xref: /kernel/linux/linux-5.10/drivers/usb/core/usb.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/usb/core/usb.c
4 *
5 * (C) Copyright Linus Torvalds 1999
6 * (C) Copyright Johannes Erdfelt 1999-2001
7 * (C) Copyright Andreas Gal 1999
8 * (C) Copyright Gregory P. Smith 1999
9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
10 * (C) Copyright Randy Dunlap 2000
11 * (C) Copyright David Brownell 2000-2004
12 * (C) Copyright Yggdrasil Computing, Inc. 2000
13 *     (usb_device_id matching changes by Adam J. Richter)
14 * (C) Copyright Greg Kroah-Hartman 2002-2003
15 *
16 * Released under the GPLv2 only.
17 *
18 * NOTE! This is not actually a driver at all, rather this is
19 * just a collection of helper routines that implement the
20 * generic USB things that the real drivers can use..
21 *
22 * Think of this as a "USB library" rather than anything else,
23 * with no callbacks.  Callbacks are evil.
24 */
25
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/string.h>
29#include <linux/bitops.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>  /* for in_interrupt() */
32#include <linux/kmod.h>
33#include <linux/init.h>
34#include <linux/spinlock.h>
35#include <linux/errno.h>
36#include <linux/usb.h>
37#include <linux/usb/hcd.h>
38#include <linux/mutex.h>
39#include <linux/workqueue.h>
40#include <linux/debugfs.h>
41#include <linux/usb/of.h>
42
43#include <asm/io.h>
44#include <linux/scatterlist.h>
45#include <linux/mm.h>
46#include <linux/dma-mapping.h>
47
48#include "hub.h"
49
50const char *usbcore_name = "usbcore";
51
52static bool nousb;	/* Disable USB when built into kernel image */
53
54module_param(nousb, bool, 0444);
55
56/*
57 * for external read access to <nousb>
58 */
59int usb_disabled(void)
60{
61	return nousb;
62}
63EXPORT_SYMBOL_GPL(usb_disabled);
64
65#ifdef	CONFIG_PM
66/* Default delay value, in seconds */
67static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
68module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
69MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
70
71#else
72#define usb_autosuspend_delay		0
73#endif
74
75static bool match_endpoint(struct usb_endpoint_descriptor *epd,
76		struct usb_endpoint_descriptor **bulk_in,
77		struct usb_endpoint_descriptor **bulk_out,
78		struct usb_endpoint_descriptor **int_in,
79		struct usb_endpoint_descriptor **int_out)
80{
81	switch (usb_endpoint_type(epd)) {
82	case USB_ENDPOINT_XFER_BULK:
83		if (usb_endpoint_dir_in(epd)) {
84			if (bulk_in && !*bulk_in) {
85				*bulk_in = epd;
86				break;
87			}
88		} else {
89			if (bulk_out && !*bulk_out) {
90				*bulk_out = epd;
91				break;
92			}
93		}
94
95		return false;
96	case USB_ENDPOINT_XFER_INT:
97		if (usb_endpoint_dir_in(epd)) {
98			if (int_in && !*int_in) {
99				*int_in = epd;
100				break;
101			}
102		} else {
103			if (int_out && !*int_out) {
104				*int_out = epd;
105				break;
106			}
107		}
108
109		return false;
110	default:
111		return false;
112	}
113
114	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
115			(!int_in || *int_in) && (!int_out || *int_out);
116}
117
118/**
119 * usb_find_common_endpoints() -- look up common endpoint descriptors
120 * @alt:	alternate setting to search
121 * @bulk_in:	pointer to descriptor pointer, or NULL
122 * @bulk_out:	pointer to descriptor pointer, or NULL
123 * @int_in:	pointer to descriptor pointer, or NULL
124 * @int_out:	pointer to descriptor pointer, or NULL
125 *
126 * Search the alternate setting's endpoint descriptors for the first bulk-in,
127 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
128 * provided pointers (unless they are NULL).
129 *
130 * If a requested endpoint is not found, the corresponding pointer is set to
131 * NULL.
132 *
133 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
134 */
135int usb_find_common_endpoints(struct usb_host_interface *alt,
136		struct usb_endpoint_descriptor **bulk_in,
137		struct usb_endpoint_descriptor **bulk_out,
138		struct usb_endpoint_descriptor **int_in,
139		struct usb_endpoint_descriptor **int_out)
140{
141	struct usb_endpoint_descriptor *epd;
142	int i;
143
144	if (bulk_in)
145		*bulk_in = NULL;
146	if (bulk_out)
147		*bulk_out = NULL;
148	if (int_in)
149		*int_in = NULL;
150	if (int_out)
151		*int_out = NULL;
152
153	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
154		epd = &alt->endpoint[i].desc;
155
156		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
157			return 0;
158	}
159
160	return -ENXIO;
161}
162EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
163
164/**
165 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
166 * @alt:	alternate setting to search
167 * @bulk_in:	pointer to descriptor pointer, or NULL
168 * @bulk_out:	pointer to descriptor pointer, or NULL
169 * @int_in:	pointer to descriptor pointer, or NULL
170 * @int_out:	pointer to descriptor pointer, or NULL
171 *
172 * Search the alternate setting's endpoint descriptors for the last bulk-in,
173 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
174 * provided pointers (unless they are NULL).
175 *
176 * If a requested endpoint is not found, the corresponding pointer is set to
177 * NULL.
178 *
179 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
180 */
181int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
182		struct usb_endpoint_descriptor **bulk_in,
183		struct usb_endpoint_descriptor **bulk_out,
184		struct usb_endpoint_descriptor **int_in,
185		struct usb_endpoint_descriptor **int_out)
186{
187	struct usb_endpoint_descriptor *epd;
188	int i;
189
190	if (bulk_in)
191		*bulk_in = NULL;
192	if (bulk_out)
193		*bulk_out = NULL;
194	if (int_in)
195		*int_in = NULL;
196	if (int_out)
197		*int_out = NULL;
198
199	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
200		epd = &alt->endpoint[i].desc;
201
202		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
203			return 0;
204	}
205
206	return -ENXIO;
207}
208EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
209
210/**
211 * usb_find_endpoint() - Given an endpoint address, search for the endpoint's
212 * usb_host_endpoint structure in an interface's current altsetting.
213 * @intf: the interface whose current altsetting should be searched
214 * @ep_addr: the endpoint address (number and direction) to find
215 *
216 * Search the altsetting's list of endpoints for one with the specified address.
217 *
218 * Return: Pointer to the usb_host_endpoint if found, %NULL otherwise.
219 */
220static const struct usb_host_endpoint *usb_find_endpoint(
221		const struct usb_interface *intf, unsigned int ep_addr)
222{
223	int n;
224	const struct usb_host_endpoint *ep;
225
226	n = intf->cur_altsetting->desc.bNumEndpoints;
227	ep = intf->cur_altsetting->endpoint;
228	for (; n > 0; (--n, ++ep)) {
229		if (ep->desc.bEndpointAddress == ep_addr)
230			return ep;
231	}
232	return NULL;
233}
234
235/**
236 * usb_check_bulk_endpoints - Check whether an interface's current altsetting
237 * contains a set of bulk endpoints with the given addresses.
238 * @intf: the interface whose current altsetting should be searched
239 * @ep_addrs: 0-terminated array of the endpoint addresses (number and
240 * direction) to look for
241 *
242 * Search for endpoints with the specified addresses and check their types.
243 *
244 * Return: %true if all the endpoints are found and are bulk, %false otherwise.
245 */
246bool usb_check_bulk_endpoints(
247		const struct usb_interface *intf, const u8 *ep_addrs)
248{
249	const struct usb_host_endpoint *ep;
250
251	for (; *ep_addrs; ++ep_addrs) {
252		ep = usb_find_endpoint(intf, *ep_addrs);
253		if (!ep || !usb_endpoint_xfer_bulk(&ep->desc))
254			return false;
255	}
256	return true;
257}
258EXPORT_SYMBOL_GPL(usb_check_bulk_endpoints);
259
260/**
261 * usb_check_int_endpoints - Check whether an interface's current altsetting
262 * contains a set of interrupt endpoints with the given addresses.
263 * @intf: the interface whose current altsetting should be searched
264 * @ep_addrs: 0-terminated array of the endpoint addresses (number and
265 * direction) to look for
266 *
267 * Search for endpoints with the specified addresses and check their types.
268 *
269 * Return: %true if all the endpoints are found and are interrupt,
270 * %false otherwise.
271 */
272bool usb_check_int_endpoints(
273		const struct usb_interface *intf, const u8 *ep_addrs)
274{
275	const struct usb_host_endpoint *ep;
276
277	for (; *ep_addrs; ++ep_addrs) {
278		ep = usb_find_endpoint(intf, *ep_addrs);
279		if (!ep || !usb_endpoint_xfer_int(&ep->desc))
280			return false;
281	}
282	return true;
283}
284EXPORT_SYMBOL_GPL(usb_check_int_endpoints);
285
286/**
287 * usb_find_alt_setting() - Given a configuration, find the alternate setting
288 * for the given interface.
289 * @config: the configuration to search (not necessarily the current config).
290 * @iface_num: interface number to search in
291 * @alt_num: alternate interface setting number to search for.
292 *
293 * Search the configuration's interface cache for the given alt setting.
294 *
295 * Return: The alternate setting, if found. %NULL otherwise.
296 */
297struct usb_host_interface *usb_find_alt_setting(
298		struct usb_host_config *config,
299		unsigned int iface_num,
300		unsigned int alt_num)
301{
302	struct usb_interface_cache *intf_cache = NULL;
303	int i;
304
305	if (!config)
306		return NULL;
307	for (i = 0; i < config->desc.bNumInterfaces; i++) {
308		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
309				== iface_num) {
310			intf_cache = config->intf_cache[i];
311			break;
312		}
313	}
314	if (!intf_cache)
315		return NULL;
316	for (i = 0; i < intf_cache->num_altsetting; i++)
317		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
318			return &intf_cache->altsetting[i];
319
320	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
321			"config %u\n", alt_num, iface_num,
322			config->desc.bConfigurationValue);
323	return NULL;
324}
325EXPORT_SYMBOL_GPL(usb_find_alt_setting);
326
327/**
328 * usb_ifnum_to_if - get the interface object with a given interface number
329 * @dev: the device whose current configuration is considered
330 * @ifnum: the desired interface
331 *
332 * This walks the device descriptor for the currently active configuration
333 * to find the interface object with the particular interface number.
334 *
335 * Note that configuration descriptors are not required to assign interface
336 * numbers sequentially, so that it would be incorrect to assume that
337 * the first interface in that descriptor corresponds to interface zero.
338 * This routine helps device drivers avoid such mistakes.
339 * However, you should make sure that you do the right thing with any
340 * alternate settings available for this interfaces.
341 *
342 * Don't call this function unless you are bound to one of the interfaces
343 * on this device or you have locked the device!
344 *
345 * Return: A pointer to the interface that has @ifnum as interface number,
346 * if found. %NULL otherwise.
347 */
348struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
349				      unsigned ifnum)
350{
351	struct usb_host_config *config = dev->actconfig;
352	int i;
353
354	if (!config)
355		return NULL;
356	for (i = 0; i < config->desc.bNumInterfaces; i++)
357		if (config->interface[i]->altsetting[0]
358				.desc.bInterfaceNumber == ifnum)
359			return config->interface[i];
360
361	return NULL;
362}
363EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
364
365/**
366 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
367 * @intf: the interface containing the altsetting in question
368 * @altnum: the desired alternate setting number
369 *
370 * This searches the altsetting array of the specified interface for
371 * an entry with the correct bAlternateSetting value.
372 *
373 * Note that altsettings need not be stored sequentially by number, so
374 * it would be incorrect to assume that the first altsetting entry in
375 * the array corresponds to altsetting zero.  This routine helps device
376 * drivers avoid such mistakes.
377 *
378 * Don't call this function unless you are bound to the intf interface
379 * or you have locked the device!
380 *
381 * Return: A pointer to the entry of the altsetting array of @intf that
382 * has @altnum as the alternate setting number. %NULL if not found.
383 */
384struct usb_host_interface *usb_altnum_to_altsetting(
385					const struct usb_interface *intf,
386					unsigned int altnum)
387{
388	int i;
389
390	for (i = 0; i < intf->num_altsetting; i++) {
391		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
392			return &intf->altsetting[i];
393	}
394	return NULL;
395}
396EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
397
398struct find_interface_arg {
399	int minor;
400	struct device_driver *drv;
401};
402
403static int __find_interface(struct device *dev, const void *data)
404{
405	const struct find_interface_arg *arg = data;
406	struct usb_interface *intf;
407
408	if (!is_usb_interface(dev))
409		return 0;
410
411	if (dev->driver != arg->drv)
412		return 0;
413	intf = to_usb_interface(dev);
414	return intf->minor == arg->minor;
415}
416
417/**
418 * usb_find_interface - find usb_interface pointer for driver and device
419 * @drv: the driver whose current configuration is considered
420 * @minor: the minor number of the desired device
421 *
422 * This walks the bus device list and returns a pointer to the interface
423 * with the matching minor and driver.  Note, this only works for devices
424 * that share the USB major number.
425 *
426 * Return: A pointer to the interface with the matching major and @minor.
427 */
428struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
429{
430	struct find_interface_arg argb;
431	struct device *dev;
432
433	argb.minor = minor;
434	argb.drv = &drv->drvwrap.driver;
435
436	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
437
438	/* Drop reference count from bus_find_device */
439	put_device(dev);
440
441	return dev ? to_usb_interface(dev) : NULL;
442}
443EXPORT_SYMBOL_GPL(usb_find_interface);
444
445struct each_dev_arg {
446	void *data;
447	int (*fn)(struct usb_device *, void *);
448};
449
450static int __each_dev(struct device *dev, void *data)
451{
452	struct each_dev_arg *arg = (struct each_dev_arg *)data;
453
454	/* There are struct usb_interface on the same bus, filter them out */
455	if (!is_usb_device(dev))
456		return 0;
457
458	return arg->fn(to_usb_device(dev), arg->data);
459}
460
461/**
462 * usb_for_each_dev - iterate over all USB devices in the system
463 * @data: data pointer that will be handed to the callback function
464 * @fn: callback function to be called for each USB device
465 *
466 * Iterate over all USB devices and call @fn for each, passing it @data. If it
467 * returns anything other than 0, we break the iteration prematurely and return
468 * that value.
469 */
470int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
471{
472	struct each_dev_arg arg = {data, fn};
473
474	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
475}
476EXPORT_SYMBOL_GPL(usb_for_each_dev);
477
478/**
479 * usb_release_dev - free a usb device structure when all users of it are finished.
480 * @dev: device that's been disconnected
481 *
482 * Will be called only by the device core when all users of this usb device are
483 * done.
484 */
485static void usb_release_dev(struct device *dev)
486{
487	struct usb_device *udev;
488	struct usb_hcd *hcd;
489
490	udev = to_usb_device(dev);
491	hcd = bus_to_hcd(udev->bus);
492
493	usb_destroy_configuration(udev);
494	usb_release_bos_descriptor(udev);
495	of_node_put(dev->of_node);
496	usb_put_hcd(hcd);
497	kfree(udev->product);
498	kfree(udev->manufacturer);
499	kfree(udev->serial);
500	kfree(udev);
501}
502
503static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
504{
505	struct usb_device *usb_dev;
506
507	usb_dev = to_usb_device(dev);
508
509	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
510		return -ENOMEM;
511
512	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
513		return -ENOMEM;
514
515	return 0;
516}
517
518#ifdef	CONFIG_PM
519
520/* USB device Power-Management thunks.
521 * There's no need to distinguish here between quiescing a USB device
522 * and powering it down; the generic_suspend() routine takes care of
523 * it by skipping the usb_port_suspend() call for a quiesce.  And for
524 * USB interfaces there's no difference at all.
525 */
526
527static int usb_dev_prepare(struct device *dev)
528{
529	return 0;		/* Implement eventually? */
530}
531
532static void usb_dev_complete(struct device *dev)
533{
534	/* Currently used only for rebinding interfaces */
535	usb_resume_complete(dev);
536}
537
538static int usb_dev_suspend(struct device *dev)
539{
540	return usb_suspend(dev, PMSG_SUSPEND);
541}
542
543static int usb_dev_resume(struct device *dev)
544{
545	return usb_resume(dev, PMSG_RESUME);
546}
547
548static int usb_dev_freeze(struct device *dev)
549{
550	return usb_suspend(dev, PMSG_FREEZE);
551}
552
553static int usb_dev_thaw(struct device *dev)
554{
555	return usb_resume(dev, PMSG_THAW);
556}
557
558static int usb_dev_poweroff(struct device *dev)
559{
560	return usb_suspend(dev, PMSG_HIBERNATE);
561}
562
563static int usb_dev_restore(struct device *dev)
564{
565	return usb_resume(dev, PMSG_RESTORE);
566}
567
568static const struct dev_pm_ops usb_device_pm_ops = {
569	.prepare =	usb_dev_prepare,
570	.complete =	usb_dev_complete,
571	.suspend =	usb_dev_suspend,
572	.resume =	usb_dev_resume,
573	.freeze =	usb_dev_freeze,
574	.thaw =		usb_dev_thaw,
575	.poweroff =	usb_dev_poweroff,
576	.restore =	usb_dev_restore,
577	.runtime_suspend =	usb_runtime_suspend,
578	.runtime_resume =	usb_runtime_resume,
579	.runtime_idle =		usb_runtime_idle,
580};
581
582#endif	/* CONFIG_PM */
583
584
585static char *usb_devnode(struct device *dev,
586			 umode_t *mode, kuid_t *uid, kgid_t *gid)
587{
588	struct usb_device *usb_dev;
589
590	usb_dev = to_usb_device(dev);
591	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
592			 usb_dev->bus->busnum, usb_dev->devnum);
593}
594
595struct device_type usb_device_type = {
596	.name =		"usb_device",
597	.release =	usb_release_dev,
598	.uevent =	usb_dev_uevent,
599	.devnode = 	usb_devnode,
600#ifdef CONFIG_PM
601	.pm =		&usb_device_pm_ops,
602#endif
603};
604
605
606/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
607static unsigned usb_bus_is_wusb(struct usb_bus *bus)
608{
609	struct usb_hcd *hcd = bus_to_hcd(bus);
610	return hcd->wireless;
611}
612
613static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
614{
615	struct usb_hub *hub;
616
617	if (!dev->parent)
618		return true; /* Root hub always ok [and always wired] */
619
620	switch (hcd->dev_policy) {
621	case USB_DEVICE_AUTHORIZE_NONE:
622	default:
623		return false;
624
625	case USB_DEVICE_AUTHORIZE_ALL:
626		return true;
627
628	case USB_DEVICE_AUTHORIZE_INTERNAL:
629		hub = usb_hub_to_struct_hub(dev->parent);
630		return hub->ports[dev->portnum - 1]->connect_type ==
631				USB_PORT_CONNECT_TYPE_HARD_WIRED;
632	}
633}
634
635/**
636 * usb_alloc_dev - usb device constructor (usbcore-internal)
637 * @parent: hub to which device is connected; null to allocate a root hub
638 * @bus: bus used to access the device
639 * @port1: one-based index of port; ignored for root hubs
640 * Context: !in_interrupt()
641 *
642 * Only hub drivers (including virtual root hub drivers for host
643 * controllers) should ever call this.
644 *
645 * This call may not be used in a non-sleeping context.
646 *
647 * Return: On success, a pointer to the allocated usb device. %NULL on
648 * failure.
649 */
650struct usb_device *usb_alloc_dev(struct usb_device *parent,
651				 struct usb_bus *bus, unsigned port1)
652{
653	struct usb_device *dev;
654	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
655	unsigned root_hub = 0;
656	unsigned raw_port = port1;
657
658	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
659	if (!dev)
660		return NULL;
661
662	if (!usb_get_hcd(usb_hcd)) {
663		kfree(dev);
664		return NULL;
665	}
666	/* Root hubs aren't true devices, so don't allocate HCD resources */
667	if (usb_hcd->driver->alloc_dev && parent &&
668		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
669		usb_put_hcd(bus_to_hcd(bus));
670		kfree(dev);
671		return NULL;
672	}
673
674	device_initialize(&dev->dev);
675	dev->dev.bus = &usb_bus_type;
676	dev->dev.type = &usb_device_type;
677	dev->dev.groups = usb_device_groups;
678	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
679	dev->state = USB_STATE_ATTACHED;
680	dev->lpm_disable_count = 1;
681	atomic_set(&dev->urbnum, 0);
682
683	INIT_LIST_HEAD(&dev->ep0.urb_list);
684	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
685	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
686	/* ep0 maxpacket comes later, from device descriptor */
687	usb_enable_endpoint(dev, &dev->ep0, false);
688	dev->can_submit = 1;
689
690	/* Save readable and stable topology id, distinguishing devices
691	 * by location for diagnostics, tools, driver model, etc.  The
692	 * string is a path along hub ports, from the root.  Each device's
693	 * dev->devpath will be stable until USB is re-cabled, and hubs
694	 * are often labeled with these port numbers.  The name isn't
695	 * as stable:  bus->busnum changes easily from modprobe order,
696	 * cardbus or pci hotplugging, and so on.
697	 */
698	if (unlikely(!parent)) {
699		dev->devpath[0] = '0';
700		dev->route = 0;
701
702		dev->dev.parent = bus->controller;
703		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
704		dev_set_name(&dev->dev, "usb%d", bus->busnum);
705		root_hub = 1;
706	} else {
707		/* match any labeling on the hubs; it's one-based */
708		if (parent->devpath[0] == '0') {
709			snprintf(dev->devpath, sizeof dev->devpath,
710				"%d", port1);
711			/* Root ports are not counted in route string */
712			dev->route = 0;
713		} else {
714			snprintf(dev->devpath, sizeof dev->devpath,
715				"%s.%d", parent->devpath, port1);
716			/* Route string assumes hubs have less than 16 ports */
717			if (port1 < 15)
718				dev->route = parent->route +
719					(port1 << ((parent->level - 1)*4));
720			else
721				dev->route = parent->route +
722					(15 << ((parent->level - 1)*4));
723		}
724
725		dev->dev.parent = &parent->dev;
726		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
727
728		if (!parent->parent) {
729			/* device under root hub's port */
730			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
731				port1);
732		}
733		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
734
735		/* hub driver sets up TT records */
736	}
737
738	dev->portnum = port1;
739	dev->bus = bus;
740	dev->parent = parent;
741	INIT_LIST_HEAD(&dev->filelist);
742
743#ifdef	CONFIG_PM
744	pm_runtime_set_autosuspend_delay(&dev->dev,
745			usb_autosuspend_delay * 1000);
746	dev->connect_time = jiffies;
747	dev->active_duration = -jiffies;
748#endif
749
750	dev->authorized = usb_dev_authorized(dev, usb_hcd);
751	if (!root_hub)
752		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
753
754	return dev;
755}
756EXPORT_SYMBOL_GPL(usb_alloc_dev);
757
758/**
759 * usb_get_dev - increments the reference count of the usb device structure
760 * @dev: the device being referenced
761 *
762 * Each live reference to a device should be refcounted.
763 *
764 * Drivers for USB interfaces should normally record such references in
765 * their probe() methods, when they bind to an interface, and release
766 * them by calling usb_put_dev(), in their disconnect() methods.
767 *
768 * Return: A pointer to the device with the incremented reference counter.
769 */
770struct usb_device *usb_get_dev(struct usb_device *dev)
771{
772	if (dev)
773		get_device(&dev->dev);
774	return dev;
775}
776EXPORT_SYMBOL_GPL(usb_get_dev);
777
778/**
779 * usb_put_dev - release a use of the usb device structure
780 * @dev: device that's been disconnected
781 *
782 * Must be called when a user of a device is finished with it.  When the last
783 * user of the device calls this function, the memory of the device is freed.
784 */
785void usb_put_dev(struct usb_device *dev)
786{
787	if (dev)
788		put_device(&dev->dev);
789}
790EXPORT_SYMBOL_GPL(usb_put_dev);
791
792/**
793 * usb_get_intf - increments the reference count of the usb interface structure
794 * @intf: the interface being referenced
795 *
796 * Each live reference to a interface must be refcounted.
797 *
798 * Drivers for USB interfaces should normally record such references in
799 * their probe() methods, when they bind to an interface, and release
800 * them by calling usb_put_intf(), in their disconnect() methods.
801 *
802 * Return: A pointer to the interface with the incremented reference counter.
803 */
804struct usb_interface *usb_get_intf(struct usb_interface *intf)
805{
806	if (intf)
807		get_device(&intf->dev);
808	return intf;
809}
810EXPORT_SYMBOL_GPL(usb_get_intf);
811
812/**
813 * usb_put_intf - release a use of the usb interface structure
814 * @intf: interface that's been decremented
815 *
816 * Must be called when a user of an interface is finished with it.  When the
817 * last user of the interface calls this function, the memory of the interface
818 * is freed.
819 */
820void usb_put_intf(struct usb_interface *intf)
821{
822	if (intf)
823		put_device(&intf->dev);
824}
825EXPORT_SYMBOL_GPL(usb_put_intf);
826
827/**
828 * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint
829 * @intf: the usb interface
830 *
831 * While a USB device cannot perform DMA operations by itself, many USB
832 * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint
833 * for the given USB interface, if any. The returned device structure must be
834 * released with put_device().
835 *
836 * See also usb_get_dma_device().
837 *
838 * Returns: A reference to the usb interface's DMA endpoint; or NULL if none
839 *          exists.
840 */
841struct device *usb_intf_get_dma_device(struct usb_interface *intf)
842{
843	struct usb_device *udev = interface_to_usbdev(intf);
844	struct device *dmadev;
845
846	if (!udev->bus)
847		return NULL;
848
849	dmadev = get_device(udev->bus->sysdev);
850	if (!dmadev || !dmadev->dma_mask) {
851		put_device(dmadev);
852		return NULL;
853	}
854
855	return dmadev;
856}
857EXPORT_SYMBOL_GPL(usb_intf_get_dma_device);
858
859/*			USB device locking
860 *
861 * USB devices and interfaces are locked using the semaphore in their
862 * embedded struct device.  The hub driver guarantees that whenever a
863 * device is connected or disconnected, drivers are called with the
864 * USB device locked as well as their particular interface.
865 *
866 * Complications arise when several devices are to be locked at the same
867 * time.  Only hub-aware drivers that are part of usbcore ever have to
868 * do this; nobody else needs to worry about it.  The rule for locking
869 * is simple:
870 *
871 *	When locking both a device and its parent, always lock the
872 *	the parent first.
873 */
874
875/**
876 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
877 * @udev: device that's being locked
878 * @iface: interface bound to the driver making the request (optional)
879 *
880 * Attempts to acquire the device lock, but fails if the device is
881 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
882 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
883 * lock, the routine polls repeatedly.  This is to prevent deadlock with
884 * disconnect; in some drivers (such as usb-storage) the disconnect()
885 * or suspend() method will block waiting for a device reset to complete.
886 *
887 * Return: A negative error code for failure, otherwise 0.
888 */
889int usb_lock_device_for_reset(struct usb_device *udev,
890			      const struct usb_interface *iface)
891{
892	unsigned long jiffies_expire = jiffies + HZ;
893
894	if (udev->state == USB_STATE_NOTATTACHED)
895		return -ENODEV;
896	if (udev->state == USB_STATE_SUSPENDED)
897		return -EHOSTUNREACH;
898	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
899			iface->condition == USB_INTERFACE_UNBOUND))
900		return -EINTR;
901
902	while (!usb_trylock_device(udev)) {
903
904		/* If we can't acquire the lock after waiting one second,
905		 * we're probably deadlocked */
906		if (time_after(jiffies, jiffies_expire))
907			return -EBUSY;
908
909		msleep(15);
910		if (udev->state == USB_STATE_NOTATTACHED)
911			return -ENODEV;
912		if (udev->state == USB_STATE_SUSPENDED)
913			return -EHOSTUNREACH;
914		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
915				iface->condition == USB_INTERFACE_UNBOUND))
916			return -EINTR;
917	}
918	return 0;
919}
920EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
921
922/**
923 * usb_get_current_frame_number - return current bus frame number
924 * @dev: the device whose bus is being queried
925 *
926 * Return: The current frame number for the USB host controller used
927 * with the given USB device. This can be used when scheduling
928 * isochronous requests.
929 *
930 * Note: Different kinds of host controller have different "scheduling
931 * horizons". While one type might support scheduling only 32 frames
932 * into the future, others could support scheduling up to 1024 frames
933 * into the future.
934 *
935 */
936int usb_get_current_frame_number(struct usb_device *dev)
937{
938	return usb_hcd_get_frame_number(dev);
939}
940EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
941
942/*-------------------------------------------------------------------*/
943/*
944 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
945 * extra field of the interface and endpoint descriptor structs.
946 */
947
948int __usb_get_extra_descriptor(char *buffer, unsigned size,
949			       unsigned char type, void **ptr, size_t minsize)
950{
951	struct usb_descriptor_header *header;
952
953	while (size >= sizeof(struct usb_descriptor_header)) {
954		header = (struct usb_descriptor_header *)buffer;
955
956		if (header->bLength < 2 || header->bLength > size) {
957			printk(KERN_ERR
958				"%s: bogus descriptor, type %d length %d\n",
959				usbcore_name,
960				header->bDescriptorType,
961				header->bLength);
962			return -1;
963		}
964
965		if (header->bDescriptorType == type && header->bLength >= minsize) {
966			*ptr = header;
967			return 0;
968		}
969
970		buffer += header->bLength;
971		size -= header->bLength;
972	}
973	return -1;
974}
975EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
976
977/**
978 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
979 * @dev: device the buffer will be used with
980 * @size: requested buffer size
981 * @mem_flags: affect whether allocation may block
982 * @dma: used to return DMA address of buffer
983 *
984 * Return: Either null (indicating no buffer could be allocated), or the
985 * cpu-space pointer to a buffer that may be used to perform DMA to the
986 * specified device.  Such cpu-space buffers are returned along with the DMA
987 * address (through the pointer provided).
988 *
989 * Note:
990 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
991 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
992 * hardware during URB completion/resubmit.  The implementation varies between
993 * platforms, depending on details of how DMA will work to this device.
994 * Using these buffers also eliminates cacheline sharing problems on
995 * architectures where CPU caches are not DMA-coherent.  On systems without
996 * bus-snooping caches, these buffers are uncached.
997 *
998 * When the buffer is no longer used, free it with usb_free_coherent().
999 */
1000void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
1001			 dma_addr_t *dma)
1002{
1003	if (!dev || !dev->bus)
1004		return NULL;
1005	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
1006}
1007EXPORT_SYMBOL_GPL(usb_alloc_coherent);
1008
1009/**
1010 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
1011 * @dev: device the buffer was used with
1012 * @size: requested buffer size
1013 * @addr: CPU address of buffer
1014 * @dma: DMA address of buffer
1015 *
1016 * This reclaims an I/O buffer, letting it be reused.  The memory must have
1017 * been allocated using usb_alloc_coherent(), and the parameters must match
1018 * those provided in that allocation request.
1019 */
1020void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
1021		       dma_addr_t dma)
1022{
1023	if (!dev || !dev->bus)
1024		return;
1025	if (!addr)
1026		return;
1027	hcd_buffer_free(dev->bus, size, addr, dma);
1028}
1029EXPORT_SYMBOL_GPL(usb_free_coherent);
1030
1031/*
1032 * Notifications of device and interface registration
1033 */
1034static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1035		void *data)
1036{
1037	struct device *dev = data;
1038
1039	switch (action) {
1040	case BUS_NOTIFY_ADD_DEVICE:
1041		if (dev->type == &usb_device_type)
1042			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1043		else if (dev->type == &usb_if_device_type)
1044			usb_create_sysfs_intf_files(to_usb_interface(dev));
1045		break;
1046
1047	case BUS_NOTIFY_DEL_DEVICE:
1048		if (dev->type == &usb_device_type)
1049			usb_remove_sysfs_dev_files(to_usb_device(dev));
1050		else if (dev->type == &usb_if_device_type)
1051			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1052		break;
1053	}
1054	return 0;
1055}
1056
1057static struct notifier_block usb_bus_nb = {
1058	.notifier_call = usb_bus_notify,
1059};
1060
1061static struct dentry *usb_devices_root;
1062
1063static void usb_debugfs_init(void)
1064{
1065	usb_devices_root = debugfs_create_file("devices", 0444, usb_debug_root,
1066					       NULL, &usbfs_devices_fops);
1067}
1068
1069static void usb_debugfs_cleanup(void)
1070{
1071	debugfs_remove(usb_devices_root);
1072}
1073
1074/*
1075 * Init
1076 */
1077static int __init usb_init(void)
1078{
1079	int retval;
1080	if (usb_disabled()) {
1081		pr_info("%s: USB support disabled\n", usbcore_name);
1082		return 0;
1083	}
1084	usb_init_pool_max();
1085
1086	usb_debugfs_init();
1087
1088	usb_acpi_register();
1089	retval = bus_register(&usb_bus_type);
1090	if (retval)
1091		goto bus_register_failed;
1092	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1093	if (retval)
1094		goto bus_notifier_failed;
1095	retval = usb_major_init();
1096	if (retval)
1097		goto major_init_failed;
1098	retval = usb_register(&usbfs_driver);
1099	if (retval)
1100		goto driver_register_failed;
1101	retval = usb_devio_init();
1102	if (retval)
1103		goto usb_devio_init_failed;
1104	retval = usb_hub_init();
1105	if (retval)
1106		goto hub_init_failed;
1107	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1108	if (!retval)
1109		goto out;
1110
1111	usb_hub_cleanup();
1112hub_init_failed:
1113	usb_devio_cleanup();
1114usb_devio_init_failed:
1115	usb_deregister(&usbfs_driver);
1116driver_register_failed:
1117	usb_major_cleanup();
1118major_init_failed:
1119	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1120bus_notifier_failed:
1121	bus_unregister(&usb_bus_type);
1122bus_register_failed:
1123	usb_acpi_unregister();
1124	usb_debugfs_cleanup();
1125out:
1126	return retval;
1127}
1128
1129/*
1130 * Cleanup
1131 */
1132static void __exit usb_exit(void)
1133{
1134	/* This will matter if shutdown/reboot does exitcalls. */
1135	if (usb_disabled())
1136		return;
1137
1138	usb_release_quirk_list();
1139	usb_deregister_device_driver(&usb_generic_driver);
1140	usb_major_cleanup();
1141	usb_deregister(&usbfs_driver);
1142	usb_devio_cleanup();
1143	usb_hub_cleanup();
1144	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1145	bus_unregister(&usb_bus_type);
1146	usb_acpi_unregister();
1147	usb_debugfs_cleanup();
1148	idr_destroy(&usb_bus_idr);
1149}
1150
1151subsys_initcall(usb_init);
1152module_exit(usb_exit);
1153MODULE_LICENSE("GPL");
1154