1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12#include <linux/bcd.h> 13#include <linux/module.h> 14#include <linux/version.h> 15#include <linux/kernel.h> 16#include <linux/sched/task_stack.h> 17#include <linux/slab.h> 18#include <linux/completion.h> 19#include <linux/utsname.h> 20#include <linux/mm.h> 21#include <asm/io.h> 22#include <linux/device.h> 23#include <linux/dma-mapping.h> 24#include <linux/mutex.h> 25#include <asm/irq.h> 26#include <asm/byteorder.h> 27#include <asm/unaligned.h> 28#include <linux/platform_device.h> 29#include <linux/workqueue.h> 30#include <linux/pm_runtime.h> 31#include <linux/types.h> 32#include <linux/genalloc.h> 33#include <linux/io.h> 34#include <linux/kcov.h> 35 36#include <linux/phy/phy.h> 37#include <linux/usb.h> 38#include <linux/usb/hcd.h> 39#include <linux/usb/otg.h> 40 41#include "usb.h" 42#include "phy.h" 43 44 45/*-------------------------------------------------------------------------*/ 46 47/* 48 * USB Host Controller Driver framework 49 * 50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 51 * HCD-specific behaviors/bugs. 52 * 53 * This does error checks, tracks devices and urbs, and delegates to a 54 * "hc_driver" only for code (and data) that really needs to know about 55 * hardware differences. That includes root hub registers, i/o queues, 56 * and so on ... but as little else as possible. 57 * 58 * Shared code includes most of the "root hub" code (these are emulated, 59 * though each HC's hardware works differently) and PCI glue, plus request 60 * tracking overhead. The HCD code should only block on spinlocks or on 61 * hardware handshaking; blocking on software events (such as other kernel 62 * threads releasing resources, or completing actions) is all generic. 63 * 64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 66 * only by the hub driver ... and that neither should be seen or used by 67 * usb client device drivers. 68 * 69 * Contributors of ideas or unattributed patches include: David Brownell, 70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 71 * 72 * HISTORY: 73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 74 * associated cleanup. "usb_hcd" still != "usb_bus". 75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 76 */ 77 78/*-------------------------------------------------------------------------*/ 79 80/* Keep track of which host controller drivers are loaded */ 81unsigned long usb_hcds_loaded; 82EXPORT_SYMBOL_GPL(usb_hcds_loaded); 83 84/* host controllers we manage */ 85DEFINE_IDR (usb_bus_idr); 86EXPORT_SYMBOL_GPL (usb_bus_idr); 87 88/* used when allocating bus numbers */ 89#define USB_MAXBUS 64 90 91/* used when updating list of hcds */ 92DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 93EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 94 95/* used for controlling access to virtual root hubs */ 96static DEFINE_SPINLOCK(hcd_root_hub_lock); 97 98/* used when updating an endpoint's URB list */ 99static DEFINE_SPINLOCK(hcd_urb_list_lock); 100 101/* used to protect against unlinking URBs after the device is gone */ 102static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 103 104/* wait queue for synchronous unlinks */ 105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 106 107/*-------------------------------------------------------------------------*/ 108 109/* 110 * Sharable chunks of root hub code. 111 */ 112 113/*-------------------------------------------------------------------------*/ 114#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 115#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 116 117/* usb 3.1 root hub device descriptor */ 118static const u8 usb31_rh_dev_descriptor[18] = { 119 0x12, /* __u8 bLength; */ 120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 122 123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 124 0x00, /* __u8 bDeviceSubClass; */ 125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 127 128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 131 132 0x03, /* __u8 iManufacturer; */ 133 0x02, /* __u8 iProduct; */ 134 0x01, /* __u8 iSerialNumber; */ 135 0x01 /* __u8 bNumConfigurations; */ 136}; 137 138/* usb 3.0 root hub device descriptor */ 139static const u8 usb3_rh_dev_descriptor[18] = { 140 0x12, /* __u8 bLength; */ 141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 143 144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 145 0x00, /* __u8 bDeviceSubClass; */ 146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 148 149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 152 153 0x03, /* __u8 iManufacturer; */ 154 0x02, /* __u8 iProduct; */ 155 0x01, /* __u8 iSerialNumber; */ 156 0x01 /* __u8 bNumConfigurations; */ 157}; 158 159/* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 160static const u8 usb25_rh_dev_descriptor[18] = { 161 0x12, /* __u8 bLength; */ 162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 164 165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 166 0x00, /* __u8 bDeviceSubClass; */ 167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 169 170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 173 174 0x03, /* __u8 iManufacturer; */ 175 0x02, /* __u8 iProduct; */ 176 0x01, /* __u8 iSerialNumber; */ 177 0x01 /* __u8 bNumConfigurations; */ 178}; 179 180/* usb 2.0 root hub device descriptor */ 181static const u8 usb2_rh_dev_descriptor[18] = { 182 0x12, /* __u8 bLength; */ 183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 185 186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 187 0x00, /* __u8 bDeviceSubClass; */ 188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 190 191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 194 195 0x03, /* __u8 iManufacturer; */ 196 0x02, /* __u8 iProduct; */ 197 0x01, /* __u8 iSerialNumber; */ 198 0x01 /* __u8 bNumConfigurations; */ 199}; 200 201/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 202 203/* usb 1.1 root hub device descriptor */ 204static const u8 usb11_rh_dev_descriptor[18] = { 205 0x12, /* __u8 bLength; */ 206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 208 209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 210 0x00, /* __u8 bDeviceSubClass; */ 211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 213 214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 217 218 0x03, /* __u8 iManufacturer; */ 219 0x02, /* __u8 iProduct; */ 220 0x01, /* __u8 iSerialNumber; */ 221 0x01 /* __u8 bNumConfigurations; */ 222}; 223 224 225/*-------------------------------------------------------------------------*/ 226 227/* Configuration descriptors for our root hubs */ 228 229static const u8 fs_rh_config_descriptor[] = { 230 231 /* one configuration */ 232 0x09, /* __u8 bLength; */ 233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 234 0x19, 0x00, /* __le16 wTotalLength; */ 235 0x01, /* __u8 bNumInterfaces; (1) */ 236 0x01, /* __u8 bConfigurationValue; */ 237 0x00, /* __u8 iConfiguration; */ 238 0xc0, /* __u8 bmAttributes; 239 Bit 7: must be set, 240 6: Self-powered, 241 5: Remote wakeup, 242 4..0: resvd */ 243 0x00, /* __u8 MaxPower; */ 244 245 /* USB 1.1: 246 * USB 2.0, single TT organization (mandatory): 247 * one interface, protocol 0 248 * 249 * USB 2.0, multiple TT organization (optional): 250 * two interfaces, protocols 1 (like single TT) 251 * and 2 (multiple TT mode) ... config is 252 * sometimes settable 253 * NOT IMPLEMENTED 254 */ 255 256 /* one interface */ 257 0x09, /* __u8 if_bLength; */ 258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 259 0x00, /* __u8 if_bInterfaceNumber; */ 260 0x00, /* __u8 if_bAlternateSetting; */ 261 0x01, /* __u8 if_bNumEndpoints; */ 262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 263 0x00, /* __u8 if_bInterfaceSubClass; */ 264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 265 0x00, /* __u8 if_iInterface; */ 266 267 /* one endpoint (status change endpoint) */ 268 0x07, /* __u8 ep_bLength; */ 269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 271 0x03, /* __u8 ep_bmAttributes; Interrupt */ 272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 274}; 275 276static const u8 hs_rh_config_descriptor[] = { 277 278 /* one configuration */ 279 0x09, /* __u8 bLength; */ 280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 281 0x19, 0x00, /* __le16 wTotalLength; */ 282 0x01, /* __u8 bNumInterfaces; (1) */ 283 0x01, /* __u8 bConfigurationValue; */ 284 0x00, /* __u8 iConfiguration; */ 285 0xc0, /* __u8 bmAttributes; 286 Bit 7: must be set, 287 6: Self-powered, 288 5: Remote wakeup, 289 4..0: resvd */ 290 0x00, /* __u8 MaxPower; */ 291 292 /* USB 1.1: 293 * USB 2.0, single TT organization (mandatory): 294 * one interface, protocol 0 295 * 296 * USB 2.0, multiple TT organization (optional): 297 * two interfaces, protocols 1 (like single TT) 298 * and 2 (multiple TT mode) ... config is 299 * sometimes settable 300 * NOT IMPLEMENTED 301 */ 302 303 /* one interface */ 304 0x09, /* __u8 if_bLength; */ 305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 306 0x00, /* __u8 if_bInterfaceNumber; */ 307 0x00, /* __u8 if_bAlternateSetting; */ 308 0x01, /* __u8 if_bNumEndpoints; */ 309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 310 0x00, /* __u8 if_bInterfaceSubClass; */ 311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 312 0x00, /* __u8 if_iInterface; */ 313 314 /* one endpoint (status change endpoint) */ 315 0x07, /* __u8 ep_bLength; */ 316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 318 0x03, /* __u8 ep_bmAttributes; Interrupt */ 319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 320 * see hub.c:hub_configure() for details. */ 321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 323}; 324 325static const u8 ss_rh_config_descriptor[] = { 326 /* one configuration */ 327 0x09, /* __u8 bLength; */ 328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 329 0x1f, 0x00, /* __le16 wTotalLength; */ 330 0x01, /* __u8 bNumInterfaces; (1) */ 331 0x01, /* __u8 bConfigurationValue; */ 332 0x00, /* __u8 iConfiguration; */ 333 0xc0, /* __u8 bmAttributes; 334 Bit 7: must be set, 335 6: Self-powered, 336 5: Remote wakeup, 337 4..0: resvd */ 338 0x00, /* __u8 MaxPower; */ 339 340 /* one interface */ 341 0x09, /* __u8 if_bLength; */ 342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 343 0x00, /* __u8 if_bInterfaceNumber; */ 344 0x00, /* __u8 if_bAlternateSetting; */ 345 0x01, /* __u8 if_bNumEndpoints; */ 346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 347 0x00, /* __u8 if_bInterfaceSubClass; */ 348 0x00, /* __u8 if_bInterfaceProtocol; */ 349 0x00, /* __u8 if_iInterface; */ 350 351 /* one endpoint (status change endpoint) */ 352 0x07, /* __u8 ep_bLength; */ 353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 355 0x03, /* __u8 ep_bmAttributes; Interrupt */ 356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 357 * see hub.c:hub_configure() for details. */ 358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 360 361 /* one SuperSpeed endpoint companion descriptor */ 362 0x06, /* __u8 ss_bLength */ 363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 364 /* Companion */ 365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 368}; 369 370/* authorized_default behaviour: 371 * -1 is authorized for all devices except wireless (old behaviour) 372 * 0 is unauthorized for all devices 373 * 1 is authorized for all devices 374 * 2 is authorized for internal devices 375 */ 376#define USB_AUTHORIZE_WIRED -1 377#define USB_AUTHORIZE_NONE 0 378#define USB_AUTHORIZE_ALL 1 379#define USB_AUTHORIZE_INTERNAL 2 380 381static int authorized_default = USB_AUTHORIZE_WIRED; 382module_param(authorized_default, int, S_IRUGO|S_IWUSR); 383MODULE_PARM_DESC(authorized_default, 384 "Default USB device authorization: 0 is not authorized, 1 is " 385 "authorized, 2 is authorized for internal devices, -1 is " 386 "authorized except for wireless USB (default, old behaviour)"); 387/*-------------------------------------------------------------------------*/ 388 389/** 390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 391 * @s: Null-terminated ASCII (actually ISO-8859-1) string 392 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 393 * @len: Length (in bytes; may be odd) of descriptor buffer. 394 * 395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 396 * whichever is less. 397 * 398 * Note: 399 * USB String descriptors can contain at most 126 characters; input 400 * strings longer than that are truncated. 401 */ 402static unsigned 403ascii2desc(char const *s, u8 *buf, unsigned len) 404{ 405 unsigned n, t = 2 + 2*strlen(s); 406 407 if (t > 254) 408 t = 254; /* Longest possible UTF string descriptor */ 409 if (len > t) 410 len = t; 411 412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 413 414 n = len; 415 while (n--) { 416 *buf++ = t; 417 if (!n--) 418 break; 419 *buf++ = t >> 8; 420 t = (unsigned char)*s++; 421 } 422 return len; 423} 424 425/** 426 * rh_string() - provides string descriptors for root hub 427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 428 * @hcd: the host controller for this root hub 429 * @data: buffer for output packet 430 * @len: length of the provided buffer 431 * 432 * Produces either a manufacturer, product or serial number string for the 433 * virtual root hub device. 434 * 435 * Return: The number of bytes filled in: the length of the descriptor or 436 * of the provided buffer, whichever is less. 437 */ 438static unsigned 439rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 440{ 441 char buf[100]; 442 char const *s; 443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 444 445 /* language ids */ 446 switch (id) { 447 case 0: 448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 450 if (len > 4) 451 len = 4; 452 memcpy(data, langids, len); 453 return len; 454 case 1: 455 /* Serial number */ 456 s = hcd->self.bus_name; 457 break; 458 case 2: 459 /* Product name */ 460 s = hcd->product_desc; 461 break; 462 case 3: 463 /* Manufacturer */ 464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 465 init_utsname()->release, hcd->driver->description); 466 s = buf; 467 break; 468 default: 469 /* Can't happen; caller guarantees it */ 470 return 0; 471 } 472 473 return ascii2desc(s, data, len); 474} 475 476 477/* Root hub control transfers execute synchronously */ 478static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 479{ 480 struct usb_ctrlrequest *cmd; 481 u16 typeReq, wValue, wIndex, wLength; 482 u8 *ubuf = urb->transfer_buffer; 483 unsigned len = 0; 484 int status; 485 u8 patch_wakeup = 0; 486 u8 patch_protocol = 0; 487 u16 tbuf_size; 488 u8 *tbuf = NULL; 489 const u8 *bufp; 490 491 might_sleep(); 492 493 spin_lock_irq(&hcd_root_hub_lock); 494 status = usb_hcd_link_urb_to_ep(hcd, urb); 495 spin_unlock_irq(&hcd_root_hub_lock); 496 if (status) 497 return status; 498 urb->hcpriv = hcd; /* Indicate it's queued */ 499 500 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 502 wValue = le16_to_cpu (cmd->wValue); 503 wIndex = le16_to_cpu (cmd->wIndex); 504 wLength = le16_to_cpu (cmd->wLength); 505 506 if (wLength > urb->transfer_buffer_length) 507 goto error; 508 509 /* 510 * tbuf should be at least as big as the 511 * USB hub descriptor. 512 */ 513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 514 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 515 if (!tbuf) { 516 status = -ENOMEM; 517 goto err_alloc; 518 } 519 520 bufp = tbuf; 521 522 523 urb->actual_length = 0; 524 switch (typeReq) { 525 526 /* DEVICE REQUESTS */ 527 528 /* The root hub's remote wakeup enable bit is implemented using 529 * driver model wakeup flags. If this system supports wakeup 530 * through USB, userspace may change the default "allow wakeup" 531 * policy through sysfs or these calls. 532 * 533 * Most root hubs support wakeup from downstream devices, for 534 * runtime power management (disabling USB clocks and reducing 535 * VBUS power usage). However, not all of them do so; silicon, 536 * board, and BIOS bugs here are not uncommon, so these can't 537 * be treated quite like external hubs. 538 * 539 * Likewise, not all root hubs will pass wakeup events upstream, 540 * to wake up the whole system. So don't assume root hub and 541 * controller capabilities are identical. 542 */ 543 544 case DeviceRequest | USB_REQ_GET_STATUS: 545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 546 << USB_DEVICE_REMOTE_WAKEUP) 547 | (1 << USB_DEVICE_SELF_POWERED); 548 tbuf[1] = 0; 549 len = 2; 550 break; 551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 552 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 554 else 555 goto error; 556 break; 557 case DeviceOutRequest | USB_REQ_SET_FEATURE: 558 if (device_can_wakeup(&hcd->self.root_hub->dev) 559 && wValue == USB_DEVICE_REMOTE_WAKEUP) 560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 561 else 562 goto error; 563 break; 564 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 565 tbuf[0] = 1; 566 len = 1; 567 fallthrough; 568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 569 break; 570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 571 switch (wValue & 0xff00) { 572 case USB_DT_DEVICE << 8: 573 switch (hcd->speed) { 574 case HCD_USB32: 575 case HCD_USB31: 576 bufp = usb31_rh_dev_descriptor; 577 break; 578 case HCD_USB3: 579 bufp = usb3_rh_dev_descriptor; 580 break; 581 case HCD_USB25: 582 bufp = usb25_rh_dev_descriptor; 583 break; 584 case HCD_USB2: 585 bufp = usb2_rh_dev_descriptor; 586 break; 587 case HCD_USB11: 588 bufp = usb11_rh_dev_descriptor; 589 break; 590 default: 591 goto error; 592 } 593 len = 18; 594 if (hcd->has_tt) 595 patch_protocol = 1; 596 break; 597 case USB_DT_CONFIG << 8: 598 switch (hcd->speed) { 599 case HCD_USB32: 600 case HCD_USB31: 601 case HCD_USB3: 602 bufp = ss_rh_config_descriptor; 603 len = sizeof ss_rh_config_descriptor; 604 break; 605 case HCD_USB25: 606 case HCD_USB2: 607 bufp = hs_rh_config_descriptor; 608 len = sizeof hs_rh_config_descriptor; 609 break; 610 case HCD_USB11: 611 bufp = fs_rh_config_descriptor; 612 len = sizeof fs_rh_config_descriptor; 613 break; 614 default: 615 goto error; 616 } 617 if (device_can_wakeup(&hcd->self.root_hub->dev)) 618 patch_wakeup = 1; 619 break; 620 case USB_DT_STRING << 8: 621 if ((wValue & 0xff) < 4) 622 urb->actual_length = rh_string(wValue & 0xff, 623 hcd, ubuf, wLength); 624 else /* unsupported IDs --> "protocol stall" */ 625 goto error; 626 break; 627 case USB_DT_BOS << 8: 628 goto nongeneric; 629 default: 630 goto error; 631 } 632 break; 633 case DeviceRequest | USB_REQ_GET_INTERFACE: 634 tbuf[0] = 0; 635 len = 1; 636 fallthrough; 637 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 638 break; 639 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 640 /* wValue == urb->dev->devaddr */ 641 dev_dbg (hcd->self.controller, "root hub device address %d\n", 642 wValue); 643 break; 644 645 /* INTERFACE REQUESTS (no defined feature/status flags) */ 646 647 /* ENDPOINT REQUESTS */ 648 649 case EndpointRequest | USB_REQ_GET_STATUS: 650 /* ENDPOINT_HALT flag */ 651 tbuf[0] = 0; 652 tbuf[1] = 0; 653 len = 2; 654 fallthrough; 655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 656 case EndpointOutRequest | USB_REQ_SET_FEATURE: 657 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 658 break; 659 660 /* CLASS REQUESTS (and errors) */ 661 662 default: 663nongeneric: 664 /* non-generic request */ 665 switch (typeReq) { 666 case GetHubStatus: 667 len = 4; 668 break; 669 case GetPortStatus: 670 if (wValue == HUB_PORT_STATUS) 671 len = 4; 672 else 673 /* other port status types return 8 bytes */ 674 len = 8; 675 break; 676 case GetHubDescriptor: 677 len = sizeof (struct usb_hub_descriptor); 678 break; 679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 680 /* len is returned by hub_control */ 681 break; 682 } 683 status = hcd->driver->hub_control (hcd, 684 typeReq, wValue, wIndex, 685 tbuf, wLength); 686 687 if (typeReq == GetHubDescriptor) 688 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 689 (struct usb_hub_descriptor *)tbuf); 690 break; 691error: 692 /* "protocol stall" on error */ 693 status = -EPIPE; 694 } 695 696 if (status < 0) { 697 len = 0; 698 if (status != -EPIPE) { 699 dev_dbg (hcd->self.controller, 700 "CTRL: TypeReq=0x%x val=0x%x " 701 "idx=0x%x len=%d ==> %d\n", 702 typeReq, wValue, wIndex, 703 wLength, status); 704 } 705 } else if (status > 0) { 706 /* hub_control may return the length of data copied. */ 707 len = status; 708 status = 0; 709 } 710 if (len) { 711 if (urb->transfer_buffer_length < len) 712 len = urb->transfer_buffer_length; 713 urb->actual_length = len; 714 /* always USB_DIR_IN, toward host */ 715 memcpy (ubuf, bufp, len); 716 717 /* report whether RH hardware supports remote wakeup */ 718 if (patch_wakeup && 719 len > offsetof (struct usb_config_descriptor, 720 bmAttributes)) 721 ((struct usb_config_descriptor *)ubuf)->bmAttributes 722 |= USB_CONFIG_ATT_WAKEUP; 723 724 /* report whether RH hardware has an integrated TT */ 725 if (patch_protocol && 726 len > offsetof(struct usb_device_descriptor, 727 bDeviceProtocol)) 728 ((struct usb_device_descriptor *) ubuf)-> 729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 730 } 731 732 kfree(tbuf); 733 err_alloc: 734 735 /* any errors get returned through the urb completion */ 736 spin_lock_irq(&hcd_root_hub_lock); 737 usb_hcd_unlink_urb_from_ep(hcd, urb); 738 usb_hcd_giveback_urb(hcd, urb, status); 739 spin_unlock_irq(&hcd_root_hub_lock); 740 return 0; 741} 742 743/*-------------------------------------------------------------------------*/ 744 745/* 746 * Root Hub interrupt transfers are polled using a timer if the 747 * driver requests it; otherwise the driver is responsible for 748 * calling usb_hcd_poll_rh_status() when an event occurs. 749 * 750 * Completions are called in_interrupt(), but they may or may not 751 * be in_irq(). 752 */ 753void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 754{ 755 struct urb *urb; 756 int length; 757 int status; 758 unsigned long flags; 759 char buffer[6]; /* Any root hubs with > 31 ports? */ 760 761 if (unlikely(!hcd->rh_pollable)) 762 return; 763 if (!hcd->uses_new_polling && !hcd->status_urb) 764 return; 765 766 length = hcd->driver->hub_status_data(hcd, buffer); 767 if (length > 0) { 768 769 /* try to complete the status urb */ 770 spin_lock_irqsave(&hcd_root_hub_lock, flags); 771 urb = hcd->status_urb; 772 if (urb) { 773 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 774 hcd->status_urb = NULL; 775 if (urb->transfer_buffer_length >= length) { 776 status = 0; 777 } else { 778 status = -EOVERFLOW; 779 length = urb->transfer_buffer_length; 780 } 781 urb->actual_length = length; 782 memcpy(urb->transfer_buffer, buffer, length); 783 784 usb_hcd_unlink_urb_from_ep(hcd, urb); 785 usb_hcd_giveback_urb(hcd, urb, status); 786 } else { 787 length = 0; 788 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 789 } 790 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 791 } 792 793 /* The USB 2.0 spec says 256 ms. This is close enough and won't 794 * exceed that limit if HZ is 100. The math is more clunky than 795 * maybe expected, this is to make sure that all timers for USB devices 796 * fire at the same time to give the CPU a break in between */ 797 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 798 (length == 0 && hcd->status_urb != NULL)) 799 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 800} 801EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 802 803/* timer callback */ 804static void rh_timer_func (struct timer_list *t) 805{ 806 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 807 808 usb_hcd_poll_rh_status(_hcd); 809} 810 811/*-------------------------------------------------------------------------*/ 812 813static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 814{ 815 int retval; 816 unsigned long flags; 817 unsigned len = 1 + (urb->dev->maxchild / 8); 818 819 spin_lock_irqsave (&hcd_root_hub_lock, flags); 820 if (hcd->status_urb || urb->transfer_buffer_length < len) { 821 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 822 retval = -EINVAL; 823 goto done; 824 } 825 826 retval = usb_hcd_link_urb_to_ep(hcd, urb); 827 if (retval) 828 goto done; 829 830 hcd->status_urb = urb; 831 urb->hcpriv = hcd; /* indicate it's queued */ 832 if (!hcd->uses_new_polling) 833 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 834 835 /* If a status change has already occurred, report it ASAP */ 836 else if (HCD_POLL_PENDING(hcd)) 837 mod_timer(&hcd->rh_timer, jiffies); 838 retval = 0; 839 done: 840 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 841 return retval; 842} 843 844static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 845{ 846 if (usb_endpoint_xfer_int(&urb->ep->desc)) 847 return rh_queue_status (hcd, urb); 848 if (usb_endpoint_xfer_control(&urb->ep->desc)) 849 return rh_call_control (hcd, urb); 850 return -EINVAL; 851} 852 853/*-------------------------------------------------------------------------*/ 854 855/* Unlinks of root-hub control URBs are legal, but they don't do anything 856 * since these URBs always execute synchronously. 857 */ 858static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 859{ 860 unsigned long flags; 861 int rc; 862 863 spin_lock_irqsave(&hcd_root_hub_lock, flags); 864 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 865 if (rc) 866 goto done; 867 868 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 869 ; /* Do nothing */ 870 871 } else { /* Status URB */ 872 if (!hcd->uses_new_polling) 873 del_timer (&hcd->rh_timer); 874 if (urb == hcd->status_urb) { 875 hcd->status_urb = NULL; 876 usb_hcd_unlink_urb_from_ep(hcd, urb); 877 usb_hcd_giveback_urb(hcd, urb, status); 878 } 879 } 880 done: 881 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 882 return rc; 883} 884 885 886/*-------------------------------------------------------------------------*/ 887 888/** 889 * usb_bus_init - shared initialization code 890 * @bus: the bus structure being initialized 891 * 892 * This code is used to initialize a usb_bus structure, memory for which is 893 * separately managed. 894 */ 895static void usb_bus_init (struct usb_bus *bus) 896{ 897 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 898 899 bus->devnum_next = 1; 900 901 bus->root_hub = NULL; 902 bus->busnum = -1; 903 bus->bandwidth_allocated = 0; 904 bus->bandwidth_int_reqs = 0; 905 bus->bandwidth_isoc_reqs = 0; 906 mutex_init(&bus->devnum_next_mutex); 907} 908 909/*-------------------------------------------------------------------------*/ 910 911/** 912 * usb_register_bus - registers the USB host controller with the usb core 913 * @bus: pointer to the bus to register 914 * Context: !in_interrupt() 915 * 916 * Assigns a bus number, and links the controller into usbcore data 917 * structures so that it can be seen by scanning the bus list. 918 * 919 * Return: 0 if successful. A negative error code otherwise. 920 */ 921static int usb_register_bus(struct usb_bus *bus) 922{ 923 int result = -E2BIG; 924 int busnum; 925 926 mutex_lock(&usb_bus_idr_lock); 927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 928 if (busnum < 0) { 929 pr_err("%s: failed to get bus number\n", usbcore_name); 930 goto error_find_busnum; 931 } 932 bus->busnum = busnum; 933 mutex_unlock(&usb_bus_idr_lock); 934 935 usb_notify_add_bus(bus); 936 937 dev_info (bus->controller, "new USB bus registered, assigned bus " 938 "number %d\n", bus->busnum); 939 return 0; 940 941error_find_busnum: 942 mutex_unlock(&usb_bus_idr_lock); 943 return result; 944} 945 946/** 947 * usb_deregister_bus - deregisters the USB host controller 948 * @bus: pointer to the bus to deregister 949 * Context: !in_interrupt() 950 * 951 * Recycles the bus number, and unlinks the controller from usbcore data 952 * structures so that it won't be seen by scanning the bus list. 953 */ 954static void usb_deregister_bus (struct usb_bus *bus) 955{ 956 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 957 958 /* 959 * NOTE: make sure that all the devices are removed by the 960 * controller code, as well as having it call this when cleaning 961 * itself up 962 */ 963 mutex_lock(&usb_bus_idr_lock); 964 idr_remove(&usb_bus_idr, bus->busnum); 965 mutex_unlock(&usb_bus_idr_lock); 966 967 usb_notify_remove_bus(bus); 968} 969 970/** 971 * register_root_hub - called by usb_add_hcd() to register a root hub 972 * @hcd: host controller for this root hub 973 * 974 * This function registers the root hub with the USB subsystem. It sets up 975 * the device properly in the device tree and then calls usb_new_device() 976 * to register the usb device. It also assigns the root hub's USB address 977 * (always 1). 978 * 979 * Return: 0 if successful. A negative error code otherwise. 980 */ 981static int register_root_hub(struct usb_hcd *hcd) 982{ 983 struct device *parent_dev = hcd->self.controller; 984 struct usb_device *usb_dev = hcd->self.root_hub; 985 struct usb_device_descriptor *descr; 986 const int devnum = 1; 987 int retval; 988 989 usb_dev->devnum = devnum; 990 usb_dev->bus->devnum_next = devnum + 1; 991 set_bit (devnum, usb_dev->bus->devmap.devicemap); 992 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 993 994 mutex_lock(&usb_bus_idr_lock); 995 996 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 997 descr = usb_get_device_descriptor(usb_dev); 998 if (IS_ERR(descr)) { 999 retval = PTR_ERR(descr); 1000 mutex_unlock(&usb_bus_idr_lock); 1001 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1002 dev_name(&usb_dev->dev), retval); 1003 return retval; 1004 } 1005 usb_dev->descriptor = *descr; 1006 kfree(descr); 1007 1008 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1009 retval = usb_get_bos_descriptor(usb_dev); 1010 if (!retval) { 1011 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1012 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1013 mutex_unlock(&usb_bus_idr_lock); 1014 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1015 dev_name(&usb_dev->dev), retval); 1016 return retval; 1017 } 1018 } 1019 1020 retval = usb_new_device (usb_dev); 1021 if (retval) { 1022 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1023 dev_name(&usb_dev->dev), retval); 1024 } else { 1025 spin_lock_irq (&hcd_root_hub_lock); 1026 hcd->rh_registered = 1; 1027 spin_unlock_irq (&hcd_root_hub_lock); 1028 1029 /* Did the HC die before the root hub was registered? */ 1030 if (HCD_DEAD(hcd)) 1031 usb_hc_died (hcd); /* This time clean up */ 1032 } 1033 mutex_unlock(&usb_bus_idr_lock); 1034 1035 return retval; 1036} 1037 1038/* 1039 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1040 * @bus: the bus which the root hub belongs to 1041 * @portnum: the port which is being resumed 1042 * 1043 * HCDs should call this function when they know that a resume signal is 1044 * being sent to a root-hub port. The root hub will be prevented from 1045 * going into autosuspend until usb_hcd_end_port_resume() is called. 1046 * 1047 * The bus's private lock must be held by the caller. 1048 */ 1049void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1050{ 1051 unsigned bit = 1 << portnum; 1052 1053 if (!(bus->resuming_ports & bit)) { 1054 bus->resuming_ports |= bit; 1055 pm_runtime_get_noresume(&bus->root_hub->dev); 1056 } 1057} 1058EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1059 1060/* 1061 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1062 * @bus: the bus which the root hub belongs to 1063 * @portnum: the port which is being resumed 1064 * 1065 * HCDs should call this function when they know that a resume signal has 1066 * stopped being sent to a root-hub port. The root hub will be allowed to 1067 * autosuspend again. 1068 * 1069 * The bus's private lock must be held by the caller. 1070 */ 1071void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1072{ 1073 unsigned bit = 1 << portnum; 1074 1075 if (bus->resuming_ports & bit) { 1076 bus->resuming_ports &= ~bit; 1077 pm_runtime_put_noidle(&bus->root_hub->dev); 1078 } 1079} 1080EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1081 1082/*-------------------------------------------------------------------------*/ 1083 1084/** 1085 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1086 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1087 * @is_input: true iff the transaction sends data to the host 1088 * @isoc: true for isochronous transactions, false for interrupt ones 1089 * @bytecount: how many bytes in the transaction. 1090 * 1091 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1092 * 1093 * Note: 1094 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1095 * scheduled in software, this function is only used for such scheduling. 1096 */ 1097long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1098{ 1099 unsigned long tmp; 1100 1101 switch (speed) { 1102 case USB_SPEED_LOW: /* INTR only */ 1103 if (is_input) { 1104 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1105 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1106 } else { 1107 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1108 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1109 } 1110 case USB_SPEED_FULL: /* ISOC or INTR */ 1111 if (isoc) { 1112 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1113 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1114 } else { 1115 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1116 return 9107L + BW_HOST_DELAY + tmp; 1117 } 1118 case USB_SPEED_HIGH: /* ISOC or INTR */ 1119 /* FIXME adjust for input vs output */ 1120 if (isoc) 1121 tmp = HS_NSECS_ISO (bytecount); 1122 else 1123 tmp = HS_NSECS (bytecount); 1124 return tmp; 1125 default: 1126 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1127 return -1; 1128 } 1129} 1130EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1131 1132 1133/*-------------------------------------------------------------------------*/ 1134 1135/* 1136 * Generic HC operations. 1137 */ 1138 1139/*-------------------------------------------------------------------------*/ 1140 1141/** 1142 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1143 * @hcd: host controller to which @urb was submitted 1144 * @urb: URB being submitted 1145 * 1146 * Host controller drivers should call this routine in their enqueue() 1147 * method. The HCD's private spinlock must be held and interrupts must 1148 * be disabled. The actions carried out here are required for URB 1149 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1150 * 1151 * Return: 0 for no error, otherwise a negative error code (in which case 1152 * the enqueue() method must fail). If no error occurs but enqueue() fails 1153 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1154 * the private spinlock and returning. 1155 */ 1156int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1157{ 1158 int rc = 0; 1159 1160 spin_lock(&hcd_urb_list_lock); 1161 1162 /* Check that the URB isn't being killed */ 1163 if (unlikely(atomic_read(&urb->reject))) { 1164 rc = -EPERM; 1165 goto done; 1166 } 1167 1168 if (unlikely(!urb->ep->enabled)) { 1169 rc = -ENOENT; 1170 goto done; 1171 } 1172 1173 if (unlikely(!urb->dev->can_submit)) { 1174 rc = -EHOSTUNREACH; 1175 goto done; 1176 } 1177 1178 /* 1179 * Check the host controller's state and add the URB to the 1180 * endpoint's queue. 1181 */ 1182 if (HCD_RH_RUNNING(hcd)) { 1183 urb->unlinked = 0; 1184 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1185 } else { 1186 rc = -ESHUTDOWN; 1187 goto done; 1188 } 1189 done: 1190 spin_unlock(&hcd_urb_list_lock); 1191 return rc; 1192} 1193EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1194 1195/** 1196 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1197 * @hcd: host controller to which @urb was submitted 1198 * @urb: URB being checked for unlinkability 1199 * @status: error code to store in @urb if the unlink succeeds 1200 * 1201 * Host controller drivers should call this routine in their dequeue() 1202 * method. The HCD's private spinlock must be held and interrupts must 1203 * be disabled. The actions carried out here are required for making 1204 * sure than an unlink is valid. 1205 * 1206 * Return: 0 for no error, otherwise a negative error code (in which case 1207 * the dequeue() method must fail). The possible error codes are: 1208 * 1209 * -EIDRM: @urb was not submitted or has already completed. 1210 * The completion function may not have been called yet. 1211 * 1212 * -EBUSY: @urb has already been unlinked. 1213 */ 1214int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1215 int status) 1216{ 1217 struct list_head *tmp; 1218 1219 /* insist the urb is still queued */ 1220 list_for_each(tmp, &urb->ep->urb_list) { 1221 if (tmp == &urb->urb_list) 1222 break; 1223 } 1224 if (tmp != &urb->urb_list) 1225 return -EIDRM; 1226 1227 /* Any status except -EINPROGRESS means something already started to 1228 * unlink this URB from the hardware. So there's no more work to do. 1229 */ 1230 if (urb->unlinked) 1231 return -EBUSY; 1232 urb->unlinked = status; 1233 return 0; 1234} 1235EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1236 1237/** 1238 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1239 * @hcd: host controller to which @urb was submitted 1240 * @urb: URB being unlinked 1241 * 1242 * Host controller drivers should call this routine before calling 1243 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1244 * interrupts must be disabled. The actions carried out here are required 1245 * for URB completion. 1246 */ 1247void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1248{ 1249 /* clear all state linking urb to this dev (and hcd) */ 1250 spin_lock(&hcd_urb_list_lock); 1251 list_del_init(&urb->urb_list); 1252 spin_unlock(&hcd_urb_list_lock); 1253} 1254EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1255 1256/* 1257 * Some usb host controllers can only perform dma using a small SRAM area. 1258 * The usb core itself is however optimized for host controllers that can dma 1259 * using regular system memory - like pci devices doing bus mastering. 1260 * 1261 * To support host controllers with limited dma capabilities we provide dma 1262 * bounce buffers. This feature can be enabled by initializing 1263 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1264 * 1265 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1266 * data for dma using the genalloc API. 1267 * 1268 * So, to summarize... 1269 * 1270 * - We need "local" memory, canonical example being 1271 * a small SRAM on a discrete controller being the 1272 * only memory that the controller can read ... 1273 * (a) "normal" kernel memory is no good, and 1274 * (b) there's not enough to share 1275 * 1276 * - So we use that, even though the primary requirement 1277 * is that the memory be "local" (hence addressable 1278 * by that device), not "coherent". 1279 * 1280 */ 1281 1282static int hcd_alloc_coherent(struct usb_bus *bus, 1283 gfp_t mem_flags, dma_addr_t *dma_handle, 1284 void **vaddr_handle, size_t size, 1285 enum dma_data_direction dir) 1286{ 1287 unsigned char *vaddr; 1288 1289 if (*vaddr_handle == NULL) { 1290 WARN_ON_ONCE(1); 1291 return -EFAULT; 1292 } 1293 1294 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1295 mem_flags, dma_handle); 1296 if (!vaddr) 1297 return -ENOMEM; 1298 1299 /* 1300 * Store the virtual address of the buffer at the end 1301 * of the allocated dma buffer. The size of the buffer 1302 * may be uneven so use unaligned functions instead 1303 * of just rounding up. It makes sense to optimize for 1304 * memory footprint over access speed since the amount 1305 * of memory available for dma may be limited. 1306 */ 1307 put_unaligned((unsigned long)*vaddr_handle, 1308 (unsigned long *)(vaddr + size)); 1309 1310 if (dir == DMA_TO_DEVICE) 1311 memcpy(vaddr, *vaddr_handle, size); 1312 1313 *vaddr_handle = vaddr; 1314 return 0; 1315} 1316 1317static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1318 void **vaddr_handle, size_t size, 1319 enum dma_data_direction dir) 1320{ 1321 unsigned char *vaddr = *vaddr_handle; 1322 1323 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1324 1325 if (dir == DMA_FROM_DEVICE) 1326 memcpy(vaddr, *vaddr_handle, size); 1327 1328 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1329 1330 *vaddr_handle = vaddr; 1331 *dma_handle = 0; 1332} 1333 1334void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1335{ 1336 if (IS_ENABLED(CONFIG_HAS_DMA) && 1337 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1338 dma_unmap_single(hcd->self.sysdev, 1339 urb->setup_dma, 1340 sizeof(struct usb_ctrlrequest), 1341 DMA_TO_DEVICE); 1342 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1343 hcd_free_coherent(urb->dev->bus, 1344 &urb->setup_dma, 1345 (void **) &urb->setup_packet, 1346 sizeof(struct usb_ctrlrequest), 1347 DMA_TO_DEVICE); 1348 1349 /* Make it safe to call this routine more than once */ 1350 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1351} 1352EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1353 1354static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1355{ 1356 if (hcd->driver->unmap_urb_for_dma) 1357 hcd->driver->unmap_urb_for_dma(hcd, urb); 1358 else 1359 usb_hcd_unmap_urb_for_dma(hcd, urb); 1360} 1361 1362void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1363{ 1364 enum dma_data_direction dir; 1365 1366 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1367 1368 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1369 if (IS_ENABLED(CONFIG_HAS_DMA) && 1370 (urb->transfer_flags & URB_DMA_MAP_SG)) 1371 dma_unmap_sg(hcd->self.sysdev, 1372 urb->sg, 1373 urb->num_sgs, 1374 dir); 1375 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1376 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1377 dma_unmap_page(hcd->self.sysdev, 1378 urb->transfer_dma, 1379 urb->transfer_buffer_length, 1380 dir); 1381 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1382 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1383 dma_unmap_single(hcd->self.sysdev, 1384 urb->transfer_dma, 1385 urb->transfer_buffer_length, 1386 dir); 1387 else if (urb->transfer_flags & URB_MAP_LOCAL) 1388 hcd_free_coherent(urb->dev->bus, 1389 &urb->transfer_dma, 1390 &urb->transfer_buffer, 1391 urb->transfer_buffer_length, 1392 dir); 1393 1394 /* Make it safe to call this routine more than once */ 1395 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1396 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1397} 1398EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1399 1400static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1401 gfp_t mem_flags) 1402{ 1403 if (hcd->driver->map_urb_for_dma) 1404 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1405 else 1406 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1407} 1408 1409int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1410 gfp_t mem_flags) 1411{ 1412 enum dma_data_direction dir; 1413 int ret = 0; 1414 1415 /* Map the URB's buffers for DMA access. 1416 * Lower level HCD code should use *_dma exclusively, 1417 * unless it uses pio or talks to another transport, 1418 * or uses the provided scatter gather list for bulk. 1419 */ 1420 1421 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1422 if (hcd->self.uses_pio_for_control) 1423 return ret; 1424 if (hcd->localmem_pool) { 1425 ret = hcd_alloc_coherent( 1426 urb->dev->bus, mem_flags, 1427 &urb->setup_dma, 1428 (void **)&urb->setup_packet, 1429 sizeof(struct usb_ctrlrequest), 1430 DMA_TO_DEVICE); 1431 if (ret) 1432 return ret; 1433 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1434 } else if (hcd_uses_dma(hcd)) { 1435 if (object_is_on_stack(urb->setup_packet)) { 1436 WARN_ONCE(1, "setup packet is on stack\n"); 1437 return -EAGAIN; 1438 } 1439 1440 urb->setup_dma = dma_map_single( 1441 hcd->self.sysdev, 1442 urb->setup_packet, 1443 sizeof(struct usb_ctrlrequest), 1444 DMA_TO_DEVICE); 1445 if (dma_mapping_error(hcd->self.sysdev, 1446 urb->setup_dma)) 1447 return -EAGAIN; 1448 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1449 } 1450 } 1451 1452 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1453 if (urb->transfer_buffer_length != 0 1454 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1455 if (hcd->localmem_pool) { 1456 ret = hcd_alloc_coherent( 1457 urb->dev->bus, mem_flags, 1458 &urb->transfer_dma, 1459 &urb->transfer_buffer, 1460 urb->transfer_buffer_length, 1461 dir); 1462 if (ret == 0) 1463 urb->transfer_flags |= URB_MAP_LOCAL; 1464 } else if (hcd_uses_dma(hcd)) { 1465 if (urb->num_sgs) { 1466 int n; 1467 1468 /* We don't support sg for isoc transfers ! */ 1469 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1470 WARN_ON(1); 1471 return -EINVAL; 1472 } 1473 1474 n = dma_map_sg( 1475 hcd->self.sysdev, 1476 urb->sg, 1477 urb->num_sgs, 1478 dir); 1479 if (n <= 0) 1480 ret = -EAGAIN; 1481 else 1482 urb->transfer_flags |= URB_DMA_MAP_SG; 1483 urb->num_mapped_sgs = n; 1484 if (n != urb->num_sgs) 1485 urb->transfer_flags |= 1486 URB_DMA_SG_COMBINED; 1487 } else if (urb->sg) { 1488 struct scatterlist *sg = urb->sg; 1489 urb->transfer_dma = dma_map_page( 1490 hcd->self.sysdev, 1491 sg_page(sg), 1492 sg->offset, 1493 urb->transfer_buffer_length, 1494 dir); 1495 if (dma_mapping_error(hcd->self.sysdev, 1496 urb->transfer_dma)) 1497 ret = -EAGAIN; 1498 else 1499 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1500 } else if (object_is_on_stack(urb->transfer_buffer)) { 1501 WARN_ONCE(1, "transfer buffer is on stack\n"); 1502 ret = -EAGAIN; 1503 } else { 1504 urb->transfer_dma = dma_map_single( 1505 hcd->self.sysdev, 1506 urb->transfer_buffer, 1507 urb->transfer_buffer_length, 1508 dir); 1509 if (dma_mapping_error(hcd->self.sysdev, 1510 urb->transfer_dma)) 1511 ret = -EAGAIN; 1512 else 1513 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1514 } 1515 } 1516 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1517 URB_SETUP_MAP_LOCAL))) 1518 usb_hcd_unmap_urb_for_dma(hcd, urb); 1519 } 1520 return ret; 1521} 1522EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1523 1524/*-------------------------------------------------------------------------*/ 1525 1526/* may be called in any context with a valid urb->dev usecount 1527 * caller surrenders "ownership" of urb 1528 * expects usb_submit_urb() to have sanity checked and conditioned all 1529 * inputs in the urb 1530 */ 1531int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1532{ 1533 int status; 1534 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1535 1536 /* increment urb's reference count as part of giving it to the HCD 1537 * (which will control it). HCD guarantees that it either returns 1538 * an error or calls giveback(), but not both. 1539 */ 1540 usb_get_urb(urb); 1541 atomic_inc(&urb->use_count); 1542 atomic_inc(&urb->dev->urbnum); 1543 usbmon_urb_submit(&hcd->self, urb); 1544 1545 /* NOTE requirements on root-hub callers (usbfs and the hub 1546 * driver, for now): URBs' urb->transfer_buffer must be 1547 * valid and usb_buffer_{sync,unmap}() not be needed, since 1548 * they could clobber root hub response data. Also, control 1549 * URBs must be submitted in process context with interrupts 1550 * enabled. 1551 */ 1552 1553 if (is_root_hub(urb->dev)) { 1554 status = rh_urb_enqueue(hcd, urb); 1555 } else { 1556 status = map_urb_for_dma(hcd, urb, mem_flags); 1557 if (likely(status == 0)) { 1558 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1559 if (unlikely(status)) 1560 unmap_urb_for_dma(hcd, urb); 1561 } 1562 } 1563 1564 if (unlikely(status)) { 1565 usbmon_urb_submit_error(&hcd->self, urb, status); 1566 urb->hcpriv = NULL; 1567 INIT_LIST_HEAD(&urb->urb_list); 1568 atomic_dec(&urb->use_count); 1569 /* 1570 * Order the write of urb->use_count above before the read 1571 * of urb->reject below. Pairs with the memory barriers in 1572 * usb_kill_urb() and usb_poison_urb(). 1573 */ 1574 smp_mb__after_atomic(); 1575 1576 atomic_dec(&urb->dev->urbnum); 1577 if (atomic_read(&urb->reject)) 1578 wake_up(&usb_kill_urb_queue); 1579 usb_put_urb(urb); 1580 } 1581 return status; 1582} 1583 1584/*-------------------------------------------------------------------------*/ 1585 1586/* this makes the hcd giveback() the urb more quickly, by kicking it 1587 * off hardware queues (which may take a while) and returning it as 1588 * soon as practical. we've already set up the urb's return status, 1589 * but we can't know if the callback completed already. 1590 */ 1591static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1592{ 1593 int value; 1594 1595 if (is_root_hub(urb->dev)) 1596 value = usb_rh_urb_dequeue(hcd, urb, status); 1597 else { 1598 1599 /* The only reason an HCD might fail this call is if 1600 * it has not yet fully queued the urb to begin with. 1601 * Such failures should be harmless. */ 1602 value = hcd->driver->urb_dequeue(hcd, urb, status); 1603 } 1604 return value; 1605} 1606 1607/* 1608 * called in any context 1609 * 1610 * caller guarantees urb won't be recycled till both unlink() 1611 * and the urb's completion function return 1612 */ 1613int usb_hcd_unlink_urb (struct urb *urb, int status) 1614{ 1615 struct usb_hcd *hcd; 1616 struct usb_device *udev = urb->dev; 1617 int retval = -EIDRM; 1618 unsigned long flags; 1619 1620 /* Prevent the device and bus from going away while 1621 * the unlink is carried out. If they are already gone 1622 * then urb->use_count must be 0, since disconnected 1623 * devices can't have any active URBs. 1624 */ 1625 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1626 if (atomic_read(&urb->use_count) > 0) { 1627 retval = 0; 1628 usb_get_dev(udev); 1629 } 1630 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1631 if (retval == 0) { 1632 hcd = bus_to_hcd(urb->dev->bus); 1633 retval = unlink1(hcd, urb, status); 1634 if (retval == 0) 1635 retval = -EINPROGRESS; 1636 else if (retval != -EIDRM && retval != -EBUSY) 1637 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1638 urb, retval); 1639 usb_put_dev(udev); 1640 } 1641 return retval; 1642} 1643 1644/*-------------------------------------------------------------------------*/ 1645 1646static void __usb_hcd_giveback_urb(struct urb *urb) 1647{ 1648 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1649 struct usb_anchor *anchor = urb->anchor; 1650 int status = urb->unlinked; 1651 1652 urb->hcpriv = NULL; 1653 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1654 urb->actual_length < urb->transfer_buffer_length && 1655 !status)) 1656 status = -EREMOTEIO; 1657 1658 unmap_urb_for_dma(hcd, urb); 1659 usbmon_urb_complete(&hcd->self, urb, status); 1660 usb_anchor_suspend_wakeups(anchor); 1661 usb_unanchor_urb(urb); 1662 if (likely(status == 0)) 1663 usb_led_activity(USB_LED_EVENT_HOST); 1664 1665 /* pass ownership to the completion handler */ 1666 urb->status = status; 1667 /* 1668 * This function can be called in task context inside another remote 1669 * coverage collection section, but KCOV doesn't support that kind of 1670 * recursion yet. Only collect coverage in softirq context for now. 1671 */ 1672 if (in_serving_softirq()) 1673 kcov_remote_start_usb((u64)urb->dev->bus->busnum); 1674 urb->complete(urb); 1675 if (in_serving_softirq()) 1676 kcov_remote_stop(); 1677 1678 usb_anchor_resume_wakeups(anchor); 1679 atomic_dec(&urb->use_count); 1680 /* 1681 * Order the write of urb->use_count above before the read 1682 * of urb->reject below. Pairs with the memory barriers in 1683 * usb_kill_urb() and usb_poison_urb(). 1684 */ 1685 smp_mb__after_atomic(); 1686 1687 if (unlikely(atomic_read(&urb->reject))) 1688 wake_up(&usb_kill_urb_queue); 1689 usb_put_urb(urb); 1690} 1691 1692static void usb_giveback_urb_bh(struct tasklet_struct *t) 1693{ 1694 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh); 1695 struct list_head local_list; 1696 1697 spin_lock_irq(&bh->lock); 1698 bh->running = true; 1699 list_replace_init(&bh->head, &local_list); 1700 spin_unlock_irq(&bh->lock); 1701 1702 while (!list_empty(&local_list)) { 1703 struct urb *urb; 1704 1705 urb = list_entry(local_list.next, struct urb, urb_list); 1706 list_del_init(&urb->urb_list); 1707 bh->completing_ep = urb->ep; 1708 __usb_hcd_giveback_urb(urb); 1709 bh->completing_ep = NULL; 1710 } 1711 1712 /* 1713 * giveback new URBs next time to prevent this function 1714 * from not exiting for a long time. 1715 */ 1716 spin_lock_irq(&bh->lock); 1717 if (!list_empty(&bh->head)) { 1718 if (bh->high_prio) 1719 tasklet_hi_schedule(&bh->bh); 1720 else 1721 tasklet_schedule(&bh->bh); 1722 } 1723 bh->running = false; 1724 spin_unlock_irq(&bh->lock); 1725} 1726 1727/** 1728 * usb_hcd_giveback_urb - return URB from HCD to device driver 1729 * @hcd: host controller returning the URB 1730 * @urb: urb being returned to the USB device driver. 1731 * @status: completion status code for the URB. 1732 * Context: in_interrupt() 1733 * 1734 * This hands the URB from HCD to its USB device driver, using its 1735 * completion function. The HCD has freed all per-urb resources 1736 * (and is done using urb->hcpriv). It also released all HCD locks; 1737 * the device driver won't cause problems if it frees, modifies, 1738 * or resubmits this URB. 1739 * 1740 * If @urb was unlinked, the value of @status will be overridden by 1741 * @urb->unlinked. Erroneous short transfers are detected in case 1742 * the HCD hasn't checked for them. 1743 */ 1744void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1745{ 1746 struct giveback_urb_bh *bh; 1747 bool running; 1748 1749 /* pass status to tasklet via unlinked */ 1750 if (likely(!urb->unlinked)) 1751 urb->unlinked = status; 1752 1753 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1754 __usb_hcd_giveback_urb(urb); 1755 return; 1756 } 1757 1758 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) 1759 bh = &hcd->high_prio_bh; 1760 else 1761 bh = &hcd->low_prio_bh; 1762 1763 spin_lock(&bh->lock); 1764 list_add_tail(&urb->urb_list, &bh->head); 1765 running = bh->running; 1766 spin_unlock(&bh->lock); 1767 1768 if (running) 1769 ; 1770 else if (bh->high_prio) 1771 tasklet_hi_schedule(&bh->bh); 1772 else 1773 tasklet_schedule(&bh->bh); 1774} 1775EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1776 1777/*-------------------------------------------------------------------------*/ 1778 1779/* Cancel all URBs pending on this endpoint and wait for the endpoint's 1780 * queue to drain completely. The caller must first insure that no more 1781 * URBs can be submitted for this endpoint. 1782 */ 1783void usb_hcd_flush_endpoint(struct usb_device *udev, 1784 struct usb_host_endpoint *ep) 1785{ 1786 struct usb_hcd *hcd; 1787 struct urb *urb; 1788 1789 if (!ep) 1790 return; 1791 might_sleep(); 1792 hcd = bus_to_hcd(udev->bus); 1793 1794 /* No more submits can occur */ 1795 spin_lock_irq(&hcd_urb_list_lock); 1796rescan: 1797 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1798 int is_in; 1799 1800 if (urb->unlinked) 1801 continue; 1802 usb_get_urb (urb); 1803 is_in = usb_urb_dir_in(urb); 1804 spin_unlock(&hcd_urb_list_lock); 1805 1806 /* kick hcd */ 1807 unlink1(hcd, urb, -ESHUTDOWN); 1808 dev_dbg (hcd->self.controller, 1809 "shutdown urb %pK ep%d%s-%s\n", 1810 urb, usb_endpoint_num(&ep->desc), 1811 is_in ? "in" : "out", 1812 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1813 usb_put_urb (urb); 1814 1815 /* list contents may have changed */ 1816 spin_lock(&hcd_urb_list_lock); 1817 goto rescan; 1818 } 1819 spin_unlock_irq(&hcd_urb_list_lock); 1820 1821 /* Wait until the endpoint queue is completely empty */ 1822 while (!list_empty (&ep->urb_list)) { 1823 spin_lock_irq(&hcd_urb_list_lock); 1824 1825 /* The list may have changed while we acquired the spinlock */ 1826 urb = NULL; 1827 if (!list_empty (&ep->urb_list)) { 1828 urb = list_entry (ep->urb_list.prev, struct urb, 1829 urb_list); 1830 usb_get_urb (urb); 1831 } 1832 spin_unlock_irq(&hcd_urb_list_lock); 1833 1834 if (urb) { 1835 usb_kill_urb (urb); 1836 usb_put_urb (urb); 1837 } 1838 } 1839} 1840 1841/** 1842 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1843 * the bus bandwidth 1844 * @udev: target &usb_device 1845 * @new_config: new configuration to install 1846 * @cur_alt: the current alternate interface setting 1847 * @new_alt: alternate interface setting that is being installed 1848 * 1849 * To change configurations, pass in the new configuration in new_config, 1850 * and pass NULL for cur_alt and new_alt. 1851 * 1852 * To reset a device's configuration (put the device in the ADDRESSED state), 1853 * pass in NULL for new_config, cur_alt, and new_alt. 1854 * 1855 * To change alternate interface settings, pass in NULL for new_config, 1856 * pass in the current alternate interface setting in cur_alt, 1857 * and pass in the new alternate interface setting in new_alt. 1858 * 1859 * Return: An error if the requested bandwidth change exceeds the 1860 * bus bandwidth or host controller internal resources. 1861 */ 1862int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1863 struct usb_host_config *new_config, 1864 struct usb_host_interface *cur_alt, 1865 struct usb_host_interface *new_alt) 1866{ 1867 int num_intfs, i, j; 1868 struct usb_host_interface *alt = NULL; 1869 int ret = 0; 1870 struct usb_hcd *hcd; 1871 struct usb_host_endpoint *ep; 1872 1873 hcd = bus_to_hcd(udev->bus); 1874 if (!hcd->driver->check_bandwidth) 1875 return 0; 1876 1877 /* Configuration is being removed - set configuration 0 */ 1878 if (!new_config && !cur_alt) { 1879 for (i = 1; i < 16; ++i) { 1880 ep = udev->ep_out[i]; 1881 if (ep) 1882 hcd->driver->drop_endpoint(hcd, udev, ep); 1883 ep = udev->ep_in[i]; 1884 if (ep) 1885 hcd->driver->drop_endpoint(hcd, udev, ep); 1886 } 1887 hcd->driver->check_bandwidth(hcd, udev); 1888 return 0; 1889 } 1890 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1891 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1892 * of the bus. There will always be bandwidth for endpoint 0, so it's 1893 * ok to exclude it. 1894 */ 1895 if (new_config) { 1896 num_intfs = new_config->desc.bNumInterfaces; 1897 /* Remove endpoints (except endpoint 0, which is always on the 1898 * schedule) from the old config from the schedule 1899 */ 1900 for (i = 1; i < 16; ++i) { 1901 ep = udev->ep_out[i]; 1902 if (ep) { 1903 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1904 if (ret < 0) 1905 goto reset; 1906 } 1907 ep = udev->ep_in[i]; 1908 if (ep) { 1909 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1910 if (ret < 0) 1911 goto reset; 1912 } 1913 } 1914 for (i = 0; i < num_intfs; ++i) { 1915 struct usb_host_interface *first_alt; 1916 int iface_num; 1917 1918 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1919 iface_num = first_alt->desc.bInterfaceNumber; 1920 /* Set up endpoints for alternate interface setting 0 */ 1921 alt = usb_find_alt_setting(new_config, iface_num, 0); 1922 if (!alt) 1923 /* No alt setting 0? Pick the first setting. */ 1924 alt = first_alt; 1925 1926 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1927 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1928 if (ret < 0) 1929 goto reset; 1930 } 1931 } 1932 } 1933 if (cur_alt && new_alt) { 1934 struct usb_interface *iface = usb_ifnum_to_if(udev, 1935 cur_alt->desc.bInterfaceNumber); 1936 1937 if (!iface) 1938 return -EINVAL; 1939 if (iface->resetting_device) { 1940 /* 1941 * The USB core just reset the device, so the xHCI host 1942 * and the device will think alt setting 0 is installed. 1943 * However, the USB core will pass in the alternate 1944 * setting installed before the reset as cur_alt. Dig 1945 * out the alternate setting 0 structure, or the first 1946 * alternate setting if a broken device doesn't have alt 1947 * setting 0. 1948 */ 1949 cur_alt = usb_altnum_to_altsetting(iface, 0); 1950 if (!cur_alt) 1951 cur_alt = &iface->altsetting[0]; 1952 } 1953 1954 /* Drop all the endpoints in the current alt setting */ 1955 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1956 ret = hcd->driver->drop_endpoint(hcd, udev, 1957 &cur_alt->endpoint[i]); 1958 if (ret < 0) 1959 goto reset; 1960 } 1961 /* Add all the endpoints in the new alt setting */ 1962 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1963 ret = hcd->driver->add_endpoint(hcd, udev, 1964 &new_alt->endpoint[i]); 1965 if (ret < 0) 1966 goto reset; 1967 } 1968 } 1969 ret = hcd->driver->check_bandwidth(hcd, udev); 1970reset: 1971 if (ret < 0) 1972 hcd->driver->reset_bandwidth(hcd, udev); 1973 return ret; 1974} 1975 1976/* Disables the endpoint: synchronizes with the hcd to make sure all 1977 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1978 * have been called previously. Use for set_configuration, set_interface, 1979 * driver removal, physical disconnect. 1980 * 1981 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1982 * type, maxpacket size, toggle, halt status, and scheduling. 1983 */ 1984void usb_hcd_disable_endpoint(struct usb_device *udev, 1985 struct usb_host_endpoint *ep) 1986{ 1987 struct usb_hcd *hcd; 1988 1989 might_sleep(); 1990 hcd = bus_to_hcd(udev->bus); 1991 if (hcd->driver->endpoint_disable) 1992 hcd->driver->endpoint_disable(hcd, ep); 1993} 1994 1995/** 1996 * usb_hcd_reset_endpoint - reset host endpoint state 1997 * @udev: USB device. 1998 * @ep: the endpoint to reset. 1999 * 2000 * Resets any host endpoint state such as the toggle bit, sequence 2001 * number and current window. 2002 */ 2003void usb_hcd_reset_endpoint(struct usb_device *udev, 2004 struct usb_host_endpoint *ep) 2005{ 2006 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2007 2008 if (hcd->driver->endpoint_reset) 2009 hcd->driver->endpoint_reset(hcd, ep); 2010 else { 2011 int epnum = usb_endpoint_num(&ep->desc); 2012 int is_out = usb_endpoint_dir_out(&ep->desc); 2013 int is_control = usb_endpoint_xfer_control(&ep->desc); 2014 2015 usb_settoggle(udev, epnum, is_out, 0); 2016 if (is_control) 2017 usb_settoggle(udev, epnum, !is_out, 0); 2018 } 2019} 2020 2021/** 2022 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2023 * @interface: alternate setting that includes all endpoints. 2024 * @eps: array of endpoints that need streams. 2025 * @num_eps: number of endpoints in the array. 2026 * @num_streams: number of streams to allocate. 2027 * @mem_flags: flags hcd should use to allocate memory. 2028 * 2029 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2030 * Drivers may queue multiple transfers to different stream IDs, which may 2031 * complete in a different order than they were queued. 2032 * 2033 * Return: On success, the number of allocated streams. On failure, a negative 2034 * error code. 2035 */ 2036int usb_alloc_streams(struct usb_interface *interface, 2037 struct usb_host_endpoint **eps, unsigned int num_eps, 2038 unsigned int num_streams, gfp_t mem_flags) 2039{ 2040 struct usb_hcd *hcd; 2041 struct usb_device *dev; 2042 int i, ret; 2043 2044 dev = interface_to_usbdev(interface); 2045 hcd = bus_to_hcd(dev->bus); 2046 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2047 return -EINVAL; 2048 if (dev->speed < USB_SPEED_SUPER) 2049 return -EINVAL; 2050 if (dev->state < USB_STATE_CONFIGURED) 2051 return -ENODEV; 2052 2053 for (i = 0; i < num_eps; i++) { 2054 /* Streams only apply to bulk endpoints. */ 2055 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2056 return -EINVAL; 2057 /* Re-alloc is not allowed */ 2058 if (eps[i]->streams) 2059 return -EINVAL; 2060 } 2061 2062 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2063 num_streams, mem_flags); 2064 if (ret < 0) 2065 return ret; 2066 2067 for (i = 0; i < num_eps; i++) 2068 eps[i]->streams = ret; 2069 2070 return ret; 2071} 2072EXPORT_SYMBOL_GPL(usb_alloc_streams); 2073 2074/** 2075 * usb_free_streams - free bulk endpoint stream IDs. 2076 * @interface: alternate setting that includes all endpoints. 2077 * @eps: array of endpoints to remove streams from. 2078 * @num_eps: number of endpoints in the array. 2079 * @mem_flags: flags hcd should use to allocate memory. 2080 * 2081 * Reverts a group of bulk endpoints back to not using stream IDs. 2082 * Can fail if we are given bad arguments, or HCD is broken. 2083 * 2084 * Return: 0 on success. On failure, a negative error code. 2085 */ 2086int usb_free_streams(struct usb_interface *interface, 2087 struct usb_host_endpoint **eps, unsigned int num_eps, 2088 gfp_t mem_flags) 2089{ 2090 struct usb_hcd *hcd; 2091 struct usb_device *dev; 2092 int i, ret; 2093 2094 dev = interface_to_usbdev(interface); 2095 hcd = bus_to_hcd(dev->bus); 2096 if (dev->speed < USB_SPEED_SUPER) 2097 return -EINVAL; 2098 2099 /* Double-free is not allowed */ 2100 for (i = 0; i < num_eps; i++) 2101 if (!eps[i] || !eps[i]->streams) 2102 return -EINVAL; 2103 2104 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2105 if (ret < 0) 2106 return ret; 2107 2108 for (i = 0; i < num_eps; i++) 2109 eps[i]->streams = 0; 2110 2111 return ret; 2112} 2113EXPORT_SYMBOL_GPL(usb_free_streams); 2114 2115/* Protect against drivers that try to unlink URBs after the device 2116 * is gone, by waiting until all unlinks for @udev are finished. 2117 * Since we don't currently track URBs by device, simply wait until 2118 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2119 */ 2120void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2121{ 2122 spin_lock_irq(&hcd_urb_unlink_lock); 2123 spin_unlock_irq(&hcd_urb_unlink_lock); 2124} 2125 2126/*-------------------------------------------------------------------------*/ 2127 2128/* called in any context */ 2129int usb_hcd_get_frame_number (struct usb_device *udev) 2130{ 2131 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2132 2133 if (!HCD_RH_RUNNING(hcd)) 2134 return -ESHUTDOWN; 2135 return hcd->driver->get_frame_number (hcd); 2136} 2137 2138/*-------------------------------------------------------------------------*/ 2139 2140#ifdef CONFIG_PM 2141 2142int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2143{ 2144 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2145 int status; 2146 int old_state = hcd->state; 2147 2148 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2149 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2150 rhdev->do_remote_wakeup); 2151 if (HCD_DEAD(hcd)) { 2152 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2153 return 0; 2154 } 2155 2156 if (!hcd->driver->bus_suspend) { 2157 status = -ENOENT; 2158 } else { 2159 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2160 hcd->state = HC_STATE_QUIESCING; 2161 status = hcd->driver->bus_suspend(hcd); 2162 } 2163 if (status == 0) { 2164 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2165 hcd->state = HC_STATE_SUSPENDED; 2166 2167 if (!PMSG_IS_AUTO(msg)) 2168 usb_phy_roothub_suspend(hcd->self.sysdev, 2169 hcd->phy_roothub); 2170 2171 /* Did we race with a root-hub wakeup event? */ 2172 if (rhdev->do_remote_wakeup) { 2173 char buffer[6]; 2174 2175 status = hcd->driver->hub_status_data(hcd, buffer); 2176 if (status != 0) { 2177 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2178 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2179 status = -EBUSY; 2180 } 2181 } 2182 } else { 2183 spin_lock_irq(&hcd_root_hub_lock); 2184 if (!HCD_DEAD(hcd)) { 2185 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2186 hcd->state = old_state; 2187 } 2188 spin_unlock_irq(&hcd_root_hub_lock); 2189 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2190 "suspend", status); 2191 } 2192 return status; 2193} 2194 2195int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2196{ 2197 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2198 int status; 2199 int old_state = hcd->state; 2200 2201 dev_dbg(&rhdev->dev, "usb %sresume\n", 2202 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2203 if (HCD_DEAD(hcd)) { 2204 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2205 return 0; 2206 } 2207 2208 if (!PMSG_IS_AUTO(msg)) { 2209 status = usb_phy_roothub_resume(hcd->self.sysdev, 2210 hcd->phy_roothub); 2211 if (status) 2212 return status; 2213 } 2214 2215 if (!hcd->driver->bus_resume) 2216 return -ENOENT; 2217 if (HCD_RH_RUNNING(hcd)) 2218 return 0; 2219 2220 hcd->state = HC_STATE_RESUMING; 2221 status = hcd->driver->bus_resume(hcd); 2222 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2223 if (status == 0) 2224 status = usb_phy_roothub_calibrate(hcd->phy_roothub); 2225 2226 if (status == 0) { 2227 struct usb_device *udev; 2228 int port1; 2229 2230 spin_lock_irq(&hcd_root_hub_lock); 2231 if (!HCD_DEAD(hcd)) { 2232 usb_set_device_state(rhdev, rhdev->actconfig 2233 ? USB_STATE_CONFIGURED 2234 : USB_STATE_ADDRESS); 2235 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2236 hcd->state = HC_STATE_RUNNING; 2237 } 2238 spin_unlock_irq(&hcd_root_hub_lock); 2239 2240 /* 2241 * Check whether any of the enabled ports on the root hub are 2242 * unsuspended. If they are then a TRSMRCY delay is needed 2243 * (this is what the USB-2 spec calls a "global resume"). 2244 * Otherwise we can skip the delay. 2245 */ 2246 usb_hub_for_each_child(rhdev, port1, udev) { 2247 if (udev->state != USB_STATE_NOTATTACHED && 2248 !udev->port_is_suspended) { 2249 usleep_range(10000, 11000); /* TRSMRCY */ 2250 break; 2251 } 2252 } 2253 } else { 2254 hcd->state = old_state; 2255 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2256 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2257 "resume", status); 2258 if (status != -ESHUTDOWN) 2259 usb_hc_died(hcd); 2260 } 2261 return status; 2262} 2263 2264/* Workqueue routine for root-hub remote wakeup */ 2265static void hcd_resume_work(struct work_struct *work) 2266{ 2267 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2268 struct usb_device *udev = hcd->self.root_hub; 2269 2270 usb_remote_wakeup(udev); 2271} 2272 2273/** 2274 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2275 * @hcd: host controller for this root hub 2276 * 2277 * The USB host controller calls this function when its root hub is 2278 * suspended (with the remote wakeup feature enabled) and a remote 2279 * wakeup request is received. The routine submits a workqueue request 2280 * to resume the root hub (that is, manage its downstream ports again). 2281 */ 2282void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2283{ 2284 unsigned long flags; 2285 2286 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2287 if (hcd->rh_registered) { 2288 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2289 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2290 queue_work(pm_wq, &hcd->wakeup_work); 2291 } 2292 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2293} 2294EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2295 2296#endif /* CONFIG_PM */ 2297 2298/*-------------------------------------------------------------------------*/ 2299 2300#ifdef CONFIG_USB_OTG 2301 2302/** 2303 * usb_bus_start_enum - start immediate enumeration (for OTG) 2304 * @bus: the bus (must use hcd framework) 2305 * @port_num: 1-based number of port; usually bus->otg_port 2306 * Context: in_interrupt() 2307 * 2308 * Starts enumeration, with an immediate reset followed later by 2309 * hub_wq identifying and possibly configuring the device. 2310 * This is needed by OTG controller drivers, where it helps meet 2311 * HNP protocol timing requirements for starting a port reset. 2312 * 2313 * Return: 0 if successful. 2314 */ 2315int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2316{ 2317 struct usb_hcd *hcd; 2318 int status = -EOPNOTSUPP; 2319 2320 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2321 * boards with root hubs hooked up to internal devices (instead of 2322 * just the OTG port) may need more attention to resetting... 2323 */ 2324 hcd = bus_to_hcd(bus); 2325 if (port_num && hcd->driver->start_port_reset) 2326 status = hcd->driver->start_port_reset(hcd, port_num); 2327 2328 /* allocate hub_wq shortly after (first) root port reset finishes; 2329 * it may issue others, until at least 50 msecs have passed. 2330 */ 2331 if (status == 0) 2332 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2333 return status; 2334} 2335EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2336 2337#endif 2338 2339/*-------------------------------------------------------------------------*/ 2340 2341/** 2342 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2343 * @irq: the IRQ being raised 2344 * @__hcd: pointer to the HCD whose IRQ is being signaled 2345 * 2346 * If the controller isn't HALTed, calls the driver's irq handler. 2347 * Checks whether the controller is now dead. 2348 * 2349 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2350 */ 2351irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2352{ 2353 struct usb_hcd *hcd = __hcd; 2354 irqreturn_t rc; 2355 2356 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2357 rc = IRQ_NONE; 2358 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2359 rc = IRQ_NONE; 2360 else 2361 rc = IRQ_HANDLED; 2362 2363 return rc; 2364} 2365EXPORT_SYMBOL_GPL(usb_hcd_irq); 2366 2367/*-------------------------------------------------------------------------*/ 2368 2369/* Workqueue routine for when the root-hub has died. */ 2370static void hcd_died_work(struct work_struct *work) 2371{ 2372 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2373 static char *env[] = { 2374 "ERROR=DEAD", 2375 NULL 2376 }; 2377 2378 /* Notify user space that the host controller has died */ 2379 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2380} 2381 2382/** 2383 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2384 * @hcd: pointer to the HCD representing the controller 2385 * 2386 * This is called by bus glue to report a USB host controller that died 2387 * while operations may still have been pending. It's called automatically 2388 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2389 * 2390 * Only call this function with the primary HCD. 2391 */ 2392void usb_hc_died (struct usb_hcd *hcd) 2393{ 2394 unsigned long flags; 2395 2396 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2397 2398 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2399 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2400 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2401 if (hcd->rh_registered) { 2402 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2403 2404 /* make hub_wq clean up old urbs and devices */ 2405 usb_set_device_state (hcd->self.root_hub, 2406 USB_STATE_NOTATTACHED); 2407 usb_kick_hub_wq(hcd->self.root_hub); 2408 } 2409 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2410 hcd = hcd->shared_hcd; 2411 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2412 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2413 if (hcd->rh_registered) { 2414 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2415 2416 /* make hub_wq clean up old urbs and devices */ 2417 usb_set_device_state(hcd->self.root_hub, 2418 USB_STATE_NOTATTACHED); 2419 usb_kick_hub_wq(hcd->self.root_hub); 2420 } 2421 } 2422 2423 /* Handle the case where this function gets called with a shared HCD */ 2424 if (usb_hcd_is_primary_hcd(hcd)) 2425 schedule_work(&hcd->died_work); 2426 else 2427 schedule_work(&hcd->primary_hcd->died_work); 2428 2429 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2430 /* Make sure that the other roothub is also deallocated. */ 2431} 2432EXPORT_SYMBOL_GPL (usb_hc_died); 2433 2434/*-------------------------------------------------------------------------*/ 2435 2436static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2437{ 2438 2439 spin_lock_init(&bh->lock); 2440 INIT_LIST_HEAD(&bh->head); 2441 tasklet_setup(&bh->bh, usb_giveback_urb_bh); 2442} 2443 2444struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2445 struct device *sysdev, struct device *dev, const char *bus_name, 2446 struct usb_hcd *primary_hcd) 2447{ 2448 struct usb_hcd *hcd; 2449 2450 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2451 if (!hcd) 2452 return NULL; 2453 if (primary_hcd == NULL) { 2454 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2455 GFP_KERNEL); 2456 if (!hcd->address0_mutex) { 2457 kfree(hcd); 2458 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2459 return NULL; 2460 } 2461 mutex_init(hcd->address0_mutex); 2462 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2463 GFP_KERNEL); 2464 if (!hcd->bandwidth_mutex) { 2465 kfree(hcd->address0_mutex); 2466 kfree(hcd); 2467 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2468 return NULL; 2469 } 2470 mutex_init(hcd->bandwidth_mutex); 2471 dev_set_drvdata(dev, hcd); 2472 } else { 2473 mutex_lock(&usb_port_peer_mutex); 2474 hcd->address0_mutex = primary_hcd->address0_mutex; 2475 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2476 hcd->primary_hcd = primary_hcd; 2477 primary_hcd->primary_hcd = primary_hcd; 2478 hcd->shared_hcd = primary_hcd; 2479 primary_hcd->shared_hcd = hcd; 2480 mutex_unlock(&usb_port_peer_mutex); 2481 } 2482 2483 kref_init(&hcd->kref); 2484 2485 usb_bus_init(&hcd->self); 2486 hcd->self.controller = dev; 2487 hcd->self.sysdev = sysdev; 2488 hcd->self.bus_name = bus_name; 2489 2490 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2491#ifdef CONFIG_PM 2492 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2493#endif 2494 2495 INIT_WORK(&hcd->died_work, hcd_died_work); 2496 2497 hcd->driver = driver; 2498 hcd->speed = driver->flags & HCD_MASK; 2499 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2500 "USB Host Controller"; 2501 return hcd; 2502} 2503EXPORT_SYMBOL_GPL(__usb_create_hcd); 2504 2505/** 2506 * usb_create_shared_hcd - create and initialize an HCD structure 2507 * @driver: HC driver that will use this hcd 2508 * @dev: device for this HC, stored in hcd->self.controller 2509 * @bus_name: value to store in hcd->self.bus_name 2510 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2511 * PCI device. Only allocate certain resources for the primary HCD 2512 * Context: !in_interrupt() 2513 * 2514 * Allocate a struct usb_hcd, with extra space at the end for the 2515 * HC driver's private data. Initialize the generic members of the 2516 * hcd structure. 2517 * 2518 * Return: On success, a pointer to the created and initialized HCD structure. 2519 * On failure (e.g. if memory is unavailable), %NULL. 2520 */ 2521struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2522 struct device *dev, const char *bus_name, 2523 struct usb_hcd *primary_hcd) 2524{ 2525 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2526} 2527EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2528 2529/** 2530 * usb_create_hcd - create and initialize an HCD structure 2531 * @driver: HC driver that will use this hcd 2532 * @dev: device for this HC, stored in hcd->self.controller 2533 * @bus_name: value to store in hcd->self.bus_name 2534 * Context: !in_interrupt() 2535 * 2536 * Allocate a struct usb_hcd, with extra space at the end for the 2537 * HC driver's private data. Initialize the generic members of the 2538 * hcd structure. 2539 * 2540 * Return: On success, a pointer to the created and initialized HCD 2541 * structure. On failure (e.g. if memory is unavailable), %NULL. 2542 */ 2543struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2544 struct device *dev, const char *bus_name) 2545{ 2546 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2547} 2548EXPORT_SYMBOL_GPL(usb_create_hcd); 2549 2550/* 2551 * Roothubs that share one PCI device must also share the bandwidth mutex. 2552 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2553 * deallocated. 2554 * 2555 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2556 * freed. When hcd_release() is called for either hcd in a peer set, 2557 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2558 */ 2559static void hcd_release(struct kref *kref) 2560{ 2561 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2562 2563 mutex_lock(&usb_port_peer_mutex); 2564 if (hcd->shared_hcd) { 2565 struct usb_hcd *peer = hcd->shared_hcd; 2566 2567 peer->shared_hcd = NULL; 2568 peer->primary_hcd = NULL; 2569 } else { 2570 kfree(hcd->address0_mutex); 2571 kfree(hcd->bandwidth_mutex); 2572 } 2573 mutex_unlock(&usb_port_peer_mutex); 2574 kfree(hcd); 2575} 2576 2577struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2578{ 2579 if (hcd) 2580 kref_get (&hcd->kref); 2581 return hcd; 2582} 2583EXPORT_SYMBOL_GPL(usb_get_hcd); 2584 2585void usb_put_hcd (struct usb_hcd *hcd) 2586{ 2587 if (hcd) 2588 kref_put (&hcd->kref, hcd_release); 2589} 2590EXPORT_SYMBOL_GPL(usb_put_hcd); 2591 2592int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2593{ 2594 if (!hcd->primary_hcd) 2595 return 1; 2596 return hcd == hcd->primary_hcd; 2597} 2598EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2599 2600int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2601{ 2602 if (!hcd->driver->find_raw_port_number) 2603 return port1; 2604 2605 return hcd->driver->find_raw_port_number(hcd, port1); 2606} 2607 2608static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2609 unsigned int irqnum, unsigned long irqflags) 2610{ 2611 int retval; 2612 2613 if (hcd->driver->irq) { 2614 2615 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2616 hcd->driver->description, hcd->self.busnum); 2617 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2618 hcd->irq_descr, hcd); 2619 if (retval != 0) { 2620 dev_err(hcd->self.controller, 2621 "request interrupt %d failed\n", 2622 irqnum); 2623 return retval; 2624 } 2625 hcd->irq = irqnum; 2626 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2627 (hcd->driver->flags & HCD_MEMORY) ? 2628 "io mem" : "io base", 2629 (unsigned long long)hcd->rsrc_start); 2630 } else { 2631 hcd->irq = 0; 2632 if (hcd->rsrc_start) 2633 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2634 (hcd->driver->flags & HCD_MEMORY) ? 2635 "io mem" : "io base", 2636 (unsigned long long)hcd->rsrc_start); 2637 } 2638 return 0; 2639} 2640 2641/* 2642 * Before we free this root hub, flush in-flight peering attempts 2643 * and disable peer lookups 2644 */ 2645static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2646{ 2647 struct usb_device *rhdev; 2648 2649 mutex_lock(&usb_port_peer_mutex); 2650 rhdev = hcd->self.root_hub; 2651 hcd->self.root_hub = NULL; 2652 mutex_unlock(&usb_port_peer_mutex); 2653 usb_put_dev(rhdev); 2654} 2655 2656/** 2657 * usb_add_hcd - finish generic HCD structure initialization and register 2658 * @hcd: the usb_hcd structure to initialize 2659 * @irqnum: Interrupt line to allocate 2660 * @irqflags: Interrupt type flags 2661 * 2662 * Finish the remaining parts of generic HCD initialization: allocate the 2663 * buffers of consistent memory, register the bus, request the IRQ line, 2664 * and call the driver's reset() and start() routines. 2665 */ 2666int usb_add_hcd(struct usb_hcd *hcd, 2667 unsigned int irqnum, unsigned long irqflags) 2668{ 2669 int retval; 2670 struct usb_device *rhdev; 2671 struct usb_hcd *shared_hcd; 2672 2673 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2674 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2675 if (IS_ERR(hcd->phy_roothub)) 2676 return PTR_ERR(hcd->phy_roothub); 2677 2678 retval = usb_phy_roothub_init(hcd->phy_roothub); 2679 if (retval) 2680 return retval; 2681 2682 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2683 PHY_MODE_USB_HOST_SS); 2684 if (retval) 2685 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2686 PHY_MODE_USB_HOST); 2687 if (retval) 2688 goto err_usb_phy_roothub_power_on; 2689 2690 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2691 if (retval) 2692 goto err_usb_phy_roothub_power_on; 2693 } 2694 2695 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2696 2697 switch (authorized_default) { 2698 case USB_AUTHORIZE_NONE: 2699 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2700 break; 2701 2702 case USB_AUTHORIZE_ALL: 2703 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2704 break; 2705 2706 case USB_AUTHORIZE_INTERNAL: 2707 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2708 break; 2709 2710 case USB_AUTHORIZE_WIRED: 2711 default: 2712 hcd->dev_policy = hcd->wireless ? 2713 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL; 2714 break; 2715 } 2716 2717 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2718 2719 /* per default all interfaces are authorized */ 2720 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2721 2722 /* HC is in reset state, but accessible. Now do the one-time init, 2723 * bottom up so that hcds can customize the root hubs before hub_wq 2724 * starts talking to them. (Note, bus id is assigned early too.) 2725 */ 2726 retval = hcd_buffer_create(hcd); 2727 if (retval != 0) { 2728 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2729 goto err_create_buf; 2730 } 2731 2732 retval = usb_register_bus(&hcd->self); 2733 if (retval < 0) 2734 goto err_register_bus; 2735 2736 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2737 if (rhdev == NULL) { 2738 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2739 retval = -ENOMEM; 2740 goto err_allocate_root_hub; 2741 } 2742 mutex_lock(&usb_port_peer_mutex); 2743 hcd->self.root_hub = rhdev; 2744 mutex_unlock(&usb_port_peer_mutex); 2745 2746 rhdev->rx_lanes = 1; 2747 rhdev->tx_lanes = 1; 2748 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN; 2749 2750 switch (hcd->speed) { 2751 case HCD_USB11: 2752 rhdev->speed = USB_SPEED_FULL; 2753 break; 2754 case HCD_USB2: 2755 rhdev->speed = USB_SPEED_HIGH; 2756 break; 2757 case HCD_USB25: 2758 rhdev->speed = USB_SPEED_WIRELESS; 2759 break; 2760 case HCD_USB3: 2761 rhdev->speed = USB_SPEED_SUPER; 2762 break; 2763 case HCD_USB32: 2764 rhdev->rx_lanes = 2; 2765 rhdev->tx_lanes = 2; 2766 rhdev->ssp_rate = USB_SSP_GEN_2x2; 2767 rhdev->speed = USB_SPEED_SUPER_PLUS; 2768 break; 2769 case HCD_USB31: 2770 rhdev->ssp_rate = USB_SSP_GEN_2x1; 2771 rhdev->speed = USB_SPEED_SUPER_PLUS; 2772 break; 2773 default: 2774 retval = -EINVAL; 2775 goto err_set_rh_speed; 2776 } 2777 2778 /* wakeup flag init defaults to "everything works" for root hubs, 2779 * but drivers can override it in reset() if needed, along with 2780 * recording the overall controller's system wakeup capability. 2781 */ 2782 device_set_wakeup_capable(&rhdev->dev, 1); 2783 2784 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2785 * registered. But since the controller can die at any time, 2786 * let's initialize the flag before touching the hardware. 2787 */ 2788 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2789 2790 /* "reset" is misnamed; its role is now one-time init. the controller 2791 * should already have been reset (and boot firmware kicked off etc). 2792 */ 2793 if (hcd->driver->reset) { 2794 retval = hcd->driver->reset(hcd); 2795 if (retval < 0) { 2796 dev_err(hcd->self.controller, "can't setup: %d\n", 2797 retval); 2798 goto err_hcd_driver_setup; 2799 } 2800 } 2801 hcd->rh_pollable = 1; 2802 2803 retval = usb_phy_roothub_calibrate(hcd->phy_roothub); 2804 if (retval) 2805 goto err_hcd_driver_setup; 2806 2807 /* NOTE: root hub and controller capabilities may not be the same */ 2808 if (device_can_wakeup(hcd->self.controller) 2809 && device_can_wakeup(&hcd->self.root_hub->dev)) 2810 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2811 2812 /* initialize tasklets */ 2813 init_giveback_urb_bh(&hcd->high_prio_bh); 2814 hcd->high_prio_bh.high_prio = true; 2815 init_giveback_urb_bh(&hcd->low_prio_bh); 2816 2817 /* enable irqs just before we start the controller, 2818 * if the BIOS provides legacy PCI irqs. 2819 */ 2820 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2821 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2822 if (retval) 2823 goto err_request_irq; 2824 } 2825 2826 hcd->state = HC_STATE_RUNNING; 2827 retval = hcd->driver->start(hcd); 2828 if (retval < 0) { 2829 dev_err(hcd->self.controller, "startup error %d\n", retval); 2830 goto err_hcd_driver_start; 2831 } 2832 2833 /* starting here, usbcore will pay attention to the shared HCD roothub */ 2834 shared_hcd = hcd->shared_hcd; 2835 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) { 2836 retval = register_root_hub(shared_hcd); 2837 if (retval != 0) 2838 goto err_register_root_hub; 2839 2840 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd)) 2841 usb_hcd_poll_rh_status(shared_hcd); 2842 } 2843 2844 /* starting here, usbcore will pay attention to this root hub */ 2845 if (!HCD_DEFER_RH_REGISTER(hcd)) { 2846 retval = register_root_hub(hcd); 2847 if (retval != 0) 2848 goto err_register_root_hub; 2849 2850 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2851 usb_hcd_poll_rh_status(hcd); 2852 } 2853 2854 return retval; 2855 2856err_register_root_hub: 2857 hcd->rh_pollable = 0; 2858 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2859 del_timer_sync(&hcd->rh_timer); 2860 hcd->driver->stop(hcd); 2861 hcd->state = HC_STATE_HALT; 2862 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2863 del_timer_sync(&hcd->rh_timer); 2864err_hcd_driver_start: 2865 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2866 free_irq(irqnum, hcd); 2867err_request_irq: 2868err_hcd_driver_setup: 2869err_set_rh_speed: 2870 usb_put_invalidate_rhdev(hcd); 2871err_allocate_root_hub: 2872 usb_deregister_bus(&hcd->self); 2873err_register_bus: 2874 hcd_buffer_destroy(hcd); 2875err_create_buf: 2876 usb_phy_roothub_power_off(hcd->phy_roothub); 2877err_usb_phy_roothub_power_on: 2878 usb_phy_roothub_exit(hcd->phy_roothub); 2879 2880 return retval; 2881} 2882EXPORT_SYMBOL_GPL(usb_add_hcd); 2883 2884/** 2885 * usb_remove_hcd - shutdown processing for generic HCDs 2886 * @hcd: the usb_hcd structure to remove 2887 * Context: !in_interrupt() 2888 * 2889 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2890 * invoking the HCD's stop() method. 2891 */ 2892void usb_remove_hcd(struct usb_hcd *hcd) 2893{ 2894 struct usb_device *rhdev = hcd->self.root_hub; 2895 bool rh_registered; 2896 2897 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2898 2899 usb_get_dev(rhdev); 2900 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2901 if (HC_IS_RUNNING (hcd->state)) 2902 hcd->state = HC_STATE_QUIESCING; 2903 2904 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2905 spin_lock_irq (&hcd_root_hub_lock); 2906 rh_registered = hcd->rh_registered; 2907 hcd->rh_registered = 0; 2908 spin_unlock_irq (&hcd_root_hub_lock); 2909 2910#ifdef CONFIG_PM 2911 cancel_work_sync(&hcd->wakeup_work); 2912#endif 2913 cancel_work_sync(&hcd->died_work); 2914 2915 mutex_lock(&usb_bus_idr_lock); 2916 if (rh_registered) 2917 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2918 mutex_unlock(&usb_bus_idr_lock); 2919 2920 /* 2921 * tasklet_kill() isn't needed here because: 2922 * - driver's disconnect() called from usb_disconnect() should 2923 * make sure its URBs are completed during the disconnect() 2924 * callback 2925 * 2926 * - it is too late to run complete() here since driver may have 2927 * been removed already now 2928 */ 2929 2930 /* Prevent any more root-hub status calls from the timer. 2931 * The HCD might still restart the timer (if a port status change 2932 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2933 * the hub_status_data() callback. 2934 */ 2935 hcd->rh_pollable = 0; 2936 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2937 del_timer_sync(&hcd->rh_timer); 2938 2939 hcd->driver->stop(hcd); 2940 hcd->state = HC_STATE_HALT; 2941 2942 /* In case the HCD restarted the timer, stop it again. */ 2943 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2944 del_timer_sync(&hcd->rh_timer); 2945 2946 if (usb_hcd_is_primary_hcd(hcd)) { 2947 if (hcd->irq > 0) 2948 free_irq(hcd->irq, hcd); 2949 } 2950 2951 usb_deregister_bus(&hcd->self); 2952 hcd_buffer_destroy(hcd); 2953 2954 usb_phy_roothub_power_off(hcd->phy_roothub); 2955 usb_phy_roothub_exit(hcd->phy_roothub); 2956 2957 usb_put_invalidate_rhdev(hcd); 2958 hcd->flags = 0; 2959} 2960EXPORT_SYMBOL_GPL(usb_remove_hcd); 2961 2962void 2963usb_hcd_platform_shutdown(struct platform_device *dev) 2964{ 2965 struct usb_hcd *hcd = platform_get_drvdata(dev); 2966 2967 /* No need for pm_runtime_put(), we're shutting down */ 2968 pm_runtime_get_sync(&dev->dev); 2969 2970 if (hcd->driver->shutdown) 2971 hcd->driver->shutdown(hcd); 2972} 2973EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2974 2975int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 2976 dma_addr_t dma, size_t size) 2977{ 2978 int err; 2979 void *local_mem; 2980 2981 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 2982 dev_to_node(hcd->self.sysdev), 2983 dev_name(hcd->self.sysdev)); 2984 if (IS_ERR(hcd->localmem_pool)) 2985 return PTR_ERR(hcd->localmem_pool); 2986 2987 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 2988 size, MEMREMAP_WC); 2989 if (IS_ERR(local_mem)) 2990 return PTR_ERR(local_mem); 2991 2992 /* 2993 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 2994 * It's not backed by system memory and thus there's no kernel mapping 2995 * for it. 2996 */ 2997 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 2998 dma, size, dev_to_node(hcd->self.sysdev)); 2999 if (err < 0) { 3000 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 3001 err); 3002 return err; 3003 } 3004 3005 return 0; 3006} 3007EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 3008 3009/*-------------------------------------------------------------------------*/ 3010 3011#if IS_ENABLED(CONFIG_USB_MON) 3012 3013const struct usb_mon_operations *mon_ops; 3014 3015/* 3016 * The registration is unlocked. 3017 * We do it this way because we do not want to lock in hot paths. 3018 * 3019 * Notice that the code is minimally error-proof. Because usbmon needs 3020 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3021 */ 3022 3023int usb_mon_register(const struct usb_mon_operations *ops) 3024{ 3025 3026 if (mon_ops) 3027 return -EBUSY; 3028 3029 mon_ops = ops; 3030 mb(); 3031 return 0; 3032} 3033EXPORT_SYMBOL_GPL (usb_mon_register); 3034 3035void usb_mon_deregister (void) 3036{ 3037 3038 if (mon_ops == NULL) { 3039 printk(KERN_ERR "USB: monitor was not registered\n"); 3040 return; 3041 } 3042 mon_ops = NULL; 3043 mb(); 3044} 3045EXPORT_SYMBOL_GPL (usb_mon_deregister); 3046 3047#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3048