ecf20)
1/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
2/*
3 * core.h - DesignWare HS OTG Controller common declarations
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions, and the following disclaimer,
12 *    without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 *    to endorse or promote products derived from this software without
18 *    specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38#ifndef __DWC2_CORE_H__
39#define __DWC2_CORE_H__
40
41#include <linux/phy/phy.h>
42#include <linux/regulator/consumer.h>
43#include <linux/usb/gadget.h>
44#include <linux/usb/otg.h>
45#include <linux/usb/phy.h>
46#include "hw.h"
47
48/*
49 * Suggested defines for tracers:
50 * - no_printk:    Disable tracing
51 * - pr_info:      Print this info to the console
52 * - trace_printk: Print this info to trace buffer (good for verbose logging)
53 */
54
55#define DWC2_TRACE_SCHEDULER		no_printk
56#define DWC2_TRACE_SCHEDULER_VB		no_printk
57
58/* Detailed scheduler tracing, but won't overwhelm console */
59#define dwc2_sch_dbg(hsotg, fmt, ...)					\
60	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
61			     dev_name(hsotg->dev), ##__VA_ARGS__)
62
63/* Verbose scheduler tracing */
64#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
65	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
66				dev_name(hsotg->dev), ##__VA_ARGS__)
67
68/* Maximum number of Endpoints/HostChannels */
69#define MAX_EPS_CHANNELS	16
70
71/* dwc2-hsotg declarations */
72static const char * const dwc2_hsotg_supply_names[] = {
73	"vusb_d",               /* digital USB supply, 1.2V */
74	"vusb_a",               /* analog USB supply, 1.1V */
75};
76
77#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
78
79/*
80 * EP0_MPS_LIMIT
81 *
82 * Unfortunately there seems to be a limit of the amount of data that can
83 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
84 * packets (which practically means 1 packet and 63 bytes of data) when the
85 * MPS is set to 64.
86 *
87 * This means if we are wanting to move >127 bytes of data, we need to
88 * split the transactions up, but just doing one packet at a time does
89 * not work (this may be an implicit DATA0 PID on first packet of the
90 * transaction) and doing 2 packets is outside the controller's limits.
91 *
92 * If we try to lower the MPS size for EP0, then no transfers work properly
93 * for EP0, and the system will fail basic enumeration. As no cause for this
94 * has currently been found, we cannot support any large IN transfers for
95 * EP0.
96 */
97#define EP0_MPS_LIMIT   64
98
99struct dwc2_hsotg;
100struct dwc2_hsotg_req;
101
102/**
103 * struct dwc2_hsotg_ep - driver endpoint definition.
104 * @ep: The gadget layer representation of the endpoint.
105 * @name: The driver generated name for the endpoint.
106 * @queue: Queue of requests for this endpoint.
107 * @parent: Reference back to the parent device structure.
108 * @req: The current request that the endpoint is processing. This is
109 *       used to indicate an request has been loaded onto the endpoint
110 *       and has yet to be completed (maybe due to data move, or simply
111 *       awaiting an ack from the core all the data has been completed).
112 * @debugfs: File entry for debugfs file for this endpoint.
113 * @dir_in: Set to true if this endpoint is of the IN direction, which
114 *          means that it is sending data to the Host.
115 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
116 * @index: The index for the endpoint registers.
117 * @mc: Multi Count - number of transactions per microframe
118 * @interval: Interval for periodic endpoints, in frames or microframes.
119 * @name: The name array passed to the USB core.
120 * @halted: Set if the endpoint has been halted.
121 * @periodic: Set if this is a periodic ep, such as Interrupt
122 * @isochronous: Set if this is a isochronous ep
123 * @send_zlp: Set if we need to send a zero-length packet.
124 * @desc_list_dma: The DMA address of descriptor chain currently in use.
125 * @desc_list: Pointer to descriptor DMA chain head currently in use.
126 * @desc_count: Count of entries within the DMA descriptor chain of EP.
127 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
128 * @compl_desc: index of next descriptor to be completed by xFerComplete
129 * @total_data: The total number of data bytes done.
130 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
131 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
132 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
133 * @last_load: The offset of data for the last start of request.
134 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
135 * @target_frame: Targeted frame num to setup next ISOC transfer
136 * @frame_overrun: Indicates SOF number overrun in DSTS
137 *
138 * This is the driver's state for each registered endpoint, allowing it
139 * to keep track of transactions that need doing. Each endpoint has a
140 * lock to protect the state, to try and avoid using an overall lock
141 * for the host controller as much as possible.
142 *
143 * For periodic IN endpoints, we have fifo_size and fifo_load to try
144 * and keep track of the amount of data in the periodic FIFO for each
145 * of these as we don't have a status register that tells us how much
146 * is in each of them. (note, this may actually be useless information
147 * as in shared-fifo mode periodic in acts like a single-frame packet
148 * buffer than a fifo)
149 */
150struct dwc2_hsotg_ep {
151	struct usb_ep           ep;
152	struct list_head        queue;
153	struct dwc2_hsotg       *parent;
154	struct dwc2_hsotg_req    *req;
155	struct dentry           *debugfs;
156
157	unsigned long           total_data;
158	unsigned int            size_loaded;
159	unsigned int            last_load;
160	unsigned int            fifo_load;
161	unsigned short          fifo_size;
162	unsigned short		fifo_index;
163
164	unsigned char           dir_in;
165	unsigned char           map_dir;
166	unsigned char           index;
167	unsigned char           mc;
168	u16                     interval;
169
170	unsigned int            halted:1;
171	unsigned int            periodic:1;
172	unsigned int            isochronous:1;
173	unsigned int            send_zlp:1;
174	unsigned int            target_frame;
175#define TARGET_FRAME_INITIAL   0xFFFFFFFF
176	bool			frame_overrun;
177
178	dma_addr_t		desc_list_dma;
179	struct dwc2_dma_desc	*desc_list;
180	u8			desc_count;
181
182	unsigned int		next_desc;
183	unsigned int		compl_desc;
184
185	char                    name[10];
186};
187
188/**
189 * struct dwc2_hsotg_req - data transfer request
190 * @req: The USB gadget request
191 * @queue: The list of requests for the endpoint this is queued for.
192 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
193 */
194struct dwc2_hsotg_req {
195	struct usb_request      req;
196	struct list_head        queue;
197	void *saved_req_buf;
198};
199
200#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
201	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
202#define call_gadget(_hs, _entry) \
203do { \
204	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
205		(_hs)->driver && (_hs)->driver->_entry) { \
206		spin_unlock(&_hs->lock); \
207		(_hs)->driver->_entry(&(_hs)->gadget); \
208		spin_lock(&_hs->lock); \
209	} \
210} while (0)
211#else
212#define call_gadget(_hs, _entry)	do {} while (0)
213#endif
214
215struct dwc2_hsotg;
216struct dwc2_host_chan;
217
218/* Device States */
219enum dwc2_lx_state {
220	DWC2_L0,	/* On state */
221	DWC2_L1,	/* LPM sleep state */
222	DWC2_L2,	/* USB suspend state */
223	DWC2_L3,	/* Off state */
224};
225
226/* Gadget ep0 states */
227enum dwc2_ep0_state {
228	DWC2_EP0_SETUP,
229	DWC2_EP0_DATA_IN,
230	DWC2_EP0_DATA_OUT,
231	DWC2_EP0_STATUS_IN,
232	DWC2_EP0_STATUS_OUT,
233};
234
235/**
236 * struct dwc2_core_params - Parameters for configuring the core
237 *
238 * @otg_cap:            Specifies the OTG capabilities.
239 *                       0 - HNP and SRP capable
240 *                       1 - SRP Only capable
241 *                       2 - No HNP/SRP capable (always available)
242 *                      Defaults to best available option (0, 1, then 2)
243 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
244 *                      the data FIFOs. The driver will automatically detect the
245 *                      value for this parameter if none is specified.
246 *                       0 - Slave (always available)
247 *                       1 - DMA (default, if available)
248 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
249 *                      address DMA mode or descriptor DMA mode for accessing
250 *                      the data FIFOs. The driver will automatically detect the
251 *                      value for this if none is specified.
252 *                       0 - Address DMA
253 *                       1 - Descriptor DMA (default, if available)
254 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
255 *                      address DMA mode or descriptor DMA mode for accessing
256 *                      the data FIFOs in Full Speed mode only. The driver
257 *                      will automatically detect the value for this if none is
258 *                      specified.
259 *                       0 - Address DMA
260 *                       1 - Descriptor DMA in FS (default, if available)
261 * @speed:              Specifies the maximum speed of operation in host and
262 *                      device mode. The actual speed depends on the speed of
263 *                      the attached device and the value of phy_type.
264 *                       0 - High Speed
265 *                           (default when phy_type is UTMI+ or ULPI)
266 *                       1 - Full Speed
267 *                           (default when phy_type is Full Speed)
268 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
269 *                       1 - Allow dynamic FIFO sizing (default, if available)
270 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
271 *                      are enabled for non-periodic IN endpoints in device
272 *                      mode.
273 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
274 *                      dynamic FIFO sizing is enabled
275 *                       16 to 32768
276 *                      Actual maximum value is autodetected and also
277 *                      the default.
278 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
279 *                      in host mode when dynamic FIFO sizing is enabled
280 *                       16 to 32768
281 *                      Actual maximum value is autodetected and also
282 *                      the default.
283 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
284 *                      host mode when dynamic FIFO sizing is enabled
285 *                       16 to 32768
286 *                      Actual maximum value is autodetected and also
287 *                      the default.
288 * @max_transfer_size:  The maximum transfer size supported, in bytes
289 *                       2047 to 65,535
290 *                      Actual maximum value is autodetected and also
291 *                      the default.
292 * @max_packet_count:   The maximum number of packets in a transfer
293 *                       15 to 511
294 *                      Actual maximum value is autodetected and also
295 *                      the default.
296 * @host_channels:      The number of host channel registers to use
297 *                       1 to 16
298 *                      Actual maximum value is autodetected and also
299 *                      the default.
300 * @phy_type:           Specifies the type of PHY interface to use. By default,
301 *                      the driver will automatically detect the phy_type.
302 *                       0 - Full Speed Phy
303 *                       1 - UTMI+ Phy
304 *                       2 - ULPI Phy
305 *                      Defaults to best available option (2, 1, then 0)
306 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
307 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
308 *                      ULPI phy_type, this parameter indicates the data width
309 *                      between the MAC and the ULPI Wrapper.) Also, this
310 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
311 *                      parameter was set to "8 and 16 bits", meaning that the
312 *                      core has been configured to work at either data path
313 *                      width.
314 *                       8 or 16 (default 16 if available)
315 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
316 *                      data rate. This parameter is only applicable if phy_type
317 *                      is ULPI.
318 *                       0 - single data rate ULPI interface with 8 bit wide
319 *                           data bus (default)
320 *                       1 - double data rate ULPI interface with 4 bit wide
321 *                           data bus
322 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
323 *                      external supply to drive the VBus
324 *                       0 - Internal supply (default)
325 *                       1 - External supply
326 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
327 *                      speed PHY. This parameter is only applicable if phy_type
328 *                      is FS.
329 *                       0 - No (default)
330 *                       1 - Yes
331 * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
332 *                       0 - Disable (default)
333 *                       1 - Enable
334 * @acg_enable:		For enabling Active Clock Gating in the controller
335 *                       0 - No
336 *                       1 - Yes
337 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
338 *                       0 - No (default)
339 *                       1 - Yes
340 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
341 *                      when attached to a Full Speed or Low Speed device in
342 *                      host mode.
343 *                       0 - Don't support low power mode (default)
344 *                       1 - Support low power mode
345 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
346 *                      when connected to a Low Speed device in host
347 *                      mode. This parameter is applicable only if
348 *                      host_support_fs_ls_low_power is enabled.
349 *                       0 - 48 MHz
350 *                           (default when phy_type is UTMI+ or ULPI)
351 *                       1 - 6 MHz
352 *                           (default when phy_type is Full Speed)
353 * @oc_disable:		Flag to disable overcurrent condition.
354 *			0 - Allow overcurrent condition to get detected
355 *			1 - Disable overcurrent condtion to get detected
356 * @ts_dline:           Enable Term Select Dline pulsing
357 *                       0 - No (default)
358 *                       1 - Yes
359 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
360 *                       0 - No (default for core < 2.92a)
361 *                       1 - Yes (default for core >= 2.92a)
362 * @ahbcfg:             This field allows the default value of the GAHBCFG
363 *                      register to be overridden
364 *                       -1         - GAHBCFG value will be set to 0x06
365 *                                    (INCR, default)
366 *                       all others - GAHBCFG value will be overridden with
367 *                                    this value
368 *                      Not all bits can be controlled like this, the
369 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
370 *                      by the driver and are ignored in this
371 *                      configuration value.
372 * @uframe_sched:       True to enable the microframe scheduler
373 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
374 *                      Disable CONIDSTSCHNG controller interrupt in such
375 *                      case.
376 *                      0 - No (default)
377 *                      1 - Yes
378 * @power_down:         Specifies whether the controller support power_down.
379 *			If power_down is enabled, the controller will enter
380 *			power_down in both peripheral and host mode when
381 *			needed.
382 *			0 - No (default)
383 *			1 - Partial power down
384 *			2 - Hibernation
385 * @lpm:		Enable LPM support.
386 *			0 - No
387 *			1 - Yes
388 * @lpm_clock_gating:		Enable core PHY clock gating.
389 *			0 - No
390 *			1 - Yes
391 * @besl:		Enable LPM Errata support.
392 *			0 - No
393 *			1 - Yes
394 * @hird_threshold_en:	HIRD or HIRD Threshold enable.
395 *			0 - No
396 *			1 - Yes
397 * @hird_threshold:	Value of BESL or HIRD Threshold.
398 * @ref_clk_per:        Indicates in terms of pico seconds the period
399 *                      of ref_clk.
400 *			62500 - 16MHz
401 *                      58823 - 17MHz
402 *                      52083 - 19.2MHz
403 *			50000 - 20MHz
404 *			41666 - 24MHz
405 *			33333 - 30MHz (default)
406 *			25000 - 40MHz
407 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
408 *                      the controller should generate an interrupt if the
409 *                      device had been in L1 state until that period.
410 *                      This is used by SW to initiate Remote WakeUp in the
411 *                      controller so as to sync to the uF number from the host.
412 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
413 *			register.
414 *			0 - Deactivate the transceiver (default)
415 *			1 - Activate the transceiver
416 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
417 *			detection using GGPIO register.
418 *			0 - Deactivate the external level detection (default)
419 *			1 - Activate the external level detection
420 * @g_dma:              Enables gadget dma usage (default: autodetect).
421 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
422 * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
423 *			DWORDS from 16-32768 (default: 2048 if
424 *			possible, otherwise autodetect).
425 * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
426 *			DWORDS from 16-32768 (default: 1024 if
427 *			possible, otherwise autodetect).
428 * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
429 *			mode. Each value corresponds to one EP
430 *			starting from EP1 (max 15 values). Sizes are
431 *			in DWORDS with possible values from from
432 *			16-32768 (default: 256, 256, 256, 256, 768,
433 *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
434 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
435 *                      while full&low speed device connect. And change speed
436 *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
437 *			0 - No (default)
438 *			1 - Yes
439 * @service_interval:   Enable service interval based scheduling.
440 *                      0 - No
441 *                      1 - Yes
442 *
443 * The following parameters may be specified when starting the module. These
444 * parameters define how the DWC_otg controller should be configured. A
445 * value of -1 (or any other out of range value) for any parameter means
446 * to read the value from hardware (if possible) or use the builtin
447 * default described above.
448 */
449struct dwc2_core_params {
450	u8 otg_cap;
451#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
452#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
453#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
454
455	u8 phy_type;
456#define DWC2_PHY_TYPE_PARAM_FS		0
457#define DWC2_PHY_TYPE_PARAM_UTMI	1
458#define DWC2_PHY_TYPE_PARAM_ULPI	2
459
460	u8 speed;
461#define DWC2_SPEED_PARAM_HIGH	0
462#define DWC2_SPEED_PARAM_FULL	1
463#define DWC2_SPEED_PARAM_LOW	2
464
465	u8 phy_utmi_width;
466	bool phy_ulpi_ddr;
467	bool phy_ulpi_ext_vbus;
468	bool enable_dynamic_fifo;
469	bool en_multiple_tx_fifo;
470	bool i2c_enable;
471	bool acg_enable;
472	bool ulpi_fs_ls;
473	bool ts_dline;
474	bool reload_ctl;
475	bool uframe_sched;
476	bool external_id_pin_ctl;
477
478	int power_down;
479#define DWC2_POWER_DOWN_PARAM_NONE		0
480#define DWC2_POWER_DOWN_PARAM_PARTIAL		1
481#define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
482
483	bool lpm;
484	bool lpm_clock_gating;
485	bool besl;
486	bool hird_threshold_en;
487	bool service_interval;
488	u8 hird_threshold;
489	bool activate_stm_fs_transceiver;
490	bool activate_stm_id_vb_detection;
491	bool ipg_isoc_en;
492	u16 max_packet_count;
493	u32 max_transfer_size;
494	u32 ahbcfg;
495
496	/* GREFCLK parameters */
497	u32 ref_clk_per;
498	u16 sof_cnt_wkup_alert;
499
500	/* Host parameters */
501	bool host_dma;
502	bool dma_desc_enable;
503	bool dma_desc_fs_enable;
504	bool host_support_fs_ls_low_power;
505	bool host_ls_low_power_phy_clk;
506	bool oc_disable;
507
508	u8 host_channels;
509	u16 host_rx_fifo_size;
510	u16 host_nperio_tx_fifo_size;
511	u16 host_perio_tx_fifo_size;
512
513	/* Gadget parameters */
514	bool g_dma;
515	bool g_dma_desc;
516	u32 g_rx_fifo_size;
517	u32 g_np_tx_fifo_size;
518	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
519
520	bool change_speed_quirk;
521};
522
523/**
524 * struct dwc2_hw_params - Autodetected parameters.
525 *
526 * These parameters are the various parameters read from hardware
527 * registers during initialization. They typically contain the best
528 * supported or maximum value that can be configured in the
529 * corresponding dwc2_core_params value.
530 *
531 * The values that are not in dwc2_core_params are documented below.
532 *
533 * @op_mode:             Mode of Operation
534 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
535 *                       1 - SRP-Capable OTG (Host & Device)
536 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
537 *                       3 - SRP-Capable Device
538 *                       4 - Non-OTG Device
539 *                       5 - SRP-Capable Host
540 *                       6 - Non-OTG Host
541 * @arch:                Architecture
542 *                       0 - Slave only
543 *                       1 - External DMA
544 *                       2 - Internal DMA
545 * @ipg_isoc_en:        This feature indicates that the controller supports
546 *                      the worst-case scenario of Rx followed by Rx
547 *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
548 *                      specification for any token following ISOC OUT token.
549 *                       0 - Don't support
550 *                       1 - Support
551 * @power_optimized:    Are power optimizations enabled?
552 * @num_dev_ep:         Number of device endpoints available
553 * @num_dev_in_eps:     Number of device IN endpoints available
554 * @num_dev_perio_in_ep: Number of device periodic IN endpoints
555 *                       available
556 * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
557 *                      Depth
558 *                       0 to 30
559 * @host_perio_tx_q_depth:
560 *                      Host Mode Periodic Request Queue Depth
561 *                       2, 4 or 8
562 * @nperio_tx_q_depth:
563 *                      Non-Periodic Request Queue Depth
564 *                       2, 4 or 8
565 * @hs_phy_type:         High-speed PHY interface type
566 *                       0 - High-speed interface not supported
567 *                       1 - UTMI+
568 *                       2 - ULPI
569 *                       3 - UTMI+ and ULPI
570 * @fs_phy_type:         Full-speed PHY interface type
571 *                       0 - Full speed interface not supported
572 *                       1 - Dedicated full speed interface
573 *                       2 - FS pins shared with UTMI+ pins
574 *                       3 - FS pins shared with ULPI pins
575 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
576 * @hibernation:	Is hibernation enabled?
577 * @utmi_phy_data_width: UTMI+ PHY data width
578 *                       0 - 8 bits
579 *                       1 - 16 bits
580 *                       2 - 8 or 16 bits
581 * @snpsid:             Value from SNPSID register
582 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
583 * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
584 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
585 *                      address DMA mode or descriptor DMA mode for accessing
586 *                      the data FIFOs. The driver will automatically detect the
587 *                      value for this if none is specified.
588 *                       0 - Address DMA
589 *                       1 - Descriptor DMA (default, if available)
590 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
591 *                       1 - Allow dynamic FIFO sizing (default, if available)
592 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
593 *                      are enabled for non-periodic IN endpoints in device
594 *                      mode.
595 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
596 *                      in host mode when dynamic FIFO sizing is enabled
597 *                       16 to 32768
598 *                      Actual maximum value is autodetected and also
599 *                      the default.
600 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
601 *                      host mode when dynamic FIFO sizing is enabled
602 *                       16 to 32768
603 *                      Actual maximum value is autodetected and also
604 *                      the default.
605 * @max_transfer_size:  The maximum transfer size supported, in bytes
606 *                       2047 to 65,535
607 *                      Actual maximum value is autodetected and also
608 *                      the default.
609 * @max_packet_count:   The maximum number of packets in a transfer
610 *                       15 to 511
611 *                      Actual maximum value is autodetected and also
612 *                      the default.
613 * @host_channels:      The number of host channel registers to use
614 *                       1 to 16
615 *                      Actual maximum value is autodetected and also
616 *                      the default.
617 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
618 *			     in device mode when dynamic FIFO sizing is enabled
619 *			     16 to 32768
620 *			     Actual maximum value is autodetected and also
621 *			     the default.
622 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
623 *                      speed PHY. This parameter is only applicable if phy_type
624 *                      is FS.
625 *                       0 - No (default)
626 *                       1 - Yes
627 * @acg_enable:		For enabling Active Clock Gating in the controller
628 *                       0 - Disable
629 *                       1 - Enable
630 * @lpm_mode:		For enabling Link Power Management in the controller
631 *                       0 - Disable
632 *                       1 - Enable
633 * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
634 *			FIFO sizing is enabled 16 to 32768
635 *			Actual maximum value is autodetected and also
636 *			the default.
637 * @service_interval_mode: For enabling service interval based scheduling in the
638 *                         controller.
639 *                           0 - Disable
640 *                           1 - Enable
641 */
642struct dwc2_hw_params {
643	unsigned op_mode:3;
644	unsigned arch:2;
645	unsigned dma_desc_enable:1;
646	unsigned enable_dynamic_fifo:1;
647	unsigned en_multiple_tx_fifo:1;
648	unsigned rx_fifo_size:16;
649	unsigned host_nperio_tx_fifo_size:16;
650	unsigned dev_nperio_tx_fifo_size:16;
651	unsigned host_perio_tx_fifo_size:16;
652	unsigned nperio_tx_q_depth:3;
653	unsigned host_perio_tx_q_depth:3;
654	unsigned dev_token_q_depth:5;
655	unsigned max_transfer_size:26;
656	unsigned max_packet_count:11;
657	unsigned host_channels:5;
658	unsigned hs_phy_type:2;
659	unsigned fs_phy_type:2;
660	unsigned i2c_enable:1;
661	unsigned acg_enable:1;
662	unsigned num_dev_ep:4;
663	unsigned num_dev_in_eps : 4;
664	unsigned num_dev_perio_in_ep:4;
665	unsigned total_fifo_size:16;
666	unsigned power_optimized:1;
667	unsigned hibernation:1;
668	unsigned utmi_phy_data_width:2;
669	unsigned lpm_mode:1;
670	unsigned ipg_isoc_en:1;
671	unsigned service_interval_mode:1;
672	u32 snpsid;
673	u32 dev_ep_dirs;
674	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
675};
676
677/* Size of control and EP0 buffers */
678#define DWC2_CTRL_BUFF_SIZE 8
679
680/**
681 * struct dwc2_gregs_backup - Holds global registers state before
682 * entering partial power down
683 * @gotgctl:		Backup of GOTGCTL register
684 * @gintmsk:		Backup of GINTMSK register
685 * @gahbcfg:		Backup of GAHBCFG register
686 * @gusbcfg:		Backup of GUSBCFG register
687 * @grxfsiz:		Backup of GRXFSIZ register
688 * @gnptxfsiz:		Backup of GNPTXFSIZ register
689 * @gi2cctl:		Backup of GI2CCTL register
690 * @glpmcfg:		Backup of GLPMCFG register
691 * @gdfifocfg:		Backup of GDFIFOCFG register
692 * @pcgcctl:		Backup of PCGCCTL register
693 * @pcgcctl1:		Backup of PCGCCTL1 register
694 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
695 * @gpwrdn:		Backup of GPWRDN register
696 * @valid:		True if registers values backuped.
697 */
698struct dwc2_gregs_backup {
699	u32 gotgctl;
700	u32 gintmsk;
701	u32 gahbcfg;
702	u32 gusbcfg;
703	u32 grxfsiz;
704	u32 gnptxfsiz;
705	u32 gi2cctl;
706	u32 glpmcfg;
707	u32 pcgcctl;
708	u32 pcgcctl1;
709	u32 gdfifocfg;
710	u32 gpwrdn;
711	bool valid;
712};
713
714/**
715 * struct dwc2_dregs_backup - Holds device registers state before
716 * entering partial power down
717 * @dcfg:		Backup of DCFG register
718 * @dctl:		Backup of DCTL register
719 * @daintmsk:		Backup of DAINTMSK register
720 * @diepmsk:		Backup of DIEPMSK register
721 * @doepmsk:		Backup of DOEPMSK register
722 * @diepctl:		Backup of DIEPCTL register
723 * @dieptsiz:		Backup of DIEPTSIZ register
724 * @diepdma:		Backup of DIEPDMA register
725 * @doepctl:		Backup of DOEPCTL register
726 * @doeptsiz:		Backup of DOEPTSIZ register
727 * @doepdma:		Backup of DOEPDMA register
728 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
729 * @valid:      True if registers values backuped.
730 */
731struct dwc2_dregs_backup {
732	u32 dcfg;
733	u32 dctl;
734	u32 daintmsk;
735	u32 diepmsk;
736	u32 doepmsk;
737	u32 diepctl[MAX_EPS_CHANNELS];
738	u32 dieptsiz[MAX_EPS_CHANNELS];
739	u32 diepdma[MAX_EPS_CHANNELS];
740	u32 doepctl[MAX_EPS_CHANNELS];
741	u32 doeptsiz[MAX_EPS_CHANNELS];
742	u32 doepdma[MAX_EPS_CHANNELS];
743	u32 dtxfsiz[MAX_EPS_CHANNELS];
744	bool valid;
745};
746
747/**
748 * struct dwc2_hregs_backup - Holds host registers state before
749 * entering partial power down
750 * @hcfg:		Backup of HCFG register
751 * @haintmsk:		Backup of HAINTMSK register
752 * @hcintmsk:		Backup of HCINTMSK register
753 * @hprt0:		Backup of HPTR0 register
754 * @hfir:		Backup of HFIR register
755 * @hptxfsiz:		Backup of HPTXFSIZ register
756 * @valid:      True if registers values backuped.
757 */
758struct dwc2_hregs_backup {
759	u32 hcfg;
760	u32 haintmsk;
761	u32 hcintmsk[MAX_EPS_CHANNELS];
762	u32 hprt0;
763	u32 hfir;
764	u32 hptxfsiz;
765	bool valid;
766};
767
768/*
769 * Constants related to high speed periodic scheduling
770 *
771 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
772 * reservation point of view it's assumed that the schedule goes right back to
773 * the beginning after the end of the schedule.
774 *
775 * What does that mean for scheduling things with a long interval?  It means
776 * we'll reserve time for them in every possible microframe that they could
777 * ever be scheduled in.  ...but we'll still only actually schedule them as
778 * often as they were requested.
779 *
780 * We keep our schedule in a "bitmap" structure.  This simplifies having
781 * to keep track of and merge intervals: we just let the bitmap code do most
782 * of the heavy lifting.  In a way scheduling is much like memory allocation.
783 *
784 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
785 * supposed to schedule for periodic transfers).  That's according to spec.
786 *
787 * Note that though we only schedule 80% of each microframe, the bitmap that we
788 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
789 * space for each uFrame).
790 *
791 * Requirements:
792 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
793 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
794 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
795 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
796 */
797#define DWC2_US_PER_UFRAME		125
798#define DWC2_HS_PERIODIC_US_PER_UFRAME	100
799
800#define DWC2_HS_SCHEDULE_UFRAMES	8
801#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
802					 DWC2_HS_PERIODIC_US_PER_UFRAME)
803
804/*
805 * Constants related to low speed scheduling
806 *
807 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
808 * so we make up a unit called a "slice" that's worth 25us.  There are 40
809 * slices in a full frame and we can schedule 36 of those (90%) for periodic
810 * transfers.
811 *
812 * Our low speed schedule can be as short as 1 frame or could be longer.  When
813 * we only schedule 1 frame it means that we'll need to reserve a time every
814 * frame even for things that only transfer very rarely, so something that runs
815 * every 2048 frames will get time reserved in every frame.  Our low speed
816 * schedule can be longer and we'll be able to handle more overlap, but that
817 * will come at increased memory cost and increased time to schedule.
818 *
819 * Note: one other advantage of a short low speed schedule is that if we mess
820 * up and miss scheduling we can jump in and use any of the slots that we
821 * happened to reserve.
822 *
823 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
824 * the schedule.  There will be one schedule per TT.
825 *
826 * Requirements:
827 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
828 */
829#define DWC2_US_PER_SLICE	25
830#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
831
832#define DWC2_ROUND_US_TO_SLICE(us) \
833				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
834				 DWC2_US_PER_SLICE)
835
836#define DWC2_LS_PERIODIC_US_PER_FRAME \
837				900
838#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
839				(DWC2_LS_PERIODIC_US_PER_FRAME / \
840				 DWC2_US_PER_SLICE)
841
842#define DWC2_LS_SCHEDULE_FRAMES	1
843#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
844				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
845
846/**
847 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
848 * and periodic schedules
849 *
850 * These are common for both host and peripheral modes:
851 *
852 * @dev:                The struct device pointer
853 * @regs:		Pointer to controller regs
854 * @hw_params:          Parameters that were autodetected from the
855 *                      hardware registers
856 * @params:	Parameters that define how the core should be configured
857 * @op_state:           The operational State, during transitions (a_host=>
858 *                      a_peripheral and b_device=>b_host) this may not match
859 *                      the core, but allows the software to determine
860 *                      transitions
861 * @dr_mode:            Requested mode of operation, one of following:
862 *                      - USB_DR_MODE_PERIPHERAL
863 *                      - USB_DR_MODE_HOST
864 *                      - USB_DR_MODE_OTG
865 * @role_sw:		usb_role_switch handle
866 * @hcd_enabled:	Host mode sub-driver initialization indicator.
867 * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
868 * @ll_hw_enabled:	Status of low-level hardware resources.
869 * @hibernated:		True if core is hibernated
870 * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
871 *			remote wakeup.
872 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
873 * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
874 *			suspend if we need USB to wake us up.
875 * @frame_number:       Frame number read from the core. For both device
876 *			and host modes. The value ranges are from 0
877 *			to HFNUM_MAX_FRNUM.
878 * @phy:                The otg phy transceiver structure for phy control.
879 * @uphy:               The otg phy transceiver structure for old USB phy
880 *                      control.
881 * @plat:               The platform specific configuration data. This can be
882 *                      removed once all SoCs support usb transceiver.
883 * @supplies:           Definition of USB power supplies
884 * @vbus_supply:        Regulator supplying vbus.
885 * @usb33d:		Optional 3.3v regulator used on some stm32 devices to
886 *			supply ID and VBUS detection hardware.
887 * @lock:		Spinlock that protects all the driver data structures
888 * @priv:		Stores a pointer to the struct usb_hcd
889 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
890 *                      transfer are in process of being queued
891 * @srp_success:        Stores status of SRP request in the case of a FS PHY
892 *                      with an I2C interface
893 * @wq_otg:             Workqueue object used for handling of some interrupts
894 * @wf_otg:             Work object for handling Connector ID Status Change
895 *                      interrupt
896 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
897 * @lx_state:           Lx state of connected device
898 * @gr_backup: Backup of global registers during suspend
899 * @dr_backup: Backup of device registers during suspend
900 * @hr_backup: Backup of host registers during suspend
901 * @needs_byte_swap:		Specifies whether the opposite endianness.
902 *
903 * These are for host mode:
904 *
905 * @flags:              Flags for handling root port state changes
906 * @flags.d32:          Contain all root port flags
907 * @flags.b:            Separate root port flags from each other
908 * @flags.b.port_connect_status_change: True if root port connect status
909 *                      changed
910 * @flags.b.port_connect_status: True if device connected to root port
911 * @flags.b.port_reset_change: True if root port reset status changed
912 * @flags.b.port_enable_change: True if root port enable status changed
913 * @flags.b.port_suspend_change: True if root port suspend status changed
914 * @flags.b.port_over_current_change: True if root port over current state
915 *                       changed.
916 * @flags.b.port_l1_change: True if root port l1 status changed
917 * @flags.b.reserved:   Reserved bits of root port register
918 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
919 *                      Transfers associated with these QHs are not currently
920 *                      assigned to a host channel.
921 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
922 *                      Transfers associated with these QHs are currently
923 *                      assigned to a host channel.
924 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
925 *                      non-periodic schedule
926 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
927 *                      Transfers associated with these QHs are not currently
928 *                      assigned to a host channel.
929 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
930 *                      list of QHs for periodic transfers that are _not_
931 *                      scheduled for the next frame. Each QH in the list has an
932 *                      interval counter that determines when it needs to be
933 *                      scheduled for execution. This scheduling mechanism
934 *                      allows only a simple calculation for periodic bandwidth
935 *                      used (i.e. must assume that all periodic transfers may
936 *                      need to execute in the same frame). However, it greatly
937 *                      simplifies scheduling and should be sufficient for the
938 *                      vast majority of OTG hosts, which need to connect to a
939 *                      small number of peripherals at one time. Items move from
940 *                      this list to periodic_sched_ready when the QH interval
941 *                      counter is 0 at SOF.
942 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
943 *                      the next frame, but have not yet been assigned to host
944 *                      channels. Items move from this list to
945 *                      periodic_sched_assigned as host channels become
946 *                      available during the current frame.
947 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
948 *                      frame that are assigned to host channels. Items move
949 *                      from this list to periodic_sched_queued as the
950 *                      transactions for the QH are queued to the DWC_otg
951 *                      controller.
952 * @periodic_sched_queued: List of periodic QHs that have been queued for
953 *                      execution. Items move from this list to either
954 *                      periodic_sched_inactive or periodic_sched_ready when the
955 *                      channel associated with the transfer is released. If the
956 *                      interval for the QH is 1, the item moves to
957 *                      periodic_sched_ready because it must be rescheduled for
958 *                      the next frame. Otherwise, the item moves to
959 *                      periodic_sched_inactive.
960 * @split_order:        List keeping track of channels doing splits, in order.
961 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
962 *                      This value is in microseconds per (micro)frame. The
963 *                      assumption is that all periodic transfers may occur in
964 *                      the same (micro)frame.
965 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
966 *                      host is in high speed mode; low speed schedules are
967 *                      stored elsewhere since we need one per TT.
968 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
969 *                      SOF enable/disable.
970 * @free_hc_list:       Free host channels in the controller. This is a list of
971 *                      struct dwc2_host_chan items.
972 * @periodic_channels:  Number of host channels assigned to periodic transfers.
973 *                      Currently assuming that there is a dedicated host
974 *                      channel for each periodic transaction and at least one
975 *                      host channel is available for non-periodic transactions.
976 * @non_periodic_channels: Number of host channels assigned to non-periodic
977 *                      transfers
978 * @available_host_channels: Number of host channels available for the
979 *			     microframe scheduler to use
980 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
981 *                      Allows accessing a host channel descriptor given the
982 *                      host channel number. This is useful in interrupt
983 *                      handlers.
984 * @status_buf:         Buffer used for data received during the status phase of
985 *                      a control transfer.
986 * @status_buf_dma:     DMA address for status_buf
987 * @start_work:         Delayed work for handling host A-cable connection
988 * @reset_work:         Delayed work for handling a port reset
989 * @phy_reset_work:     Work structure for doing a PHY reset
990 * @otg_port:           OTG port number
991 * @frame_list:         Frame list
992 * @frame_list_dma:     Frame list DMA address
993 * @frame_list_sz:      Frame list size
994 * @desc_gen_cache:     Kmem cache for generic descriptors
995 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
996 * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
997 *
998 * These are for peripheral mode:
999 *
1000 * @driver:             USB gadget driver
1001 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
1002 * @num_of_eps:         Number of available EPs (excluding EP0)
1003 * @debug_root:         Root directrory for debugfs.
1004 * @ep0_reply:          Request used for ep0 reply.
1005 * @ep0_buff:           Buffer for EP0 reply data, if needed.
1006 * @ctrl_buff:          Buffer for EP0 control requests.
1007 * @ctrl_req:           Request for EP0 control packets.
1008 * @ep0_state:          EP0 control transfers state
1009 * @delayed_status:		true when gadget driver asks for delayed status
1010 * @test_mode:          USB test mode requested by the host
1011 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1012 *                      remote-wakeup signalling
1013 * @setup_desc_dma:	EP0 setup stage desc chain DMA address
1014 * @setup_desc:		EP0 setup stage desc chain pointer
1015 * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
1016 * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
1017 * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
1018 * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
1019 * @irq:		Interrupt request line number
1020 * @clk:		Pointer to otg clock
1021 * @reset:		Pointer to dwc2 reset controller
1022 * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1023 * @regset:		A pointer to a struct debugfs_regset32, which contains
1024 *			a pointer to an array of register definitions, the
1025 *			array size and the base address where the register bank
1026 *			is to be found.
1027 * @bus_suspended:	True if bus is suspended
1028 * @last_frame_num:	Number of last frame. Range from 0 to  32768
1029 * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1030 *			defined, for missed SOFs tracking. Array holds that
1031 *			frame numbers, which not equal to last_frame_num +1
1032 * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1033 *			    defined, for missed SOFs tracking.
1034 *			    If current_frame_number != last_frame_num+1
1035 *			    then last_frame_num added to this array
1036 * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
1037 * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
1038 *				0 - if missed SOFs frame numbers not dumbed
1039 * @fifo_mem:			Total internal RAM for FIFOs (bytes)
1040 * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
1041 *			then that fifo is used
1042 * @gadget:		Represents a usb gadget device
1043 * @connected:		Used in slave mode. True if device connected with host
1044 * @eps_in:		The IN endpoints being supplied to the gadget framework
1045 * @eps_out:		The OUT endpoints being supplied to the gadget framework
1046 * @new_connection:	Used in host mode. True if there are new connected
1047 *			device
1048 * @enabled:		Indicates the enabling state of controller
1049 *
1050 */
1051struct dwc2_hsotg {
1052	struct device *dev;
1053	void __iomem *regs;
1054	/** Params detected from hardware */
1055	struct dwc2_hw_params hw_params;
1056	/** Params to actually use */
1057	struct dwc2_core_params params;
1058	enum usb_otg_state op_state;
1059	enum usb_dr_mode dr_mode;
1060	struct usb_role_switch *role_sw;
1061	unsigned int hcd_enabled:1;
1062	unsigned int gadget_enabled:1;
1063	unsigned int ll_hw_enabled:1;
1064	unsigned int hibernated:1;
1065	unsigned int reset_phy_on_wake:1;
1066	unsigned int need_phy_for_wake:1;
1067	unsigned int phy_off_for_suspend:1;
1068	u16 frame_number;
1069
1070	struct phy *phy;
1071	struct usb_phy *uphy;
1072	struct dwc2_hsotg_plat *plat;
1073	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1074	struct regulator *vbus_supply;
1075	struct regulator *usb33d;
1076
1077	spinlock_t lock;
1078	void *priv;
1079	int     irq;
1080	struct clk *clk;
1081	struct reset_control *reset;
1082	struct reset_control *reset_ecc;
1083
1084	unsigned int queuing_high_bandwidth:1;
1085	unsigned int srp_success:1;
1086
1087	struct workqueue_struct *wq_otg;
1088	struct work_struct wf_otg;
1089	struct timer_list wkp_timer;
1090	enum dwc2_lx_state lx_state;
1091	struct dwc2_gregs_backup gr_backup;
1092	struct dwc2_dregs_backup dr_backup;
1093	struct dwc2_hregs_backup hr_backup;
1094
1095	struct dentry *debug_root;
1096	struct debugfs_regset32 *regset;
1097	bool needs_byte_swap;
1098
1099	/* DWC OTG HW Release versions */
1100#define DWC2_CORE_REV_2_71a	0x4f54271a
1101#define DWC2_CORE_REV_2_72a     0x4f54272a
1102#define DWC2_CORE_REV_2_80a	0x4f54280a
1103#define DWC2_CORE_REV_2_90a	0x4f54290a
1104#define DWC2_CORE_REV_2_91a	0x4f54291a
1105#define DWC2_CORE_REV_2_92a	0x4f54292a
1106#define DWC2_CORE_REV_2_94a	0x4f54294a
1107#define DWC2_CORE_REV_3_00a	0x4f54300a
1108#define DWC2_CORE_REV_3_10a	0x4f54310a
1109#define DWC2_CORE_REV_4_00a	0x4f54400a
1110#define DWC2_CORE_REV_4_20a	0x4f54420a
1111#define DWC2_FS_IOT_REV_1_00a	0x5531100a
1112#define DWC2_HS_IOT_REV_1_00a	0x5532100a
1113#define DWC2_CORE_REV_MASK	0x0000ffff
1114
1115	/* DWC OTG HW Core ID */
1116#define DWC2_OTG_ID		0x4f540000
1117#define DWC2_FS_IOT_ID		0x55310000
1118#define DWC2_HS_IOT_ID		0x55320000
1119
1120#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1121	union dwc2_hcd_internal_flags {
1122		u32 d32;
1123		struct {
1124			unsigned port_connect_status_change:1;
1125			unsigned port_connect_status:1;
1126			unsigned port_reset_change:1;
1127			unsigned port_enable_change:1;
1128			unsigned port_suspend_change:1;
1129			unsigned port_over_current_change:1;
1130			unsigned port_l1_change:1;
1131			unsigned reserved:25;
1132		} b;
1133	} flags;
1134
1135	struct list_head non_periodic_sched_inactive;
1136	struct list_head non_periodic_sched_waiting;
1137	struct list_head non_periodic_sched_active;
1138	struct list_head *non_periodic_qh_ptr;
1139	struct list_head periodic_sched_inactive;
1140	struct list_head periodic_sched_ready;
1141	struct list_head periodic_sched_assigned;
1142	struct list_head periodic_sched_queued;
1143	struct list_head split_order;
1144	u16 periodic_usecs;
1145	unsigned long hs_periodic_bitmap[
1146		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1147	u16 periodic_qh_count;
1148	bool bus_suspended;
1149	bool new_connection;
1150
1151	u16 last_frame_num;
1152
1153#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1154#define FRAME_NUM_ARRAY_SIZE 1000
1155	u16 *frame_num_array;
1156	u16 *last_frame_num_array;
1157	int frame_num_idx;
1158	int dumped_frame_num_array;
1159#endif
1160
1161	struct list_head free_hc_list;
1162	int periodic_channels;
1163	int non_periodic_channels;
1164	int available_host_channels;
1165	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1166	u8 *status_buf;
1167	dma_addr_t status_buf_dma;
1168#define DWC2_HCD_STATUS_BUF_SIZE 64
1169
1170	struct delayed_work start_work;
1171	struct delayed_work reset_work;
1172	struct work_struct phy_reset_work;
1173	u8 otg_port;
1174	u32 *frame_list;
1175	dma_addr_t frame_list_dma;
1176	u32 frame_list_sz;
1177	struct kmem_cache *desc_gen_cache;
1178	struct kmem_cache *desc_hsisoc_cache;
1179	struct kmem_cache *unaligned_cache;
1180#define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1181
1182#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1183
1184#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1185	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1186	/* Gadget structures */
1187	struct usb_gadget_driver *driver;
1188	int fifo_mem;
1189	unsigned int dedicated_fifos:1;
1190	unsigned char num_of_eps;
1191	u32 fifo_map;
1192
1193	struct usb_request *ep0_reply;
1194	struct usb_request *ctrl_req;
1195	void *ep0_buff;
1196	void *ctrl_buff;
1197	enum dwc2_ep0_state ep0_state;
1198	unsigned delayed_status : 1;
1199	u8 test_mode;
1200
1201	dma_addr_t setup_desc_dma[2];
1202	struct dwc2_dma_desc *setup_desc[2];
1203	dma_addr_t ctrl_in_desc_dma;
1204	struct dwc2_dma_desc *ctrl_in_desc;
1205	dma_addr_t ctrl_out_desc_dma;
1206	struct dwc2_dma_desc *ctrl_out_desc;
1207
1208	struct usb_gadget gadget;
1209	unsigned int enabled:1;
1210	unsigned int connected:1;
1211	unsigned int remote_wakeup_allowed:1;
1212	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1213	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1214#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1215};
1216
1217/* Normal architectures just use readl/write */
1218static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1219{
1220	u32 val;
1221
1222	val = readl(hsotg->regs + offset);
1223	if (hsotg->needs_byte_swap)
1224		return swab32(val);
1225	else
1226		return val;
1227}
1228
1229static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1230{
1231	if (hsotg->needs_byte_swap)
1232		writel(swab32(value), hsotg->regs + offset);
1233	else
1234		writel(value, hsotg->regs + offset);
1235
1236#ifdef DWC2_LOG_WRITES
1237	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1238#endif
1239}
1240
1241static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1242				  void *buffer, unsigned int count)
1243{
1244	if (count) {
1245		u32 *buf = buffer;
1246
1247		do {
1248			u32 x = dwc2_readl(hsotg, offset);
1249			*buf++ = x;
1250		} while (--count);
1251	}
1252}
1253
1254static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1255				   const void *buffer, unsigned int count)
1256{
1257	if (count) {
1258		const u32 *buf = buffer;
1259
1260		do {
1261			dwc2_writel(hsotg, *buf++, offset);
1262		} while (--count);
1263	}
1264}
1265
1266/* Reasons for halting a host channel */
1267enum dwc2_halt_status {
1268	DWC2_HC_XFER_NO_HALT_STATUS,
1269	DWC2_HC_XFER_COMPLETE,
1270	DWC2_HC_XFER_URB_COMPLETE,
1271	DWC2_HC_XFER_ACK,
1272	DWC2_HC_XFER_NAK,
1273	DWC2_HC_XFER_NYET,
1274	DWC2_HC_XFER_STALL,
1275	DWC2_HC_XFER_XACT_ERR,
1276	DWC2_HC_XFER_FRAME_OVERRUN,
1277	DWC2_HC_XFER_BABBLE_ERR,
1278	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1279	DWC2_HC_XFER_AHB_ERR,
1280	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1281	DWC2_HC_XFER_URB_DEQUEUE,
1282};
1283
1284/* Core version information */
1285static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1286{
1287	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1288}
1289
1290static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1291{
1292	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1293}
1294
1295static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1296{
1297	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1298}
1299
1300/*
1301 * The following functions support initialization of the core driver component
1302 * and the DWC_otg controller
1303 */
1304int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1305int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1306int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, bool restore);
1307int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1308int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1309		int reset, int is_host);
1310void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1311int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1312
1313void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1314void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1315
1316bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1317
1318int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1319
1320/*
1321 * Common core Functions.
1322 * The following functions support managing the DWC_otg controller in either
1323 * device or host mode.
1324 */
1325void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1326void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1327void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1328
1329void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1330void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1331
1332void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1333			     int is_host);
1334int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1335int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1336
1337void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1338
1339/* This function should be called on every hardware interrupt. */
1340irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1341
1342/* The device ID match table */
1343extern const struct of_device_id dwc2_of_match_table[];
1344
1345int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1346int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1347
1348/* Common polling functions */
1349int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1350			    u32 timeout);
1351int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1352			      u32 timeout);
1353/* Parameters */
1354int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1355int dwc2_init_params(struct dwc2_hsotg *hsotg);
1356
1357/*
1358 * The following functions check the controller's OTG operation mode
1359 * capability (GHWCFG2.OTG_MODE).
1360 *
1361 * These functions can be used before the internal hsotg->hw_params
1362 * are read in and cached so they always read directly from the
1363 * GHWCFG2 register.
1364 */
1365unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1366bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1367bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1368bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1369
1370/*
1371 * Returns the mode of operation, host or device
1372 */
1373static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1374{
1375	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1376}
1377
1378static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1379{
1380	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1381}
1382
1383int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1384void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1385void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1386void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1387
1388/*
1389 * Dump core registers and SPRAM
1390 */
1391void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1392void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1393void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1394
1395/* Gadget defines */
1396#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1397	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1398int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1399int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1400int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1401int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1402void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1403				       bool reset);
1404void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1405void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1406void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1407int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1408#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1409#define dwc2_is_device_enabled(hsotg) (hsotg->enabled)
1410int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1411int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1412int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1413int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1414				 int rem_wakeup, int reset);
1415int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1416int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1417int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1418void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1419void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1420#else
1421static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1422{ return 0; }
1423static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1424{ return 0; }
1425static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1426{ return 0; }
1427static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1428{ return 0; }
1429static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1430						     bool reset) {}
1431static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
1432static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1433static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1434static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1435					   int testmode)
1436{ return 0; }
1437#define dwc2_is_device_connected(hsotg) (0)
1438#define dwc2_is_device_enabled(hsotg) (0)
1439static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1440{ return 0; }
1441static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1442						int remote_wakeup)
1443{ return 0; }
1444static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1445{ return 0; }
1446static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1447					       int rem_wakeup, int reset)
1448{ return 0; }
1449static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1450{ return 0; }
1451static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1452{ return 0; }
1453static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1454{ return 0; }
1455static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1456static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1457#endif
1458
1459#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1460int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1461int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1462void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1463void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1464void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1465int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1466int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1467int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1468int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1469int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1470			       int rem_wakeup, int reset);
1471bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
1472static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1473{ schedule_work(&hsotg->phy_reset_work); }
1474#else
1475static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1476{ return 0; }
1477static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1478						   int us)
1479{ return 0; }
1480static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1481static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1482static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1483static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1484static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1485{ return 0; }
1486static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1487{ return 0; }
1488static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1489{ return 0; }
1490static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1491{ return 0; }
1492static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1493{ return 0; }
1494static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1495					     int rem_wakeup, int reset)
1496{ return 0; }
1497static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1498{ return false; }
1499static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1500
1501#endif
1502
1503#endif /* __DWC2_CORE_H__ */
1504