xref: /kernel/linux/linux-5.10/drivers/usb/core/hcd.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32#include <linux/genalloc.h>
33#include <linux/io.h>
34#include <linux/kcov.h>
35
36#include <linux/phy/phy.h>
37#include <linux/usb.h>
38#include <linux/usb/hcd.h>
39#include <linux/usb/otg.h>
40
41#include "usb.h"
42#include "phy.h"
43
44
45/*-------------------------------------------------------------------------*/
46
47/*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences.  That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead.  The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
74 *		associated cleanup.  "usb_hcd" still != "usb_bus".
75 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
76 */
77
78/*-------------------------------------------------------------------------*/
79
80/* Keep track of which host controller drivers are loaded */
81unsigned long usb_hcds_loaded;
82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84/* host controllers we manage */
85DEFINE_IDR (usb_bus_idr);
86EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88/* used when allocating bus numbers */
89#define USB_MAXBUS		64
90
91/* used when updating list of hcds */
92DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95/* used for controlling access to virtual root hubs */
96static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98/* used when updating an endpoint's URB list */
99static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101/* used to protect against unlinking URBs after the device is gone */
102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104/* wait queue for synchronous unlinks */
105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107/*-------------------------------------------------------------------------*/
108
109/*
110 * Sharable chunks of root hub code.
111 */
112
113/*-------------------------------------------------------------------------*/
114#define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
115#define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
116
117/* usb 3.1 root hub device descriptor */
118static const u8 usb31_rh_dev_descriptor[18] = {
119	0x12,       /*  __u8  bLength; */
120	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
122
123	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
124	0x00,	    /*  __u8  bDeviceSubClass; */
125	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
126	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
127
128	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
129	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
130	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
131
132	0x03,       /*  __u8  iManufacturer; */
133	0x02,       /*  __u8  iProduct; */
134	0x01,       /*  __u8  iSerialNumber; */
135	0x01        /*  __u8  bNumConfigurations; */
136};
137
138/* usb 3.0 root hub device descriptor */
139static const u8 usb3_rh_dev_descriptor[18] = {
140	0x12,       /*  __u8  bLength; */
141	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
143
144	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
145	0x00,	    /*  __u8  bDeviceSubClass; */
146	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
147	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
148
149	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
150	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
151	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
152
153	0x03,       /*  __u8  iManufacturer; */
154	0x02,       /*  __u8  iProduct; */
155	0x01,       /*  __u8  iSerialNumber; */
156	0x01        /*  __u8  bNumConfigurations; */
157};
158
159/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160static const u8 usb25_rh_dev_descriptor[18] = {
161	0x12,       /*  __u8  bLength; */
162	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
164
165	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
166	0x00,	    /*  __u8  bDeviceSubClass; */
167	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
168	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
171	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
172	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
173
174	0x03,       /*  __u8  iManufacturer; */
175	0x02,       /*  __u8  iProduct; */
176	0x01,       /*  __u8  iSerialNumber; */
177	0x01        /*  __u8  bNumConfigurations; */
178};
179
180/* usb 2.0 root hub device descriptor */
181static const u8 usb2_rh_dev_descriptor[18] = {
182	0x12,       /*  __u8  bLength; */
183	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
185
186	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
187	0x00,	    /*  __u8  bDeviceSubClass; */
188	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
189	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
190
191	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
192	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
193	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
194
195	0x03,       /*  __u8  iManufacturer; */
196	0x02,       /*  __u8  iProduct; */
197	0x01,       /*  __u8  iSerialNumber; */
198	0x01        /*  __u8  bNumConfigurations; */
199};
200
201/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203/* usb 1.1 root hub device descriptor */
204static const u8 usb11_rh_dev_descriptor[18] = {
205	0x12,       /*  __u8  bLength; */
206	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
208
209	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
210	0x00,	    /*  __u8  bDeviceSubClass; */
211	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
212	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
213
214	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
215	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
216	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
217
218	0x03,       /*  __u8  iManufacturer; */
219	0x02,       /*  __u8  iProduct; */
220	0x01,       /*  __u8  iSerialNumber; */
221	0x01        /*  __u8  bNumConfigurations; */
222};
223
224
225/*-------------------------------------------------------------------------*/
226
227/* Configuration descriptors for our root hubs */
228
229static const u8 fs_rh_config_descriptor[] = {
230
231	/* one configuration */
232	0x09,       /*  __u8  bLength; */
233	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234	0x19, 0x00, /*  __le16 wTotalLength; */
235	0x01,       /*  __u8  bNumInterfaces; (1) */
236	0x01,       /*  __u8  bConfigurationValue; */
237	0x00,       /*  __u8  iConfiguration; */
238	0xc0,       /*  __u8  bmAttributes;
239				 Bit 7: must be set,
240				     6: Self-powered,
241				     5: Remote wakeup,
242				     4..0: resvd */
243	0x00,       /*  __u8  MaxPower; */
244
245	/* USB 1.1:
246	 * USB 2.0, single TT organization (mandatory):
247	 *	one interface, protocol 0
248	 *
249	 * USB 2.0, multiple TT organization (optional):
250	 *	two interfaces, protocols 1 (like single TT)
251	 *	and 2 (multiple TT mode) ... config is
252	 *	sometimes settable
253	 *	NOT IMPLEMENTED
254	 */
255
256	/* one interface */
257	0x09,       /*  __u8  if_bLength; */
258	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
259	0x00,       /*  __u8  if_bInterfaceNumber; */
260	0x00,       /*  __u8  if_bAlternateSetting; */
261	0x01,       /*  __u8  if_bNumEndpoints; */
262	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
263	0x00,       /*  __u8  if_bInterfaceSubClass; */
264	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
265	0x00,       /*  __u8  if_iInterface; */
266
267	/* one endpoint (status change endpoint) */
268	0x07,       /*  __u8  ep_bLength; */
269	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
271	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
272	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
274};
275
276static const u8 hs_rh_config_descriptor[] = {
277
278	/* one configuration */
279	0x09,       /*  __u8  bLength; */
280	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281	0x19, 0x00, /*  __le16 wTotalLength; */
282	0x01,       /*  __u8  bNumInterfaces; (1) */
283	0x01,       /*  __u8  bConfigurationValue; */
284	0x00,       /*  __u8  iConfiguration; */
285	0xc0,       /*  __u8  bmAttributes;
286				 Bit 7: must be set,
287				     6: Self-powered,
288				     5: Remote wakeup,
289				     4..0: resvd */
290	0x00,       /*  __u8  MaxPower; */
291
292	/* USB 1.1:
293	 * USB 2.0, single TT organization (mandatory):
294	 *	one interface, protocol 0
295	 *
296	 * USB 2.0, multiple TT organization (optional):
297	 *	two interfaces, protocols 1 (like single TT)
298	 *	and 2 (multiple TT mode) ... config is
299	 *	sometimes settable
300	 *	NOT IMPLEMENTED
301	 */
302
303	/* one interface */
304	0x09,       /*  __u8  if_bLength; */
305	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306	0x00,       /*  __u8  if_bInterfaceNumber; */
307	0x00,       /*  __u8  if_bAlternateSetting; */
308	0x01,       /*  __u8  if_bNumEndpoints; */
309	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
310	0x00,       /*  __u8  if_bInterfaceSubClass; */
311	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
312	0x00,       /*  __u8  if_iInterface; */
313
314	/* one endpoint (status change endpoint) */
315	0x07,       /*  __u8  ep_bLength; */
316	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
318	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
319		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320		     * see hub.c:hub_configure() for details. */
321	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
323};
324
325static const u8 ss_rh_config_descriptor[] = {
326	/* one configuration */
327	0x09,       /*  __u8  bLength; */
328	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329	0x1f, 0x00, /*  __le16 wTotalLength; */
330	0x01,       /*  __u8  bNumInterfaces; (1) */
331	0x01,       /*  __u8  bConfigurationValue; */
332	0x00,       /*  __u8  iConfiguration; */
333	0xc0,       /*  __u8  bmAttributes;
334				 Bit 7: must be set,
335				     6: Self-powered,
336				     5: Remote wakeup,
337				     4..0: resvd */
338	0x00,       /*  __u8  MaxPower; */
339
340	/* one interface */
341	0x09,       /*  __u8  if_bLength; */
342	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343	0x00,       /*  __u8  if_bInterfaceNumber; */
344	0x00,       /*  __u8  if_bAlternateSetting; */
345	0x01,       /*  __u8  if_bNumEndpoints; */
346	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
347	0x00,       /*  __u8  if_bInterfaceSubClass; */
348	0x00,       /*  __u8  if_bInterfaceProtocol; */
349	0x00,       /*  __u8  if_iInterface; */
350
351	/* one endpoint (status change endpoint) */
352	0x07,       /*  __u8  ep_bLength; */
353	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
355	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
356		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357		     * see hub.c:hub_configure() for details. */
358	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
360
361	/* one SuperSpeed endpoint companion descriptor */
362	0x06,        /* __u8 ss_bLength */
363	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364		     /* Companion */
365	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
367	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368};
369
370/* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376#define USB_AUTHORIZE_WIRED	-1
377#define USB_AUTHORIZE_NONE	0
378#define USB_AUTHORIZE_ALL	1
379#define USB_AUTHORIZE_INTERNAL	2
380
381static int authorized_default = USB_AUTHORIZE_WIRED;
382module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383MODULE_PARM_DESC(authorized_default,
384		"Default USB device authorization: 0 is not authorized, 1 is "
385		"authorized, 2 is authorized for internal devices, -1 is "
386		"authorized except for wireless USB (default, old behaviour)");
387/*-------------------------------------------------------------------------*/
388
389/**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402static unsigned
403ascii2desc(char const *s, u8 *buf, unsigned len)
404{
405	unsigned n, t = 2 + 2*strlen(s);
406
407	if (t > 254)
408		t = 254;	/* Longest possible UTF string descriptor */
409	if (len > t)
410		len = t;
411
412	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
413
414	n = len;
415	while (n--) {
416		*buf++ = t;
417		if (!n--)
418			break;
419		*buf++ = t >> 8;
420		t = (unsigned char)*s++;
421	}
422	return len;
423}
424
425/**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438static unsigned
439rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440{
441	char buf[100];
442	char const *s;
443	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445	/* language ids */
446	switch (id) {
447	case 0:
448		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450		if (len > 4)
451			len = 4;
452		memcpy(data, langids, len);
453		return len;
454	case 1:
455		/* Serial number */
456		s = hcd->self.bus_name;
457		break;
458	case 2:
459		/* Product name */
460		s = hcd->product_desc;
461		break;
462	case 3:
463		/* Manufacturer */
464		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465			init_utsname()->release, hcd->driver->description);
466		s = buf;
467		break;
468	default:
469		/* Can't happen; caller guarantees it */
470		return 0;
471	}
472
473	return ascii2desc(s, data, len);
474}
475
476
477/* Root hub control transfers execute synchronously */
478static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479{
480	struct usb_ctrlrequest *cmd;
481	u16		typeReq, wValue, wIndex, wLength;
482	u8		*ubuf = urb->transfer_buffer;
483	unsigned	len = 0;
484	int		status;
485	u8		patch_wakeup = 0;
486	u8		patch_protocol = 0;
487	u16		tbuf_size;
488	u8		*tbuf = NULL;
489	const u8	*bufp;
490
491	might_sleep();
492
493	spin_lock_irq(&hcd_root_hub_lock);
494	status = usb_hcd_link_urb_to_ep(hcd, urb);
495	spin_unlock_irq(&hcd_root_hub_lock);
496	if (status)
497		return status;
498	urb->hcpriv = hcd;	/* Indicate it's queued */
499
500	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
502	wValue   = le16_to_cpu (cmd->wValue);
503	wIndex   = le16_to_cpu (cmd->wIndex);
504	wLength  = le16_to_cpu (cmd->wLength);
505
506	if (wLength > urb->transfer_buffer_length)
507		goto error;
508
509	/*
510	 * tbuf should be at least as big as the
511	 * USB hub descriptor.
512	 */
513	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515	if (!tbuf) {
516		status = -ENOMEM;
517		goto err_alloc;
518	}
519
520	bufp = tbuf;
521
522
523	urb->actual_length = 0;
524	switch (typeReq) {
525
526	/* DEVICE REQUESTS */
527
528	/* The root hub's remote wakeup enable bit is implemented using
529	 * driver model wakeup flags.  If this system supports wakeup
530	 * through USB, userspace may change the default "allow wakeup"
531	 * policy through sysfs or these calls.
532	 *
533	 * Most root hubs support wakeup from downstream devices, for
534	 * runtime power management (disabling USB clocks and reducing
535	 * VBUS power usage).  However, not all of them do so; silicon,
536	 * board, and BIOS bugs here are not uncommon, so these can't
537	 * be treated quite like external hubs.
538	 *
539	 * Likewise, not all root hubs will pass wakeup events upstream,
540	 * to wake up the whole system.  So don't assume root hub and
541	 * controller capabilities are identical.
542	 */
543
544	case DeviceRequest | USB_REQ_GET_STATUS:
545		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546					<< USB_DEVICE_REMOTE_WAKEUP)
547				| (1 << USB_DEVICE_SELF_POWERED);
548		tbuf[1] = 0;
549		len = 2;
550		break;
551	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554		else
555			goto error;
556		break;
557	case DeviceOutRequest | USB_REQ_SET_FEATURE:
558		if (device_can_wakeup(&hcd->self.root_hub->dev)
559				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
560			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561		else
562			goto error;
563		break;
564	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565		tbuf[0] = 1;
566		len = 1;
567		fallthrough;
568	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569		break;
570	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571		switch (wValue & 0xff00) {
572		case USB_DT_DEVICE << 8:
573			switch (hcd->speed) {
574			case HCD_USB32:
575			case HCD_USB31:
576				bufp = usb31_rh_dev_descriptor;
577				break;
578			case HCD_USB3:
579				bufp = usb3_rh_dev_descriptor;
580				break;
581			case HCD_USB25:
582				bufp = usb25_rh_dev_descriptor;
583				break;
584			case HCD_USB2:
585				bufp = usb2_rh_dev_descriptor;
586				break;
587			case HCD_USB11:
588				bufp = usb11_rh_dev_descriptor;
589				break;
590			default:
591				goto error;
592			}
593			len = 18;
594			if (hcd->has_tt)
595				patch_protocol = 1;
596			break;
597		case USB_DT_CONFIG << 8:
598			switch (hcd->speed) {
599			case HCD_USB32:
600			case HCD_USB31:
601			case HCD_USB3:
602				bufp = ss_rh_config_descriptor;
603				len = sizeof ss_rh_config_descriptor;
604				break;
605			case HCD_USB25:
606			case HCD_USB2:
607				bufp = hs_rh_config_descriptor;
608				len = sizeof hs_rh_config_descriptor;
609				break;
610			case HCD_USB11:
611				bufp = fs_rh_config_descriptor;
612				len = sizeof fs_rh_config_descriptor;
613				break;
614			default:
615				goto error;
616			}
617			if (device_can_wakeup(&hcd->self.root_hub->dev))
618				patch_wakeup = 1;
619			break;
620		case USB_DT_STRING << 8:
621			if ((wValue & 0xff) < 4)
622				urb->actual_length = rh_string(wValue & 0xff,
623						hcd, ubuf, wLength);
624			else /* unsupported IDs --> "protocol stall" */
625				goto error;
626			break;
627		case USB_DT_BOS << 8:
628			goto nongeneric;
629		default:
630			goto error;
631		}
632		break;
633	case DeviceRequest | USB_REQ_GET_INTERFACE:
634		tbuf[0] = 0;
635		len = 1;
636		fallthrough;
637	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638		break;
639	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640		/* wValue == urb->dev->devaddr */
641		dev_dbg (hcd->self.controller, "root hub device address %d\n",
642			wValue);
643		break;
644
645	/* INTERFACE REQUESTS (no defined feature/status flags) */
646
647	/* ENDPOINT REQUESTS */
648
649	case EndpointRequest | USB_REQ_GET_STATUS:
650		/* ENDPOINT_HALT flag */
651		tbuf[0] = 0;
652		tbuf[1] = 0;
653		len = 2;
654		fallthrough;
655	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656	case EndpointOutRequest | USB_REQ_SET_FEATURE:
657		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658		break;
659
660	/* CLASS REQUESTS (and errors) */
661
662	default:
663nongeneric:
664		/* non-generic request */
665		switch (typeReq) {
666		case GetHubStatus:
667			len = 4;
668			break;
669		case GetPortStatus:
670			if (wValue == HUB_PORT_STATUS)
671				len = 4;
672			else
673				/* other port status types return 8 bytes */
674				len = 8;
675			break;
676		case GetHubDescriptor:
677			len = sizeof (struct usb_hub_descriptor);
678			break;
679		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680			/* len is returned by hub_control */
681			break;
682		}
683		status = hcd->driver->hub_control (hcd,
684			typeReq, wValue, wIndex,
685			tbuf, wLength);
686
687		if (typeReq == GetHubDescriptor)
688			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689				(struct usb_hub_descriptor *)tbuf);
690		break;
691error:
692		/* "protocol stall" on error */
693		status = -EPIPE;
694	}
695
696	if (status < 0) {
697		len = 0;
698		if (status != -EPIPE) {
699			dev_dbg (hcd->self.controller,
700				"CTRL: TypeReq=0x%x val=0x%x "
701				"idx=0x%x len=%d ==> %d\n",
702				typeReq, wValue, wIndex,
703				wLength, status);
704		}
705	} else if (status > 0) {
706		/* hub_control may return the length of data copied. */
707		len = status;
708		status = 0;
709	}
710	if (len) {
711		if (urb->transfer_buffer_length < len)
712			len = urb->transfer_buffer_length;
713		urb->actual_length = len;
714		/* always USB_DIR_IN, toward host */
715		memcpy (ubuf, bufp, len);
716
717		/* report whether RH hardware supports remote wakeup */
718		if (patch_wakeup &&
719				len > offsetof (struct usb_config_descriptor,
720						bmAttributes))
721			((struct usb_config_descriptor *)ubuf)->bmAttributes
722				|= USB_CONFIG_ATT_WAKEUP;
723
724		/* report whether RH hardware has an integrated TT */
725		if (patch_protocol &&
726				len > offsetof(struct usb_device_descriptor,
727						bDeviceProtocol))
728			((struct usb_device_descriptor *) ubuf)->
729				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730	}
731
732	kfree(tbuf);
733 err_alloc:
734
735	/* any errors get returned through the urb completion */
736	spin_lock_irq(&hcd_root_hub_lock);
737	usb_hcd_unlink_urb_from_ep(hcd, urb);
738	usb_hcd_giveback_urb(hcd, urb, status);
739	spin_unlock_irq(&hcd_root_hub_lock);
740	return 0;
741}
742
743/*-------------------------------------------------------------------------*/
744
745/*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completions are called in_interrupt(), but they may or may not
751 * be in_irq().
752 */
753void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
754{
755	struct urb	*urb;
756	int		length;
757	int		status;
758	unsigned long	flags;
759	char		buffer[6];	/* Any root hubs with > 31 ports? */
760
761	if (unlikely(!hcd->rh_pollable))
762		return;
763	if (!hcd->uses_new_polling && !hcd->status_urb)
764		return;
765
766	length = hcd->driver->hub_status_data(hcd, buffer);
767	if (length > 0) {
768
769		/* try to complete the status urb */
770		spin_lock_irqsave(&hcd_root_hub_lock, flags);
771		urb = hcd->status_urb;
772		if (urb) {
773			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
774			hcd->status_urb = NULL;
775			if (urb->transfer_buffer_length >= length) {
776				status = 0;
777			} else {
778				status = -EOVERFLOW;
779				length = urb->transfer_buffer_length;
780			}
781			urb->actual_length = length;
782			memcpy(urb->transfer_buffer, buffer, length);
783
784			usb_hcd_unlink_urb_from_ep(hcd, urb);
785			usb_hcd_giveback_urb(hcd, urb, status);
786		} else {
787			length = 0;
788			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
789		}
790		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
791	}
792
793	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
794	 * exceed that limit if HZ is 100. The math is more clunky than
795	 * maybe expected, this is to make sure that all timers for USB devices
796	 * fire at the same time to give the CPU a break in between */
797	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
798			(length == 0 && hcd->status_urb != NULL))
799		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
800}
801EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
802
803/* timer callback */
804static void rh_timer_func (struct timer_list *t)
805{
806	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
807
808	usb_hcd_poll_rh_status(_hcd);
809}
810
811/*-------------------------------------------------------------------------*/
812
813static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
814{
815	int		retval;
816	unsigned long	flags;
817	unsigned	len = 1 + (urb->dev->maxchild / 8);
818
819	spin_lock_irqsave (&hcd_root_hub_lock, flags);
820	if (hcd->status_urb || urb->transfer_buffer_length < len) {
821		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
822		retval = -EINVAL;
823		goto done;
824	}
825
826	retval = usb_hcd_link_urb_to_ep(hcd, urb);
827	if (retval)
828		goto done;
829
830	hcd->status_urb = urb;
831	urb->hcpriv = hcd;	/* indicate it's queued */
832	if (!hcd->uses_new_polling)
833		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
834
835	/* If a status change has already occurred, report it ASAP */
836	else if (HCD_POLL_PENDING(hcd))
837		mod_timer(&hcd->rh_timer, jiffies);
838	retval = 0;
839 done:
840	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
841	return retval;
842}
843
844static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
845{
846	if (usb_endpoint_xfer_int(&urb->ep->desc))
847		return rh_queue_status (hcd, urb);
848	if (usb_endpoint_xfer_control(&urb->ep->desc))
849		return rh_call_control (hcd, urb);
850	return -EINVAL;
851}
852
853/*-------------------------------------------------------------------------*/
854
855/* Unlinks of root-hub control URBs are legal, but they don't do anything
856 * since these URBs always execute synchronously.
857 */
858static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
859{
860	unsigned long	flags;
861	int		rc;
862
863	spin_lock_irqsave(&hcd_root_hub_lock, flags);
864	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
865	if (rc)
866		goto done;
867
868	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
869		;	/* Do nothing */
870
871	} else {				/* Status URB */
872		if (!hcd->uses_new_polling)
873			del_timer (&hcd->rh_timer);
874		if (urb == hcd->status_urb) {
875			hcd->status_urb = NULL;
876			usb_hcd_unlink_urb_from_ep(hcd, urb);
877			usb_hcd_giveback_urb(hcd, urb, status);
878		}
879	}
880 done:
881	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
882	return rc;
883}
884
885
886/*-------------------------------------------------------------------------*/
887
888/**
889 * usb_bus_init - shared initialization code
890 * @bus: the bus structure being initialized
891 *
892 * This code is used to initialize a usb_bus structure, memory for which is
893 * separately managed.
894 */
895static void usb_bus_init (struct usb_bus *bus)
896{
897	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
898
899	bus->devnum_next = 1;
900
901	bus->root_hub = NULL;
902	bus->busnum = -1;
903	bus->bandwidth_allocated = 0;
904	bus->bandwidth_int_reqs  = 0;
905	bus->bandwidth_isoc_reqs = 0;
906	mutex_init(&bus->devnum_next_mutex);
907}
908
909/*-------------------------------------------------------------------------*/
910
911/**
912 * usb_register_bus - registers the USB host controller with the usb core
913 * @bus: pointer to the bus to register
914 * Context: !in_interrupt()
915 *
916 * Assigns a bus number, and links the controller into usbcore data
917 * structures so that it can be seen by scanning the bus list.
918 *
919 * Return: 0 if successful. A negative error code otherwise.
920 */
921static int usb_register_bus(struct usb_bus *bus)
922{
923	int result = -E2BIG;
924	int busnum;
925
926	mutex_lock(&usb_bus_idr_lock);
927	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928	if (busnum < 0) {
929		pr_err("%s: failed to get bus number\n", usbcore_name);
930		goto error_find_busnum;
931	}
932	bus->busnum = busnum;
933	mutex_unlock(&usb_bus_idr_lock);
934
935	usb_notify_add_bus(bus);
936
937	dev_info (bus->controller, "new USB bus registered, assigned bus "
938		  "number %d\n", bus->busnum);
939	return 0;
940
941error_find_busnum:
942	mutex_unlock(&usb_bus_idr_lock);
943	return result;
944}
945
946/**
947 * usb_deregister_bus - deregisters the USB host controller
948 * @bus: pointer to the bus to deregister
949 * Context: !in_interrupt()
950 *
951 * Recycles the bus number, and unlinks the controller from usbcore data
952 * structures so that it won't be seen by scanning the bus list.
953 */
954static void usb_deregister_bus (struct usb_bus *bus)
955{
956	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
957
958	/*
959	 * NOTE: make sure that all the devices are removed by the
960	 * controller code, as well as having it call this when cleaning
961	 * itself up
962	 */
963	mutex_lock(&usb_bus_idr_lock);
964	idr_remove(&usb_bus_idr, bus->busnum);
965	mutex_unlock(&usb_bus_idr_lock);
966
967	usb_notify_remove_bus(bus);
968}
969
970/**
971 * register_root_hub - called by usb_add_hcd() to register a root hub
972 * @hcd: host controller for this root hub
973 *
974 * This function registers the root hub with the USB subsystem.  It sets up
975 * the device properly in the device tree and then calls usb_new_device()
976 * to register the usb device.  It also assigns the root hub's USB address
977 * (always 1).
978 *
979 * Return: 0 if successful. A negative error code otherwise.
980 */
981static int register_root_hub(struct usb_hcd *hcd)
982{
983	struct device *parent_dev = hcd->self.controller;
984	struct usb_device *usb_dev = hcd->self.root_hub;
985	struct usb_device_descriptor *descr;
986	const int devnum = 1;
987	int retval;
988
989	usb_dev->devnum = devnum;
990	usb_dev->bus->devnum_next = devnum + 1;
991	set_bit (devnum, usb_dev->bus->devmap.devicemap);
992	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
993
994	mutex_lock(&usb_bus_idr_lock);
995
996	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
997	descr = usb_get_device_descriptor(usb_dev);
998	if (IS_ERR(descr)) {
999		retval = PTR_ERR(descr);
1000		mutex_unlock(&usb_bus_idr_lock);
1001		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1002				dev_name(&usb_dev->dev), retval);
1003		return retval;
1004	}
1005	usb_dev->descriptor = *descr;
1006	kfree(descr);
1007
1008	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1009		retval = usb_get_bos_descriptor(usb_dev);
1010		if (!retval) {
1011			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1012		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1013			mutex_unlock(&usb_bus_idr_lock);
1014			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1015					dev_name(&usb_dev->dev), retval);
1016			return retval;
1017		}
1018	}
1019
1020	retval = usb_new_device (usb_dev);
1021	if (retval) {
1022		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1023				dev_name(&usb_dev->dev), retval);
1024	} else {
1025		spin_lock_irq (&hcd_root_hub_lock);
1026		hcd->rh_registered = 1;
1027		spin_unlock_irq (&hcd_root_hub_lock);
1028
1029		/* Did the HC die before the root hub was registered? */
1030		if (HCD_DEAD(hcd))
1031			usb_hc_died (hcd);	/* This time clean up */
1032	}
1033	mutex_unlock(&usb_bus_idr_lock);
1034
1035	return retval;
1036}
1037
1038/*
1039 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1040 * @bus: the bus which the root hub belongs to
1041 * @portnum: the port which is being resumed
1042 *
1043 * HCDs should call this function when they know that a resume signal is
1044 * being sent to a root-hub port.  The root hub will be prevented from
1045 * going into autosuspend until usb_hcd_end_port_resume() is called.
1046 *
1047 * The bus's private lock must be held by the caller.
1048 */
1049void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1050{
1051	unsigned bit = 1 << portnum;
1052
1053	if (!(bus->resuming_ports & bit)) {
1054		bus->resuming_ports |= bit;
1055		pm_runtime_get_noresume(&bus->root_hub->dev);
1056	}
1057}
1058EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1059
1060/*
1061 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1062 * @bus: the bus which the root hub belongs to
1063 * @portnum: the port which is being resumed
1064 *
1065 * HCDs should call this function when they know that a resume signal has
1066 * stopped being sent to a root-hub port.  The root hub will be allowed to
1067 * autosuspend again.
1068 *
1069 * The bus's private lock must be held by the caller.
1070 */
1071void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1072{
1073	unsigned bit = 1 << portnum;
1074
1075	if (bus->resuming_ports & bit) {
1076		bus->resuming_ports &= ~bit;
1077		pm_runtime_put_noidle(&bus->root_hub->dev);
1078	}
1079}
1080EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1081
1082/*-------------------------------------------------------------------------*/
1083
1084/**
1085 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1086 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1087 * @is_input: true iff the transaction sends data to the host
1088 * @isoc: true for isochronous transactions, false for interrupt ones
1089 * @bytecount: how many bytes in the transaction.
1090 *
1091 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1092 *
1093 * Note:
1094 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1095 * scheduled in software, this function is only used for such scheduling.
1096 */
1097long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1098{
1099	unsigned long	tmp;
1100
1101	switch (speed) {
1102	case USB_SPEED_LOW: 	/* INTR only */
1103		if (is_input) {
1104			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1105			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1106		} else {
1107			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1108			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1109		}
1110	case USB_SPEED_FULL:	/* ISOC or INTR */
1111		if (isoc) {
1112			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1113			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1114		} else {
1115			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1116			return 9107L + BW_HOST_DELAY + tmp;
1117		}
1118	case USB_SPEED_HIGH:	/* ISOC or INTR */
1119		/* FIXME adjust for input vs output */
1120		if (isoc)
1121			tmp = HS_NSECS_ISO (bytecount);
1122		else
1123			tmp = HS_NSECS (bytecount);
1124		return tmp;
1125	default:
1126		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1127		return -1;
1128	}
1129}
1130EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1131
1132
1133/*-------------------------------------------------------------------------*/
1134
1135/*
1136 * Generic HC operations.
1137 */
1138
1139/*-------------------------------------------------------------------------*/
1140
1141/**
1142 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1143 * @hcd: host controller to which @urb was submitted
1144 * @urb: URB being submitted
1145 *
1146 * Host controller drivers should call this routine in their enqueue()
1147 * method.  The HCD's private spinlock must be held and interrupts must
1148 * be disabled.  The actions carried out here are required for URB
1149 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1150 *
1151 * Return: 0 for no error, otherwise a negative error code (in which case
1152 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1153 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1154 * the private spinlock and returning.
1155 */
1156int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1157{
1158	int		rc = 0;
1159
1160	spin_lock(&hcd_urb_list_lock);
1161
1162	/* Check that the URB isn't being killed */
1163	if (unlikely(atomic_read(&urb->reject))) {
1164		rc = -EPERM;
1165		goto done;
1166	}
1167
1168	if (unlikely(!urb->ep->enabled)) {
1169		rc = -ENOENT;
1170		goto done;
1171	}
1172
1173	if (unlikely(!urb->dev->can_submit)) {
1174		rc = -EHOSTUNREACH;
1175		goto done;
1176	}
1177
1178	/*
1179	 * Check the host controller's state and add the URB to the
1180	 * endpoint's queue.
1181	 */
1182	if (HCD_RH_RUNNING(hcd)) {
1183		urb->unlinked = 0;
1184		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1185	} else {
1186		rc = -ESHUTDOWN;
1187		goto done;
1188	}
1189 done:
1190	spin_unlock(&hcd_urb_list_lock);
1191	return rc;
1192}
1193EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1194
1195/**
1196 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1197 * @hcd: host controller to which @urb was submitted
1198 * @urb: URB being checked for unlinkability
1199 * @status: error code to store in @urb if the unlink succeeds
1200 *
1201 * Host controller drivers should call this routine in their dequeue()
1202 * method.  The HCD's private spinlock must be held and interrupts must
1203 * be disabled.  The actions carried out here are required for making
1204 * sure than an unlink is valid.
1205 *
1206 * Return: 0 for no error, otherwise a negative error code (in which case
1207 * the dequeue() method must fail).  The possible error codes are:
1208 *
1209 *	-EIDRM: @urb was not submitted or has already completed.
1210 *		The completion function may not have been called yet.
1211 *
1212 *	-EBUSY: @urb has already been unlinked.
1213 */
1214int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1215		int status)
1216{
1217	struct list_head	*tmp;
1218
1219	/* insist the urb is still queued */
1220	list_for_each(tmp, &urb->ep->urb_list) {
1221		if (tmp == &urb->urb_list)
1222			break;
1223	}
1224	if (tmp != &urb->urb_list)
1225		return -EIDRM;
1226
1227	/* Any status except -EINPROGRESS means something already started to
1228	 * unlink this URB from the hardware.  So there's no more work to do.
1229	 */
1230	if (urb->unlinked)
1231		return -EBUSY;
1232	urb->unlinked = status;
1233	return 0;
1234}
1235EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1236
1237/**
1238 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1239 * @hcd: host controller to which @urb was submitted
1240 * @urb: URB being unlinked
1241 *
1242 * Host controller drivers should call this routine before calling
1243 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1244 * interrupts must be disabled.  The actions carried out here are required
1245 * for URB completion.
1246 */
1247void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1248{
1249	/* clear all state linking urb to this dev (and hcd) */
1250	spin_lock(&hcd_urb_list_lock);
1251	list_del_init(&urb->urb_list);
1252	spin_unlock(&hcd_urb_list_lock);
1253}
1254EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1255
1256/*
1257 * Some usb host controllers can only perform dma using a small SRAM area.
1258 * The usb core itself is however optimized for host controllers that can dma
1259 * using regular system memory - like pci devices doing bus mastering.
1260 *
1261 * To support host controllers with limited dma capabilities we provide dma
1262 * bounce buffers. This feature can be enabled by initializing
1263 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1264 *
1265 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1266 * data for dma using the genalloc API.
1267 *
1268 * So, to summarize...
1269 *
1270 * - We need "local" memory, canonical example being
1271 *   a small SRAM on a discrete controller being the
1272 *   only memory that the controller can read ...
1273 *   (a) "normal" kernel memory is no good, and
1274 *   (b) there's not enough to share
1275 *
1276 * - So we use that, even though the primary requirement
1277 *   is that the memory be "local" (hence addressable
1278 *   by that device), not "coherent".
1279 *
1280 */
1281
1282static int hcd_alloc_coherent(struct usb_bus *bus,
1283			      gfp_t mem_flags, dma_addr_t *dma_handle,
1284			      void **vaddr_handle, size_t size,
1285			      enum dma_data_direction dir)
1286{
1287	unsigned char *vaddr;
1288
1289	if (*vaddr_handle == NULL) {
1290		WARN_ON_ONCE(1);
1291		return -EFAULT;
1292	}
1293
1294	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1295				 mem_flags, dma_handle);
1296	if (!vaddr)
1297		return -ENOMEM;
1298
1299	/*
1300	 * Store the virtual address of the buffer at the end
1301	 * of the allocated dma buffer. The size of the buffer
1302	 * may be uneven so use unaligned functions instead
1303	 * of just rounding up. It makes sense to optimize for
1304	 * memory footprint over access speed since the amount
1305	 * of memory available for dma may be limited.
1306	 */
1307	put_unaligned((unsigned long)*vaddr_handle,
1308		      (unsigned long *)(vaddr + size));
1309
1310	if (dir == DMA_TO_DEVICE)
1311		memcpy(vaddr, *vaddr_handle, size);
1312
1313	*vaddr_handle = vaddr;
1314	return 0;
1315}
1316
1317static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1318			      void **vaddr_handle, size_t size,
1319			      enum dma_data_direction dir)
1320{
1321	unsigned char *vaddr = *vaddr_handle;
1322
1323	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1324
1325	if (dir == DMA_FROM_DEVICE)
1326		memcpy(vaddr, *vaddr_handle, size);
1327
1328	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1329
1330	*vaddr_handle = vaddr;
1331	*dma_handle = 0;
1332}
1333
1334void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1335{
1336	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1337	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1338		dma_unmap_single(hcd->self.sysdev,
1339				urb->setup_dma,
1340				sizeof(struct usb_ctrlrequest),
1341				DMA_TO_DEVICE);
1342	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1343		hcd_free_coherent(urb->dev->bus,
1344				&urb->setup_dma,
1345				(void **) &urb->setup_packet,
1346				sizeof(struct usb_ctrlrequest),
1347				DMA_TO_DEVICE);
1348
1349	/* Make it safe to call this routine more than once */
1350	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1351}
1352EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1353
1354static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1355{
1356	if (hcd->driver->unmap_urb_for_dma)
1357		hcd->driver->unmap_urb_for_dma(hcd, urb);
1358	else
1359		usb_hcd_unmap_urb_for_dma(hcd, urb);
1360}
1361
1362void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1363{
1364	enum dma_data_direction dir;
1365
1366	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1367
1368	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1369	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1370	    (urb->transfer_flags & URB_DMA_MAP_SG))
1371		dma_unmap_sg(hcd->self.sysdev,
1372				urb->sg,
1373				urb->num_sgs,
1374				dir);
1375	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1376		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1377		dma_unmap_page(hcd->self.sysdev,
1378				urb->transfer_dma,
1379				urb->transfer_buffer_length,
1380				dir);
1381	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1382		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1383		dma_unmap_single(hcd->self.sysdev,
1384				urb->transfer_dma,
1385				urb->transfer_buffer_length,
1386				dir);
1387	else if (urb->transfer_flags & URB_MAP_LOCAL)
1388		hcd_free_coherent(urb->dev->bus,
1389				&urb->transfer_dma,
1390				&urb->transfer_buffer,
1391				urb->transfer_buffer_length,
1392				dir);
1393
1394	/* Make it safe to call this routine more than once */
1395	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1396			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1397}
1398EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1399
1400static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1401			   gfp_t mem_flags)
1402{
1403	if (hcd->driver->map_urb_for_dma)
1404		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1405	else
1406		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1407}
1408
1409int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1410			    gfp_t mem_flags)
1411{
1412	enum dma_data_direction dir;
1413	int ret = 0;
1414
1415	/* Map the URB's buffers for DMA access.
1416	 * Lower level HCD code should use *_dma exclusively,
1417	 * unless it uses pio or talks to another transport,
1418	 * or uses the provided scatter gather list for bulk.
1419	 */
1420
1421	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1422		if (hcd->self.uses_pio_for_control)
1423			return ret;
1424		if (hcd->localmem_pool) {
1425			ret = hcd_alloc_coherent(
1426					urb->dev->bus, mem_flags,
1427					&urb->setup_dma,
1428					(void **)&urb->setup_packet,
1429					sizeof(struct usb_ctrlrequest),
1430					DMA_TO_DEVICE);
1431			if (ret)
1432				return ret;
1433			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1434		} else if (hcd_uses_dma(hcd)) {
1435			if (object_is_on_stack(urb->setup_packet)) {
1436				WARN_ONCE(1, "setup packet is on stack\n");
1437				return -EAGAIN;
1438			}
1439
1440			urb->setup_dma = dma_map_single(
1441					hcd->self.sysdev,
1442					urb->setup_packet,
1443					sizeof(struct usb_ctrlrequest),
1444					DMA_TO_DEVICE);
1445			if (dma_mapping_error(hcd->self.sysdev,
1446						urb->setup_dma))
1447				return -EAGAIN;
1448			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1449		}
1450	}
1451
1452	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1453	if (urb->transfer_buffer_length != 0
1454	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1455		if (hcd->localmem_pool) {
1456			ret = hcd_alloc_coherent(
1457					urb->dev->bus, mem_flags,
1458					&urb->transfer_dma,
1459					&urb->transfer_buffer,
1460					urb->transfer_buffer_length,
1461					dir);
1462			if (ret == 0)
1463				urb->transfer_flags |= URB_MAP_LOCAL;
1464		} else if (hcd_uses_dma(hcd)) {
1465			if (urb->num_sgs) {
1466				int n;
1467
1468				/* We don't support sg for isoc transfers ! */
1469				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1470					WARN_ON(1);
1471					return -EINVAL;
1472				}
1473
1474				n = dma_map_sg(
1475						hcd->self.sysdev,
1476						urb->sg,
1477						urb->num_sgs,
1478						dir);
1479				if (n <= 0)
1480					ret = -EAGAIN;
1481				else
1482					urb->transfer_flags |= URB_DMA_MAP_SG;
1483				urb->num_mapped_sgs = n;
1484				if (n != urb->num_sgs)
1485					urb->transfer_flags |=
1486							URB_DMA_SG_COMBINED;
1487			} else if (urb->sg) {
1488				struct scatterlist *sg = urb->sg;
1489				urb->transfer_dma = dma_map_page(
1490						hcd->self.sysdev,
1491						sg_page(sg),
1492						sg->offset,
1493						urb->transfer_buffer_length,
1494						dir);
1495				if (dma_mapping_error(hcd->self.sysdev,
1496						urb->transfer_dma))
1497					ret = -EAGAIN;
1498				else
1499					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1500			} else if (object_is_on_stack(urb->transfer_buffer)) {
1501				WARN_ONCE(1, "transfer buffer is on stack\n");
1502				ret = -EAGAIN;
1503			} else {
1504				urb->transfer_dma = dma_map_single(
1505						hcd->self.sysdev,
1506						urb->transfer_buffer,
1507						urb->transfer_buffer_length,
1508						dir);
1509				if (dma_mapping_error(hcd->self.sysdev,
1510						urb->transfer_dma))
1511					ret = -EAGAIN;
1512				else
1513					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1514			}
1515		}
1516		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1517				URB_SETUP_MAP_LOCAL)))
1518			usb_hcd_unmap_urb_for_dma(hcd, urb);
1519	}
1520	return ret;
1521}
1522EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1523
1524/*-------------------------------------------------------------------------*/
1525
1526/* may be called in any context with a valid urb->dev usecount
1527 * caller surrenders "ownership" of urb
1528 * expects usb_submit_urb() to have sanity checked and conditioned all
1529 * inputs in the urb
1530 */
1531int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1532{
1533	int			status;
1534	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1535
1536	/* increment urb's reference count as part of giving it to the HCD
1537	 * (which will control it).  HCD guarantees that it either returns
1538	 * an error or calls giveback(), but not both.
1539	 */
1540	usb_get_urb(urb);
1541	atomic_inc(&urb->use_count);
1542	atomic_inc(&urb->dev->urbnum);
1543	usbmon_urb_submit(&hcd->self, urb);
1544
1545	/* NOTE requirements on root-hub callers (usbfs and the hub
1546	 * driver, for now):  URBs' urb->transfer_buffer must be
1547	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1548	 * they could clobber root hub response data.  Also, control
1549	 * URBs must be submitted in process context with interrupts
1550	 * enabled.
1551	 */
1552
1553	if (is_root_hub(urb->dev)) {
1554		status = rh_urb_enqueue(hcd, urb);
1555	} else {
1556		status = map_urb_for_dma(hcd, urb, mem_flags);
1557		if (likely(status == 0)) {
1558			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1559			if (unlikely(status))
1560				unmap_urb_for_dma(hcd, urb);
1561		}
1562	}
1563
1564	if (unlikely(status)) {
1565		usbmon_urb_submit_error(&hcd->self, urb, status);
1566		urb->hcpriv = NULL;
1567		INIT_LIST_HEAD(&urb->urb_list);
1568		atomic_dec(&urb->use_count);
1569		/*
1570		 * Order the write of urb->use_count above before the read
1571		 * of urb->reject below.  Pairs with the memory barriers in
1572		 * usb_kill_urb() and usb_poison_urb().
1573		 */
1574		smp_mb__after_atomic();
1575
1576		atomic_dec(&urb->dev->urbnum);
1577		if (atomic_read(&urb->reject))
1578			wake_up(&usb_kill_urb_queue);
1579		usb_put_urb(urb);
1580	}
1581	return status;
1582}
1583
1584/*-------------------------------------------------------------------------*/
1585
1586/* this makes the hcd giveback() the urb more quickly, by kicking it
1587 * off hardware queues (which may take a while) and returning it as
1588 * soon as practical.  we've already set up the urb's return status,
1589 * but we can't know if the callback completed already.
1590 */
1591static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1592{
1593	int		value;
1594
1595	if (is_root_hub(urb->dev))
1596		value = usb_rh_urb_dequeue(hcd, urb, status);
1597	else {
1598
1599		/* The only reason an HCD might fail this call is if
1600		 * it has not yet fully queued the urb to begin with.
1601		 * Such failures should be harmless. */
1602		value = hcd->driver->urb_dequeue(hcd, urb, status);
1603	}
1604	return value;
1605}
1606
1607/*
1608 * called in any context
1609 *
1610 * caller guarantees urb won't be recycled till both unlink()
1611 * and the urb's completion function return
1612 */
1613int usb_hcd_unlink_urb (struct urb *urb, int status)
1614{
1615	struct usb_hcd		*hcd;
1616	struct usb_device	*udev = urb->dev;
1617	int			retval = -EIDRM;
1618	unsigned long		flags;
1619
1620	/* Prevent the device and bus from going away while
1621	 * the unlink is carried out.  If they are already gone
1622	 * then urb->use_count must be 0, since disconnected
1623	 * devices can't have any active URBs.
1624	 */
1625	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1626	if (atomic_read(&urb->use_count) > 0) {
1627		retval = 0;
1628		usb_get_dev(udev);
1629	}
1630	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1631	if (retval == 0) {
1632		hcd = bus_to_hcd(urb->dev->bus);
1633		retval = unlink1(hcd, urb, status);
1634		if (retval == 0)
1635			retval = -EINPROGRESS;
1636		else if (retval != -EIDRM && retval != -EBUSY)
1637			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1638					urb, retval);
1639		usb_put_dev(udev);
1640	}
1641	return retval;
1642}
1643
1644/*-------------------------------------------------------------------------*/
1645
1646static void __usb_hcd_giveback_urb(struct urb *urb)
1647{
1648	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1649	struct usb_anchor *anchor = urb->anchor;
1650	int status = urb->unlinked;
1651
1652	urb->hcpriv = NULL;
1653	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1654	    urb->actual_length < urb->transfer_buffer_length &&
1655	    !status))
1656		status = -EREMOTEIO;
1657
1658	unmap_urb_for_dma(hcd, urb);
1659	usbmon_urb_complete(&hcd->self, urb, status);
1660	usb_anchor_suspend_wakeups(anchor);
1661	usb_unanchor_urb(urb);
1662	if (likely(status == 0))
1663		usb_led_activity(USB_LED_EVENT_HOST);
1664
1665	/* pass ownership to the completion handler */
1666	urb->status = status;
1667	/*
1668	 * This function can be called in task context inside another remote
1669	 * coverage collection section, but KCOV doesn't support that kind of
1670	 * recursion yet. Only collect coverage in softirq context for now.
1671	 */
1672	if (in_serving_softirq())
1673		kcov_remote_start_usb((u64)urb->dev->bus->busnum);
1674	urb->complete(urb);
1675	if (in_serving_softirq())
1676		kcov_remote_stop();
1677
1678	usb_anchor_resume_wakeups(anchor);
1679	atomic_dec(&urb->use_count);
1680	/*
1681	 * Order the write of urb->use_count above before the read
1682	 * of urb->reject below.  Pairs with the memory barriers in
1683	 * usb_kill_urb() and usb_poison_urb().
1684	 */
1685	smp_mb__after_atomic();
1686
1687	if (unlikely(atomic_read(&urb->reject)))
1688		wake_up(&usb_kill_urb_queue);
1689	usb_put_urb(urb);
1690}
1691
1692static void usb_giveback_urb_bh(struct tasklet_struct *t)
1693{
1694	struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1695	struct list_head local_list;
1696
1697	spin_lock_irq(&bh->lock);
1698	bh->running = true;
1699	list_replace_init(&bh->head, &local_list);
1700	spin_unlock_irq(&bh->lock);
1701
1702	while (!list_empty(&local_list)) {
1703		struct urb *urb;
1704
1705		urb = list_entry(local_list.next, struct urb, urb_list);
1706		list_del_init(&urb->urb_list);
1707		bh->completing_ep = urb->ep;
1708		__usb_hcd_giveback_urb(urb);
1709		bh->completing_ep = NULL;
1710	}
1711
1712	/*
1713	 * giveback new URBs next time to prevent this function
1714	 * from not exiting for a long time.
1715	 */
1716	spin_lock_irq(&bh->lock);
1717	if (!list_empty(&bh->head)) {
1718		if (bh->high_prio)
1719			tasklet_hi_schedule(&bh->bh);
1720		else
1721			tasklet_schedule(&bh->bh);
1722	}
1723	bh->running = false;
1724	spin_unlock_irq(&bh->lock);
1725}
1726
1727/**
1728 * usb_hcd_giveback_urb - return URB from HCD to device driver
1729 * @hcd: host controller returning the URB
1730 * @urb: urb being returned to the USB device driver.
1731 * @status: completion status code for the URB.
1732 * Context: in_interrupt()
1733 *
1734 * This hands the URB from HCD to its USB device driver, using its
1735 * completion function.  The HCD has freed all per-urb resources
1736 * (and is done using urb->hcpriv).  It also released all HCD locks;
1737 * the device driver won't cause problems if it frees, modifies,
1738 * or resubmits this URB.
1739 *
1740 * If @urb was unlinked, the value of @status will be overridden by
1741 * @urb->unlinked.  Erroneous short transfers are detected in case
1742 * the HCD hasn't checked for them.
1743 */
1744void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1745{
1746	struct giveback_urb_bh *bh;
1747	bool running;
1748
1749	/* pass status to tasklet via unlinked */
1750	if (likely(!urb->unlinked))
1751		urb->unlinked = status;
1752
1753	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1754		__usb_hcd_giveback_urb(urb);
1755		return;
1756	}
1757
1758	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1759		bh = &hcd->high_prio_bh;
1760	else
1761		bh = &hcd->low_prio_bh;
1762
1763	spin_lock(&bh->lock);
1764	list_add_tail(&urb->urb_list, &bh->head);
1765	running = bh->running;
1766	spin_unlock(&bh->lock);
1767
1768	if (running)
1769		;
1770	else if (bh->high_prio)
1771		tasklet_hi_schedule(&bh->bh);
1772	else
1773		tasklet_schedule(&bh->bh);
1774}
1775EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1776
1777/*-------------------------------------------------------------------------*/
1778
1779/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1780 * queue to drain completely.  The caller must first insure that no more
1781 * URBs can be submitted for this endpoint.
1782 */
1783void usb_hcd_flush_endpoint(struct usb_device *udev,
1784		struct usb_host_endpoint *ep)
1785{
1786	struct usb_hcd		*hcd;
1787	struct urb		*urb;
1788
1789	if (!ep)
1790		return;
1791	might_sleep();
1792	hcd = bus_to_hcd(udev->bus);
1793
1794	/* No more submits can occur */
1795	spin_lock_irq(&hcd_urb_list_lock);
1796rescan:
1797	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1798		int	is_in;
1799
1800		if (urb->unlinked)
1801			continue;
1802		usb_get_urb (urb);
1803		is_in = usb_urb_dir_in(urb);
1804		spin_unlock(&hcd_urb_list_lock);
1805
1806		/* kick hcd */
1807		unlink1(hcd, urb, -ESHUTDOWN);
1808		dev_dbg (hcd->self.controller,
1809			"shutdown urb %pK ep%d%s-%s\n",
1810			urb, usb_endpoint_num(&ep->desc),
1811			is_in ? "in" : "out",
1812			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1813		usb_put_urb (urb);
1814
1815		/* list contents may have changed */
1816		spin_lock(&hcd_urb_list_lock);
1817		goto rescan;
1818	}
1819	spin_unlock_irq(&hcd_urb_list_lock);
1820
1821	/* Wait until the endpoint queue is completely empty */
1822	while (!list_empty (&ep->urb_list)) {
1823		spin_lock_irq(&hcd_urb_list_lock);
1824
1825		/* The list may have changed while we acquired the spinlock */
1826		urb = NULL;
1827		if (!list_empty (&ep->urb_list)) {
1828			urb = list_entry (ep->urb_list.prev, struct urb,
1829					urb_list);
1830			usb_get_urb (urb);
1831		}
1832		spin_unlock_irq(&hcd_urb_list_lock);
1833
1834		if (urb) {
1835			usb_kill_urb (urb);
1836			usb_put_urb (urb);
1837		}
1838	}
1839}
1840
1841/**
1842 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1843 *				the bus bandwidth
1844 * @udev: target &usb_device
1845 * @new_config: new configuration to install
1846 * @cur_alt: the current alternate interface setting
1847 * @new_alt: alternate interface setting that is being installed
1848 *
1849 * To change configurations, pass in the new configuration in new_config,
1850 * and pass NULL for cur_alt and new_alt.
1851 *
1852 * To reset a device's configuration (put the device in the ADDRESSED state),
1853 * pass in NULL for new_config, cur_alt, and new_alt.
1854 *
1855 * To change alternate interface settings, pass in NULL for new_config,
1856 * pass in the current alternate interface setting in cur_alt,
1857 * and pass in the new alternate interface setting in new_alt.
1858 *
1859 * Return: An error if the requested bandwidth change exceeds the
1860 * bus bandwidth or host controller internal resources.
1861 */
1862int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1863		struct usb_host_config *new_config,
1864		struct usb_host_interface *cur_alt,
1865		struct usb_host_interface *new_alt)
1866{
1867	int num_intfs, i, j;
1868	struct usb_host_interface *alt = NULL;
1869	int ret = 0;
1870	struct usb_hcd *hcd;
1871	struct usb_host_endpoint *ep;
1872
1873	hcd = bus_to_hcd(udev->bus);
1874	if (!hcd->driver->check_bandwidth)
1875		return 0;
1876
1877	/* Configuration is being removed - set configuration 0 */
1878	if (!new_config && !cur_alt) {
1879		for (i = 1; i < 16; ++i) {
1880			ep = udev->ep_out[i];
1881			if (ep)
1882				hcd->driver->drop_endpoint(hcd, udev, ep);
1883			ep = udev->ep_in[i];
1884			if (ep)
1885				hcd->driver->drop_endpoint(hcd, udev, ep);
1886		}
1887		hcd->driver->check_bandwidth(hcd, udev);
1888		return 0;
1889	}
1890	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1891	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1892	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1893	 * ok to exclude it.
1894	 */
1895	if (new_config) {
1896		num_intfs = new_config->desc.bNumInterfaces;
1897		/* Remove endpoints (except endpoint 0, which is always on the
1898		 * schedule) from the old config from the schedule
1899		 */
1900		for (i = 1; i < 16; ++i) {
1901			ep = udev->ep_out[i];
1902			if (ep) {
1903				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1904				if (ret < 0)
1905					goto reset;
1906			}
1907			ep = udev->ep_in[i];
1908			if (ep) {
1909				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1910				if (ret < 0)
1911					goto reset;
1912			}
1913		}
1914		for (i = 0; i < num_intfs; ++i) {
1915			struct usb_host_interface *first_alt;
1916			int iface_num;
1917
1918			first_alt = &new_config->intf_cache[i]->altsetting[0];
1919			iface_num = first_alt->desc.bInterfaceNumber;
1920			/* Set up endpoints for alternate interface setting 0 */
1921			alt = usb_find_alt_setting(new_config, iface_num, 0);
1922			if (!alt)
1923				/* No alt setting 0? Pick the first setting. */
1924				alt = first_alt;
1925
1926			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1927				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1928				if (ret < 0)
1929					goto reset;
1930			}
1931		}
1932	}
1933	if (cur_alt && new_alt) {
1934		struct usb_interface *iface = usb_ifnum_to_if(udev,
1935				cur_alt->desc.bInterfaceNumber);
1936
1937		if (!iface)
1938			return -EINVAL;
1939		if (iface->resetting_device) {
1940			/*
1941			 * The USB core just reset the device, so the xHCI host
1942			 * and the device will think alt setting 0 is installed.
1943			 * However, the USB core will pass in the alternate
1944			 * setting installed before the reset as cur_alt.  Dig
1945			 * out the alternate setting 0 structure, or the first
1946			 * alternate setting if a broken device doesn't have alt
1947			 * setting 0.
1948			 */
1949			cur_alt = usb_altnum_to_altsetting(iface, 0);
1950			if (!cur_alt)
1951				cur_alt = &iface->altsetting[0];
1952		}
1953
1954		/* Drop all the endpoints in the current alt setting */
1955		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1956			ret = hcd->driver->drop_endpoint(hcd, udev,
1957					&cur_alt->endpoint[i]);
1958			if (ret < 0)
1959				goto reset;
1960		}
1961		/* Add all the endpoints in the new alt setting */
1962		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1963			ret = hcd->driver->add_endpoint(hcd, udev,
1964					&new_alt->endpoint[i]);
1965			if (ret < 0)
1966				goto reset;
1967		}
1968	}
1969	ret = hcd->driver->check_bandwidth(hcd, udev);
1970reset:
1971	if (ret < 0)
1972		hcd->driver->reset_bandwidth(hcd, udev);
1973	return ret;
1974}
1975
1976/* Disables the endpoint: synchronizes with the hcd to make sure all
1977 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1978 * have been called previously.  Use for set_configuration, set_interface,
1979 * driver removal, physical disconnect.
1980 *
1981 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1982 * type, maxpacket size, toggle, halt status, and scheduling.
1983 */
1984void usb_hcd_disable_endpoint(struct usb_device *udev,
1985		struct usb_host_endpoint *ep)
1986{
1987	struct usb_hcd		*hcd;
1988
1989	might_sleep();
1990	hcd = bus_to_hcd(udev->bus);
1991	if (hcd->driver->endpoint_disable)
1992		hcd->driver->endpoint_disable(hcd, ep);
1993}
1994
1995/**
1996 * usb_hcd_reset_endpoint - reset host endpoint state
1997 * @udev: USB device.
1998 * @ep:   the endpoint to reset.
1999 *
2000 * Resets any host endpoint state such as the toggle bit, sequence
2001 * number and current window.
2002 */
2003void usb_hcd_reset_endpoint(struct usb_device *udev,
2004			    struct usb_host_endpoint *ep)
2005{
2006	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2007
2008	if (hcd->driver->endpoint_reset)
2009		hcd->driver->endpoint_reset(hcd, ep);
2010	else {
2011		int epnum = usb_endpoint_num(&ep->desc);
2012		int is_out = usb_endpoint_dir_out(&ep->desc);
2013		int is_control = usb_endpoint_xfer_control(&ep->desc);
2014
2015		usb_settoggle(udev, epnum, is_out, 0);
2016		if (is_control)
2017			usb_settoggle(udev, epnum, !is_out, 0);
2018	}
2019}
2020
2021/**
2022 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2023 * @interface:		alternate setting that includes all endpoints.
2024 * @eps:		array of endpoints that need streams.
2025 * @num_eps:		number of endpoints in the array.
2026 * @num_streams:	number of streams to allocate.
2027 * @mem_flags:		flags hcd should use to allocate memory.
2028 *
2029 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2030 * Drivers may queue multiple transfers to different stream IDs, which may
2031 * complete in a different order than they were queued.
2032 *
2033 * Return: On success, the number of allocated streams. On failure, a negative
2034 * error code.
2035 */
2036int usb_alloc_streams(struct usb_interface *interface,
2037		struct usb_host_endpoint **eps, unsigned int num_eps,
2038		unsigned int num_streams, gfp_t mem_flags)
2039{
2040	struct usb_hcd *hcd;
2041	struct usb_device *dev;
2042	int i, ret;
2043
2044	dev = interface_to_usbdev(interface);
2045	hcd = bus_to_hcd(dev->bus);
2046	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2047		return -EINVAL;
2048	if (dev->speed < USB_SPEED_SUPER)
2049		return -EINVAL;
2050	if (dev->state < USB_STATE_CONFIGURED)
2051		return -ENODEV;
2052
2053	for (i = 0; i < num_eps; i++) {
2054		/* Streams only apply to bulk endpoints. */
2055		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2056			return -EINVAL;
2057		/* Re-alloc is not allowed */
2058		if (eps[i]->streams)
2059			return -EINVAL;
2060	}
2061
2062	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2063			num_streams, mem_flags);
2064	if (ret < 0)
2065		return ret;
2066
2067	for (i = 0; i < num_eps; i++)
2068		eps[i]->streams = ret;
2069
2070	return ret;
2071}
2072EXPORT_SYMBOL_GPL(usb_alloc_streams);
2073
2074/**
2075 * usb_free_streams - free bulk endpoint stream IDs.
2076 * @interface:	alternate setting that includes all endpoints.
2077 * @eps:	array of endpoints to remove streams from.
2078 * @num_eps:	number of endpoints in the array.
2079 * @mem_flags:	flags hcd should use to allocate memory.
2080 *
2081 * Reverts a group of bulk endpoints back to not using stream IDs.
2082 * Can fail if we are given bad arguments, or HCD is broken.
2083 *
2084 * Return: 0 on success. On failure, a negative error code.
2085 */
2086int usb_free_streams(struct usb_interface *interface,
2087		struct usb_host_endpoint **eps, unsigned int num_eps,
2088		gfp_t mem_flags)
2089{
2090	struct usb_hcd *hcd;
2091	struct usb_device *dev;
2092	int i, ret;
2093
2094	dev = interface_to_usbdev(interface);
2095	hcd = bus_to_hcd(dev->bus);
2096	if (dev->speed < USB_SPEED_SUPER)
2097		return -EINVAL;
2098
2099	/* Double-free is not allowed */
2100	for (i = 0; i < num_eps; i++)
2101		if (!eps[i] || !eps[i]->streams)
2102			return -EINVAL;
2103
2104	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2105	if (ret < 0)
2106		return ret;
2107
2108	for (i = 0; i < num_eps; i++)
2109		eps[i]->streams = 0;
2110
2111	return ret;
2112}
2113EXPORT_SYMBOL_GPL(usb_free_streams);
2114
2115/* Protect against drivers that try to unlink URBs after the device
2116 * is gone, by waiting until all unlinks for @udev are finished.
2117 * Since we don't currently track URBs by device, simply wait until
2118 * nothing is running in the locked region of usb_hcd_unlink_urb().
2119 */
2120void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2121{
2122	spin_lock_irq(&hcd_urb_unlink_lock);
2123	spin_unlock_irq(&hcd_urb_unlink_lock);
2124}
2125
2126/*-------------------------------------------------------------------------*/
2127
2128/* called in any context */
2129int usb_hcd_get_frame_number (struct usb_device *udev)
2130{
2131	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2132
2133	if (!HCD_RH_RUNNING(hcd))
2134		return -ESHUTDOWN;
2135	return hcd->driver->get_frame_number (hcd);
2136}
2137
2138/*-------------------------------------------------------------------------*/
2139
2140#ifdef	CONFIG_PM
2141
2142int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2143{
2144	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2145	int		status;
2146	int		old_state = hcd->state;
2147
2148	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2149			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2150			rhdev->do_remote_wakeup);
2151	if (HCD_DEAD(hcd)) {
2152		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2153		return 0;
2154	}
2155
2156	if (!hcd->driver->bus_suspend) {
2157		status = -ENOENT;
2158	} else {
2159		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2160		hcd->state = HC_STATE_QUIESCING;
2161		status = hcd->driver->bus_suspend(hcd);
2162	}
2163	if (status == 0) {
2164		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2165		hcd->state = HC_STATE_SUSPENDED;
2166
2167		if (!PMSG_IS_AUTO(msg))
2168			usb_phy_roothub_suspend(hcd->self.sysdev,
2169						hcd->phy_roothub);
2170
2171		/* Did we race with a root-hub wakeup event? */
2172		if (rhdev->do_remote_wakeup) {
2173			char	buffer[6];
2174
2175			status = hcd->driver->hub_status_data(hcd, buffer);
2176			if (status != 0) {
2177				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2178				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2179				status = -EBUSY;
2180			}
2181		}
2182	} else {
2183		spin_lock_irq(&hcd_root_hub_lock);
2184		if (!HCD_DEAD(hcd)) {
2185			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2186			hcd->state = old_state;
2187		}
2188		spin_unlock_irq(&hcd_root_hub_lock);
2189		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2190				"suspend", status);
2191	}
2192	return status;
2193}
2194
2195int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2196{
2197	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2198	int		status;
2199	int		old_state = hcd->state;
2200
2201	dev_dbg(&rhdev->dev, "usb %sresume\n",
2202			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2203	if (HCD_DEAD(hcd)) {
2204		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2205		return 0;
2206	}
2207
2208	if (!PMSG_IS_AUTO(msg)) {
2209		status = usb_phy_roothub_resume(hcd->self.sysdev,
2210						hcd->phy_roothub);
2211		if (status)
2212			return status;
2213	}
2214
2215	if (!hcd->driver->bus_resume)
2216		return -ENOENT;
2217	if (HCD_RH_RUNNING(hcd))
2218		return 0;
2219
2220	hcd->state = HC_STATE_RESUMING;
2221	status = hcd->driver->bus_resume(hcd);
2222	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2223	if (status == 0)
2224		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2225
2226	if (status == 0) {
2227		struct usb_device *udev;
2228		int port1;
2229
2230		spin_lock_irq(&hcd_root_hub_lock);
2231		if (!HCD_DEAD(hcd)) {
2232			usb_set_device_state(rhdev, rhdev->actconfig
2233					? USB_STATE_CONFIGURED
2234					: USB_STATE_ADDRESS);
2235			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2236			hcd->state = HC_STATE_RUNNING;
2237		}
2238		spin_unlock_irq(&hcd_root_hub_lock);
2239
2240		/*
2241		 * Check whether any of the enabled ports on the root hub are
2242		 * unsuspended.  If they are then a TRSMRCY delay is needed
2243		 * (this is what the USB-2 spec calls a "global resume").
2244		 * Otherwise we can skip the delay.
2245		 */
2246		usb_hub_for_each_child(rhdev, port1, udev) {
2247			if (udev->state != USB_STATE_NOTATTACHED &&
2248					!udev->port_is_suspended) {
2249				usleep_range(10000, 11000);	/* TRSMRCY */
2250				break;
2251			}
2252		}
2253	} else {
2254		hcd->state = old_state;
2255		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2256		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2257				"resume", status);
2258		if (status != -ESHUTDOWN)
2259			usb_hc_died(hcd);
2260	}
2261	return status;
2262}
2263
2264/* Workqueue routine for root-hub remote wakeup */
2265static void hcd_resume_work(struct work_struct *work)
2266{
2267	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2268	struct usb_device *udev = hcd->self.root_hub;
2269
2270	usb_remote_wakeup(udev);
2271}
2272
2273/**
2274 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2275 * @hcd: host controller for this root hub
2276 *
2277 * The USB host controller calls this function when its root hub is
2278 * suspended (with the remote wakeup feature enabled) and a remote
2279 * wakeup request is received.  The routine submits a workqueue request
2280 * to resume the root hub (that is, manage its downstream ports again).
2281 */
2282void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2283{
2284	unsigned long flags;
2285
2286	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2287	if (hcd->rh_registered) {
2288		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2289		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2290		queue_work(pm_wq, &hcd->wakeup_work);
2291	}
2292	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2293}
2294EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2295
2296#endif	/* CONFIG_PM */
2297
2298/*-------------------------------------------------------------------------*/
2299
2300#ifdef	CONFIG_USB_OTG
2301
2302/**
2303 * usb_bus_start_enum - start immediate enumeration (for OTG)
2304 * @bus: the bus (must use hcd framework)
2305 * @port_num: 1-based number of port; usually bus->otg_port
2306 * Context: in_interrupt()
2307 *
2308 * Starts enumeration, with an immediate reset followed later by
2309 * hub_wq identifying and possibly configuring the device.
2310 * This is needed by OTG controller drivers, where it helps meet
2311 * HNP protocol timing requirements for starting a port reset.
2312 *
2313 * Return: 0 if successful.
2314 */
2315int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2316{
2317	struct usb_hcd		*hcd;
2318	int			status = -EOPNOTSUPP;
2319
2320	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2321	 * boards with root hubs hooked up to internal devices (instead of
2322	 * just the OTG port) may need more attention to resetting...
2323	 */
2324	hcd = bus_to_hcd(bus);
2325	if (port_num && hcd->driver->start_port_reset)
2326		status = hcd->driver->start_port_reset(hcd, port_num);
2327
2328	/* allocate hub_wq shortly after (first) root port reset finishes;
2329	 * it may issue others, until at least 50 msecs have passed.
2330	 */
2331	if (status == 0)
2332		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2333	return status;
2334}
2335EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2336
2337#endif
2338
2339/*-------------------------------------------------------------------------*/
2340
2341/**
2342 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2343 * @irq: the IRQ being raised
2344 * @__hcd: pointer to the HCD whose IRQ is being signaled
2345 *
2346 * If the controller isn't HALTed, calls the driver's irq handler.
2347 * Checks whether the controller is now dead.
2348 *
2349 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2350 */
2351irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2352{
2353	struct usb_hcd		*hcd = __hcd;
2354	irqreturn_t		rc;
2355
2356	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2357		rc = IRQ_NONE;
2358	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2359		rc = IRQ_NONE;
2360	else
2361		rc = IRQ_HANDLED;
2362
2363	return rc;
2364}
2365EXPORT_SYMBOL_GPL(usb_hcd_irq);
2366
2367/*-------------------------------------------------------------------------*/
2368
2369/* Workqueue routine for when the root-hub has died. */
2370static void hcd_died_work(struct work_struct *work)
2371{
2372	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2373	static char *env[] = {
2374		"ERROR=DEAD",
2375		NULL
2376	};
2377
2378	/* Notify user space that the host controller has died */
2379	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2380}
2381
2382/**
2383 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2384 * @hcd: pointer to the HCD representing the controller
2385 *
2386 * This is called by bus glue to report a USB host controller that died
2387 * while operations may still have been pending.  It's called automatically
2388 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2389 *
2390 * Only call this function with the primary HCD.
2391 */
2392void usb_hc_died (struct usb_hcd *hcd)
2393{
2394	unsigned long flags;
2395
2396	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2397
2398	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2399	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2400	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2401	if (hcd->rh_registered) {
2402		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2403
2404		/* make hub_wq clean up old urbs and devices */
2405		usb_set_device_state (hcd->self.root_hub,
2406				USB_STATE_NOTATTACHED);
2407		usb_kick_hub_wq(hcd->self.root_hub);
2408	}
2409	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2410		hcd = hcd->shared_hcd;
2411		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2412		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2413		if (hcd->rh_registered) {
2414			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2415
2416			/* make hub_wq clean up old urbs and devices */
2417			usb_set_device_state(hcd->self.root_hub,
2418					USB_STATE_NOTATTACHED);
2419			usb_kick_hub_wq(hcd->self.root_hub);
2420		}
2421	}
2422
2423	/* Handle the case where this function gets called with a shared HCD */
2424	if (usb_hcd_is_primary_hcd(hcd))
2425		schedule_work(&hcd->died_work);
2426	else
2427		schedule_work(&hcd->primary_hcd->died_work);
2428
2429	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2430	/* Make sure that the other roothub is also deallocated. */
2431}
2432EXPORT_SYMBOL_GPL (usb_hc_died);
2433
2434/*-------------------------------------------------------------------------*/
2435
2436static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2437{
2438
2439	spin_lock_init(&bh->lock);
2440	INIT_LIST_HEAD(&bh->head);
2441	tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2442}
2443
2444struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2445		struct device *sysdev, struct device *dev, const char *bus_name,
2446		struct usb_hcd *primary_hcd)
2447{
2448	struct usb_hcd *hcd;
2449
2450	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2451	if (!hcd)
2452		return NULL;
2453	if (primary_hcd == NULL) {
2454		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2455				GFP_KERNEL);
2456		if (!hcd->address0_mutex) {
2457			kfree(hcd);
2458			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2459			return NULL;
2460		}
2461		mutex_init(hcd->address0_mutex);
2462		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2463				GFP_KERNEL);
2464		if (!hcd->bandwidth_mutex) {
2465			kfree(hcd->address0_mutex);
2466			kfree(hcd);
2467			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2468			return NULL;
2469		}
2470		mutex_init(hcd->bandwidth_mutex);
2471		dev_set_drvdata(dev, hcd);
2472	} else {
2473		mutex_lock(&usb_port_peer_mutex);
2474		hcd->address0_mutex = primary_hcd->address0_mutex;
2475		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2476		hcd->primary_hcd = primary_hcd;
2477		primary_hcd->primary_hcd = primary_hcd;
2478		hcd->shared_hcd = primary_hcd;
2479		primary_hcd->shared_hcd = hcd;
2480		mutex_unlock(&usb_port_peer_mutex);
2481	}
2482
2483	kref_init(&hcd->kref);
2484
2485	usb_bus_init(&hcd->self);
2486	hcd->self.controller = dev;
2487	hcd->self.sysdev = sysdev;
2488	hcd->self.bus_name = bus_name;
2489
2490	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2491#ifdef CONFIG_PM
2492	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2493#endif
2494
2495	INIT_WORK(&hcd->died_work, hcd_died_work);
2496
2497	hcd->driver = driver;
2498	hcd->speed = driver->flags & HCD_MASK;
2499	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2500			"USB Host Controller";
2501	return hcd;
2502}
2503EXPORT_SYMBOL_GPL(__usb_create_hcd);
2504
2505/**
2506 * usb_create_shared_hcd - create and initialize an HCD structure
2507 * @driver: HC driver that will use this hcd
2508 * @dev: device for this HC, stored in hcd->self.controller
2509 * @bus_name: value to store in hcd->self.bus_name
2510 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2511 *              PCI device.  Only allocate certain resources for the primary HCD
2512 * Context: !in_interrupt()
2513 *
2514 * Allocate a struct usb_hcd, with extra space at the end for the
2515 * HC driver's private data.  Initialize the generic members of the
2516 * hcd structure.
2517 *
2518 * Return: On success, a pointer to the created and initialized HCD structure.
2519 * On failure (e.g. if memory is unavailable), %NULL.
2520 */
2521struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2522		struct device *dev, const char *bus_name,
2523		struct usb_hcd *primary_hcd)
2524{
2525	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2526}
2527EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2528
2529/**
2530 * usb_create_hcd - create and initialize an HCD structure
2531 * @driver: HC driver that will use this hcd
2532 * @dev: device for this HC, stored in hcd->self.controller
2533 * @bus_name: value to store in hcd->self.bus_name
2534 * Context: !in_interrupt()
2535 *
2536 * Allocate a struct usb_hcd, with extra space at the end for the
2537 * HC driver's private data.  Initialize the generic members of the
2538 * hcd structure.
2539 *
2540 * Return: On success, a pointer to the created and initialized HCD
2541 * structure. On failure (e.g. if memory is unavailable), %NULL.
2542 */
2543struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2544		struct device *dev, const char *bus_name)
2545{
2546	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2547}
2548EXPORT_SYMBOL_GPL(usb_create_hcd);
2549
2550/*
2551 * Roothubs that share one PCI device must also share the bandwidth mutex.
2552 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2553 * deallocated.
2554 *
2555 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2556 * freed.  When hcd_release() is called for either hcd in a peer set,
2557 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2558 */
2559static void hcd_release(struct kref *kref)
2560{
2561	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2562
2563	mutex_lock(&usb_port_peer_mutex);
2564	if (hcd->shared_hcd) {
2565		struct usb_hcd *peer = hcd->shared_hcd;
2566
2567		peer->shared_hcd = NULL;
2568		peer->primary_hcd = NULL;
2569	} else {
2570		kfree(hcd->address0_mutex);
2571		kfree(hcd->bandwidth_mutex);
2572	}
2573	mutex_unlock(&usb_port_peer_mutex);
2574	kfree(hcd);
2575}
2576
2577struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2578{
2579	if (hcd)
2580		kref_get (&hcd->kref);
2581	return hcd;
2582}
2583EXPORT_SYMBOL_GPL(usb_get_hcd);
2584
2585void usb_put_hcd (struct usb_hcd *hcd)
2586{
2587	if (hcd)
2588		kref_put (&hcd->kref, hcd_release);
2589}
2590EXPORT_SYMBOL_GPL(usb_put_hcd);
2591
2592int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2593{
2594	if (!hcd->primary_hcd)
2595		return 1;
2596	return hcd == hcd->primary_hcd;
2597}
2598EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2599
2600int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2601{
2602	if (!hcd->driver->find_raw_port_number)
2603		return port1;
2604
2605	return hcd->driver->find_raw_port_number(hcd, port1);
2606}
2607
2608static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2609		unsigned int irqnum, unsigned long irqflags)
2610{
2611	int retval;
2612
2613	if (hcd->driver->irq) {
2614
2615		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2616				hcd->driver->description, hcd->self.busnum);
2617		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2618				hcd->irq_descr, hcd);
2619		if (retval != 0) {
2620			dev_err(hcd->self.controller,
2621					"request interrupt %d failed\n",
2622					irqnum);
2623			return retval;
2624		}
2625		hcd->irq = irqnum;
2626		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2627				(hcd->driver->flags & HCD_MEMORY) ?
2628					"io mem" : "io base",
2629					(unsigned long long)hcd->rsrc_start);
2630	} else {
2631		hcd->irq = 0;
2632		if (hcd->rsrc_start)
2633			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2634					(hcd->driver->flags & HCD_MEMORY) ?
2635					"io mem" : "io base",
2636					(unsigned long long)hcd->rsrc_start);
2637	}
2638	return 0;
2639}
2640
2641/*
2642 * Before we free this root hub, flush in-flight peering attempts
2643 * and disable peer lookups
2644 */
2645static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2646{
2647	struct usb_device *rhdev;
2648
2649	mutex_lock(&usb_port_peer_mutex);
2650	rhdev = hcd->self.root_hub;
2651	hcd->self.root_hub = NULL;
2652	mutex_unlock(&usb_port_peer_mutex);
2653	usb_put_dev(rhdev);
2654}
2655
2656/**
2657 * usb_add_hcd - finish generic HCD structure initialization and register
2658 * @hcd: the usb_hcd structure to initialize
2659 * @irqnum: Interrupt line to allocate
2660 * @irqflags: Interrupt type flags
2661 *
2662 * Finish the remaining parts of generic HCD initialization: allocate the
2663 * buffers of consistent memory, register the bus, request the IRQ line,
2664 * and call the driver's reset() and start() routines.
2665 */
2666int usb_add_hcd(struct usb_hcd *hcd,
2667		unsigned int irqnum, unsigned long irqflags)
2668{
2669	int retval;
2670	struct usb_device *rhdev;
2671	struct usb_hcd *shared_hcd;
2672
2673	if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2674		hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2675		if (IS_ERR(hcd->phy_roothub))
2676			return PTR_ERR(hcd->phy_roothub);
2677
2678		retval = usb_phy_roothub_init(hcd->phy_roothub);
2679		if (retval)
2680			return retval;
2681
2682		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2683						  PHY_MODE_USB_HOST_SS);
2684		if (retval)
2685			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2686							  PHY_MODE_USB_HOST);
2687		if (retval)
2688			goto err_usb_phy_roothub_power_on;
2689
2690		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2691		if (retval)
2692			goto err_usb_phy_roothub_power_on;
2693	}
2694
2695	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2696
2697	switch (authorized_default) {
2698	case USB_AUTHORIZE_NONE:
2699		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2700		break;
2701
2702	case USB_AUTHORIZE_ALL:
2703		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2704		break;
2705
2706	case USB_AUTHORIZE_INTERNAL:
2707		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2708		break;
2709
2710	case USB_AUTHORIZE_WIRED:
2711	default:
2712		hcd->dev_policy = hcd->wireless ?
2713			USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2714		break;
2715	}
2716
2717	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2718
2719	/* per default all interfaces are authorized */
2720	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2721
2722	/* HC is in reset state, but accessible.  Now do the one-time init,
2723	 * bottom up so that hcds can customize the root hubs before hub_wq
2724	 * starts talking to them.  (Note, bus id is assigned early too.)
2725	 */
2726	retval = hcd_buffer_create(hcd);
2727	if (retval != 0) {
2728		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2729		goto err_create_buf;
2730	}
2731
2732	retval = usb_register_bus(&hcd->self);
2733	if (retval < 0)
2734		goto err_register_bus;
2735
2736	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2737	if (rhdev == NULL) {
2738		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2739		retval = -ENOMEM;
2740		goto err_allocate_root_hub;
2741	}
2742	mutex_lock(&usb_port_peer_mutex);
2743	hcd->self.root_hub = rhdev;
2744	mutex_unlock(&usb_port_peer_mutex);
2745
2746	rhdev->rx_lanes = 1;
2747	rhdev->tx_lanes = 1;
2748	rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2749
2750	switch (hcd->speed) {
2751	case HCD_USB11:
2752		rhdev->speed = USB_SPEED_FULL;
2753		break;
2754	case HCD_USB2:
2755		rhdev->speed = USB_SPEED_HIGH;
2756		break;
2757	case HCD_USB25:
2758		rhdev->speed = USB_SPEED_WIRELESS;
2759		break;
2760	case HCD_USB3:
2761		rhdev->speed = USB_SPEED_SUPER;
2762		break;
2763	case HCD_USB32:
2764		rhdev->rx_lanes = 2;
2765		rhdev->tx_lanes = 2;
2766		rhdev->ssp_rate = USB_SSP_GEN_2x2;
2767		rhdev->speed = USB_SPEED_SUPER_PLUS;
2768		break;
2769	case HCD_USB31:
2770		rhdev->ssp_rate = USB_SSP_GEN_2x1;
2771		rhdev->speed = USB_SPEED_SUPER_PLUS;
2772		break;
2773	default:
2774		retval = -EINVAL;
2775		goto err_set_rh_speed;
2776	}
2777
2778	/* wakeup flag init defaults to "everything works" for root hubs,
2779	 * but drivers can override it in reset() if needed, along with
2780	 * recording the overall controller's system wakeup capability.
2781	 */
2782	device_set_wakeup_capable(&rhdev->dev, 1);
2783
2784	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2785	 * registered.  But since the controller can die at any time,
2786	 * let's initialize the flag before touching the hardware.
2787	 */
2788	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2789
2790	/* "reset" is misnamed; its role is now one-time init. the controller
2791	 * should already have been reset (and boot firmware kicked off etc).
2792	 */
2793	if (hcd->driver->reset) {
2794		retval = hcd->driver->reset(hcd);
2795		if (retval < 0) {
2796			dev_err(hcd->self.controller, "can't setup: %d\n",
2797					retval);
2798			goto err_hcd_driver_setup;
2799		}
2800	}
2801	hcd->rh_pollable = 1;
2802
2803	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2804	if (retval)
2805		goto err_hcd_driver_setup;
2806
2807	/* NOTE: root hub and controller capabilities may not be the same */
2808	if (device_can_wakeup(hcd->self.controller)
2809			&& device_can_wakeup(&hcd->self.root_hub->dev))
2810		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2811
2812	/* initialize tasklets */
2813	init_giveback_urb_bh(&hcd->high_prio_bh);
2814	hcd->high_prio_bh.high_prio = true;
2815	init_giveback_urb_bh(&hcd->low_prio_bh);
2816
2817	/* enable irqs just before we start the controller,
2818	 * if the BIOS provides legacy PCI irqs.
2819	 */
2820	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2821		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2822		if (retval)
2823			goto err_request_irq;
2824	}
2825
2826	hcd->state = HC_STATE_RUNNING;
2827	retval = hcd->driver->start(hcd);
2828	if (retval < 0) {
2829		dev_err(hcd->self.controller, "startup error %d\n", retval);
2830		goto err_hcd_driver_start;
2831	}
2832
2833	/* starting here, usbcore will pay attention to the shared HCD roothub */
2834	shared_hcd = hcd->shared_hcd;
2835	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2836		retval = register_root_hub(shared_hcd);
2837		if (retval != 0)
2838			goto err_register_root_hub;
2839
2840		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2841			usb_hcd_poll_rh_status(shared_hcd);
2842	}
2843
2844	/* starting here, usbcore will pay attention to this root hub */
2845	if (!HCD_DEFER_RH_REGISTER(hcd)) {
2846		retval = register_root_hub(hcd);
2847		if (retval != 0)
2848			goto err_register_root_hub;
2849
2850		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2851			usb_hcd_poll_rh_status(hcd);
2852	}
2853
2854	return retval;
2855
2856err_register_root_hub:
2857	hcd->rh_pollable = 0;
2858	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2859	del_timer_sync(&hcd->rh_timer);
2860	hcd->driver->stop(hcd);
2861	hcd->state = HC_STATE_HALT;
2862	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2863	del_timer_sync(&hcd->rh_timer);
2864err_hcd_driver_start:
2865	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2866		free_irq(irqnum, hcd);
2867err_request_irq:
2868err_hcd_driver_setup:
2869err_set_rh_speed:
2870	usb_put_invalidate_rhdev(hcd);
2871err_allocate_root_hub:
2872	usb_deregister_bus(&hcd->self);
2873err_register_bus:
2874	hcd_buffer_destroy(hcd);
2875err_create_buf:
2876	usb_phy_roothub_power_off(hcd->phy_roothub);
2877err_usb_phy_roothub_power_on:
2878	usb_phy_roothub_exit(hcd->phy_roothub);
2879
2880	return retval;
2881}
2882EXPORT_SYMBOL_GPL(usb_add_hcd);
2883
2884/**
2885 * usb_remove_hcd - shutdown processing for generic HCDs
2886 * @hcd: the usb_hcd structure to remove
2887 * Context: !in_interrupt()
2888 *
2889 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2890 * invoking the HCD's stop() method.
2891 */
2892void usb_remove_hcd(struct usb_hcd *hcd)
2893{
2894	struct usb_device *rhdev = hcd->self.root_hub;
2895	bool rh_registered;
2896
2897	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2898
2899	usb_get_dev(rhdev);
2900	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2901	if (HC_IS_RUNNING (hcd->state))
2902		hcd->state = HC_STATE_QUIESCING;
2903
2904	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2905	spin_lock_irq (&hcd_root_hub_lock);
2906	rh_registered = hcd->rh_registered;
2907	hcd->rh_registered = 0;
2908	spin_unlock_irq (&hcd_root_hub_lock);
2909
2910#ifdef CONFIG_PM
2911	cancel_work_sync(&hcd->wakeup_work);
2912#endif
2913	cancel_work_sync(&hcd->died_work);
2914
2915	mutex_lock(&usb_bus_idr_lock);
2916	if (rh_registered)
2917		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2918	mutex_unlock(&usb_bus_idr_lock);
2919
2920	/*
2921	 * tasklet_kill() isn't needed here because:
2922	 * - driver's disconnect() called from usb_disconnect() should
2923	 *   make sure its URBs are completed during the disconnect()
2924	 *   callback
2925	 *
2926	 * - it is too late to run complete() here since driver may have
2927	 *   been removed already now
2928	 */
2929
2930	/* Prevent any more root-hub status calls from the timer.
2931	 * The HCD might still restart the timer (if a port status change
2932	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2933	 * the hub_status_data() callback.
2934	 */
2935	hcd->rh_pollable = 0;
2936	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2937	del_timer_sync(&hcd->rh_timer);
2938
2939	hcd->driver->stop(hcd);
2940	hcd->state = HC_STATE_HALT;
2941
2942	/* In case the HCD restarted the timer, stop it again. */
2943	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2944	del_timer_sync(&hcd->rh_timer);
2945
2946	if (usb_hcd_is_primary_hcd(hcd)) {
2947		if (hcd->irq > 0)
2948			free_irq(hcd->irq, hcd);
2949	}
2950
2951	usb_deregister_bus(&hcd->self);
2952	hcd_buffer_destroy(hcd);
2953
2954	usb_phy_roothub_power_off(hcd->phy_roothub);
2955	usb_phy_roothub_exit(hcd->phy_roothub);
2956
2957	usb_put_invalidate_rhdev(hcd);
2958	hcd->flags = 0;
2959}
2960EXPORT_SYMBOL_GPL(usb_remove_hcd);
2961
2962void
2963usb_hcd_platform_shutdown(struct platform_device *dev)
2964{
2965	struct usb_hcd *hcd = platform_get_drvdata(dev);
2966
2967	/* No need for pm_runtime_put(), we're shutting down */
2968	pm_runtime_get_sync(&dev->dev);
2969
2970	if (hcd->driver->shutdown)
2971		hcd->driver->shutdown(hcd);
2972}
2973EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2974
2975int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2976			    dma_addr_t dma, size_t size)
2977{
2978	int err;
2979	void *local_mem;
2980
2981	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2982						  dev_to_node(hcd->self.sysdev),
2983						  dev_name(hcd->self.sysdev));
2984	if (IS_ERR(hcd->localmem_pool))
2985		return PTR_ERR(hcd->localmem_pool);
2986
2987	local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2988				  size, MEMREMAP_WC);
2989	if (IS_ERR(local_mem))
2990		return PTR_ERR(local_mem);
2991
2992	/*
2993	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2994	 * It's not backed by system memory and thus there's no kernel mapping
2995	 * for it.
2996	 */
2997	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2998				dma, size, dev_to_node(hcd->self.sysdev));
2999	if (err < 0) {
3000		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3001			err);
3002		return err;
3003	}
3004
3005	return 0;
3006}
3007EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3008
3009/*-------------------------------------------------------------------------*/
3010
3011#if IS_ENABLED(CONFIG_USB_MON)
3012
3013const struct usb_mon_operations *mon_ops;
3014
3015/*
3016 * The registration is unlocked.
3017 * We do it this way because we do not want to lock in hot paths.
3018 *
3019 * Notice that the code is minimally error-proof. Because usbmon needs
3020 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3021 */
3022
3023int usb_mon_register(const struct usb_mon_operations *ops)
3024{
3025
3026	if (mon_ops)
3027		return -EBUSY;
3028
3029	mon_ops = ops;
3030	mb();
3031	return 0;
3032}
3033EXPORT_SYMBOL_GPL (usb_mon_register);
3034
3035void usb_mon_deregister (void)
3036{
3037
3038	if (mon_ops == NULL) {
3039		printk(KERN_ERR "USB: monitor was not registered\n");
3040		return;
3041	}
3042	mon_ops = NULL;
3043	mb();
3044}
3045EXPORT_SYMBOL_GPL (usb_mon_deregister);
3046
3047#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3048