xref: /kernel/linux/linux-5.10/drivers/tty/tty_io.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  Copyright (C) 1991, 1992  Linus Torvalds
4 */
5
6/*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures.  Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time.  Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c).  This
21 * makes for cleaner and more compact code.  -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling.  No delays, but all
32 * other bits should be there.
33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 *	-- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 *      -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 *	-- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 *      -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context.  Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68#include <linux/types.h>
69#include <linux/major.h>
70#include <linux/errno.h>
71#include <linux/signal.h>
72#include <linux/fcntl.h>
73#include <linux/sched/signal.h>
74#include <linux/sched/task.h>
75#include <linux/interrupt.h>
76#include <linux/tty.h>
77#include <linux/tty_driver.h>
78#include <linux/tty_flip.h>
79#include <linux/devpts_fs.h>
80#include <linux/file.h>
81#include <linux/fdtable.h>
82#include <linux/console.h>
83#include <linux/timer.h>
84#include <linux/ctype.h>
85#include <linux/kd.h>
86#include <linux/mm.h>
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <linux/poll.h>
90#include <linux/ppp-ioctl.h>
91#include <linux/proc_fs.h>
92#include <linux/init.h>
93#include <linux/module.h>
94#include <linux/device.h>
95#include <linux/wait.h>
96#include <linux/bitops.h>
97#include <linux/delay.h>
98#include <linux/seq_file.h>
99#include <linux/serial.h>
100#include <linux/ratelimit.h>
101#include <linux/compat.h>
102
103#include <linux/uaccess.h>
104
105#include <linux/kbd_kern.h>
106#include <linux/vt_kern.h>
107#include <linux/selection.h>
108
109#include <linux/kmod.h>
110#include <linux/nsproxy.h>
111#include "tty.h"
112
113#undef TTY_DEBUG_HANGUP
114#ifdef TTY_DEBUG_HANGUP
115# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
116#else
117# define tty_debug_hangup(tty, f, args...)	do { } while (0)
118#endif
119
120#define TTY_PARANOIA_CHECK 1
121#define CHECK_TTY_COUNT 1
122
123struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
124	.c_iflag = ICRNL | IXON,
125	.c_oflag = OPOST | ONLCR,
126	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
127	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
128		   ECHOCTL | ECHOKE | IEXTEN,
129	.c_cc = INIT_C_CC,
130	.c_ispeed = 38400,
131	.c_ospeed = 38400,
132	/* .c_line = N_TTY, */
133};
134
135EXPORT_SYMBOL(tty_std_termios);
136
137/* This list gets poked at by procfs and various bits of boot up code. This
138   could do with some rationalisation such as pulling the tty proc function
139   into this file */
140
141LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
142
143/* Mutex to protect creating and releasing a tty */
144DEFINE_MUTEX(tty_mutex);
145
146static ssize_t tty_read(struct kiocb *, struct iov_iter *);
147static ssize_t tty_write(struct kiocb *, struct iov_iter *);
148static __poll_t tty_poll(struct file *, poll_table *);
149static int tty_open(struct inode *, struct file *);
150#ifdef CONFIG_COMPAT
151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152				unsigned long arg);
153#else
154#define tty_compat_ioctl NULL
155#endif
156static int __tty_fasync(int fd, struct file *filp, int on);
157static int tty_fasync(int fd, struct file *filp, int on);
158static void release_tty(struct tty_struct *tty, int idx);
159
160/**
161 *	free_tty_struct		-	free a disused tty
162 *	@tty: tty struct to free
163 *
164 *	Free the write buffers, tty queue and tty memory itself.
165 *
166 *	Locking: none. Must be called after tty is definitely unused
167 */
168
169static void free_tty_struct(struct tty_struct *tty)
170{
171	tty_ldisc_deinit(tty);
172	put_device(tty->dev);
173	kfree(tty->write_buf);
174	tty->magic = 0xDEADDEAD;
175	kfree(tty);
176}
177
178static inline struct tty_struct *file_tty(struct file *file)
179{
180	return ((struct tty_file_private *)file->private_data)->tty;
181}
182
183int tty_alloc_file(struct file *file)
184{
185	struct tty_file_private *priv;
186
187	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188	if (!priv)
189		return -ENOMEM;
190
191	file->private_data = priv;
192
193	return 0;
194}
195
196/* Associate a new file with the tty structure */
197void tty_add_file(struct tty_struct *tty, struct file *file)
198{
199	struct tty_file_private *priv = file->private_data;
200
201	priv->tty = tty;
202	priv->file = file;
203
204	spin_lock(&tty->files_lock);
205	list_add(&priv->list, &tty->tty_files);
206	spin_unlock(&tty->files_lock);
207}
208
209/**
210 * tty_free_file - free file->private_data
211 *
212 * This shall be used only for fail path handling when tty_add_file was not
213 * called yet.
214 */
215void tty_free_file(struct file *file)
216{
217	struct tty_file_private *priv = file->private_data;
218
219	file->private_data = NULL;
220	kfree(priv);
221}
222
223/* Delete file from its tty */
224static void tty_del_file(struct file *file)
225{
226	struct tty_file_private *priv = file->private_data;
227	struct tty_struct *tty = priv->tty;
228
229	spin_lock(&tty->files_lock);
230	list_del(&priv->list);
231	spin_unlock(&tty->files_lock);
232	tty_free_file(file);
233}
234
235/**
236 *	tty_name	-	return tty naming
237 *	@tty: tty structure
238 *
239 *	Convert a tty structure into a name. The name reflects the kernel
240 *	naming policy and if udev is in use may not reflect user space
241 *
242 *	Locking: none
243 */
244
245const char *tty_name(const struct tty_struct *tty)
246{
247	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
248		return "NULL tty";
249	return tty->name;
250}
251
252EXPORT_SYMBOL(tty_name);
253
254const char *tty_driver_name(const struct tty_struct *tty)
255{
256	if (!tty || !tty->driver)
257		return "";
258	return tty->driver->name;
259}
260
261static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
262			      const char *routine)
263{
264#ifdef TTY_PARANOIA_CHECK
265	if (!tty) {
266		pr_warn("(%d:%d): %s: NULL tty\n",
267			imajor(inode), iminor(inode), routine);
268		return 1;
269	}
270	if (tty->magic != TTY_MAGIC) {
271		pr_warn("(%d:%d): %s: bad magic number\n",
272			imajor(inode), iminor(inode), routine);
273		return 1;
274	}
275#endif
276	return 0;
277}
278
279/* Caller must hold tty_lock */
280static int check_tty_count(struct tty_struct *tty, const char *routine)
281{
282#ifdef CHECK_TTY_COUNT
283	struct list_head *p;
284	int count = 0, kopen_count = 0;
285
286	spin_lock(&tty->files_lock);
287	list_for_each(p, &tty->tty_files) {
288		count++;
289	}
290	spin_unlock(&tty->files_lock);
291	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293	    tty->link && tty->link->count)
294		count++;
295	if (tty_port_kopened(tty->port))
296		kopen_count++;
297	if (tty->count != (count + kopen_count)) {
298		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
299			 routine, tty->count, count, kopen_count);
300		return (count + kopen_count);
301	}
302#endif
303	return 0;
304}
305
306/**
307 *	get_tty_driver		-	find device of a tty
308 *	@device: device identifier
309 *	@index: returns the index of the tty
310 *
311 *	This routine returns a tty driver structure, given a device number
312 *	and also passes back the index number.
313 *
314 *	Locking: caller must hold tty_mutex
315 */
316
317static struct tty_driver *get_tty_driver(dev_t device, int *index)
318{
319	struct tty_driver *p;
320
321	list_for_each_entry(p, &tty_drivers, tty_drivers) {
322		dev_t base = MKDEV(p->major, p->minor_start);
323		if (device < base || device >= base + p->num)
324			continue;
325		*index = device - base;
326		return tty_driver_kref_get(p);
327	}
328	return NULL;
329}
330
331/**
332 *	tty_dev_name_to_number	-	return dev_t for device name
333 *	@name: user space name of device under /dev
334 *	@number: pointer to dev_t that this function will populate
335 *
336 *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
337 *	like (4, 64) or (188, 1). If no corresponding driver is registered then
338 *	the function returns -ENODEV.
339 *
340 *	Locking: this acquires tty_mutex to protect the tty_drivers list from
341 *		being modified while we are traversing it, and makes sure to
342 *		release it before exiting.
343 */
344int tty_dev_name_to_number(const char *name, dev_t *number)
345{
346	struct tty_driver *p;
347	int ret;
348	int index, prefix_length = 0;
349	const char *str;
350
351	for (str = name; *str && !isdigit(*str); str++)
352		;
353
354	if (!*str)
355		return -EINVAL;
356
357	ret = kstrtoint(str, 10, &index);
358	if (ret)
359		return ret;
360
361	prefix_length = str - name;
362	mutex_lock(&tty_mutex);
363
364	list_for_each_entry(p, &tty_drivers, tty_drivers)
365		if (prefix_length == strlen(p->name) && strncmp(name,
366					p->name, prefix_length) == 0) {
367			if (index < p->num) {
368				*number = MKDEV(p->major, p->minor_start + index);
369				goto out;
370			}
371		}
372
373	/* if here then driver wasn't found */
374	ret = -ENODEV;
375out:
376	mutex_unlock(&tty_mutex);
377	return ret;
378}
379EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380
381#ifdef CONFIG_CONSOLE_POLL
382
383/**
384 *	tty_find_polling_driver	-	find device of a polled tty
385 *	@name: name string to match
386 *	@line: pointer to resulting tty line nr
387 *
388 *	This routine returns a tty driver structure, given a name
389 *	and the condition that the tty driver is capable of polled
390 *	operation.
391 */
392struct tty_driver *tty_find_polling_driver(char *name, int *line)
393{
394	struct tty_driver *p, *res = NULL;
395	int tty_line = 0;
396	int len;
397	char *str, *stp;
398
399	for (str = name; *str; str++)
400		if ((*str >= '0' && *str <= '9') || *str == ',')
401			break;
402	if (!*str)
403		return NULL;
404
405	len = str - name;
406	tty_line = simple_strtoul(str, &str, 10);
407
408	mutex_lock(&tty_mutex);
409	/* Search through the tty devices to look for a match */
410	list_for_each_entry(p, &tty_drivers, tty_drivers) {
411		if (!len || strncmp(name, p->name, len) != 0)
412			continue;
413		stp = str;
414		if (*stp == ',')
415			stp++;
416		if (*stp == '\0')
417			stp = NULL;
418
419		if (tty_line >= 0 && tty_line < p->num && p->ops &&
420		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421			res = tty_driver_kref_get(p);
422			*line = tty_line;
423			break;
424		}
425	}
426	mutex_unlock(&tty_mutex);
427
428	return res;
429}
430EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431#endif
432
433static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
434{
435	return 0;
436}
437
438static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
439{
440	return -EIO;
441}
442
443/* No kernel lock held - none needed ;) */
444static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
445{
446	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
447}
448
449static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
450		unsigned long arg)
451{
452	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
453}
454
455static long hung_up_tty_compat_ioctl(struct file *file,
456				     unsigned int cmd, unsigned long arg)
457{
458	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
459}
460
461static int hung_up_tty_fasync(int fd, struct file *file, int on)
462{
463	return -ENOTTY;
464}
465
466static void tty_show_fdinfo(struct seq_file *m, struct file *file)
467{
468	struct tty_struct *tty = file_tty(file);
469
470	if (tty && tty->ops && tty->ops->show_fdinfo)
471		tty->ops->show_fdinfo(tty, m);
472}
473
474static const struct file_operations tty_fops = {
475	.llseek		= no_llseek,
476	.read_iter	= tty_read,
477	.write_iter	= tty_write,
478	.splice_read	= generic_file_splice_read,
479	.splice_write	= iter_file_splice_write,
480	.poll		= tty_poll,
481	.unlocked_ioctl	= tty_ioctl,
482	.compat_ioctl	= tty_compat_ioctl,
483	.open		= tty_open,
484	.release	= tty_release,
485	.fasync		= tty_fasync,
486	.show_fdinfo	= tty_show_fdinfo,
487};
488
489static const struct file_operations console_fops = {
490	.llseek		= no_llseek,
491	.read_iter	= tty_read,
492	.write_iter	= redirected_tty_write,
493	.splice_read	= generic_file_splice_read,
494	.splice_write	= iter_file_splice_write,
495	.poll		= tty_poll,
496	.unlocked_ioctl	= tty_ioctl,
497	.compat_ioctl	= tty_compat_ioctl,
498	.open		= tty_open,
499	.release	= tty_release,
500	.fasync		= tty_fasync,
501};
502
503static const struct file_operations hung_up_tty_fops = {
504	.llseek		= no_llseek,
505	.read_iter	= hung_up_tty_read,
506	.write_iter	= hung_up_tty_write,
507	.poll		= hung_up_tty_poll,
508	.unlocked_ioctl	= hung_up_tty_ioctl,
509	.compat_ioctl	= hung_up_tty_compat_ioctl,
510	.release	= tty_release,
511	.fasync		= hung_up_tty_fasync,
512};
513
514static DEFINE_SPINLOCK(redirect_lock);
515static struct file *redirect;
516
517extern void tty_sysctl_init(void);
518
519/**
520 *	tty_wakeup	-	request more data
521 *	@tty: terminal
522 *
523 *	Internal and external helper for wakeups of tty. This function
524 *	informs the line discipline if present that the driver is ready
525 *	to receive more output data.
526 */
527
528void tty_wakeup(struct tty_struct *tty)
529{
530	struct tty_ldisc *ld;
531
532	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
533		ld = tty_ldisc_ref(tty);
534		if (ld) {
535			if (ld->ops->write_wakeup)
536				ld->ops->write_wakeup(tty);
537			tty_ldisc_deref(ld);
538		}
539	}
540	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
541}
542
543EXPORT_SYMBOL_GPL(tty_wakeup);
544
545/**
546 *	__tty_hangup		-	actual handler for hangup events
547 *	@tty: tty device
548 *
549 *	This can be called by a "kworker" kernel thread.  That is process
550 *	synchronous but doesn't hold any locks, so we need to make sure we
551 *	have the appropriate locks for what we're doing.
552 *
553 *	The hangup event clears any pending redirections onto the hung up
554 *	device. It ensures future writes will error and it does the needed
555 *	line discipline hangup and signal delivery. The tty object itself
556 *	remains intact.
557 *
558 *	Locking:
559 *		BTM
560 *		  redirect lock for undoing redirection
561 *		  file list lock for manipulating list of ttys
562 *		  tty_ldiscs_lock from called functions
563 *		  termios_rwsem resetting termios data
564 *		  tasklist_lock to walk task list for hangup event
565 *		    ->siglock to protect ->signal/->sighand
566 */
567static void __tty_hangup(struct tty_struct *tty, int exit_session)
568{
569	struct file *cons_filp = NULL;
570	struct file *filp, *f = NULL;
571	struct tty_file_private *priv;
572	int    closecount = 0, n;
573	int refs;
574
575	if (!tty)
576		return;
577
578
579	spin_lock(&redirect_lock);
580	if (redirect && file_tty(redirect) == tty) {
581		f = redirect;
582		redirect = NULL;
583	}
584	spin_unlock(&redirect_lock);
585
586	tty_lock(tty);
587
588	if (test_bit(TTY_HUPPED, &tty->flags)) {
589		tty_unlock(tty);
590		return;
591	}
592
593	/*
594	 * Some console devices aren't actually hung up for technical and
595	 * historical reasons, which can lead to indefinite interruptible
596	 * sleep in n_tty_read().  The following explicitly tells
597	 * n_tty_read() to abort readers.
598	 */
599	set_bit(TTY_HUPPING, &tty->flags);
600
601	/* inuse_filps is protected by the single tty lock,
602	   this really needs to change if we want to flush the
603	   workqueue with the lock held */
604	check_tty_count(tty, "tty_hangup");
605
606	spin_lock(&tty->files_lock);
607	/* This breaks for file handles being sent over AF_UNIX sockets ? */
608	list_for_each_entry(priv, &tty->tty_files, list) {
609		filp = priv->file;
610		if (filp->f_op->write_iter == redirected_tty_write)
611			cons_filp = filp;
612		if (filp->f_op->write_iter != tty_write)
613			continue;
614		closecount++;
615		__tty_fasync(-1, filp, 0);	/* can't block */
616		filp->f_op = &hung_up_tty_fops;
617	}
618	spin_unlock(&tty->files_lock);
619
620	refs = tty_signal_session_leader(tty, exit_session);
621	/* Account for the p->signal references we killed */
622	while (refs--)
623		tty_kref_put(tty);
624
625	tty_ldisc_hangup(tty, cons_filp != NULL);
626
627	spin_lock_irq(&tty->ctrl_lock);
628	clear_bit(TTY_THROTTLED, &tty->flags);
629	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
630	put_pid(tty->session);
631	put_pid(tty->pgrp);
632	tty->session = NULL;
633	tty->pgrp = NULL;
634	tty->ctrl_status = 0;
635	spin_unlock_irq(&tty->ctrl_lock);
636
637	/*
638	 * If one of the devices matches a console pointer, we
639	 * cannot just call hangup() because that will cause
640	 * tty->count and state->count to go out of sync.
641	 * So we just call close() the right number of times.
642	 */
643	if (cons_filp) {
644		if (tty->ops->close)
645			for (n = 0; n < closecount; n++)
646				tty->ops->close(tty, cons_filp);
647	} else if (tty->ops->hangup)
648		tty->ops->hangup(tty);
649	/*
650	 * We don't want to have driver/ldisc interactions beyond the ones
651	 * we did here. The driver layer expects no calls after ->hangup()
652	 * from the ldisc side, which is now guaranteed.
653	 */
654	set_bit(TTY_HUPPED, &tty->flags);
655	clear_bit(TTY_HUPPING, &tty->flags);
656	tty_unlock(tty);
657
658	if (f)
659		fput(f);
660}
661
662static void do_tty_hangup(struct work_struct *work)
663{
664	struct tty_struct *tty =
665		container_of(work, struct tty_struct, hangup_work);
666
667	__tty_hangup(tty, 0);
668}
669
670/**
671 *	tty_hangup		-	trigger a hangup event
672 *	@tty: tty to hangup
673 *
674 *	A carrier loss (virtual or otherwise) has occurred on this like
675 *	schedule a hangup sequence to run after this event.
676 */
677
678void tty_hangup(struct tty_struct *tty)
679{
680	tty_debug_hangup(tty, "hangup\n");
681	schedule_work(&tty->hangup_work);
682}
683
684EXPORT_SYMBOL(tty_hangup);
685
686/**
687 *	tty_vhangup		-	process vhangup
688 *	@tty: tty to hangup
689 *
690 *	The user has asked via system call for the terminal to be hung up.
691 *	We do this synchronously so that when the syscall returns the process
692 *	is complete. That guarantee is necessary for security reasons.
693 */
694
695void tty_vhangup(struct tty_struct *tty)
696{
697	tty_debug_hangup(tty, "vhangup\n");
698	__tty_hangup(tty, 0);
699}
700
701EXPORT_SYMBOL(tty_vhangup);
702
703
704/**
705 *	tty_vhangup_self	-	process vhangup for own ctty
706 *
707 *	Perform a vhangup on the current controlling tty
708 */
709
710void tty_vhangup_self(void)
711{
712	struct tty_struct *tty;
713
714	tty = get_current_tty();
715	if (tty) {
716		tty_vhangup(tty);
717		tty_kref_put(tty);
718	}
719}
720
721/**
722 *	tty_vhangup_session		-	hangup session leader exit
723 *	@tty: tty to hangup
724 *
725 *	The session leader is exiting and hanging up its controlling terminal.
726 *	Every process in the foreground process group is signalled SIGHUP.
727 *
728 *	We do this synchronously so that when the syscall returns the process
729 *	is complete. That guarantee is necessary for security reasons.
730 */
731
732void tty_vhangup_session(struct tty_struct *tty)
733{
734	tty_debug_hangup(tty, "session hangup\n");
735	__tty_hangup(tty, 1);
736}
737
738/**
739 *	tty_hung_up_p		-	was tty hung up
740 *	@filp: file pointer of tty
741 *
742 *	Return true if the tty has been subject to a vhangup or a carrier
743 *	loss
744 */
745
746int tty_hung_up_p(struct file *filp)
747{
748	return (filp && filp->f_op == &hung_up_tty_fops);
749}
750
751EXPORT_SYMBOL(tty_hung_up_p);
752
753/**
754 *	stop_tty	-	propagate flow control
755 *	@tty: tty to stop
756 *
757 *	Perform flow control to the driver. May be called
758 *	on an already stopped device and will not re-call the driver
759 *	method.
760 *
761 *	This functionality is used by both the line disciplines for
762 *	halting incoming flow and by the driver. It may therefore be
763 *	called from any context, may be under the tty atomic_write_lock
764 *	but not always.
765 *
766 *	Locking:
767 *		flow_lock
768 */
769
770void __stop_tty(struct tty_struct *tty)
771{
772	if (tty->stopped)
773		return;
774	tty->stopped = 1;
775	if (tty->ops->stop)
776		tty->ops->stop(tty);
777}
778
779void stop_tty(struct tty_struct *tty)
780{
781	unsigned long flags;
782
783	spin_lock_irqsave(&tty->flow_lock, flags);
784	__stop_tty(tty);
785	spin_unlock_irqrestore(&tty->flow_lock, flags);
786}
787EXPORT_SYMBOL(stop_tty);
788
789/**
790 *	start_tty	-	propagate flow control
791 *	@tty: tty to start
792 *
793 *	Start a tty that has been stopped if at all possible. If this
794 *	tty was previous stopped and is now being started, the driver
795 *	start method is invoked and the line discipline woken.
796 *
797 *	Locking:
798 *		flow_lock
799 */
800
801void __start_tty(struct tty_struct *tty)
802{
803	if (!tty->stopped || tty->flow_stopped)
804		return;
805	tty->stopped = 0;
806	if (tty->ops->start)
807		tty->ops->start(tty);
808	tty_wakeup(tty);
809}
810
811void start_tty(struct tty_struct *tty)
812{
813	unsigned long flags;
814
815	spin_lock_irqsave(&tty->flow_lock, flags);
816	__start_tty(tty);
817	spin_unlock_irqrestore(&tty->flow_lock, flags);
818}
819EXPORT_SYMBOL(start_tty);
820
821static void tty_update_time(struct timespec64 *time)
822{
823	time64_t sec = ktime_get_real_seconds();
824
825	/*
826	 * We only care if the two values differ in anything other than the
827	 * lower three bits (i.e every 8 seconds).  If so, then we can update
828	 * the time of the tty device, otherwise it could be construded as a
829	 * security leak to let userspace know the exact timing of the tty.
830	 */
831	if ((sec ^ time->tv_sec) & ~7)
832		time->tv_sec = sec;
833}
834
835/*
836 * Iterate on the ldisc ->read() function until we've gotten all
837 * the data the ldisc has for us.
838 *
839 * The "cookie" is something that the ldisc read function can fill
840 * in to let us know that there is more data to be had.
841 *
842 * We promise to continue to call the ldisc until it stops returning
843 * data or clears the cookie. The cookie may be something that the
844 * ldisc maintains state for and needs to free.
845 */
846static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
847		struct file *file, struct iov_iter *to)
848{
849	int retval = 0;
850	void *cookie = NULL;
851	unsigned long offset = 0;
852	char kernel_buf[64];
853	size_t count = iov_iter_count(to);
854
855	do {
856		int size, copied;
857
858		size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
859		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
860		if (!size)
861			break;
862
863		if (size < 0) {
864			/* Did we have an earlier error (ie -EFAULT)? */
865			if (retval)
866				break;
867			retval = size;
868
869			/*
870			 * -EOVERFLOW means we didn't have enough space
871			 * for a whole packet, and we shouldn't return
872			 * a partial result.
873			 */
874			if (retval == -EOVERFLOW)
875				offset = 0;
876			break;
877		}
878
879		copied = copy_to_iter(kernel_buf, size, to);
880		offset += copied;
881		count -= copied;
882
883		/*
884		 * If the user copy failed, we still need to do another ->read()
885		 * call if we had a cookie to let the ldisc clear up.
886		 *
887		 * But make sure size is zeroed.
888		 */
889		if (unlikely(copied != size)) {
890			count = 0;
891			retval = -EFAULT;
892		}
893	} while (cookie);
894
895	/* We always clear tty buffer in case they contained passwords */
896	memzero_explicit(kernel_buf, sizeof(kernel_buf));
897	return offset ? offset : retval;
898}
899
900
901/**
902 *	tty_read	-	read method for tty device files
903 *	@file: pointer to tty file
904 *	@buf: user buffer
905 *	@count: size of user buffer
906 *	@ppos: unused
907 *
908 *	Perform the read system call function on this terminal device. Checks
909 *	for hung up devices before calling the line discipline method.
910 *
911 *	Locking:
912 *		Locks the line discipline internally while needed. Multiple
913 *	read calls may be outstanding in parallel.
914 */
915
916static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
917{
918	int i;
919	struct file *file = iocb->ki_filp;
920	struct inode *inode = file_inode(file);
921	struct tty_struct *tty = file_tty(file);
922	struct tty_ldisc *ld;
923
924	if (tty_paranoia_check(tty, inode, "tty_read"))
925		return -EIO;
926	if (!tty || tty_io_error(tty))
927		return -EIO;
928
929	/* We want to wait for the line discipline to sort out in this
930	   situation */
931	ld = tty_ldisc_ref_wait(tty);
932	if (!ld)
933		return hung_up_tty_read(iocb, to);
934	i = -EIO;
935	if (ld->ops->read)
936		i = iterate_tty_read(ld, tty, file, to);
937	tty_ldisc_deref(ld);
938
939	if (i > 0)
940		tty_update_time(&inode->i_atime);
941
942	return i;
943}
944
945void tty_write_unlock(struct tty_struct *tty)
946{
947	mutex_unlock(&tty->atomic_write_lock);
948	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
949}
950
951int tty_write_lock(struct tty_struct *tty, bool ndelay)
952{
953	if (!mutex_trylock(&tty->atomic_write_lock)) {
954		if (ndelay)
955			return -EAGAIN;
956		if (mutex_lock_interruptible(&tty->atomic_write_lock))
957			return -ERESTARTSYS;
958	}
959	return 0;
960}
961
962/*
963 * Split writes up in sane blocksizes to avoid
964 * denial-of-service type attacks
965 */
966static inline ssize_t do_tty_write(
967	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
968	struct tty_struct *tty,
969	struct file *file,
970	struct iov_iter *from)
971{
972	size_t count = iov_iter_count(from);
973	ssize_t ret, written = 0;
974	unsigned int chunk;
975
976	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
977	if (ret < 0)
978		return ret;
979
980	/*
981	 * We chunk up writes into a temporary buffer. This
982	 * simplifies low-level drivers immensely, since they
983	 * don't have locking issues and user mode accesses.
984	 *
985	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
986	 * big chunk-size..
987	 *
988	 * The default chunk-size is 2kB, because the NTTY
989	 * layer has problems with bigger chunks. It will
990	 * claim to be able to handle more characters than
991	 * it actually does.
992	 *
993	 * FIXME: This can probably go away now except that 64K chunks
994	 * are too likely to fail unless switched to vmalloc...
995	 */
996	chunk = 2048;
997	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
998		chunk = 65536;
999	if (count < chunk)
1000		chunk = count;
1001
1002	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1003	if (tty->write_cnt < chunk) {
1004		unsigned char *buf_chunk;
1005
1006		if (chunk < 1024)
1007			chunk = 1024;
1008
1009		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1010		if (!buf_chunk) {
1011			ret = -ENOMEM;
1012			goto out;
1013		}
1014		kfree(tty->write_buf);
1015		tty->write_cnt = chunk;
1016		tty->write_buf = buf_chunk;
1017	}
1018
1019	/* Do the write .. */
1020	for (;;) {
1021		size_t size = count;
1022		if (size > chunk)
1023			size = chunk;
1024
1025		ret = -EFAULT;
1026		if (copy_from_iter(tty->write_buf, size, from) != size)
1027			break;
1028
1029		ret = write(tty, file, tty->write_buf, size);
1030		if (ret <= 0)
1031			break;
1032
1033		written += ret;
1034		if (ret > size)
1035			break;
1036
1037		/* FIXME! Have Al check this! */
1038		if (ret != size)
1039			iov_iter_revert(from, size-ret);
1040
1041		count -= ret;
1042		if (!count)
1043			break;
1044		ret = -ERESTARTSYS;
1045		if (signal_pending(current))
1046			break;
1047		cond_resched();
1048	}
1049	if (written) {
1050		tty_update_time(&file_inode(file)->i_mtime);
1051		ret = written;
1052	}
1053out:
1054	tty_write_unlock(tty);
1055	return ret;
1056}
1057
1058/**
1059 * tty_write_message - write a message to a certain tty, not just the console.
1060 * @tty: the destination tty_struct
1061 * @msg: the message to write
1062 *
1063 * This is used for messages that need to be redirected to a specific tty.
1064 * We don't put it into the syslog queue right now maybe in the future if
1065 * really needed.
1066 *
1067 * We must still hold the BTM and test the CLOSING flag for the moment.
1068 */
1069
1070void tty_write_message(struct tty_struct *tty, char *msg)
1071{
1072	if (tty) {
1073		mutex_lock(&tty->atomic_write_lock);
1074		tty_lock(tty);
1075		if (tty->ops->write && tty->count > 0)
1076			tty->ops->write(tty, msg, strlen(msg));
1077		tty_unlock(tty);
1078		tty_write_unlock(tty);
1079	}
1080	return;
1081}
1082
1083
1084/**
1085 *	tty_write		-	write method for tty device file
1086 *	@file: tty file pointer
1087 *	@buf: user data to write
1088 *	@count: bytes to write
1089 *	@ppos: unused
1090 *
1091 *	Write data to a tty device via the line discipline.
1092 *
1093 *	Locking:
1094 *		Locks the line discipline as required
1095 *		Writes to the tty driver are serialized by the atomic_write_lock
1096 *	and are then processed in chunks to the device. The line discipline
1097 *	write method will not be invoked in parallel for each device.
1098 */
1099
1100static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1101{
1102	struct tty_struct *tty = file_tty(file);
1103 	struct tty_ldisc *ld;
1104	ssize_t ret;
1105
1106	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1107		return -EIO;
1108	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1109			return -EIO;
1110	/* Short term debug to catch buggy drivers */
1111	if (tty->ops->write_room == NULL)
1112		tty_err(tty, "missing write_room method\n");
1113	ld = tty_ldisc_ref_wait(tty);
1114	if (!ld)
1115		return hung_up_tty_write(iocb, from);
1116	if (!ld->ops->write)
1117		ret = -EIO;
1118	else
1119		ret = do_tty_write(ld->ops->write, tty, file, from);
1120	tty_ldisc_deref(ld);
1121	return ret;
1122}
1123
1124static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1125{
1126	return file_tty_write(iocb->ki_filp, iocb, from);
1127}
1128
1129ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1130{
1131	struct file *p = NULL;
1132
1133	spin_lock(&redirect_lock);
1134	if (redirect)
1135		p = get_file(redirect);
1136	spin_unlock(&redirect_lock);
1137
1138	/*
1139	 * We know the redirected tty is just another tty, we can can
1140	 * call file_tty_write() directly with that file pointer.
1141	 */
1142	if (p) {
1143		ssize_t res;
1144		res = file_tty_write(p, iocb, iter);
1145		fput(p);
1146		return res;
1147	}
1148	return tty_write(iocb, iter);
1149}
1150
1151/**
1152 *	tty_send_xchar	-	send priority character
1153 *
1154 *	Send a high priority character to the tty even if stopped
1155 *
1156 *	Locking: none for xchar method, write ordering for write method.
1157 */
1158
1159int tty_send_xchar(struct tty_struct *tty, char ch)
1160{
1161	int	was_stopped = tty->stopped;
1162
1163	if (tty->ops->send_xchar) {
1164		down_read(&tty->termios_rwsem);
1165		tty->ops->send_xchar(tty, ch);
1166		up_read(&tty->termios_rwsem);
1167		return 0;
1168	}
1169
1170	if (tty_write_lock(tty, false) < 0)
1171		return -ERESTARTSYS;
1172
1173	down_read(&tty->termios_rwsem);
1174	if (was_stopped)
1175		start_tty(tty);
1176	tty->ops->write(tty, &ch, 1);
1177	if (was_stopped)
1178		stop_tty(tty);
1179	up_read(&tty->termios_rwsem);
1180	tty_write_unlock(tty);
1181	return 0;
1182}
1183
1184static char ptychar[] = "pqrstuvwxyzabcde";
1185
1186/**
1187 *	pty_line_name	-	generate name for a pty
1188 *	@driver: the tty driver in use
1189 *	@index: the minor number
1190 *	@p: output buffer of at least 6 bytes
1191 *
1192 *	Generate a name from a driver reference and write it to the output
1193 *	buffer.
1194 *
1195 *	Locking: None
1196 */
1197static void pty_line_name(struct tty_driver *driver, int index, char *p)
1198{
1199	int i = index + driver->name_base;
1200	/* ->name is initialized to "ttyp", but "tty" is expected */
1201	sprintf(p, "%s%c%x",
1202		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1203		ptychar[i >> 4 & 0xf], i & 0xf);
1204}
1205
1206/**
1207 *	tty_line_name	-	generate name for a tty
1208 *	@driver: the tty driver in use
1209 *	@index: the minor number
1210 *	@p: output buffer of at least 7 bytes
1211 *
1212 *	Generate a name from a driver reference and write it to the output
1213 *	buffer.
1214 *
1215 *	Locking: None
1216 */
1217static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1218{
1219	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1220		return sprintf(p, "%s", driver->name);
1221	else
1222		return sprintf(p, "%s%d", driver->name,
1223			       index + driver->name_base);
1224}
1225
1226/**
1227 *	tty_driver_lookup_tty() - find an existing tty, if any
1228 *	@driver: the driver for the tty
1229 *	@idx:	 the minor number
1230 *
1231 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1232 *	driver lookup() method returns an error.
1233 *
1234 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1235 */
1236static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1237		struct file *file, int idx)
1238{
1239	struct tty_struct *tty;
1240
1241	if (driver->ops->lookup) {
1242		if (!file)
1243			tty = ERR_PTR(-EIO);
1244		else
1245			tty = driver->ops->lookup(driver, file, idx);
1246	} else {
1247		if (idx >= driver->num)
1248			return ERR_PTR(-EINVAL);
1249		tty = driver->ttys[idx];
1250	}
1251	if (!IS_ERR(tty))
1252		tty_kref_get(tty);
1253	return tty;
1254}
1255
1256/**
1257 *	tty_init_termios	-  helper for termios setup
1258 *	@tty: the tty to set up
1259 *
1260 *	Initialise the termios structure for this tty. This runs under
1261 *	the tty_mutex currently so we can be relaxed about ordering.
1262 */
1263
1264void tty_init_termios(struct tty_struct *tty)
1265{
1266	struct ktermios *tp;
1267	int idx = tty->index;
1268
1269	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1270		tty->termios = tty->driver->init_termios;
1271	else {
1272		/* Check for lazy saved data */
1273		tp = tty->driver->termios[idx];
1274		if (tp != NULL) {
1275			tty->termios = *tp;
1276			tty->termios.c_line  = tty->driver->init_termios.c_line;
1277		} else
1278			tty->termios = tty->driver->init_termios;
1279	}
1280	/* Compatibility until drivers always set this */
1281	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1282	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1283}
1284EXPORT_SYMBOL_GPL(tty_init_termios);
1285
1286int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1287{
1288	tty_init_termios(tty);
1289	tty_driver_kref_get(driver);
1290	tty->count++;
1291	driver->ttys[tty->index] = tty;
1292	return 0;
1293}
1294EXPORT_SYMBOL_GPL(tty_standard_install);
1295
1296/**
1297 *	tty_driver_install_tty() - install a tty entry in the driver
1298 *	@driver: the driver for the tty
1299 *	@tty: the tty
1300 *
1301 *	Install a tty object into the driver tables. The tty->index field
1302 *	will be set by the time this is called. This method is responsible
1303 *	for ensuring any need additional structures are allocated and
1304 *	configured.
1305 *
1306 *	Locking: tty_mutex for now
1307 */
1308static int tty_driver_install_tty(struct tty_driver *driver,
1309						struct tty_struct *tty)
1310{
1311	return driver->ops->install ? driver->ops->install(driver, tty) :
1312		tty_standard_install(driver, tty);
1313}
1314
1315/**
1316 *	tty_driver_remove_tty() - remove a tty from the driver tables
1317 *	@driver: the driver for the tty
1318 *	@tty: tty to remove
1319 *
1320 *	Remvoe a tty object from the driver tables. The tty->index field
1321 *	will be set by the time this is called.
1322 *
1323 *	Locking: tty_mutex for now
1324 */
1325static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1326{
1327	if (driver->ops->remove)
1328		driver->ops->remove(driver, tty);
1329	else
1330		driver->ttys[tty->index] = NULL;
1331}
1332
1333/**
1334 *	tty_reopen()	- fast re-open of an open tty
1335 *	@tty: the tty to open
1336 *
1337 *	Return 0 on success, -errno on error.
1338 *	Re-opens on master ptys are not allowed and return -EIO.
1339 *
1340 *	Locking: Caller must hold tty_lock
1341 */
1342static int tty_reopen(struct tty_struct *tty)
1343{
1344	struct tty_driver *driver = tty->driver;
1345	struct tty_ldisc *ld;
1346	int retval = 0;
1347
1348	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1349	    driver->subtype == PTY_TYPE_MASTER)
1350		return -EIO;
1351
1352	if (!tty->count)
1353		return -EAGAIN;
1354
1355	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1356		return -EBUSY;
1357
1358	ld = tty_ldisc_ref_wait(tty);
1359	if (ld) {
1360		tty_ldisc_deref(ld);
1361	} else {
1362		retval = tty_ldisc_lock(tty, 5 * HZ);
1363		if (retval)
1364			return retval;
1365
1366		if (!tty->ldisc)
1367			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1368		tty_ldisc_unlock(tty);
1369	}
1370
1371	if (retval == 0)
1372		tty->count++;
1373
1374	return retval;
1375}
1376
1377/**
1378 *	tty_init_dev		-	initialise a tty device
1379 *	@driver: tty driver we are opening a device on
1380 *	@idx: device index
1381 *
1382 *	Prepare a tty device. This may not be a "new" clean device but
1383 *	could also be an active device. The pty drivers require special
1384 *	handling because of this.
1385 *
1386 *	Locking:
1387 *		The function is called under the tty_mutex, which
1388 *	protects us from the tty struct or driver itself going away.
1389 *
1390 *	On exit the tty device has the line discipline attached and
1391 *	a reference count of 1. If a pair was created for pty/tty use
1392 *	and the other was a pty master then it too has a reference count of 1.
1393 *
1394 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1395 * failed open.  The new code protects the open with a mutex, so it's
1396 * really quite straightforward.  The mutex locking can probably be
1397 * relaxed for the (most common) case of reopening a tty.
1398 *
1399 *	Return: returned tty structure
1400 */
1401
1402struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1403{
1404	struct tty_struct *tty;
1405	int retval;
1406
1407	/*
1408	 * First time open is complex, especially for PTY devices.
1409	 * This code guarantees that either everything succeeds and the
1410	 * TTY is ready for operation, or else the table slots are vacated
1411	 * and the allocated memory released.  (Except that the termios
1412	 * may be retained.)
1413	 */
1414
1415	if (!try_module_get(driver->owner))
1416		return ERR_PTR(-ENODEV);
1417
1418	tty = alloc_tty_struct(driver, idx);
1419	if (!tty) {
1420		retval = -ENOMEM;
1421		goto err_module_put;
1422	}
1423
1424	tty_lock(tty);
1425	retval = tty_driver_install_tty(driver, tty);
1426	if (retval < 0)
1427		goto err_free_tty;
1428
1429	if (!tty->port)
1430		tty->port = driver->ports[idx];
1431
1432	if (WARN_RATELIMIT(!tty->port,
1433			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1434			__func__, tty->driver->name)) {
1435		retval = -EINVAL;
1436		goto err_release_lock;
1437	}
1438
1439	retval = tty_ldisc_lock(tty, 5 * HZ);
1440	if (retval)
1441		goto err_release_lock;
1442	tty->port->itty = tty;
1443
1444	/*
1445	 * Structures all installed ... call the ldisc open routines.
1446	 * If we fail here just call release_tty to clean up.  No need
1447	 * to decrement the use counts, as release_tty doesn't care.
1448	 */
1449	retval = tty_ldisc_setup(tty, tty->link);
1450	if (retval)
1451		goto err_release_tty;
1452	tty_ldisc_unlock(tty);
1453	/* Return the tty locked so that it cannot vanish under the caller */
1454	return tty;
1455
1456err_free_tty:
1457	tty_unlock(tty);
1458	free_tty_struct(tty);
1459err_module_put:
1460	module_put(driver->owner);
1461	return ERR_PTR(retval);
1462
1463	/* call the tty release_tty routine to clean out this slot */
1464err_release_tty:
1465	tty_ldisc_unlock(tty);
1466	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1467			     retval, idx);
1468err_release_lock:
1469	tty_unlock(tty);
1470	release_tty(tty, idx);
1471	return ERR_PTR(retval);
1472}
1473
1474/**
1475 * tty_save_termios() - save tty termios data in driver table
1476 * @tty: tty whose termios data to save
1477 *
1478 * Locking: Caller guarantees serialisation with tty_init_termios().
1479 */
1480void tty_save_termios(struct tty_struct *tty)
1481{
1482	struct ktermios *tp;
1483	int idx = tty->index;
1484
1485	/* If the port is going to reset then it has no termios to save */
1486	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1487		return;
1488
1489	/* Stash the termios data */
1490	tp = tty->driver->termios[idx];
1491	if (tp == NULL) {
1492		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1493		if (tp == NULL)
1494			return;
1495		tty->driver->termios[idx] = tp;
1496	}
1497	*tp = tty->termios;
1498}
1499EXPORT_SYMBOL_GPL(tty_save_termios);
1500
1501/**
1502 *	tty_flush_works		-	flush all works of a tty/pty pair
1503 *	@tty: tty device to flush works for (or either end of a pty pair)
1504 *
1505 *	Sync flush all works belonging to @tty (and the 'other' tty).
1506 */
1507static void tty_flush_works(struct tty_struct *tty)
1508{
1509	flush_work(&tty->SAK_work);
1510	flush_work(&tty->hangup_work);
1511	if (tty->link) {
1512		flush_work(&tty->link->SAK_work);
1513		flush_work(&tty->link->hangup_work);
1514	}
1515}
1516
1517/**
1518 *	release_one_tty		-	release tty structure memory
1519 *	@work: work of tty we are obliterating
1520 *
1521 *	Releases memory associated with a tty structure, and clears out the
1522 *	driver table slots. This function is called when a device is no longer
1523 *	in use. It also gets called when setup of a device fails.
1524 *
1525 *	Locking:
1526 *		takes the file list lock internally when working on the list
1527 *	of ttys that the driver keeps.
1528 *
1529 *	This method gets called from a work queue so that the driver private
1530 *	cleanup ops can sleep (needed for USB at least)
1531 */
1532static void release_one_tty(struct work_struct *work)
1533{
1534	struct tty_struct *tty =
1535		container_of(work, struct tty_struct, hangup_work);
1536	struct tty_driver *driver = tty->driver;
1537	struct module *owner = driver->owner;
1538
1539	if (tty->ops->cleanup)
1540		tty->ops->cleanup(tty);
1541
1542	tty->magic = 0;
1543	tty_driver_kref_put(driver);
1544	module_put(owner);
1545
1546	spin_lock(&tty->files_lock);
1547	list_del_init(&tty->tty_files);
1548	spin_unlock(&tty->files_lock);
1549
1550	put_pid(tty->pgrp);
1551	put_pid(tty->session);
1552	free_tty_struct(tty);
1553}
1554
1555static void queue_release_one_tty(struct kref *kref)
1556{
1557	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1558
1559	/* The hangup queue is now free so we can reuse it rather than
1560	   waste a chunk of memory for each port */
1561	INIT_WORK(&tty->hangup_work, release_one_tty);
1562	schedule_work(&tty->hangup_work);
1563}
1564
1565/**
1566 *	tty_kref_put		-	release a tty kref
1567 *	@tty: tty device
1568 *
1569 *	Release a reference to a tty device and if need be let the kref
1570 *	layer destruct the object for us
1571 */
1572
1573void tty_kref_put(struct tty_struct *tty)
1574{
1575	if (tty)
1576		kref_put(&tty->kref, queue_release_one_tty);
1577}
1578EXPORT_SYMBOL(tty_kref_put);
1579
1580/**
1581 *	release_tty		-	release tty structure memory
1582 *
1583 *	Release both @tty and a possible linked partner (think pty pair),
1584 *	and decrement the refcount of the backing module.
1585 *
1586 *	Locking:
1587 *		tty_mutex
1588 *		takes the file list lock internally when working on the list
1589 *	of ttys that the driver keeps.
1590 *
1591 */
1592static void release_tty(struct tty_struct *tty, int idx)
1593{
1594	/* This should always be true but check for the moment */
1595	WARN_ON(tty->index != idx);
1596	WARN_ON(!mutex_is_locked(&tty_mutex));
1597	if (tty->ops->shutdown)
1598		tty->ops->shutdown(tty);
1599	tty_save_termios(tty);
1600	tty_driver_remove_tty(tty->driver, tty);
1601	if (tty->port)
1602		tty->port->itty = NULL;
1603	if (tty->link)
1604		tty->link->port->itty = NULL;
1605	if (tty->port)
1606		tty_buffer_cancel_work(tty->port);
1607	if (tty->link)
1608		tty_buffer_cancel_work(tty->link->port);
1609
1610	tty_kref_put(tty->link);
1611	tty_kref_put(tty);
1612}
1613
1614/**
1615 *	tty_release_checks - check a tty before real release
1616 *	@tty: tty to check
1617 *	@idx: index of the tty
1618 *
1619 *	Performs some paranoid checking before true release of the @tty.
1620 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1621 */
1622static int tty_release_checks(struct tty_struct *tty, int idx)
1623{
1624#ifdef TTY_PARANOIA_CHECK
1625	if (idx < 0 || idx >= tty->driver->num) {
1626		tty_debug(tty, "bad idx %d\n", idx);
1627		return -1;
1628	}
1629
1630	/* not much to check for devpts */
1631	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1632		return 0;
1633
1634	if (tty != tty->driver->ttys[idx]) {
1635		tty_debug(tty, "bad driver table[%d] = %p\n",
1636			  idx, tty->driver->ttys[idx]);
1637		return -1;
1638	}
1639	if (tty->driver->other) {
1640		struct tty_struct *o_tty = tty->link;
1641
1642		if (o_tty != tty->driver->other->ttys[idx]) {
1643			tty_debug(tty, "bad other table[%d] = %p\n",
1644				  idx, tty->driver->other->ttys[idx]);
1645			return -1;
1646		}
1647		if (o_tty->link != tty) {
1648			tty_debug(tty, "bad link = %p\n", o_tty->link);
1649			return -1;
1650		}
1651	}
1652#endif
1653	return 0;
1654}
1655
1656/**
1657 *      tty_kclose      -       closes tty opened by tty_kopen
1658 *      @tty: tty device
1659 *
1660 *      Performs the final steps to release and free a tty device. It is the
1661 *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1662 *      flag on tty->port.
1663 */
1664void tty_kclose(struct tty_struct *tty)
1665{
1666	/*
1667	 * Ask the line discipline code to release its structures
1668	 */
1669	tty_ldisc_release(tty);
1670
1671	/* Wait for pending work before tty destruction commmences */
1672	tty_flush_works(tty);
1673
1674	tty_debug_hangup(tty, "freeing structure\n");
1675	/*
1676	 * The release_tty function takes care of the details of clearing
1677	 * the slots and preserving the termios structure.
1678	 */
1679	mutex_lock(&tty_mutex);
1680	tty_port_set_kopened(tty->port, 0);
1681	release_tty(tty, tty->index);
1682	mutex_unlock(&tty_mutex);
1683}
1684EXPORT_SYMBOL_GPL(tty_kclose);
1685
1686/**
1687 *	tty_release_struct	-	release a tty struct
1688 *	@tty: tty device
1689 *	@idx: index of the tty
1690 *
1691 *	Performs the final steps to release and free a tty device. It is
1692 *	roughly the reverse of tty_init_dev.
1693 */
1694void tty_release_struct(struct tty_struct *tty, int idx)
1695{
1696	/*
1697	 * Ask the line discipline code to release its structures
1698	 */
1699	tty_ldisc_release(tty);
1700
1701	/* Wait for pending work before tty destruction commmences */
1702	tty_flush_works(tty);
1703
1704	tty_debug_hangup(tty, "freeing structure\n");
1705	/*
1706	 * The release_tty function takes care of the details of clearing
1707	 * the slots and preserving the termios structure.
1708	 */
1709	mutex_lock(&tty_mutex);
1710	release_tty(tty, idx);
1711	mutex_unlock(&tty_mutex);
1712}
1713EXPORT_SYMBOL_GPL(tty_release_struct);
1714
1715/**
1716 *	tty_release		-	vfs callback for close
1717 *	@inode: inode of tty
1718 *	@filp: file pointer for handle to tty
1719 *
1720 *	Called the last time each file handle is closed that references
1721 *	this tty. There may however be several such references.
1722 *
1723 *	Locking:
1724 *		Takes bkl. See tty_release_dev
1725 *
1726 * Even releasing the tty structures is a tricky business.. We have
1727 * to be very careful that the structures are all released at the
1728 * same time, as interrupts might otherwise get the wrong pointers.
1729 *
1730 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1731 * lead to double frees or releasing memory still in use.
1732 */
1733
1734int tty_release(struct inode *inode, struct file *filp)
1735{
1736	struct tty_struct *tty = file_tty(filp);
1737	struct tty_struct *o_tty = NULL;
1738	int	do_sleep, final;
1739	int	idx;
1740	long	timeout = 0;
1741	int	once = 1;
1742
1743	if (tty_paranoia_check(tty, inode, __func__))
1744		return 0;
1745
1746	tty_lock(tty);
1747	check_tty_count(tty, __func__);
1748
1749	__tty_fasync(-1, filp, 0);
1750
1751	idx = tty->index;
1752	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1753	    tty->driver->subtype == PTY_TYPE_MASTER)
1754		o_tty = tty->link;
1755
1756	if (tty_release_checks(tty, idx)) {
1757		tty_unlock(tty);
1758		return 0;
1759	}
1760
1761	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1762
1763	if (tty->ops->close)
1764		tty->ops->close(tty, filp);
1765
1766	/* If tty is pty master, lock the slave pty (stable lock order) */
1767	tty_lock_slave(o_tty);
1768
1769	/*
1770	 * Sanity check: if tty->count is going to zero, there shouldn't be
1771	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1772	 * wait queues and kick everyone out _before_ actually starting to
1773	 * close.  This ensures that we won't block while releasing the tty
1774	 * structure.
1775	 *
1776	 * The test for the o_tty closing is necessary, since the master and
1777	 * slave sides may close in any order.  If the slave side closes out
1778	 * first, its count will be one, since the master side holds an open.
1779	 * Thus this test wouldn't be triggered at the time the slave closed,
1780	 * so we do it now.
1781	 */
1782	while (1) {
1783		do_sleep = 0;
1784
1785		if (tty->count <= 1) {
1786			if (waitqueue_active(&tty->read_wait)) {
1787				wake_up_poll(&tty->read_wait, EPOLLIN);
1788				do_sleep++;
1789			}
1790			if (waitqueue_active(&tty->write_wait)) {
1791				wake_up_poll(&tty->write_wait, EPOLLOUT);
1792				do_sleep++;
1793			}
1794		}
1795		if (o_tty && o_tty->count <= 1) {
1796			if (waitqueue_active(&o_tty->read_wait)) {
1797				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1798				do_sleep++;
1799			}
1800			if (waitqueue_active(&o_tty->write_wait)) {
1801				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1802				do_sleep++;
1803			}
1804		}
1805		if (!do_sleep)
1806			break;
1807
1808		if (once) {
1809			once = 0;
1810			tty_warn(tty, "read/write wait queue active!\n");
1811		}
1812		schedule_timeout_killable(timeout);
1813		if (timeout < 120 * HZ)
1814			timeout = 2 * timeout + 1;
1815		else
1816			timeout = MAX_SCHEDULE_TIMEOUT;
1817	}
1818
1819	if (o_tty) {
1820		if (--o_tty->count < 0) {
1821			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1822			o_tty->count = 0;
1823		}
1824	}
1825	if (--tty->count < 0) {
1826		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1827		tty->count = 0;
1828	}
1829
1830	/*
1831	 * We've decremented tty->count, so we need to remove this file
1832	 * descriptor off the tty->tty_files list; this serves two
1833	 * purposes:
1834	 *  - check_tty_count sees the correct number of file descriptors
1835	 *    associated with this tty.
1836	 *  - do_tty_hangup no longer sees this file descriptor as
1837	 *    something that needs to be handled for hangups.
1838	 */
1839	tty_del_file(filp);
1840
1841	/*
1842	 * Perform some housekeeping before deciding whether to return.
1843	 *
1844	 * If _either_ side is closing, make sure there aren't any
1845	 * processes that still think tty or o_tty is their controlling
1846	 * tty.
1847	 */
1848	if (!tty->count) {
1849		read_lock(&tasklist_lock);
1850		session_clear_tty(tty->session);
1851		if (o_tty)
1852			session_clear_tty(o_tty->session);
1853		read_unlock(&tasklist_lock);
1854	}
1855
1856	/* check whether both sides are closing ... */
1857	final = !tty->count && !(o_tty && o_tty->count);
1858
1859	tty_unlock_slave(o_tty);
1860	tty_unlock(tty);
1861
1862	/* At this point, the tty->count == 0 should ensure a dead tty
1863	   cannot be re-opened by a racing opener */
1864
1865	if (!final)
1866		return 0;
1867
1868	tty_debug_hangup(tty, "final close\n");
1869
1870	tty_release_struct(tty, idx);
1871	return 0;
1872}
1873
1874/**
1875 *	tty_open_current_tty - get locked tty of current task
1876 *	@device: device number
1877 *	@filp: file pointer to tty
1878 *	@return: locked tty of the current task iff @device is /dev/tty
1879 *
1880 *	Performs a re-open of the current task's controlling tty.
1881 *
1882 *	We cannot return driver and index like for the other nodes because
1883 *	devpts will not work then. It expects inodes to be from devpts FS.
1884 */
1885static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1886{
1887	struct tty_struct *tty;
1888	int retval;
1889
1890	if (device != MKDEV(TTYAUX_MAJOR, 0))
1891		return NULL;
1892
1893	tty = get_current_tty();
1894	if (!tty)
1895		return ERR_PTR(-ENXIO);
1896
1897	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1898	/* noctty = 1; */
1899	tty_lock(tty);
1900	tty_kref_put(tty);	/* safe to drop the kref now */
1901
1902	retval = tty_reopen(tty);
1903	if (retval < 0) {
1904		tty_unlock(tty);
1905		tty = ERR_PTR(retval);
1906	}
1907	return tty;
1908}
1909
1910/**
1911 *	tty_lookup_driver - lookup a tty driver for a given device file
1912 *	@device: device number
1913 *	@filp: file pointer to tty
1914 *	@index: index for the device in the @return driver
1915 *	@return: driver for this inode (with increased refcount)
1916 *
1917 * 	If @return is not erroneous, the caller is responsible to decrement the
1918 * 	refcount by tty_driver_kref_put.
1919 *
1920 *	Locking: tty_mutex protects get_tty_driver
1921 */
1922static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1923		int *index)
1924{
1925	struct tty_driver *driver = NULL;
1926
1927	switch (device) {
1928#ifdef CONFIG_VT
1929	case MKDEV(TTY_MAJOR, 0): {
1930		extern struct tty_driver *console_driver;
1931		driver = tty_driver_kref_get(console_driver);
1932		*index = fg_console;
1933		break;
1934	}
1935#endif
1936	case MKDEV(TTYAUX_MAJOR, 1): {
1937		struct tty_driver *console_driver = console_device(index);
1938		if (console_driver) {
1939			driver = tty_driver_kref_get(console_driver);
1940			if (driver && filp) {
1941				/* Don't let /dev/console block */
1942				filp->f_flags |= O_NONBLOCK;
1943				break;
1944			}
1945		}
1946		if (driver)
1947			tty_driver_kref_put(driver);
1948		return ERR_PTR(-ENODEV);
1949	}
1950	default:
1951		driver = get_tty_driver(device, index);
1952		if (!driver)
1953			return ERR_PTR(-ENODEV);
1954		break;
1955	}
1956	return driver;
1957}
1958
1959/**
1960 *	tty_kopen	-	open a tty device for kernel
1961 *	@device: dev_t of device to open
1962 *
1963 *	Opens tty exclusively for kernel. Performs the driver lookup,
1964 *	makes sure it's not already opened and performs the first-time
1965 *	tty initialization.
1966 *
1967 *	Returns the locked initialized &tty_struct
1968 *
1969 *	Claims the global tty_mutex to serialize:
1970 *	  - concurrent first-time tty initialization
1971 *	  - concurrent tty driver removal w/ lookup
1972 *	  - concurrent tty removal from driver table
1973 */
1974struct tty_struct *tty_kopen(dev_t device)
1975{
1976	struct tty_struct *tty;
1977	struct tty_driver *driver;
1978	int index = -1;
1979
1980	mutex_lock(&tty_mutex);
1981	driver = tty_lookup_driver(device, NULL, &index);
1982	if (IS_ERR(driver)) {
1983		mutex_unlock(&tty_mutex);
1984		return ERR_CAST(driver);
1985	}
1986
1987	/* check whether we're reopening an existing tty */
1988	tty = tty_driver_lookup_tty(driver, NULL, index);
1989	if (IS_ERR(tty))
1990		goto out;
1991
1992	if (tty) {
1993		/* drop kref from tty_driver_lookup_tty() */
1994		tty_kref_put(tty);
1995		tty = ERR_PTR(-EBUSY);
1996	} else { /* tty_init_dev returns tty with the tty_lock held */
1997		tty = tty_init_dev(driver, index);
1998		if (IS_ERR(tty))
1999			goto out;
2000		tty_port_set_kopened(tty->port, 1);
2001	}
2002out:
2003	mutex_unlock(&tty_mutex);
2004	tty_driver_kref_put(driver);
2005	return tty;
2006}
2007EXPORT_SYMBOL_GPL(tty_kopen);
2008
2009/**
2010 *	tty_open_by_driver	-	open a tty device
2011 *	@device: dev_t of device to open
2012 *	@filp: file pointer to tty
2013 *
2014 *	Performs the driver lookup, checks for a reopen, or otherwise
2015 *	performs the first-time tty initialization.
2016 *
2017 *	Returns the locked initialized or re-opened &tty_struct
2018 *
2019 *	Claims the global tty_mutex to serialize:
2020 *	  - concurrent first-time tty initialization
2021 *	  - concurrent tty driver removal w/ lookup
2022 *	  - concurrent tty removal from driver table
2023 */
2024static struct tty_struct *tty_open_by_driver(dev_t device,
2025					     struct file *filp)
2026{
2027	struct tty_struct *tty;
2028	struct tty_driver *driver = NULL;
2029	int index = -1;
2030	int retval;
2031
2032	mutex_lock(&tty_mutex);
2033	driver = tty_lookup_driver(device, filp, &index);
2034	if (IS_ERR(driver)) {
2035		mutex_unlock(&tty_mutex);
2036		return ERR_CAST(driver);
2037	}
2038
2039	/* check whether we're reopening an existing tty */
2040	tty = tty_driver_lookup_tty(driver, filp, index);
2041	if (IS_ERR(tty)) {
2042		mutex_unlock(&tty_mutex);
2043		goto out;
2044	}
2045
2046	if (tty) {
2047		if (tty_port_kopened(tty->port)) {
2048			tty_kref_put(tty);
2049			mutex_unlock(&tty_mutex);
2050			tty = ERR_PTR(-EBUSY);
2051			goto out;
2052		}
2053		mutex_unlock(&tty_mutex);
2054		retval = tty_lock_interruptible(tty);
2055		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2056		if (retval) {
2057			if (retval == -EINTR)
2058				retval = -ERESTARTSYS;
2059			tty = ERR_PTR(retval);
2060			goto out;
2061		}
2062		retval = tty_reopen(tty);
2063		if (retval < 0) {
2064			tty_unlock(tty);
2065			tty = ERR_PTR(retval);
2066		}
2067	} else { /* Returns with the tty_lock held for now */
2068		tty = tty_init_dev(driver, index);
2069		mutex_unlock(&tty_mutex);
2070	}
2071out:
2072	tty_driver_kref_put(driver);
2073	return tty;
2074}
2075
2076/**
2077 *	tty_open		-	open a tty device
2078 *	@inode: inode of device file
2079 *	@filp: file pointer to tty
2080 *
2081 *	tty_open and tty_release keep up the tty count that contains the
2082 *	number of opens done on a tty. We cannot use the inode-count, as
2083 *	different inodes might point to the same tty.
2084 *
2085 *	Open-counting is needed for pty masters, as well as for keeping
2086 *	track of serial lines: DTR is dropped when the last close happens.
2087 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2088 *
2089 *	The termios state of a pty is reset on first open so that
2090 *	settings don't persist across reuse.
2091 *
2092 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2093 *		 tty->count should protect the rest.
2094 *		 ->siglock protects ->signal/->sighand
2095 *
2096 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2097 *	tty_mutex
2098 */
2099
2100static int tty_open(struct inode *inode, struct file *filp)
2101{
2102	struct tty_struct *tty;
2103	int noctty, retval;
2104	dev_t device = inode->i_rdev;
2105	unsigned saved_flags = filp->f_flags;
2106
2107	nonseekable_open(inode, filp);
2108
2109retry_open:
2110	retval = tty_alloc_file(filp);
2111	if (retval)
2112		return -ENOMEM;
2113
2114	tty = tty_open_current_tty(device, filp);
2115	if (!tty)
2116		tty = tty_open_by_driver(device, filp);
2117
2118	if (IS_ERR(tty)) {
2119		tty_free_file(filp);
2120		retval = PTR_ERR(tty);
2121		if (retval != -EAGAIN || signal_pending(current))
2122			return retval;
2123		schedule();
2124		goto retry_open;
2125	}
2126
2127	tty_add_file(tty, filp);
2128
2129	check_tty_count(tty, __func__);
2130	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2131
2132	if (tty->ops->open)
2133		retval = tty->ops->open(tty, filp);
2134	else
2135		retval = -ENODEV;
2136	filp->f_flags = saved_flags;
2137
2138	if (retval) {
2139		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2140
2141		tty_unlock(tty); /* need to call tty_release without BTM */
2142		tty_release(inode, filp);
2143		if (retval != -ERESTARTSYS)
2144			return retval;
2145
2146		if (signal_pending(current))
2147			return retval;
2148
2149		schedule();
2150		/*
2151		 * Need to reset f_op in case a hangup happened.
2152		 */
2153		if (tty_hung_up_p(filp))
2154			filp->f_op = &tty_fops;
2155		goto retry_open;
2156	}
2157	clear_bit(TTY_HUPPED, &tty->flags);
2158
2159	noctty = (filp->f_flags & O_NOCTTY) ||
2160		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2161		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2162		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2163		  tty->driver->subtype == PTY_TYPE_MASTER);
2164	if (!noctty)
2165		tty_open_proc_set_tty(filp, tty);
2166	tty_unlock(tty);
2167	return 0;
2168}
2169
2170
2171
2172/**
2173 *	tty_poll	-	check tty status
2174 *	@filp: file being polled
2175 *	@wait: poll wait structures to update
2176 *
2177 *	Call the line discipline polling method to obtain the poll
2178 *	status of the device.
2179 *
2180 *	Locking: locks called line discipline but ldisc poll method
2181 *	may be re-entered freely by other callers.
2182 */
2183
2184static __poll_t tty_poll(struct file *filp, poll_table *wait)
2185{
2186	struct tty_struct *tty = file_tty(filp);
2187	struct tty_ldisc *ld;
2188	__poll_t ret = 0;
2189
2190	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2191		return 0;
2192
2193	ld = tty_ldisc_ref_wait(tty);
2194	if (!ld)
2195		return hung_up_tty_poll(filp, wait);
2196	if (ld->ops->poll)
2197		ret = ld->ops->poll(tty, filp, wait);
2198	tty_ldisc_deref(ld);
2199	return ret;
2200}
2201
2202static int __tty_fasync(int fd, struct file *filp, int on)
2203{
2204	struct tty_struct *tty = file_tty(filp);
2205	unsigned long flags;
2206	int retval = 0;
2207
2208	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2209		goto out;
2210
2211	retval = fasync_helper(fd, filp, on, &tty->fasync);
2212	if (retval <= 0)
2213		goto out;
2214
2215	if (on) {
2216		enum pid_type type;
2217		struct pid *pid;
2218
2219		spin_lock_irqsave(&tty->ctrl_lock, flags);
2220		if (tty->pgrp) {
2221			pid = tty->pgrp;
2222			type = PIDTYPE_PGID;
2223		} else {
2224			pid = task_pid(current);
2225			type = PIDTYPE_TGID;
2226		}
2227		get_pid(pid);
2228		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2229		__f_setown(filp, pid, type, 0);
2230		put_pid(pid);
2231		retval = 0;
2232	}
2233out:
2234	return retval;
2235}
2236
2237static int tty_fasync(int fd, struct file *filp, int on)
2238{
2239	struct tty_struct *tty = file_tty(filp);
2240	int retval = -ENOTTY;
2241
2242	tty_lock(tty);
2243	if (!tty_hung_up_p(filp))
2244		retval = __tty_fasync(fd, filp, on);
2245	tty_unlock(tty);
2246
2247	return retval;
2248}
2249
2250/**
2251 *	tiocsti			-	fake input character
2252 *	@tty: tty to fake input into
2253 *	@p: pointer to character
2254 *
2255 *	Fake input to a tty device. Does the necessary locking and
2256 *	input management.
2257 *
2258 *	FIXME: does not honour flow control ??
2259 *
2260 *	Locking:
2261 *		Called functions take tty_ldiscs_lock
2262 *		current->signal->tty check is safe without locks
2263 */
2264
2265static int tiocsti(struct tty_struct *tty, char __user *p)
2266{
2267	char ch, mbz = 0;
2268	struct tty_ldisc *ld;
2269
2270	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2271		return -EPERM;
2272	if (get_user(ch, p))
2273		return -EFAULT;
2274	tty_audit_tiocsti(tty, ch);
2275	ld = tty_ldisc_ref_wait(tty);
2276	if (!ld)
2277		return -EIO;
2278	tty_buffer_lock_exclusive(tty->port);
2279	if (ld->ops->receive_buf)
2280		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2281	tty_buffer_unlock_exclusive(tty->port);
2282	tty_ldisc_deref(ld);
2283	return 0;
2284}
2285
2286/**
2287 *	tiocgwinsz		-	implement window query ioctl
2288 *	@tty: tty
2289 *	@arg: user buffer for result
2290 *
2291 *	Copies the kernel idea of the window size into the user buffer.
2292 *
2293 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2294 *		is consistent.
2295 */
2296
2297static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2298{
2299	int err;
2300
2301	mutex_lock(&tty->winsize_mutex);
2302	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2303	mutex_unlock(&tty->winsize_mutex);
2304
2305	return err ? -EFAULT: 0;
2306}
2307
2308/**
2309 *	tty_do_resize		-	resize event
2310 *	@tty: tty being resized
2311 *	@ws: new dimensions
2312 *
2313 *	Update the termios variables and send the necessary signals to
2314 *	peform a terminal resize correctly
2315 */
2316
2317int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2318{
2319	struct pid *pgrp;
2320
2321	/* Lock the tty */
2322	mutex_lock(&tty->winsize_mutex);
2323	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2324		goto done;
2325
2326	/* Signal the foreground process group */
2327	pgrp = tty_get_pgrp(tty);
2328	if (pgrp)
2329		kill_pgrp(pgrp, SIGWINCH, 1);
2330	put_pid(pgrp);
2331
2332	tty->winsize = *ws;
2333done:
2334	mutex_unlock(&tty->winsize_mutex);
2335	return 0;
2336}
2337EXPORT_SYMBOL(tty_do_resize);
2338
2339/**
2340 *	tiocswinsz		-	implement window size set ioctl
2341 *	@tty: tty side of tty
2342 *	@arg: user buffer for result
2343 *
2344 *	Copies the user idea of the window size to the kernel. Traditionally
2345 *	this is just advisory information but for the Linux console it
2346 *	actually has driver level meaning and triggers a VC resize.
2347 *
2348 *	Locking:
2349 *		Driver dependent. The default do_resize method takes the
2350 *	tty termios mutex and ctrl_lock. The console takes its own lock
2351 *	then calls into the default method.
2352 */
2353
2354static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2355{
2356	struct winsize tmp_ws;
2357	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2358		return -EFAULT;
2359
2360	if (tty->ops->resize)
2361		return tty->ops->resize(tty, &tmp_ws);
2362	else
2363		return tty_do_resize(tty, &tmp_ws);
2364}
2365
2366/**
2367 *	tioccons	-	allow admin to move logical console
2368 *	@file: the file to become console
2369 *
2370 *	Allow the administrator to move the redirected console device
2371 *
2372 *	Locking: uses redirect_lock to guard the redirect information
2373 */
2374
2375static int tioccons(struct file *file)
2376{
2377	if (!capable(CAP_SYS_ADMIN))
2378		return -EPERM;
2379	if (file->f_op->write_iter == redirected_tty_write) {
2380		struct file *f;
2381		spin_lock(&redirect_lock);
2382		f = redirect;
2383		redirect = NULL;
2384		spin_unlock(&redirect_lock);
2385		if (f)
2386			fput(f);
2387		return 0;
2388	}
2389	if (file->f_op->write_iter != tty_write)
2390		return -ENOTTY;
2391	if (!(file->f_mode & FMODE_WRITE))
2392		return -EBADF;
2393	if (!(file->f_mode & FMODE_CAN_WRITE))
2394		return -EINVAL;
2395	spin_lock(&redirect_lock);
2396	if (redirect) {
2397		spin_unlock(&redirect_lock);
2398		return -EBUSY;
2399	}
2400	redirect = get_file(file);
2401	spin_unlock(&redirect_lock);
2402	return 0;
2403}
2404
2405/**
2406 *	tiocsetd	-	set line discipline
2407 *	@tty: tty device
2408 *	@p: pointer to user data
2409 *
2410 *	Set the line discipline according to user request.
2411 *
2412 *	Locking: see tty_set_ldisc, this function is just a helper
2413 */
2414
2415static int tiocsetd(struct tty_struct *tty, int __user *p)
2416{
2417	int disc;
2418	int ret;
2419
2420	if (get_user(disc, p))
2421		return -EFAULT;
2422
2423	ret = tty_set_ldisc(tty, disc);
2424
2425	return ret;
2426}
2427
2428/**
2429 *	tiocgetd	-	get line discipline
2430 *	@tty: tty device
2431 *	@p: pointer to user data
2432 *
2433 *	Retrieves the line discipline id directly from the ldisc.
2434 *
2435 *	Locking: waits for ldisc reference (in case the line discipline
2436 *		is changing or the tty is being hungup)
2437 */
2438
2439static int tiocgetd(struct tty_struct *tty, int __user *p)
2440{
2441	struct tty_ldisc *ld;
2442	int ret;
2443
2444	ld = tty_ldisc_ref_wait(tty);
2445	if (!ld)
2446		return -EIO;
2447	ret = put_user(ld->ops->num, p);
2448	tty_ldisc_deref(ld);
2449	return ret;
2450}
2451
2452/**
2453 *	send_break	-	performed time break
2454 *	@tty: device to break on
2455 *	@duration: timeout in mS
2456 *
2457 *	Perform a timed break on hardware that lacks its own driver level
2458 *	timed break functionality.
2459 *
2460 *	Locking:
2461 *		atomic_write_lock serializes
2462 *
2463 */
2464
2465static int send_break(struct tty_struct *tty, unsigned int duration)
2466{
2467	int retval;
2468
2469	if (tty->ops->break_ctl == NULL)
2470		return 0;
2471
2472	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2473		return tty->ops->break_ctl(tty, duration);
2474
2475	/* Do the work ourselves */
2476	if (tty_write_lock(tty, false) < 0)
2477		return -EINTR;
2478
2479	retval = tty->ops->break_ctl(tty, -1);
2480	if (!retval) {
2481		msleep_interruptible(duration);
2482		retval = tty->ops->break_ctl(tty, 0);
2483	} else if (retval == -EOPNOTSUPP) {
2484		/* some drivers can tell only dynamically */
2485		retval = 0;
2486	}
2487	tty_write_unlock(tty);
2488
2489	if (signal_pending(current))
2490		retval = -EINTR;
2491
2492	return retval;
2493}
2494
2495/**
2496 *	tty_tiocmget		-	get modem status
2497 *	@tty: tty device
2498 *	@p: pointer to result
2499 *
2500 *	Obtain the modem status bits from the tty driver if the feature
2501 *	is supported. Return -ENOTTY if it is not available.
2502 *
2503 *	Locking: none (up to the driver)
2504 */
2505
2506static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2507{
2508	int retval = -ENOTTY;
2509
2510	if (tty->ops->tiocmget) {
2511		retval = tty->ops->tiocmget(tty);
2512
2513		if (retval >= 0)
2514			retval = put_user(retval, p);
2515	}
2516	return retval;
2517}
2518
2519/**
2520 *	tty_tiocmset		-	set modem status
2521 *	@tty: tty device
2522 *	@cmd: command - clear bits, set bits or set all
2523 *	@p: pointer to desired bits
2524 *
2525 *	Set the modem status bits from the tty driver if the feature
2526 *	is supported. Return -ENOTTY if it is not available.
2527 *
2528 *	Locking: none (up to the driver)
2529 */
2530
2531static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2532	     unsigned __user *p)
2533{
2534	int retval;
2535	unsigned int set, clear, val;
2536
2537	if (tty->ops->tiocmset == NULL)
2538		return -ENOTTY;
2539
2540	retval = get_user(val, p);
2541	if (retval)
2542		return retval;
2543	set = clear = 0;
2544	switch (cmd) {
2545	case TIOCMBIS:
2546		set = val;
2547		break;
2548	case TIOCMBIC:
2549		clear = val;
2550		break;
2551	case TIOCMSET:
2552		set = val;
2553		clear = ~val;
2554		break;
2555	}
2556	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2557	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2558	return tty->ops->tiocmset(tty, set, clear);
2559}
2560
2561static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2562{
2563	int retval = -EINVAL;
2564	struct serial_icounter_struct icount;
2565	memset(&icount, 0, sizeof(icount));
2566	if (tty->ops->get_icount)
2567		retval = tty->ops->get_icount(tty, &icount);
2568	if (retval != 0)
2569		return retval;
2570	if (copy_to_user(arg, &icount, sizeof(icount)))
2571		return -EFAULT;
2572	return 0;
2573}
2574
2575static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2576{
2577	static DEFINE_RATELIMIT_STATE(depr_flags,
2578			DEFAULT_RATELIMIT_INTERVAL,
2579			DEFAULT_RATELIMIT_BURST);
2580	char comm[TASK_COMM_LEN];
2581	struct serial_struct v;
2582	int flags;
2583
2584	if (copy_from_user(&v, ss, sizeof(*ss)))
2585		return -EFAULT;
2586
2587	flags = v.flags & ASYNC_DEPRECATED;
2588
2589	if (flags && __ratelimit(&depr_flags))
2590		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2591			__func__, get_task_comm(comm, current), flags);
2592	if (!tty->ops->set_serial)
2593		return -ENOTTY;
2594	return tty->ops->set_serial(tty, &v);
2595}
2596
2597static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2598{
2599	struct serial_struct v;
2600	int err;
2601
2602	memset(&v, 0, sizeof(v));
2603	if (!tty->ops->get_serial)
2604		return -ENOTTY;
2605	err = tty->ops->get_serial(tty, &v);
2606	if (!err && copy_to_user(ss, &v, sizeof(v)))
2607		err = -EFAULT;
2608	return err;
2609}
2610
2611/*
2612 * if pty, return the slave side (real_tty)
2613 * otherwise, return self
2614 */
2615static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2616{
2617	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2618	    tty->driver->subtype == PTY_TYPE_MASTER)
2619		tty = tty->link;
2620	return tty;
2621}
2622
2623/*
2624 * Split this up, as gcc can choke on it otherwise..
2625 */
2626long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2627{
2628	struct tty_struct *tty = file_tty(file);
2629	struct tty_struct *real_tty;
2630	void __user *p = (void __user *)arg;
2631	int retval;
2632	struct tty_ldisc *ld;
2633
2634	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2635		return -EINVAL;
2636
2637	real_tty = tty_pair_get_tty(tty);
2638
2639	/*
2640	 * Factor out some common prep work
2641	 */
2642	switch (cmd) {
2643	case TIOCSETD:
2644	case TIOCSBRK:
2645	case TIOCCBRK:
2646	case TCSBRK:
2647	case TCSBRKP:
2648		retval = tty_check_change(tty);
2649		if (retval)
2650			return retval;
2651		if (cmd != TIOCCBRK) {
2652			tty_wait_until_sent(tty, 0);
2653			if (signal_pending(current))
2654				return -EINTR;
2655		}
2656		break;
2657	}
2658
2659	/*
2660	 *	Now do the stuff.
2661	 */
2662	switch (cmd) {
2663	case TIOCSTI:
2664		return tiocsti(tty, p);
2665	case TIOCGWINSZ:
2666		return tiocgwinsz(real_tty, p);
2667	case TIOCSWINSZ:
2668		return tiocswinsz(real_tty, p);
2669	case TIOCCONS:
2670		return real_tty != tty ? -EINVAL : tioccons(file);
2671	case TIOCEXCL:
2672		set_bit(TTY_EXCLUSIVE, &tty->flags);
2673		return 0;
2674	case TIOCNXCL:
2675		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2676		return 0;
2677	case TIOCGEXCL:
2678	{
2679		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2680		return put_user(excl, (int __user *)p);
2681	}
2682	case TIOCGETD:
2683		return tiocgetd(tty, p);
2684	case TIOCSETD:
2685		return tiocsetd(tty, p);
2686	case TIOCVHANGUP:
2687		if (!capable(CAP_SYS_ADMIN))
2688			return -EPERM;
2689		tty_vhangup(tty);
2690		return 0;
2691	case TIOCGDEV:
2692	{
2693		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2694		return put_user(ret, (unsigned int __user *)p);
2695	}
2696	/*
2697	 * Break handling
2698	 */
2699	case TIOCSBRK:	/* Turn break on, unconditionally */
2700		if (tty->ops->break_ctl)
2701			return tty->ops->break_ctl(tty, -1);
2702		return 0;
2703	case TIOCCBRK:	/* Turn break off, unconditionally */
2704		if (tty->ops->break_ctl)
2705			return tty->ops->break_ctl(tty, 0);
2706		return 0;
2707	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2708		/* non-zero arg means wait for all output data
2709		 * to be sent (performed above) but don't send break.
2710		 * This is used by the tcdrain() termios function.
2711		 */
2712		if (!arg)
2713			return send_break(tty, 250);
2714		return 0;
2715	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2716		return send_break(tty, arg ? arg*100 : 250);
2717
2718	case TIOCMGET:
2719		return tty_tiocmget(tty, p);
2720	case TIOCMSET:
2721	case TIOCMBIC:
2722	case TIOCMBIS:
2723		return tty_tiocmset(tty, cmd, p);
2724	case TIOCGICOUNT:
2725		return tty_tiocgicount(tty, p);
2726	case TCFLSH:
2727		switch (arg) {
2728		case TCIFLUSH:
2729		case TCIOFLUSH:
2730		/* flush tty buffer and allow ldisc to process ioctl */
2731			tty_buffer_flush(tty, NULL);
2732			break;
2733		}
2734		break;
2735	case TIOCSSERIAL:
2736		return tty_tiocsserial(tty, p);
2737	case TIOCGSERIAL:
2738		return tty_tiocgserial(tty, p);
2739	case TIOCGPTPEER:
2740		/* Special because the struct file is needed */
2741		return ptm_open_peer(file, tty, (int)arg);
2742	default:
2743		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2744		if (retval != -ENOIOCTLCMD)
2745			return retval;
2746	}
2747	if (tty->ops->ioctl) {
2748		retval = tty->ops->ioctl(tty, cmd, arg);
2749		if (retval != -ENOIOCTLCMD)
2750			return retval;
2751	}
2752	ld = tty_ldisc_ref_wait(tty);
2753	if (!ld)
2754		return hung_up_tty_ioctl(file, cmd, arg);
2755	retval = -EINVAL;
2756	if (ld->ops->ioctl) {
2757		retval = ld->ops->ioctl(tty, file, cmd, arg);
2758		if (retval == -ENOIOCTLCMD)
2759			retval = -ENOTTY;
2760	}
2761	tty_ldisc_deref(ld);
2762	return retval;
2763}
2764
2765#ifdef CONFIG_COMPAT
2766
2767struct serial_struct32 {
2768	compat_int_t    type;
2769	compat_int_t    line;
2770	compat_uint_t   port;
2771	compat_int_t    irq;
2772	compat_int_t    flags;
2773	compat_int_t    xmit_fifo_size;
2774	compat_int_t    custom_divisor;
2775	compat_int_t    baud_base;
2776	unsigned short  close_delay;
2777	char    io_type;
2778	char    reserved_char;
2779	compat_int_t    hub6;
2780	unsigned short  closing_wait; /* time to wait before closing */
2781	unsigned short  closing_wait2; /* no longer used... */
2782	compat_uint_t   iomem_base;
2783	unsigned short  iomem_reg_shift;
2784	unsigned int    port_high;
2785	/* compat_ulong_t  iomap_base FIXME */
2786	compat_int_t    reserved;
2787};
2788
2789static int compat_tty_tiocsserial(struct tty_struct *tty,
2790		struct serial_struct32 __user *ss)
2791{
2792	static DEFINE_RATELIMIT_STATE(depr_flags,
2793			DEFAULT_RATELIMIT_INTERVAL,
2794			DEFAULT_RATELIMIT_BURST);
2795	char comm[TASK_COMM_LEN];
2796	struct serial_struct32 v32;
2797	struct serial_struct v;
2798	int flags;
2799
2800	if (copy_from_user(&v32, ss, sizeof(*ss)))
2801		return -EFAULT;
2802
2803	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2804	v.iomem_base = compat_ptr(v32.iomem_base);
2805	v.iomem_reg_shift = v32.iomem_reg_shift;
2806	v.port_high = v32.port_high;
2807	v.iomap_base = 0;
2808
2809	flags = v.flags & ASYNC_DEPRECATED;
2810
2811	if (flags && __ratelimit(&depr_flags))
2812		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2813			__func__, get_task_comm(comm, current), flags);
2814	if (!tty->ops->set_serial)
2815		return -ENOTTY;
2816	return tty->ops->set_serial(tty, &v);
2817}
2818
2819static int compat_tty_tiocgserial(struct tty_struct *tty,
2820			struct serial_struct32 __user *ss)
2821{
2822	struct serial_struct32 v32;
2823	struct serial_struct v;
2824	int err;
2825
2826	memset(&v, 0, sizeof(v));
2827	memset(&v32, 0, sizeof(v32));
2828
2829	if (!tty->ops->get_serial)
2830		return -ENOTTY;
2831	err = tty->ops->get_serial(tty, &v);
2832	if (!err) {
2833		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2834		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2835			0xfffffff : ptr_to_compat(v.iomem_base);
2836		v32.iomem_reg_shift = v.iomem_reg_shift;
2837		v32.port_high = v.port_high;
2838		if (copy_to_user(ss, &v32, sizeof(v32)))
2839			err = -EFAULT;
2840	}
2841	return err;
2842}
2843static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2844				unsigned long arg)
2845{
2846	struct tty_struct *tty = file_tty(file);
2847	struct tty_ldisc *ld;
2848	int retval = -ENOIOCTLCMD;
2849
2850	switch (cmd) {
2851	case TIOCOUTQ:
2852	case TIOCSTI:
2853	case TIOCGWINSZ:
2854	case TIOCSWINSZ:
2855	case TIOCGEXCL:
2856	case TIOCGETD:
2857	case TIOCSETD:
2858	case TIOCGDEV:
2859	case TIOCMGET:
2860	case TIOCMSET:
2861	case TIOCMBIC:
2862	case TIOCMBIS:
2863	case TIOCGICOUNT:
2864	case TIOCGPGRP:
2865	case TIOCSPGRP:
2866	case TIOCGSID:
2867	case TIOCSERGETLSR:
2868	case TIOCGRS485:
2869	case TIOCSRS485:
2870#ifdef TIOCGETP
2871	case TIOCGETP:
2872	case TIOCSETP:
2873	case TIOCSETN:
2874#endif
2875#ifdef TIOCGETC
2876	case TIOCGETC:
2877	case TIOCSETC:
2878#endif
2879#ifdef TIOCGLTC
2880	case TIOCGLTC:
2881	case TIOCSLTC:
2882#endif
2883	case TCSETSF:
2884	case TCSETSW:
2885	case TCSETS:
2886	case TCGETS:
2887#ifdef TCGETS2
2888	case TCGETS2:
2889	case TCSETSF2:
2890	case TCSETSW2:
2891	case TCSETS2:
2892#endif
2893	case TCGETA:
2894	case TCSETAF:
2895	case TCSETAW:
2896	case TCSETA:
2897	case TIOCGLCKTRMIOS:
2898	case TIOCSLCKTRMIOS:
2899#ifdef TCGETX
2900	case TCGETX:
2901	case TCSETX:
2902	case TCSETXW:
2903	case TCSETXF:
2904#endif
2905	case TIOCGSOFTCAR:
2906	case TIOCSSOFTCAR:
2907
2908	case PPPIOCGCHAN:
2909	case PPPIOCGUNIT:
2910		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2911	case TIOCCONS:
2912	case TIOCEXCL:
2913	case TIOCNXCL:
2914	case TIOCVHANGUP:
2915	case TIOCSBRK:
2916	case TIOCCBRK:
2917	case TCSBRK:
2918	case TCSBRKP:
2919	case TCFLSH:
2920	case TIOCGPTPEER:
2921	case TIOCNOTTY:
2922	case TIOCSCTTY:
2923	case TCXONC:
2924	case TIOCMIWAIT:
2925	case TIOCSERCONFIG:
2926		return tty_ioctl(file, cmd, arg);
2927	}
2928
2929	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2930		return -EINVAL;
2931
2932	switch (cmd) {
2933	case TIOCSSERIAL:
2934		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2935	case TIOCGSERIAL:
2936		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2937	}
2938	if (tty->ops->compat_ioctl) {
2939		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2940		if (retval != -ENOIOCTLCMD)
2941			return retval;
2942	}
2943
2944	ld = tty_ldisc_ref_wait(tty);
2945	if (!ld)
2946		return hung_up_tty_compat_ioctl(file, cmd, arg);
2947	if (ld->ops->compat_ioctl)
2948		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2949	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2950		retval = ld->ops->ioctl(tty, file,
2951				(unsigned long)compat_ptr(cmd), arg);
2952	tty_ldisc_deref(ld);
2953
2954	return retval;
2955}
2956#endif
2957
2958static int this_tty(const void *t, struct file *file, unsigned fd)
2959{
2960	if (likely(file->f_op->read_iter != tty_read))
2961		return 0;
2962	return file_tty(file) != t ? 0 : fd + 1;
2963}
2964
2965/*
2966 * This implements the "Secure Attention Key" ---  the idea is to
2967 * prevent trojan horses by killing all processes associated with this
2968 * tty when the user hits the "Secure Attention Key".  Required for
2969 * super-paranoid applications --- see the Orange Book for more details.
2970 *
2971 * This code could be nicer; ideally it should send a HUP, wait a few
2972 * seconds, then send a INT, and then a KILL signal.  But you then
2973 * have to coordinate with the init process, since all processes associated
2974 * with the current tty must be dead before the new getty is allowed
2975 * to spawn.
2976 *
2977 * Now, if it would be correct ;-/ The current code has a nasty hole -
2978 * it doesn't catch files in flight. We may send the descriptor to ourselves
2979 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2980 *
2981 * Nasty bug: do_SAK is being called in interrupt context.  This can
2982 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2983 */
2984void __do_SAK(struct tty_struct *tty)
2985{
2986#ifdef TTY_SOFT_SAK
2987	tty_hangup(tty);
2988#else
2989	struct task_struct *g, *p;
2990	struct pid *session;
2991	int		i;
2992	unsigned long flags;
2993
2994	if (!tty)
2995		return;
2996
2997	spin_lock_irqsave(&tty->ctrl_lock, flags);
2998	session = get_pid(tty->session);
2999	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3000
3001	tty_ldisc_flush(tty);
3002
3003	tty_driver_flush_buffer(tty);
3004
3005	read_lock(&tasklist_lock);
3006	/* Kill the entire session */
3007	do_each_pid_task(session, PIDTYPE_SID, p) {
3008		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3009			   task_pid_nr(p), p->comm);
3010		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3011	} while_each_pid_task(session, PIDTYPE_SID, p);
3012
3013	/* Now kill any processes that happen to have the tty open */
3014	do_each_thread(g, p) {
3015		if (p->signal->tty == tty) {
3016			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3017				   task_pid_nr(p), p->comm);
3018			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3019			continue;
3020		}
3021		task_lock(p);
3022		i = iterate_fd(p->files, 0, this_tty, tty);
3023		if (i != 0) {
3024			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3025				   task_pid_nr(p), p->comm, i - 1);
3026			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3027		}
3028		task_unlock(p);
3029	} while_each_thread(g, p);
3030	read_unlock(&tasklist_lock);
3031	put_pid(session);
3032#endif
3033}
3034
3035static void do_SAK_work(struct work_struct *work)
3036{
3037	struct tty_struct *tty =
3038		container_of(work, struct tty_struct, SAK_work);
3039	__do_SAK(tty);
3040}
3041
3042/*
3043 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3044 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3045 * the values which we write to it will be identical to the values which it
3046 * already has. --akpm
3047 */
3048void do_SAK(struct tty_struct *tty)
3049{
3050	if (!tty)
3051		return;
3052	schedule_work(&tty->SAK_work);
3053}
3054
3055EXPORT_SYMBOL(do_SAK);
3056
3057/* Must put_device() after it's unused! */
3058static struct device *tty_get_device(struct tty_struct *tty)
3059{
3060	dev_t devt = tty_devnum(tty);
3061	return class_find_device_by_devt(tty_class, devt);
3062}
3063
3064
3065/**
3066 *	alloc_tty_struct
3067 *
3068 *	This subroutine allocates and initializes a tty structure.
3069 *
3070 *	Locking: none - tty in question is not exposed at this point
3071 */
3072
3073struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3074{
3075	struct tty_struct *tty;
3076
3077	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3078	if (!tty)
3079		return NULL;
3080
3081	kref_init(&tty->kref);
3082	tty->magic = TTY_MAGIC;
3083	if (tty_ldisc_init(tty)) {
3084		kfree(tty);
3085		return NULL;
3086	}
3087	tty->session = NULL;
3088	tty->pgrp = NULL;
3089	mutex_init(&tty->legacy_mutex);
3090	mutex_init(&tty->throttle_mutex);
3091	init_rwsem(&tty->termios_rwsem);
3092	mutex_init(&tty->winsize_mutex);
3093	init_ldsem(&tty->ldisc_sem);
3094	init_waitqueue_head(&tty->write_wait);
3095	init_waitqueue_head(&tty->read_wait);
3096	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3097	mutex_init(&tty->atomic_write_lock);
3098	spin_lock_init(&tty->ctrl_lock);
3099	spin_lock_init(&tty->flow_lock);
3100	spin_lock_init(&tty->files_lock);
3101	INIT_LIST_HEAD(&tty->tty_files);
3102	INIT_WORK(&tty->SAK_work, do_SAK_work);
3103
3104	tty->driver = driver;
3105	tty->ops = driver->ops;
3106	tty->index = idx;
3107	tty_line_name(driver, idx, tty->name);
3108	tty->dev = tty_get_device(tty);
3109
3110	return tty;
3111}
3112
3113/**
3114 *	tty_put_char	-	write one character to a tty
3115 *	@tty: tty
3116 *	@ch: character
3117 *
3118 *	Write one byte to the tty using the provided put_char method
3119 *	if present. Returns the number of characters successfully output.
3120 *
3121 *	Note: the specific put_char operation in the driver layer may go
3122 *	away soon. Don't call it directly, use this method
3123 */
3124
3125int tty_put_char(struct tty_struct *tty, unsigned char ch)
3126{
3127	if (tty->ops->put_char)
3128		return tty->ops->put_char(tty, ch);
3129	return tty->ops->write(tty, &ch, 1);
3130}
3131EXPORT_SYMBOL_GPL(tty_put_char);
3132
3133struct class *tty_class;
3134
3135static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3136		unsigned int index, unsigned int count)
3137{
3138	int err;
3139
3140	/* init here, since reused cdevs cause crashes */
3141	driver->cdevs[index] = cdev_alloc();
3142	if (!driver->cdevs[index])
3143		return -ENOMEM;
3144	driver->cdevs[index]->ops = &tty_fops;
3145	driver->cdevs[index]->owner = driver->owner;
3146	err = cdev_add(driver->cdevs[index], dev, count);
3147	if (err)
3148		kobject_put(&driver->cdevs[index]->kobj);
3149	return err;
3150}
3151
3152/**
3153 *	tty_register_device - register a tty device
3154 *	@driver: the tty driver that describes the tty device
3155 *	@index: the index in the tty driver for this tty device
3156 *	@device: a struct device that is associated with this tty device.
3157 *		This field is optional, if there is no known struct device
3158 *		for this tty device it can be set to NULL safely.
3159 *
3160 *	Returns a pointer to the struct device for this tty device
3161 *	(or ERR_PTR(-EFOO) on error).
3162 *
3163 *	This call is required to be made to register an individual tty device
3164 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3165 *	that bit is not set, this function should not be called by a tty
3166 *	driver.
3167 *
3168 *	Locking: ??
3169 */
3170
3171struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3172				   struct device *device)
3173{
3174	return tty_register_device_attr(driver, index, device, NULL, NULL);
3175}
3176EXPORT_SYMBOL(tty_register_device);
3177
3178static void tty_device_create_release(struct device *dev)
3179{
3180	dev_dbg(dev, "releasing...\n");
3181	kfree(dev);
3182}
3183
3184/**
3185 *	tty_register_device_attr - register a tty device
3186 *	@driver: the tty driver that describes the tty device
3187 *	@index: the index in the tty driver for this tty device
3188 *	@device: a struct device that is associated with this tty device.
3189 *		This field is optional, if there is no known struct device
3190 *		for this tty device it can be set to NULL safely.
3191 *	@drvdata: Driver data to be set to device.
3192 *	@attr_grp: Attribute group to be set on device.
3193 *
3194 *	Returns a pointer to the struct device for this tty device
3195 *	(or ERR_PTR(-EFOO) on error).
3196 *
3197 *	This call is required to be made to register an individual tty device
3198 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3199 *	that bit is not set, this function should not be called by a tty
3200 *	driver.
3201 *
3202 *	Locking: ??
3203 */
3204struct device *tty_register_device_attr(struct tty_driver *driver,
3205				   unsigned index, struct device *device,
3206				   void *drvdata,
3207				   const struct attribute_group **attr_grp)
3208{
3209	char name[64];
3210	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3211	struct ktermios *tp;
3212	struct device *dev;
3213	int retval;
3214
3215	if (index >= driver->num) {
3216		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3217		       driver->name, index);
3218		return ERR_PTR(-EINVAL);
3219	}
3220
3221	if (driver->type == TTY_DRIVER_TYPE_PTY)
3222		pty_line_name(driver, index, name);
3223	else
3224		tty_line_name(driver, index, name);
3225
3226	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3227	if (!dev)
3228		return ERR_PTR(-ENOMEM);
3229
3230	dev->devt = devt;
3231	dev->class = tty_class;
3232	dev->parent = device;
3233	dev->release = tty_device_create_release;
3234	dev_set_name(dev, "%s", name);
3235	dev->groups = attr_grp;
3236	dev_set_drvdata(dev, drvdata);
3237
3238	dev_set_uevent_suppress(dev, 1);
3239
3240	retval = device_register(dev);
3241	if (retval)
3242		goto err_put;
3243
3244	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3245		/*
3246		 * Free any saved termios data so that the termios state is
3247		 * reset when reusing a minor number.
3248		 */
3249		tp = driver->termios[index];
3250		if (tp) {
3251			driver->termios[index] = NULL;
3252			kfree(tp);
3253		}
3254
3255		retval = tty_cdev_add(driver, devt, index, 1);
3256		if (retval)
3257			goto err_del;
3258	}
3259
3260	dev_set_uevent_suppress(dev, 0);
3261	kobject_uevent(&dev->kobj, KOBJ_ADD);
3262
3263	return dev;
3264
3265err_del:
3266	device_del(dev);
3267err_put:
3268	put_device(dev);
3269
3270	return ERR_PTR(retval);
3271}
3272EXPORT_SYMBOL_GPL(tty_register_device_attr);
3273
3274/**
3275 * 	tty_unregister_device - unregister a tty device
3276 * 	@driver: the tty driver that describes the tty device
3277 * 	@index: the index in the tty driver for this tty device
3278 *
3279 * 	If a tty device is registered with a call to tty_register_device() then
3280 *	this function must be called when the tty device is gone.
3281 *
3282 *	Locking: ??
3283 */
3284
3285void tty_unregister_device(struct tty_driver *driver, unsigned index)
3286{
3287	device_destroy(tty_class,
3288		MKDEV(driver->major, driver->minor_start) + index);
3289	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3290		cdev_del(driver->cdevs[index]);
3291		driver->cdevs[index] = NULL;
3292	}
3293}
3294EXPORT_SYMBOL(tty_unregister_device);
3295
3296/**
3297 * __tty_alloc_driver -- allocate tty driver
3298 * @lines: count of lines this driver can handle at most
3299 * @owner: module which is responsible for this driver
3300 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3301 *
3302 * This should not be called directly, some of the provided macros should be
3303 * used instead. Use IS_ERR and friends on @retval.
3304 */
3305struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3306		unsigned long flags)
3307{
3308	struct tty_driver *driver;
3309	unsigned int cdevs = 1;
3310	int err;
3311
3312	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3313		return ERR_PTR(-EINVAL);
3314
3315	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3316	if (!driver)
3317		return ERR_PTR(-ENOMEM);
3318
3319	kref_init(&driver->kref);
3320	driver->magic = TTY_DRIVER_MAGIC;
3321	driver->num = lines;
3322	driver->owner = owner;
3323	driver->flags = flags;
3324
3325	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3326		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3327				GFP_KERNEL);
3328		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3329				GFP_KERNEL);
3330		if (!driver->ttys || !driver->termios) {
3331			err = -ENOMEM;
3332			goto err_free_all;
3333		}
3334	}
3335
3336	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3337		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3338				GFP_KERNEL);
3339		if (!driver->ports) {
3340			err = -ENOMEM;
3341			goto err_free_all;
3342		}
3343		cdevs = lines;
3344	}
3345
3346	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3347	if (!driver->cdevs) {
3348		err = -ENOMEM;
3349		goto err_free_all;
3350	}
3351
3352	return driver;
3353err_free_all:
3354	kfree(driver->ports);
3355	kfree(driver->ttys);
3356	kfree(driver->termios);
3357	kfree(driver->cdevs);
3358	kfree(driver);
3359	return ERR_PTR(err);
3360}
3361EXPORT_SYMBOL(__tty_alloc_driver);
3362
3363static void destruct_tty_driver(struct kref *kref)
3364{
3365	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3366	int i;
3367	struct ktermios *tp;
3368
3369	if (driver->flags & TTY_DRIVER_INSTALLED) {
3370		for (i = 0; i < driver->num; i++) {
3371			tp = driver->termios[i];
3372			if (tp) {
3373				driver->termios[i] = NULL;
3374				kfree(tp);
3375			}
3376			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3377				tty_unregister_device(driver, i);
3378		}
3379		proc_tty_unregister_driver(driver);
3380		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3381			cdev_del(driver->cdevs[0]);
3382	}
3383	kfree(driver->cdevs);
3384	kfree(driver->ports);
3385	kfree(driver->termios);
3386	kfree(driver->ttys);
3387	kfree(driver);
3388}
3389
3390void tty_driver_kref_put(struct tty_driver *driver)
3391{
3392	kref_put(&driver->kref, destruct_tty_driver);
3393}
3394EXPORT_SYMBOL(tty_driver_kref_put);
3395
3396void tty_set_operations(struct tty_driver *driver,
3397			const struct tty_operations *op)
3398{
3399	driver->ops = op;
3400};
3401EXPORT_SYMBOL(tty_set_operations);
3402
3403void put_tty_driver(struct tty_driver *d)
3404{
3405	tty_driver_kref_put(d);
3406}
3407EXPORT_SYMBOL(put_tty_driver);
3408
3409/*
3410 * Called by a tty driver to register itself.
3411 */
3412int tty_register_driver(struct tty_driver *driver)
3413{
3414	int error;
3415	int i;
3416	dev_t dev;
3417	struct device *d;
3418
3419	if (!driver->major) {
3420		error = alloc_chrdev_region(&dev, driver->minor_start,
3421						driver->num, driver->name);
3422		if (!error) {
3423			driver->major = MAJOR(dev);
3424			driver->minor_start = MINOR(dev);
3425		}
3426	} else {
3427		dev = MKDEV(driver->major, driver->minor_start);
3428		error = register_chrdev_region(dev, driver->num, driver->name);
3429	}
3430	if (error < 0)
3431		goto err;
3432
3433	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3434		error = tty_cdev_add(driver, dev, 0, driver->num);
3435		if (error)
3436			goto err_unreg_char;
3437	}
3438
3439	mutex_lock(&tty_mutex);
3440	list_add(&driver->tty_drivers, &tty_drivers);
3441	mutex_unlock(&tty_mutex);
3442
3443	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3444		for (i = 0; i < driver->num; i++) {
3445			d = tty_register_device(driver, i, NULL);
3446			if (IS_ERR(d)) {
3447				error = PTR_ERR(d);
3448				goto err_unreg_devs;
3449			}
3450		}
3451	}
3452	proc_tty_register_driver(driver);
3453	driver->flags |= TTY_DRIVER_INSTALLED;
3454	return 0;
3455
3456err_unreg_devs:
3457	for (i--; i >= 0; i--)
3458		tty_unregister_device(driver, i);
3459
3460	mutex_lock(&tty_mutex);
3461	list_del(&driver->tty_drivers);
3462	mutex_unlock(&tty_mutex);
3463
3464err_unreg_char:
3465	unregister_chrdev_region(dev, driver->num);
3466err:
3467	return error;
3468}
3469EXPORT_SYMBOL(tty_register_driver);
3470
3471/*
3472 * Called by a tty driver to unregister itself.
3473 */
3474int tty_unregister_driver(struct tty_driver *driver)
3475{
3476#if 0
3477	/* FIXME */
3478	if (driver->refcount)
3479		return -EBUSY;
3480#endif
3481	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3482				driver->num);
3483	mutex_lock(&tty_mutex);
3484	list_del(&driver->tty_drivers);
3485	mutex_unlock(&tty_mutex);
3486	return 0;
3487}
3488
3489EXPORT_SYMBOL(tty_unregister_driver);
3490
3491dev_t tty_devnum(struct tty_struct *tty)
3492{
3493	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3494}
3495EXPORT_SYMBOL(tty_devnum);
3496
3497void tty_default_fops(struct file_operations *fops)
3498{
3499	*fops = tty_fops;
3500}
3501
3502static char *tty_devnode(struct device *dev, umode_t *mode)
3503{
3504	if (!mode)
3505		return NULL;
3506	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3507	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3508		*mode = 0666;
3509	return NULL;
3510}
3511
3512static int __init tty_class_init(void)
3513{
3514	tty_class = class_create(THIS_MODULE, "tty");
3515	if (IS_ERR(tty_class))
3516		return PTR_ERR(tty_class);
3517	tty_class->devnode = tty_devnode;
3518	return 0;
3519}
3520
3521postcore_initcall(tty_class_init);
3522
3523/* 3/2004 jmc: why do these devices exist? */
3524static struct cdev tty_cdev, console_cdev;
3525
3526static ssize_t show_cons_active(struct device *dev,
3527				struct device_attribute *attr, char *buf)
3528{
3529	struct console *cs[16];
3530	int i = 0;
3531	struct console *c;
3532	ssize_t count = 0;
3533
3534	console_lock();
3535	for_each_console(c) {
3536		if (!c->device)
3537			continue;
3538		if (!c->write)
3539			continue;
3540		if ((c->flags & CON_ENABLED) == 0)
3541			continue;
3542		cs[i++] = c;
3543		if (i >= ARRAY_SIZE(cs))
3544			break;
3545	}
3546	while (i--) {
3547		int index = cs[i]->index;
3548		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3549
3550		/* don't resolve tty0 as some programs depend on it */
3551		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3552			count += tty_line_name(drv, index, buf + count);
3553		else
3554			count += sprintf(buf + count, "%s%d",
3555					 cs[i]->name, cs[i]->index);
3556
3557		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3558	}
3559	console_unlock();
3560
3561	return count;
3562}
3563static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3564
3565static struct attribute *cons_dev_attrs[] = {
3566	&dev_attr_active.attr,
3567	NULL
3568};
3569
3570ATTRIBUTE_GROUPS(cons_dev);
3571
3572static struct device *consdev;
3573
3574void console_sysfs_notify(void)
3575{
3576	if (consdev)
3577		sysfs_notify(&consdev->kobj, NULL, "active");
3578}
3579
3580/*
3581 * Ok, now we can initialize the rest of the tty devices and can count
3582 * on memory allocations, interrupts etc..
3583 */
3584int __init tty_init(void)
3585{
3586	tty_sysctl_init();
3587	cdev_init(&tty_cdev, &tty_fops);
3588	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3589	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3590		panic("Couldn't register /dev/tty driver\n");
3591	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3592
3593	cdev_init(&console_cdev, &console_fops);
3594	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3595	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3596		panic("Couldn't register /dev/console driver\n");
3597	consdev = device_create_with_groups(tty_class, NULL,
3598					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3599					    cons_dev_groups, "console");
3600	if (IS_ERR(consdev))
3601		consdev = NULL;
3602
3603#ifdef CONFIG_VT
3604	vty_init(&console_fops);
3605#endif
3606	return 0;
3607}
3608
3609