1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 */ 5 6/* 7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles 8 * or rs-channels. It also implements echoing, cooked mode etc. 9 * 10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0. 11 * 12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the 13 * tty_struct and tty_queue structures. Previously there was an array 14 * of 256 tty_struct's which was statically allocated, and the 15 * tty_queue structures were allocated at boot time. Both are now 16 * dynamically allocated only when the tty is open. 17 * 18 * Also restructured routines so that there is more of a separation 19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and 20 * the low-level tty routines (serial.c, pty.c, console.c). This 21 * makes for cleaner and more compact code. -TYT, 9/17/92 22 * 23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines 24 * which can be dynamically activated and de-activated by the line 25 * discipline handling modules (like SLIP). 26 * 27 * NOTE: pay no attention to the line discipline code (yet); its 28 * interface is still subject to change in this version... 29 * -- TYT, 1/31/92 30 * 31 * Added functionality to the OPOST tty handling. No delays, but all 32 * other bits should be there. 33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993. 34 * 35 * Rewrote canonical mode and added more termios flags. 36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94 37 * 38 * Reorganized FASYNC support so mouse code can share it. 39 * -- ctm@ardi.com, 9Sep95 40 * 41 * New TIOCLINUX variants added. 42 * -- mj@k332.feld.cvut.cz, 19-Nov-95 43 * 44 * Restrict vt switching via ioctl() 45 * -- grif@cs.ucr.edu, 5-Dec-95 46 * 47 * Move console and virtual terminal code to more appropriate files, 48 * implement CONFIG_VT and generalize console device interface. 49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97 50 * 51 * Rewrote tty_init_dev and tty_release_dev to eliminate races. 52 * -- Bill Hawes <whawes@star.net>, June 97 53 * 54 * Added devfs support. 55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998 56 * 57 * Added support for a Unix98-style ptmx device. 58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998 59 * 60 * Reduced memory usage for older ARM systems 61 * -- Russell King <rmk@arm.linux.org.uk> 62 * 63 * Move do_SAK() into process context. Less stack use in devfs functions. 64 * alloc_tty_struct() always uses kmalloc() 65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01 66 */ 67 68#include <linux/types.h> 69#include <linux/major.h> 70#include <linux/errno.h> 71#include <linux/signal.h> 72#include <linux/fcntl.h> 73#include <linux/sched/signal.h> 74#include <linux/sched/task.h> 75#include <linux/interrupt.h> 76#include <linux/tty.h> 77#include <linux/tty_driver.h> 78#include <linux/tty_flip.h> 79#include <linux/devpts_fs.h> 80#include <linux/file.h> 81#include <linux/fdtable.h> 82#include <linux/console.h> 83#include <linux/timer.h> 84#include <linux/ctype.h> 85#include <linux/kd.h> 86#include <linux/mm.h> 87#include <linux/string.h> 88#include <linux/slab.h> 89#include <linux/poll.h> 90#include <linux/ppp-ioctl.h> 91#include <linux/proc_fs.h> 92#include <linux/init.h> 93#include <linux/module.h> 94#include <linux/device.h> 95#include <linux/wait.h> 96#include <linux/bitops.h> 97#include <linux/delay.h> 98#include <linux/seq_file.h> 99#include <linux/serial.h> 100#include <linux/ratelimit.h> 101#include <linux/compat.h> 102 103#include <linux/uaccess.h> 104 105#include <linux/kbd_kern.h> 106#include <linux/vt_kern.h> 107#include <linux/selection.h> 108 109#include <linux/kmod.h> 110#include <linux/nsproxy.h> 111#include "tty.h" 112 113#undef TTY_DEBUG_HANGUP 114#ifdef TTY_DEBUG_HANGUP 115# define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args) 116#else 117# define tty_debug_hangup(tty, f, args...) do { } while (0) 118#endif 119 120#define TTY_PARANOIA_CHECK 1 121#define CHECK_TTY_COUNT 1 122 123struct ktermios tty_std_termios = { /* for the benefit of tty drivers */ 124 .c_iflag = ICRNL | IXON, 125 .c_oflag = OPOST | ONLCR, 126 .c_cflag = B38400 | CS8 | CREAD | HUPCL, 127 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | 128 ECHOCTL | ECHOKE | IEXTEN, 129 .c_cc = INIT_C_CC, 130 .c_ispeed = 38400, 131 .c_ospeed = 38400, 132 /* .c_line = N_TTY, */ 133}; 134 135EXPORT_SYMBOL(tty_std_termios); 136 137/* This list gets poked at by procfs and various bits of boot up code. This 138 could do with some rationalisation such as pulling the tty proc function 139 into this file */ 140 141LIST_HEAD(tty_drivers); /* linked list of tty drivers */ 142 143/* Mutex to protect creating and releasing a tty */ 144DEFINE_MUTEX(tty_mutex); 145 146static ssize_t tty_read(struct kiocb *, struct iov_iter *); 147static ssize_t tty_write(struct kiocb *, struct iov_iter *); 148static __poll_t tty_poll(struct file *, poll_table *); 149static int tty_open(struct inode *, struct file *); 150#ifdef CONFIG_COMPAT 151static long tty_compat_ioctl(struct file *file, unsigned int cmd, 152 unsigned long arg); 153#else 154#define tty_compat_ioctl NULL 155#endif 156static int __tty_fasync(int fd, struct file *filp, int on); 157static int tty_fasync(int fd, struct file *filp, int on); 158static void release_tty(struct tty_struct *tty, int idx); 159 160/** 161 * free_tty_struct - free a disused tty 162 * @tty: tty struct to free 163 * 164 * Free the write buffers, tty queue and tty memory itself. 165 * 166 * Locking: none. Must be called after tty is definitely unused 167 */ 168 169static void free_tty_struct(struct tty_struct *tty) 170{ 171 tty_ldisc_deinit(tty); 172 put_device(tty->dev); 173 kfree(tty->write_buf); 174 tty->magic = 0xDEADDEAD; 175 kfree(tty); 176} 177 178static inline struct tty_struct *file_tty(struct file *file) 179{ 180 return ((struct tty_file_private *)file->private_data)->tty; 181} 182 183int tty_alloc_file(struct file *file) 184{ 185 struct tty_file_private *priv; 186 187 priv = kmalloc(sizeof(*priv), GFP_KERNEL); 188 if (!priv) 189 return -ENOMEM; 190 191 file->private_data = priv; 192 193 return 0; 194} 195 196/* Associate a new file with the tty structure */ 197void tty_add_file(struct tty_struct *tty, struct file *file) 198{ 199 struct tty_file_private *priv = file->private_data; 200 201 priv->tty = tty; 202 priv->file = file; 203 204 spin_lock(&tty->files_lock); 205 list_add(&priv->list, &tty->tty_files); 206 spin_unlock(&tty->files_lock); 207} 208 209/** 210 * tty_free_file - free file->private_data 211 * 212 * This shall be used only for fail path handling when tty_add_file was not 213 * called yet. 214 */ 215void tty_free_file(struct file *file) 216{ 217 struct tty_file_private *priv = file->private_data; 218 219 file->private_data = NULL; 220 kfree(priv); 221} 222 223/* Delete file from its tty */ 224static void tty_del_file(struct file *file) 225{ 226 struct tty_file_private *priv = file->private_data; 227 struct tty_struct *tty = priv->tty; 228 229 spin_lock(&tty->files_lock); 230 list_del(&priv->list); 231 spin_unlock(&tty->files_lock); 232 tty_free_file(file); 233} 234 235/** 236 * tty_name - return tty naming 237 * @tty: tty structure 238 * 239 * Convert a tty structure into a name. The name reflects the kernel 240 * naming policy and if udev is in use may not reflect user space 241 * 242 * Locking: none 243 */ 244 245const char *tty_name(const struct tty_struct *tty) 246{ 247 if (!tty) /* Hmm. NULL pointer. That's fun. */ 248 return "NULL tty"; 249 return tty->name; 250} 251 252EXPORT_SYMBOL(tty_name); 253 254const char *tty_driver_name(const struct tty_struct *tty) 255{ 256 if (!tty || !tty->driver) 257 return ""; 258 return tty->driver->name; 259} 260 261static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode, 262 const char *routine) 263{ 264#ifdef TTY_PARANOIA_CHECK 265 if (!tty) { 266 pr_warn("(%d:%d): %s: NULL tty\n", 267 imajor(inode), iminor(inode), routine); 268 return 1; 269 } 270 if (tty->magic != TTY_MAGIC) { 271 pr_warn("(%d:%d): %s: bad magic number\n", 272 imajor(inode), iminor(inode), routine); 273 return 1; 274 } 275#endif 276 return 0; 277} 278 279/* Caller must hold tty_lock */ 280static int check_tty_count(struct tty_struct *tty, const char *routine) 281{ 282#ifdef CHECK_TTY_COUNT 283 struct list_head *p; 284 int count = 0, kopen_count = 0; 285 286 spin_lock(&tty->files_lock); 287 list_for_each(p, &tty->tty_files) { 288 count++; 289 } 290 spin_unlock(&tty->files_lock); 291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 292 tty->driver->subtype == PTY_TYPE_SLAVE && 293 tty->link && tty->link->count) 294 count++; 295 if (tty_port_kopened(tty->port)) 296 kopen_count++; 297 if (tty->count != (count + kopen_count)) { 298 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n", 299 routine, tty->count, count, kopen_count); 300 return (count + kopen_count); 301 } 302#endif 303 return 0; 304} 305 306/** 307 * get_tty_driver - find device of a tty 308 * @device: device identifier 309 * @index: returns the index of the tty 310 * 311 * This routine returns a tty driver structure, given a device number 312 * and also passes back the index number. 313 * 314 * Locking: caller must hold tty_mutex 315 */ 316 317static struct tty_driver *get_tty_driver(dev_t device, int *index) 318{ 319 struct tty_driver *p; 320 321 list_for_each_entry(p, &tty_drivers, tty_drivers) { 322 dev_t base = MKDEV(p->major, p->minor_start); 323 if (device < base || device >= base + p->num) 324 continue; 325 *index = device - base; 326 return tty_driver_kref_get(p); 327 } 328 return NULL; 329} 330 331/** 332 * tty_dev_name_to_number - return dev_t for device name 333 * @name: user space name of device under /dev 334 * @number: pointer to dev_t that this function will populate 335 * 336 * This function converts device names like ttyS0 or ttyUSB1 into dev_t 337 * like (4, 64) or (188, 1). If no corresponding driver is registered then 338 * the function returns -ENODEV. 339 * 340 * Locking: this acquires tty_mutex to protect the tty_drivers list from 341 * being modified while we are traversing it, and makes sure to 342 * release it before exiting. 343 */ 344int tty_dev_name_to_number(const char *name, dev_t *number) 345{ 346 struct tty_driver *p; 347 int ret; 348 int index, prefix_length = 0; 349 const char *str; 350 351 for (str = name; *str && !isdigit(*str); str++) 352 ; 353 354 if (!*str) 355 return -EINVAL; 356 357 ret = kstrtoint(str, 10, &index); 358 if (ret) 359 return ret; 360 361 prefix_length = str - name; 362 mutex_lock(&tty_mutex); 363 364 list_for_each_entry(p, &tty_drivers, tty_drivers) 365 if (prefix_length == strlen(p->name) && strncmp(name, 366 p->name, prefix_length) == 0) { 367 if (index < p->num) { 368 *number = MKDEV(p->major, p->minor_start + index); 369 goto out; 370 } 371 } 372 373 /* if here then driver wasn't found */ 374 ret = -ENODEV; 375out: 376 mutex_unlock(&tty_mutex); 377 return ret; 378} 379EXPORT_SYMBOL_GPL(tty_dev_name_to_number); 380 381#ifdef CONFIG_CONSOLE_POLL 382 383/** 384 * tty_find_polling_driver - find device of a polled tty 385 * @name: name string to match 386 * @line: pointer to resulting tty line nr 387 * 388 * This routine returns a tty driver structure, given a name 389 * and the condition that the tty driver is capable of polled 390 * operation. 391 */ 392struct tty_driver *tty_find_polling_driver(char *name, int *line) 393{ 394 struct tty_driver *p, *res = NULL; 395 int tty_line = 0; 396 int len; 397 char *str, *stp; 398 399 for (str = name; *str; str++) 400 if ((*str >= '0' && *str <= '9') || *str == ',') 401 break; 402 if (!*str) 403 return NULL; 404 405 len = str - name; 406 tty_line = simple_strtoul(str, &str, 10); 407 408 mutex_lock(&tty_mutex); 409 /* Search through the tty devices to look for a match */ 410 list_for_each_entry(p, &tty_drivers, tty_drivers) { 411 if (!len || strncmp(name, p->name, len) != 0) 412 continue; 413 stp = str; 414 if (*stp == ',') 415 stp++; 416 if (*stp == '\0') 417 stp = NULL; 418 419 if (tty_line >= 0 && tty_line < p->num && p->ops && 420 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) { 421 res = tty_driver_kref_get(p); 422 *line = tty_line; 423 break; 424 } 425 } 426 mutex_unlock(&tty_mutex); 427 428 return res; 429} 430EXPORT_SYMBOL_GPL(tty_find_polling_driver); 431#endif 432 433static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to) 434{ 435 return 0; 436} 437 438static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from) 439{ 440 return -EIO; 441} 442 443/* No kernel lock held - none needed ;) */ 444static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait) 445{ 446 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM; 447} 448 449static long hung_up_tty_ioctl(struct file *file, unsigned int cmd, 450 unsigned long arg) 451{ 452 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 453} 454 455static long hung_up_tty_compat_ioctl(struct file *file, 456 unsigned int cmd, unsigned long arg) 457{ 458 return cmd == TIOCSPGRP ? -ENOTTY : -EIO; 459} 460 461static int hung_up_tty_fasync(int fd, struct file *file, int on) 462{ 463 return -ENOTTY; 464} 465 466static void tty_show_fdinfo(struct seq_file *m, struct file *file) 467{ 468 struct tty_struct *tty = file_tty(file); 469 470 if (tty && tty->ops && tty->ops->show_fdinfo) 471 tty->ops->show_fdinfo(tty, m); 472} 473 474static const struct file_operations tty_fops = { 475 .llseek = no_llseek, 476 .read_iter = tty_read, 477 .write_iter = tty_write, 478 .splice_read = generic_file_splice_read, 479 .splice_write = iter_file_splice_write, 480 .poll = tty_poll, 481 .unlocked_ioctl = tty_ioctl, 482 .compat_ioctl = tty_compat_ioctl, 483 .open = tty_open, 484 .release = tty_release, 485 .fasync = tty_fasync, 486 .show_fdinfo = tty_show_fdinfo, 487}; 488 489static const struct file_operations console_fops = { 490 .llseek = no_llseek, 491 .read_iter = tty_read, 492 .write_iter = redirected_tty_write, 493 .splice_read = generic_file_splice_read, 494 .splice_write = iter_file_splice_write, 495 .poll = tty_poll, 496 .unlocked_ioctl = tty_ioctl, 497 .compat_ioctl = tty_compat_ioctl, 498 .open = tty_open, 499 .release = tty_release, 500 .fasync = tty_fasync, 501}; 502 503static const struct file_operations hung_up_tty_fops = { 504 .llseek = no_llseek, 505 .read_iter = hung_up_tty_read, 506 .write_iter = hung_up_tty_write, 507 .poll = hung_up_tty_poll, 508 .unlocked_ioctl = hung_up_tty_ioctl, 509 .compat_ioctl = hung_up_tty_compat_ioctl, 510 .release = tty_release, 511 .fasync = hung_up_tty_fasync, 512}; 513 514static DEFINE_SPINLOCK(redirect_lock); 515static struct file *redirect; 516 517extern void tty_sysctl_init(void); 518 519/** 520 * tty_wakeup - request more data 521 * @tty: terminal 522 * 523 * Internal and external helper for wakeups of tty. This function 524 * informs the line discipline if present that the driver is ready 525 * to receive more output data. 526 */ 527 528void tty_wakeup(struct tty_struct *tty) 529{ 530 struct tty_ldisc *ld; 531 532 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) { 533 ld = tty_ldisc_ref(tty); 534 if (ld) { 535 if (ld->ops->write_wakeup) 536 ld->ops->write_wakeup(tty); 537 tty_ldisc_deref(ld); 538 } 539 } 540 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 541} 542 543EXPORT_SYMBOL_GPL(tty_wakeup); 544 545/** 546 * __tty_hangup - actual handler for hangup events 547 * @tty: tty device 548 * 549 * This can be called by a "kworker" kernel thread. That is process 550 * synchronous but doesn't hold any locks, so we need to make sure we 551 * have the appropriate locks for what we're doing. 552 * 553 * The hangup event clears any pending redirections onto the hung up 554 * device. It ensures future writes will error and it does the needed 555 * line discipline hangup and signal delivery. The tty object itself 556 * remains intact. 557 * 558 * Locking: 559 * BTM 560 * redirect lock for undoing redirection 561 * file list lock for manipulating list of ttys 562 * tty_ldiscs_lock from called functions 563 * termios_rwsem resetting termios data 564 * tasklist_lock to walk task list for hangup event 565 * ->siglock to protect ->signal/->sighand 566 */ 567static void __tty_hangup(struct tty_struct *tty, int exit_session) 568{ 569 struct file *cons_filp = NULL; 570 struct file *filp, *f = NULL; 571 struct tty_file_private *priv; 572 int closecount = 0, n; 573 int refs; 574 575 if (!tty) 576 return; 577 578 579 spin_lock(&redirect_lock); 580 if (redirect && file_tty(redirect) == tty) { 581 f = redirect; 582 redirect = NULL; 583 } 584 spin_unlock(&redirect_lock); 585 586 tty_lock(tty); 587 588 if (test_bit(TTY_HUPPED, &tty->flags)) { 589 tty_unlock(tty); 590 return; 591 } 592 593 /* 594 * Some console devices aren't actually hung up for technical and 595 * historical reasons, which can lead to indefinite interruptible 596 * sleep in n_tty_read(). The following explicitly tells 597 * n_tty_read() to abort readers. 598 */ 599 set_bit(TTY_HUPPING, &tty->flags); 600 601 /* inuse_filps is protected by the single tty lock, 602 this really needs to change if we want to flush the 603 workqueue with the lock held */ 604 check_tty_count(tty, "tty_hangup"); 605 606 spin_lock(&tty->files_lock); 607 /* This breaks for file handles being sent over AF_UNIX sockets ? */ 608 list_for_each_entry(priv, &tty->tty_files, list) { 609 filp = priv->file; 610 if (filp->f_op->write_iter == redirected_tty_write) 611 cons_filp = filp; 612 if (filp->f_op->write_iter != tty_write) 613 continue; 614 closecount++; 615 __tty_fasync(-1, filp, 0); /* can't block */ 616 filp->f_op = &hung_up_tty_fops; 617 } 618 spin_unlock(&tty->files_lock); 619 620 refs = tty_signal_session_leader(tty, exit_session); 621 /* Account for the p->signal references we killed */ 622 while (refs--) 623 tty_kref_put(tty); 624 625 tty_ldisc_hangup(tty, cons_filp != NULL); 626 627 spin_lock_irq(&tty->ctrl_lock); 628 clear_bit(TTY_THROTTLED, &tty->flags); 629 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); 630 put_pid(tty->session); 631 put_pid(tty->pgrp); 632 tty->session = NULL; 633 tty->pgrp = NULL; 634 tty->ctrl_status = 0; 635 spin_unlock_irq(&tty->ctrl_lock); 636 637 /* 638 * If one of the devices matches a console pointer, we 639 * cannot just call hangup() because that will cause 640 * tty->count and state->count to go out of sync. 641 * So we just call close() the right number of times. 642 */ 643 if (cons_filp) { 644 if (tty->ops->close) 645 for (n = 0; n < closecount; n++) 646 tty->ops->close(tty, cons_filp); 647 } else if (tty->ops->hangup) 648 tty->ops->hangup(tty); 649 /* 650 * We don't want to have driver/ldisc interactions beyond the ones 651 * we did here. The driver layer expects no calls after ->hangup() 652 * from the ldisc side, which is now guaranteed. 653 */ 654 set_bit(TTY_HUPPED, &tty->flags); 655 clear_bit(TTY_HUPPING, &tty->flags); 656 tty_unlock(tty); 657 658 if (f) 659 fput(f); 660} 661 662static void do_tty_hangup(struct work_struct *work) 663{ 664 struct tty_struct *tty = 665 container_of(work, struct tty_struct, hangup_work); 666 667 __tty_hangup(tty, 0); 668} 669 670/** 671 * tty_hangup - trigger a hangup event 672 * @tty: tty to hangup 673 * 674 * A carrier loss (virtual or otherwise) has occurred on this like 675 * schedule a hangup sequence to run after this event. 676 */ 677 678void tty_hangup(struct tty_struct *tty) 679{ 680 tty_debug_hangup(tty, "hangup\n"); 681 schedule_work(&tty->hangup_work); 682} 683 684EXPORT_SYMBOL(tty_hangup); 685 686/** 687 * tty_vhangup - process vhangup 688 * @tty: tty to hangup 689 * 690 * The user has asked via system call for the terminal to be hung up. 691 * We do this synchronously so that when the syscall returns the process 692 * is complete. That guarantee is necessary for security reasons. 693 */ 694 695void tty_vhangup(struct tty_struct *tty) 696{ 697 tty_debug_hangup(tty, "vhangup\n"); 698 __tty_hangup(tty, 0); 699} 700 701EXPORT_SYMBOL(tty_vhangup); 702 703 704/** 705 * tty_vhangup_self - process vhangup for own ctty 706 * 707 * Perform a vhangup on the current controlling tty 708 */ 709 710void tty_vhangup_self(void) 711{ 712 struct tty_struct *tty; 713 714 tty = get_current_tty(); 715 if (tty) { 716 tty_vhangup(tty); 717 tty_kref_put(tty); 718 } 719} 720 721/** 722 * tty_vhangup_session - hangup session leader exit 723 * @tty: tty to hangup 724 * 725 * The session leader is exiting and hanging up its controlling terminal. 726 * Every process in the foreground process group is signalled SIGHUP. 727 * 728 * We do this synchronously so that when the syscall returns the process 729 * is complete. That guarantee is necessary for security reasons. 730 */ 731 732void tty_vhangup_session(struct tty_struct *tty) 733{ 734 tty_debug_hangup(tty, "session hangup\n"); 735 __tty_hangup(tty, 1); 736} 737 738/** 739 * tty_hung_up_p - was tty hung up 740 * @filp: file pointer of tty 741 * 742 * Return true if the tty has been subject to a vhangup or a carrier 743 * loss 744 */ 745 746int tty_hung_up_p(struct file *filp) 747{ 748 return (filp && filp->f_op == &hung_up_tty_fops); 749} 750 751EXPORT_SYMBOL(tty_hung_up_p); 752 753/** 754 * stop_tty - propagate flow control 755 * @tty: tty to stop 756 * 757 * Perform flow control to the driver. May be called 758 * on an already stopped device and will not re-call the driver 759 * method. 760 * 761 * This functionality is used by both the line disciplines for 762 * halting incoming flow and by the driver. It may therefore be 763 * called from any context, may be under the tty atomic_write_lock 764 * but not always. 765 * 766 * Locking: 767 * flow_lock 768 */ 769 770void __stop_tty(struct tty_struct *tty) 771{ 772 if (tty->stopped) 773 return; 774 tty->stopped = 1; 775 if (tty->ops->stop) 776 tty->ops->stop(tty); 777} 778 779void stop_tty(struct tty_struct *tty) 780{ 781 unsigned long flags; 782 783 spin_lock_irqsave(&tty->flow_lock, flags); 784 __stop_tty(tty); 785 spin_unlock_irqrestore(&tty->flow_lock, flags); 786} 787EXPORT_SYMBOL(stop_tty); 788 789/** 790 * start_tty - propagate flow control 791 * @tty: tty to start 792 * 793 * Start a tty that has been stopped if at all possible. If this 794 * tty was previous stopped and is now being started, the driver 795 * start method is invoked and the line discipline woken. 796 * 797 * Locking: 798 * flow_lock 799 */ 800 801void __start_tty(struct tty_struct *tty) 802{ 803 if (!tty->stopped || tty->flow_stopped) 804 return; 805 tty->stopped = 0; 806 if (tty->ops->start) 807 tty->ops->start(tty); 808 tty_wakeup(tty); 809} 810 811void start_tty(struct tty_struct *tty) 812{ 813 unsigned long flags; 814 815 spin_lock_irqsave(&tty->flow_lock, flags); 816 __start_tty(tty); 817 spin_unlock_irqrestore(&tty->flow_lock, flags); 818} 819EXPORT_SYMBOL(start_tty); 820 821static void tty_update_time(struct timespec64 *time) 822{ 823 time64_t sec = ktime_get_real_seconds(); 824 825 /* 826 * We only care if the two values differ in anything other than the 827 * lower three bits (i.e every 8 seconds). If so, then we can update 828 * the time of the tty device, otherwise it could be construded as a 829 * security leak to let userspace know the exact timing of the tty. 830 */ 831 if ((sec ^ time->tv_sec) & ~7) 832 time->tv_sec = sec; 833} 834 835/* 836 * Iterate on the ldisc ->read() function until we've gotten all 837 * the data the ldisc has for us. 838 * 839 * The "cookie" is something that the ldisc read function can fill 840 * in to let us know that there is more data to be had. 841 * 842 * We promise to continue to call the ldisc until it stops returning 843 * data or clears the cookie. The cookie may be something that the 844 * ldisc maintains state for and needs to free. 845 */ 846static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty, 847 struct file *file, struct iov_iter *to) 848{ 849 int retval = 0; 850 void *cookie = NULL; 851 unsigned long offset = 0; 852 char kernel_buf[64]; 853 size_t count = iov_iter_count(to); 854 855 do { 856 int size, copied; 857 858 size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count; 859 size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset); 860 if (!size) 861 break; 862 863 if (size < 0) { 864 /* Did we have an earlier error (ie -EFAULT)? */ 865 if (retval) 866 break; 867 retval = size; 868 869 /* 870 * -EOVERFLOW means we didn't have enough space 871 * for a whole packet, and we shouldn't return 872 * a partial result. 873 */ 874 if (retval == -EOVERFLOW) 875 offset = 0; 876 break; 877 } 878 879 copied = copy_to_iter(kernel_buf, size, to); 880 offset += copied; 881 count -= copied; 882 883 /* 884 * If the user copy failed, we still need to do another ->read() 885 * call if we had a cookie to let the ldisc clear up. 886 * 887 * But make sure size is zeroed. 888 */ 889 if (unlikely(copied != size)) { 890 count = 0; 891 retval = -EFAULT; 892 } 893 } while (cookie); 894 895 /* We always clear tty buffer in case they contained passwords */ 896 memzero_explicit(kernel_buf, sizeof(kernel_buf)); 897 return offset ? offset : retval; 898} 899 900 901/** 902 * tty_read - read method for tty device files 903 * @file: pointer to tty file 904 * @buf: user buffer 905 * @count: size of user buffer 906 * @ppos: unused 907 * 908 * Perform the read system call function on this terminal device. Checks 909 * for hung up devices before calling the line discipline method. 910 * 911 * Locking: 912 * Locks the line discipline internally while needed. Multiple 913 * read calls may be outstanding in parallel. 914 */ 915 916static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to) 917{ 918 int i; 919 struct file *file = iocb->ki_filp; 920 struct inode *inode = file_inode(file); 921 struct tty_struct *tty = file_tty(file); 922 struct tty_ldisc *ld; 923 924 if (tty_paranoia_check(tty, inode, "tty_read")) 925 return -EIO; 926 if (!tty || tty_io_error(tty)) 927 return -EIO; 928 929 /* We want to wait for the line discipline to sort out in this 930 situation */ 931 ld = tty_ldisc_ref_wait(tty); 932 if (!ld) 933 return hung_up_tty_read(iocb, to); 934 i = -EIO; 935 if (ld->ops->read) 936 i = iterate_tty_read(ld, tty, file, to); 937 tty_ldisc_deref(ld); 938 939 if (i > 0) 940 tty_update_time(&inode->i_atime); 941 942 return i; 943} 944 945void tty_write_unlock(struct tty_struct *tty) 946{ 947 mutex_unlock(&tty->atomic_write_lock); 948 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT); 949} 950 951int tty_write_lock(struct tty_struct *tty, bool ndelay) 952{ 953 if (!mutex_trylock(&tty->atomic_write_lock)) { 954 if (ndelay) 955 return -EAGAIN; 956 if (mutex_lock_interruptible(&tty->atomic_write_lock)) 957 return -ERESTARTSYS; 958 } 959 return 0; 960} 961 962/* 963 * Split writes up in sane blocksizes to avoid 964 * denial-of-service type attacks 965 */ 966static inline ssize_t do_tty_write( 967 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t), 968 struct tty_struct *tty, 969 struct file *file, 970 struct iov_iter *from) 971{ 972 size_t count = iov_iter_count(from); 973 ssize_t ret, written = 0; 974 unsigned int chunk; 975 976 ret = tty_write_lock(tty, file->f_flags & O_NDELAY); 977 if (ret < 0) 978 return ret; 979 980 /* 981 * We chunk up writes into a temporary buffer. This 982 * simplifies low-level drivers immensely, since they 983 * don't have locking issues and user mode accesses. 984 * 985 * But if TTY_NO_WRITE_SPLIT is set, we should use a 986 * big chunk-size.. 987 * 988 * The default chunk-size is 2kB, because the NTTY 989 * layer has problems with bigger chunks. It will 990 * claim to be able to handle more characters than 991 * it actually does. 992 * 993 * FIXME: This can probably go away now except that 64K chunks 994 * are too likely to fail unless switched to vmalloc... 995 */ 996 chunk = 2048; 997 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags)) 998 chunk = 65536; 999 if (count < chunk) 1000 chunk = count; 1001 1002 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */ 1003 if (tty->write_cnt < chunk) { 1004 unsigned char *buf_chunk; 1005 1006 if (chunk < 1024) 1007 chunk = 1024; 1008 1009 buf_chunk = kmalloc(chunk, GFP_KERNEL); 1010 if (!buf_chunk) { 1011 ret = -ENOMEM; 1012 goto out; 1013 } 1014 kfree(tty->write_buf); 1015 tty->write_cnt = chunk; 1016 tty->write_buf = buf_chunk; 1017 } 1018 1019 /* Do the write .. */ 1020 for (;;) { 1021 size_t size = count; 1022 if (size > chunk) 1023 size = chunk; 1024 1025 ret = -EFAULT; 1026 if (copy_from_iter(tty->write_buf, size, from) != size) 1027 break; 1028 1029 ret = write(tty, file, tty->write_buf, size); 1030 if (ret <= 0) 1031 break; 1032 1033 written += ret; 1034 if (ret > size) 1035 break; 1036 1037 /* FIXME! Have Al check this! */ 1038 if (ret != size) 1039 iov_iter_revert(from, size-ret); 1040 1041 count -= ret; 1042 if (!count) 1043 break; 1044 ret = -ERESTARTSYS; 1045 if (signal_pending(current)) 1046 break; 1047 cond_resched(); 1048 } 1049 if (written) { 1050 tty_update_time(&file_inode(file)->i_mtime); 1051 ret = written; 1052 } 1053out: 1054 tty_write_unlock(tty); 1055 return ret; 1056} 1057 1058/** 1059 * tty_write_message - write a message to a certain tty, not just the console. 1060 * @tty: the destination tty_struct 1061 * @msg: the message to write 1062 * 1063 * This is used for messages that need to be redirected to a specific tty. 1064 * We don't put it into the syslog queue right now maybe in the future if 1065 * really needed. 1066 * 1067 * We must still hold the BTM and test the CLOSING flag for the moment. 1068 */ 1069 1070void tty_write_message(struct tty_struct *tty, char *msg) 1071{ 1072 if (tty) { 1073 mutex_lock(&tty->atomic_write_lock); 1074 tty_lock(tty); 1075 if (tty->ops->write && tty->count > 0) 1076 tty->ops->write(tty, msg, strlen(msg)); 1077 tty_unlock(tty); 1078 tty_write_unlock(tty); 1079 } 1080 return; 1081} 1082 1083 1084/** 1085 * tty_write - write method for tty device file 1086 * @file: tty file pointer 1087 * @buf: user data to write 1088 * @count: bytes to write 1089 * @ppos: unused 1090 * 1091 * Write data to a tty device via the line discipline. 1092 * 1093 * Locking: 1094 * Locks the line discipline as required 1095 * Writes to the tty driver are serialized by the atomic_write_lock 1096 * and are then processed in chunks to the device. The line discipline 1097 * write method will not be invoked in parallel for each device. 1098 */ 1099 1100static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from) 1101{ 1102 struct tty_struct *tty = file_tty(file); 1103 struct tty_ldisc *ld; 1104 ssize_t ret; 1105 1106 if (tty_paranoia_check(tty, file_inode(file), "tty_write")) 1107 return -EIO; 1108 if (!tty || !tty->ops->write || tty_io_error(tty)) 1109 return -EIO; 1110 /* Short term debug to catch buggy drivers */ 1111 if (tty->ops->write_room == NULL) 1112 tty_err(tty, "missing write_room method\n"); 1113 ld = tty_ldisc_ref_wait(tty); 1114 if (!ld) 1115 return hung_up_tty_write(iocb, from); 1116 if (!ld->ops->write) 1117 ret = -EIO; 1118 else 1119 ret = do_tty_write(ld->ops->write, tty, file, from); 1120 tty_ldisc_deref(ld); 1121 return ret; 1122} 1123 1124static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from) 1125{ 1126 return file_tty_write(iocb->ki_filp, iocb, from); 1127} 1128 1129ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter) 1130{ 1131 struct file *p = NULL; 1132 1133 spin_lock(&redirect_lock); 1134 if (redirect) 1135 p = get_file(redirect); 1136 spin_unlock(&redirect_lock); 1137 1138 /* 1139 * We know the redirected tty is just another tty, we can can 1140 * call file_tty_write() directly with that file pointer. 1141 */ 1142 if (p) { 1143 ssize_t res; 1144 res = file_tty_write(p, iocb, iter); 1145 fput(p); 1146 return res; 1147 } 1148 return tty_write(iocb, iter); 1149} 1150 1151/** 1152 * tty_send_xchar - send priority character 1153 * 1154 * Send a high priority character to the tty even if stopped 1155 * 1156 * Locking: none for xchar method, write ordering for write method. 1157 */ 1158 1159int tty_send_xchar(struct tty_struct *tty, char ch) 1160{ 1161 int was_stopped = tty->stopped; 1162 1163 if (tty->ops->send_xchar) { 1164 down_read(&tty->termios_rwsem); 1165 tty->ops->send_xchar(tty, ch); 1166 up_read(&tty->termios_rwsem); 1167 return 0; 1168 } 1169 1170 if (tty_write_lock(tty, false) < 0) 1171 return -ERESTARTSYS; 1172 1173 down_read(&tty->termios_rwsem); 1174 if (was_stopped) 1175 start_tty(tty); 1176 tty->ops->write(tty, &ch, 1); 1177 if (was_stopped) 1178 stop_tty(tty); 1179 up_read(&tty->termios_rwsem); 1180 tty_write_unlock(tty); 1181 return 0; 1182} 1183 1184static char ptychar[] = "pqrstuvwxyzabcde"; 1185 1186/** 1187 * pty_line_name - generate name for a pty 1188 * @driver: the tty driver in use 1189 * @index: the minor number 1190 * @p: output buffer of at least 6 bytes 1191 * 1192 * Generate a name from a driver reference and write it to the output 1193 * buffer. 1194 * 1195 * Locking: None 1196 */ 1197static void pty_line_name(struct tty_driver *driver, int index, char *p) 1198{ 1199 int i = index + driver->name_base; 1200 /* ->name is initialized to "ttyp", but "tty" is expected */ 1201 sprintf(p, "%s%c%x", 1202 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name, 1203 ptychar[i >> 4 & 0xf], i & 0xf); 1204} 1205 1206/** 1207 * tty_line_name - generate name for a tty 1208 * @driver: the tty driver in use 1209 * @index: the minor number 1210 * @p: output buffer of at least 7 bytes 1211 * 1212 * Generate a name from a driver reference and write it to the output 1213 * buffer. 1214 * 1215 * Locking: None 1216 */ 1217static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p) 1218{ 1219 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE) 1220 return sprintf(p, "%s", driver->name); 1221 else 1222 return sprintf(p, "%s%d", driver->name, 1223 index + driver->name_base); 1224} 1225 1226/** 1227 * tty_driver_lookup_tty() - find an existing tty, if any 1228 * @driver: the driver for the tty 1229 * @idx: the minor number 1230 * 1231 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the 1232 * driver lookup() method returns an error. 1233 * 1234 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref. 1235 */ 1236static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, 1237 struct file *file, int idx) 1238{ 1239 struct tty_struct *tty; 1240 1241 if (driver->ops->lookup) { 1242 if (!file) 1243 tty = ERR_PTR(-EIO); 1244 else 1245 tty = driver->ops->lookup(driver, file, idx); 1246 } else { 1247 if (idx >= driver->num) 1248 return ERR_PTR(-EINVAL); 1249 tty = driver->ttys[idx]; 1250 } 1251 if (!IS_ERR(tty)) 1252 tty_kref_get(tty); 1253 return tty; 1254} 1255 1256/** 1257 * tty_init_termios - helper for termios setup 1258 * @tty: the tty to set up 1259 * 1260 * Initialise the termios structure for this tty. This runs under 1261 * the tty_mutex currently so we can be relaxed about ordering. 1262 */ 1263 1264void tty_init_termios(struct tty_struct *tty) 1265{ 1266 struct ktermios *tp; 1267 int idx = tty->index; 1268 1269 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1270 tty->termios = tty->driver->init_termios; 1271 else { 1272 /* Check for lazy saved data */ 1273 tp = tty->driver->termios[idx]; 1274 if (tp != NULL) { 1275 tty->termios = *tp; 1276 tty->termios.c_line = tty->driver->init_termios.c_line; 1277 } else 1278 tty->termios = tty->driver->init_termios; 1279 } 1280 /* Compatibility until drivers always set this */ 1281 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios); 1282 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios); 1283} 1284EXPORT_SYMBOL_GPL(tty_init_termios); 1285 1286int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty) 1287{ 1288 tty_init_termios(tty); 1289 tty_driver_kref_get(driver); 1290 tty->count++; 1291 driver->ttys[tty->index] = tty; 1292 return 0; 1293} 1294EXPORT_SYMBOL_GPL(tty_standard_install); 1295 1296/** 1297 * tty_driver_install_tty() - install a tty entry in the driver 1298 * @driver: the driver for the tty 1299 * @tty: the tty 1300 * 1301 * Install a tty object into the driver tables. The tty->index field 1302 * will be set by the time this is called. This method is responsible 1303 * for ensuring any need additional structures are allocated and 1304 * configured. 1305 * 1306 * Locking: tty_mutex for now 1307 */ 1308static int tty_driver_install_tty(struct tty_driver *driver, 1309 struct tty_struct *tty) 1310{ 1311 return driver->ops->install ? driver->ops->install(driver, tty) : 1312 tty_standard_install(driver, tty); 1313} 1314 1315/** 1316 * tty_driver_remove_tty() - remove a tty from the driver tables 1317 * @driver: the driver for the tty 1318 * @tty: tty to remove 1319 * 1320 * Remvoe a tty object from the driver tables. The tty->index field 1321 * will be set by the time this is called. 1322 * 1323 * Locking: tty_mutex for now 1324 */ 1325static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty) 1326{ 1327 if (driver->ops->remove) 1328 driver->ops->remove(driver, tty); 1329 else 1330 driver->ttys[tty->index] = NULL; 1331} 1332 1333/** 1334 * tty_reopen() - fast re-open of an open tty 1335 * @tty: the tty to open 1336 * 1337 * Return 0 on success, -errno on error. 1338 * Re-opens on master ptys are not allowed and return -EIO. 1339 * 1340 * Locking: Caller must hold tty_lock 1341 */ 1342static int tty_reopen(struct tty_struct *tty) 1343{ 1344 struct tty_driver *driver = tty->driver; 1345 struct tty_ldisc *ld; 1346 int retval = 0; 1347 1348 if (driver->type == TTY_DRIVER_TYPE_PTY && 1349 driver->subtype == PTY_TYPE_MASTER) 1350 return -EIO; 1351 1352 if (!tty->count) 1353 return -EAGAIN; 1354 1355 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) 1356 return -EBUSY; 1357 1358 ld = tty_ldisc_ref_wait(tty); 1359 if (ld) { 1360 tty_ldisc_deref(ld); 1361 } else { 1362 retval = tty_ldisc_lock(tty, 5 * HZ); 1363 if (retval) 1364 return retval; 1365 1366 if (!tty->ldisc) 1367 retval = tty_ldisc_reinit(tty, tty->termios.c_line); 1368 tty_ldisc_unlock(tty); 1369 } 1370 1371 if (retval == 0) 1372 tty->count++; 1373 1374 return retval; 1375} 1376 1377/** 1378 * tty_init_dev - initialise a tty device 1379 * @driver: tty driver we are opening a device on 1380 * @idx: device index 1381 * 1382 * Prepare a tty device. This may not be a "new" clean device but 1383 * could also be an active device. The pty drivers require special 1384 * handling because of this. 1385 * 1386 * Locking: 1387 * The function is called under the tty_mutex, which 1388 * protects us from the tty struct or driver itself going away. 1389 * 1390 * On exit the tty device has the line discipline attached and 1391 * a reference count of 1. If a pair was created for pty/tty use 1392 * and the other was a pty master then it too has a reference count of 1. 1393 * 1394 * WSH 06/09/97: Rewritten to remove races and properly clean up after a 1395 * failed open. The new code protects the open with a mutex, so it's 1396 * really quite straightforward. The mutex locking can probably be 1397 * relaxed for the (most common) case of reopening a tty. 1398 * 1399 * Return: returned tty structure 1400 */ 1401 1402struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx) 1403{ 1404 struct tty_struct *tty; 1405 int retval; 1406 1407 /* 1408 * First time open is complex, especially for PTY devices. 1409 * This code guarantees that either everything succeeds and the 1410 * TTY is ready for operation, or else the table slots are vacated 1411 * and the allocated memory released. (Except that the termios 1412 * may be retained.) 1413 */ 1414 1415 if (!try_module_get(driver->owner)) 1416 return ERR_PTR(-ENODEV); 1417 1418 tty = alloc_tty_struct(driver, idx); 1419 if (!tty) { 1420 retval = -ENOMEM; 1421 goto err_module_put; 1422 } 1423 1424 tty_lock(tty); 1425 retval = tty_driver_install_tty(driver, tty); 1426 if (retval < 0) 1427 goto err_free_tty; 1428 1429 if (!tty->port) 1430 tty->port = driver->ports[idx]; 1431 1432 if (WARN_RATELIMIT(!tty->port, 1433 "%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n", 1434 __func__, tty->driver->name)) { 1435 retval = -EINVAL; 1436 goto err_release_lock; 1437 } 1438 1439 retval = tty_ldisc_lock(tty, 5 * HZ); 1440 if (retval) 1441 goto err_release_lock; 1442 tty->port->itty = tty; 1443 1444 /* 1445 * Structures all installed ... call the ldisc open routines. 1446 * If we fail here just call release_tty to clean up. No need 1447 * to decrement the use counts, as release_tty doesn't care. 1448 */ 1449 retval = tty_ldisc_setup(tty, tty->link); 1450 if (retval) 1451 goto err_release_tty; 1452 tty_ldisc_unlock(tty); 1453 /* Return the tty locked so that it cannot vanish under the caller */ 1454 return tty; 1455 1456err_free_tty: 1457 tty_unlock(tty); 1458 free_tty_struct(tty); 1459err_module_put: 1460 module_put(driver->owner); 1461 return ERR_PTR(retval); 1462 1463 /* call the tty release_tty routine to clean out this slot */ 1464err_release_tty: 1465 tty_ldisc_unlock(tty); 1466 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n", 1467 retval, idx); 1468err_release_lock: 1469 tty_unlock(tty); 1470 release_tty(tty, idx); 1471 return ERR_PTR(retval); 1472} 1473 1474/** 1475 * tty_save_termios() - save tty termios data in driver table 1476 * @tty: tty whose termios data to save 1477 * 1478 * Locking: Caller guarantees serialisation with tty_init_termios(). 1479 */ 1480void tty_save_termios(struct tty_struct *tty) 1481{ 1482 struct ktermios *tp; 1483 int idx = tty->index; 1484 1485 /* If the port is going to reset then it has no termios to save */ 1486 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) 1487 return; 1488 1489 /* Stash the termios data */ 1490 tp = tty->driver->termios[idx]; 1491 if (tp == NULL) { 1492 tp = kmalloc(sizeof(*tp), GFP_KERNEL); 1493 if (tp == NULL) 1494 return; 1495 tty->driver->termios[idx] = tp; 1496 } 1497 *tp = tty->termios; 1498} 1499EXPORT_SYMBOL_GPL(tty_save_termios); 1500 1501/** 1502 * tty_flush_works - flush all works of a tty/pty pair 1503 * @tty: tty device to flush works for (or either end of a pty pair) 1504 * 1505 * Sync flush all works belonging to @tty (and the 'other' tty). 1506 */ 1507static void tty_flush_works(struct tty_struct *tty) 1508{ 1509 flush_work(&tty->SAK_work); 1510 flush_work(&tty->hangup_work); 1511 if (tty->link) { 1512 flush_work(&tty->link->SAK_work); 1513 flush_work(&tty->link->hangup_work); 1514 } 1515} 1516 1517/** 1518 * release_one_tty - release tty structure memory 1519 * @work: work of tty we are obliterating 1520 * 1521 * Releases memory associated with a tty structure, and clears out the 1522 * driver table slots. This function is called when a device is no longer 1523 * in use. It also gets called when setup of a device fails. 1524 * 1525 * Locking: 1526 * takes the file list lock internally when working on the list 1527 * of ttys that the driver keeps. 1528 * 1529 * This method gets called from a work queue so that the driver private 1530 * cleanup ops can sleep (needed for USB at least) 1531 */ 1532static void release_one_tty(struct work_struct *work) 1533{ 1534 struct tty_struct *tty = 1535 container_of(work, struct tty_struct, hangup_work); 1536 struct tty_driver *driver = tty->driver; 1537 struct module *owner = driver->owner; 1538 1539 if (tty->ops->cleanup) 1540 tty->ops->cleanup(tty); 1541 1542 tty->magic = 0; 1543 tty_driver_kref_put(driver); 1544 module_put(owner); 1545 1546 spin_lock(&tty->files_lock); 1547 list_del_init(&tty->tty_files); 1548 spin_unlock(&tty->files_lock); 1549 1550 put_pid(tty->pgrp); 1551 put_pid(tty->session); 1552 free_tty_struct(tty); 1553} 1554 1555static void queue_release_one_tty(struct kref *kref) 1556{ 1557 struct tty_struct *tty = container_of(kref, struct tty_struct, kref); 1558 1559 /* The hangup queue is now free so we can reuse it rather than 1560 waste a chunk of memory for each port */ 1561 INIT_WORK(&tty->hangup_work, release_one_tty); 1562 schedule_work(&tty->hangup_work); 1563} 1564 1565/** 1566 * tty_kref_put - release a tty kref 1567 * @tty: tty device 1568 * 1569 * Release a reference to a tty device and if need be let the kref 1570 * layer destruct the object for us 1571 */ 1572 1573void tty_kref_put(struct tty_struct *tty) 1574{ 1575 if (tty) 1576 kref_put(&tty->kref, queue_release_one_tty); 1577} 1578EXPORT_SYMBOL(tty_kref_put); 1579 1580/** 1581 * release_tty - release tty structure memory 1582 * 1583 * Release both @tty and a possible linked partner (think pty pair), 1584 * and decrement the refcount of the backing module. 1585 * 1586 * Locking: 1587 * tty_mutex 1588 * takes the file list lock internally when working on the list 1589 * of ttys that the driver keeps. 1590 * 1591 */ 1592static void release_tty(struct tty_struct *tty, int idx) 1593{ 1594 /* This should always be true but check for the moment */ 1595 WARN_ON(tty->index != idx); 1596 WARN_ON(!mutex_is_locked(&tty_mutex)); 1597 if (tty->ops->shutdown) 1598 tty->ops->shutdown(tty); 1599 tty_save_termios(tty); 1600 tty_driver_remove_tty(tty->driver, tty); 1601 if (tty->port) 1602 tty->port->itty = NULL; 1603 if (tty->link) 1604 tty->link->port->itty = NULL; 1605 if (tty->port) 1606 tty_buffer_cancel_work(tty->port); 1607 if (tty->link) 1608 tty_buffer_cancel_work(tty->link->port); 1609 1610 tty_kref_put(tty->link); 1611 tty_kref_put(tty); 1612} 1613 1614/** 1615 * tty_release_checks - check a tty before real release 1616 * @tty: tty to check 1617 * @idx: index of the tty 1618 * 1619 * Performs some paranoid checking before true release of the @tty. 1620 * This is a no-op unless TTY_PARANOIA_CHECK is defined. 1621 */ 1622static int tty_release_checks(struct tty_struct *tty, int idx) 1623{ 1624#ifdef TTY_PARANOIA_CHECK 1625 if (idx < 0 || idx >= tty->driver->num) { 1626 tty_debug(tty, "bad idx %d\n", idx); 1627 return -1; 1628 } 1629 1630 /* not much to check for devpts */ 1631 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) 1632 return 0; 1633 1634 if (tty != tty->driver->ttys[idx]) { 1635 tty_debug(tty, "bad driver table[%d] = %p\n", 1636 idx, tty->driver->ttys[idx]); 1637 return -1; 1638 } 1639 if (tty->driver->other) { 1640 struct tty_struct *o_tty = tty->link; 1641 1642 if (o_tty != tty->driver->other->ttys[idx]) { 1643 tty_debug(tty, "bad other table[%d] = %p\n", 1644 idx, tty->driver->other->ttys[idx]); 1645 return -1; 1646 } 1647 if (o_tty->link != tty) { 1648 tty_debug(tty, "bad link = %p\n", o_tty->link); 1649 return -1; 1650 } 1651 } 1652#endif 1653 return 0; 1654} 1655 1656/** 1657 * tty_kclose - closes tty opened by tty_kopen 1658 * @tty: tty device 1659 * 1660 * Performs the final steps to release and free a tty device. It is the 1661 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED 1662 * flag on tty->port. 1663 */ 1664void tty_kclose(struct tty_struct *tty) 1665{ 1666 /* 1667 * Ask the line discipline code to release its structures 1668 */ 1669 tty_ldisc_release(tty); 1670 1671 /* Wait for pending work before tty destruction commmences */ 1672 tty_flush_works(tty); 1673 1674 tty_debug_hangup(tty, "freeing structure\n"); 1675 /* 1676 * The release_tty function takes care of the details of clearing 1677 * the slots and preserving the termios structure. 1678 */ 1679 mutex_lock(&tty_mutex); 1680 tty_port_set_kopened(tty->port, 0); 1681 release_tty(tty, tty->index); 1682 mutex_unlock(&tty_mutex); 1683} 1684EXPORT_SYMBOL_GPL(tty_kclose); 1685 1686/** 1687 * tty_release_struct - release a tty struct 1688 * @tty: tty device 1689 * @idx: index of the tty 1690 * 1691 * Performs the final steps to release and free a tty device. It is 1692 * roughly the reverse of tty_init_dev. 1693 */ 1694void tty_release_struct(struct tty_struct *tty, int idx) 1695{ 1696 /* 1697 * Ask the line discipline code to release its structures 1698 */ 1699 tty_ldisc_release(tty); 1700 1701 /* Wait for pending work before tty destruction commmences */ 1702 tty_flush_works(tty); 1703 1704 tty_debug_hangup(tty, "freeing structure\n"); 1705 /* 1706 * The release_tty function takes care of the details of clearing 1707 * the slots and preserving the termios structure. 1708 */ 1709 mutex_lock(&tty_mutex); 1710 release_tty(tty, idx); 1711 mutex_unlock(&tty_mutex); 1712} 1713EXPORT_SYMBOL_GPL(tty_release_struct); 1714 1715/** 1716 * tty_release - vfs callback for close 1717 * @inode: inode of tty 1718 * @filp: file pointer for handle to tty 1719 * 1720 * Called the last time each file handle is closed that references 1721 * this tty. There may however be several such references. 1722 * 1723 * Locking: 1724 * Takes bkl. See tty_release_dev 1725 * 1726 * Even releasing the tty structures is a tricky business.. We have 1727 * to be very careful that the structures are all released at the 1728 * same time, as interrupts might otherwise get the wrong pointers. 1729 * 1730 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could 1731 * lead to double frees or releasing memory still in use. 1732 */ 1733 1734int tty_release(struct inode *inode, struct file *filp) 1735{ 1736 struct tty_struct *tty = file_tty(filp); 1737 struct tty_struct *o_tty = NULL; 1738 int do_sleep, final; 1739 int idx; 1740 long timeout = 0; 1741 int once = 1; 1742 1743 if (tty_paranoia_check(tty, inode, __func__)) 1744 return 0; 1745 1746 tty_lock(tty); 1747 check_tty_count(tty, __func__); 1748 1749 __tty_fasync(-1, filp, 0); 1750 1751 idx = tty->index; 1752 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 1753 tty->driver->subtype == PTY_TYPE_MASTER) 1754 o_tty = tty->link; 1755 1756 if (tty_release_checks(tty, idx)) { 1757 tty_unlock(tty); 1758 return 0; 1759 } 1760 1761 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count); 1762 1763 if (tty->ops->close) 1764 tty->ops->close(tty, filp); 1765 1766 /* If tty is pty master, lock the slave pty (stable lock order) */ 1767 tty_lock_slave(o_tty); 1768 1769 /* 1770 * Sanity check: if tty->count is going to zero, there shouldn't be 1771 * any waiters on tty->read_wait or tty->write_wait. We test the 1772 * wait queues and kick everyone out _before_ actually starting to 1773 * close. This ensures that we won't block while releasing the tty 1774 * structure. 1775 * 1776 * The test for the o_tty closing is necessary, since the master and 1777 * slave sides may close in any order. If the slave side closes out 1778 * first, its count will be one, since the master side holds an open. 1779 * Thus this test wouldn't be triggered at the time the slave closed, 1780 * so we do it now. 1781 */ 1782 while (1) { 1783 do_sleep = 0; 1784 1785 if (tty->count <= 1) { 1786 if (waitqueue_active(&tty->read_wait)) { 1787 wake_up_poll(&tty->read_wait, EPOLLIN); 1788 do_sleep++; 1789 } 1790 if (waitqueue_active(&tty->write_wait)) { 1791 wake_up_poll(&tty->write_wait, EPOLLOUT); 1792 do_sleep++; 1793 } 1794 } 1795 if (o_tty && o_tty->count <= 1) { 1796 if (waitqueue_active(&o_tty->read_wait)) { 1797 wake_up_poll(&o_tty->read_wait, EPOLLIN); 1798 do_sleep++; 1799 } 1800 if (waitqueue_active(&o_tty->write_wait)) { 1801 wake_up_poll(&o_tty->write_wait, EPOLLOUT); 1802 do_sleep++; 1803 } 1804 } 1805 if (!do_sleep) 1806 break; 1807 1808 if (once) { 1809 once = 0; 1810 tty_warn(tty, "read/write wait queue active!\n"); 1811 } 1812 schedule_timeout_killable(timeout); 1813 if (timeout < 120 * HZ) 1814 timeout = 2 * timeout + 1; 1815 else 1816 timeout = MAX_SCHEDULE_TIMEOUT; 1817 } 1818 1819 if (o_tty) { 1820 if (--o_tty->count < 0) { 1821 tty_warn(tty, "bad slave count (%d)\n", o_tty->count); 1822 o_tty->count = 0; 1823 } 1824 } 1825 if (--tty->count < 0) { 1826 tty_warn(tty, "bad tty->count (%d)\n", tty->count); 1827 tty->count = 0; 1828 } 1829 1830 /* 1831 * We've decremented tty->count, so we need to remove this file 1832 * descriptor off the tty->tty_files list; this serves two 1833 * purposes: 1834 * - check_tty_count sees the correct number of file descriptors 1835 * associated with this tty. 1836 * - do_tty_hangup no longer sees this file descriptor as 1837 * something that needs to be handled for hangups. 1838 */ 1839 tty_del_file(filp); 1840 1841 /* 1842 * Perform some housekeeping before deciding whether to return. 1843 * 1844 * If _either_ side is closing, make sure there aren't any 1845 * processes that still think tty or o_tty is their controlling 1846 * tty. 1847 */ 1848 if (!tty->count) { 1849 read_lock(&tasklist_lock); 1850 session_clear_tty(tty->session); 1851 if (o_tty) 1852 session_clear_tty(o_tty->session); 1853 read_unlock(&tasklist_lock); 1854 } 1855 1856 /* check whether both sides are closing ... */ 1857 final = !tty->count && !(o_tty && o_tty->count); 1858 1859 tty_unlock_slave(o_tty); 1860 tty_unlock(tty); 1861 1862 /* At this point, the tty->count == 0 should ensure a dead tty 1863 cannot be re-opened by a racing opener */ 1864 1865 if (!final) 1866 return 0; 1867 1868 tty_debug_hangup(tty, "final close\n"); 1869 1870 tty_release_struct(tty, idx); 1871 return 0; 1872} 1873 1874/** 1875 * tty_open_current_tty - get locked tty of current task 1876 * @device: device number 1877 * @filp: file pointer to tty 1878 * @return: locked tty of the current task iff @device is /dev/tty 1879 * 1880 * Performs a re-open of the current task's controlling tty. 1881 * 1882 * We cannot return driver and index like for the other nodes because 1883 * devpts will not work then. It expects inodes to be from devpts FS. 1884 */ 1885static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp) 1886{ 1887 struct tty_struct *tty; 1888 int retval; 1889 1890 if (device != MKDEV(TTYAUX_MAJOR, 0)) 1891 return NULL; 1892 1893 tty = get_current_tty(); 1894 if (!tty) 1895 return ERR_PTR(-ENXIO); 1896 1897 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ 1898 /* noctty = 1; */ 1899 tty_lock(tty); 1900 tty_kref_put(tty); /* safe to drop the kref now */ 1901 1902 retval = tty_reopen(tty); 1903 if (retval < 0) { 1904 tty_unlock(tty); 1905 tty = ERR_PTR(retval); 1906 } 1907 return tty; 1908} 1909 1910/** 1911 * tty_lookup_driver - lookup a tty driver for a given device file 1912 * @device: device number 1913 * @filp: file pointer to tty 1914 * @index: index for the device in the @return driver 1915 * @return: driver for this inode (with increased refcount) 1916 * 1917 * If @return is not erroneous, the caller is responsible to decrement the 1918 * refcount by tty_driver_kref_put. 1919 * 1920 * Locking: tty_mutex protects get_tty_driver 1921 */ 1922static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp, 1923 int *index) 1924{ 1925 struct tty_driver *driver = NULL; 1926 1927 switch (device) { 1928#ifdef CONFIG_VT 1929 case MKDEV(TTY_MAJOR, 0): { 1930 extern struct tty_driver *console_driver; 1931 driver = tty_driver_kref_get(console_driver); 1932 *index = fg_console; 1933 break; 1934 } 1935#endif 1936 case MKDEV(TTYAUX_MAJOR, 1): { 1937 struct tty_driver *console_driver = console_device(index); 1938 if (console_driver) { 1939 driver = tty_driver_kref_get(console_driver); 1940 if (driver && filp) { 1941 /* Don't let /dev/console block */ 1942 filp->f_flags |= O_NONBLOCK; 1943 break; 1944 } 1945 } 1946 if (driver) 1947 tty_driver_kref_put(driver); 1948 return ERR_PTR(-ENODEV); 1949 } 1950 default: 1951 driver = get_tty_driver(device, index); 1952 if (!driver) 1953 return ERR_PTR(-ENODEV); 1954 break; 1955 } 1956 return driver; 1957} 1958 1959/** 1960 * tty_kopen - open a tty device for kernel 1961 * @device: dev_t of device to open 1962 * 1963 * Opens tty exclusively for kernel. Performs the driver lookup, 1964 * makes sure it's not already opened and performs the first-time 1965 * tty initialization. 1966 * 1967 * Returns the locked initialized &tty_struct 1968 * 1969 * Claims the global tty_mutex to serialize: 1970 * - concurrent first-time tty initialization 1971 * - concurrent tty driver removal w/ lookup 1972 * - concurrent tty removal from driver table 1973 */ 1974struct tty_struct *tty_kopen(dev_t device) 1975{ 1976 struct tty_struct *tty; 1977 struct tty_driver *driver; 1978 int index = -1; 1979 1980 mutex_lock(&tty_mutex); 1981 driver = tty_lookup_driver(device, NULL, &index); 1982 if (IS_ERR(driver)) { 1983 mutex_unlock(&tty_mutex); 1984 return ERR_CAST(driver); 1985 } 1986 1987 /* check whether we're reopening an existing tty */ 1988 tty = tty_driver_lookup_tty(driver, NULL, index); 1989 if (IS_ERR(tty)) 1990 goto out; 1991 1992 if (tty) { 1993 /* drop kref from tty_driver_lookup_tty() */ 1994 tty_kref_put(tty); 1995 tty = ERR_PTR(-EBUSY); 1996 } else { /* tty_init_dev returns tty with the tty_lock held */ 1997 tty = tty_init_dev(driver, index); 1998 if (IS_ERR(tty)) 1999 goto out; 2000 tty_port_set_kopened(tty->port, 1); 2001 } 2002out: 2003 mutex_unlock(&tty_mutex); 2004 tty_driver_kref_put(driver); 2005 return tty; 2006} 2007EXPORT_SYMBOL_GPL(tty_kopen); 2008 2009/** 2010 * tty_open_by_driver - open a tty device 2011 * @device: dev_t of device to open 2012 * @filp: file pointer to tty 2013 * 2014 * Performs the driver lookup, checks for a reopen, or otherwise 2015 * performs the first-time tty initialization. 2016 * 2017 * Returns the locked initialized or re-opened &tty_struct 2018 * 2019 * Claims the global tty_mutex to serialize: 2020 * - concurrent first-time tty initialization 2021 * - concurrent tty driver removal w/ lookup 2022 * - concurrent tty removal from driver table 2023 */ 2024static struct tty_struct *tty_open_by_driver(dev_t device, 2025 struct file *filp) 2026{ 2027 struct tty_struct *tty; 2028 struct tty_driver *driver = NULL; 2029 int index = -1; 2030 int retval; 2031 2032 mutex_lock(&tty_mutex); 2033 driver = tty_lookup_driver(device, filp, &index); 2034 if (IS_ERR(driver)) { 2035 mutex_unlock(&tty_mutex); 2036 return ERR_CAST(driver); 2037 } 2038 2039 /* check whether we're reopening an existing tty */ 2040 tty = tty_driver_lookup_tty(driver, filp, index); 2041 if (IS_ERR(tty)) { 2042 mutex_unlock(&tty_mutex); 2043 goto out; 2044 } 2045 2046 if (tty) { 2047 if (tty_port_kopened(tty->port)) { 2048 tty_kref_put(tty); 2049 mutex_unlock(&tty_mutex); 2050 tty = ERR_PTR(-EBUSY); 2051 goto out; 2052 } 2053 mutex_unlock(&tty_mutex); 2054 retval = tty_lock_interruptible(tty); 2055 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */ 2056 if (retval) { 2057 if (retval == -EINTR) 2058 retval = -ERESTARTSYS; 2059 tty = ERR_PTR(retval); 2060 goto out; 2061 } 2062 retval = tty_reopen(tty); 2063 if (retval < 0) { 2064 tty_unlock(tty); 2065 tty = ERR_PTR(retval); 2066 } 2067 } else { /* Returns with the tty_lock held for now */ 2068 tty = tty_init_dev(driver, index); 2069 mutex_unlock(&tty_mutex); 2070 } 2071out: 2072 tty_driver_kref_put(driver); 2073 return tty; 2074} 2075 2076/** 2077 * tty_open - open a tty device 2078 * @inode: inode of device file 2079 * @filp: file pointer to tty 2080 * 2081 * tty_open and tty_release keep up the tty count that contains the 2082 * number of opens done on a tty. We cannot use the inode-count, as 2083 * different inodes might point to the same tty. 2084 * 2085 * Open-counting is needed for pty masters, as well as for keeping 2086 * track of serial lines: DTR is dropped when the last close happens. 2087 * (This is not done solely through tty->count, now. - Ted 1/27/92) 2088 * 2089 * The termios state of a pty is reset on first open so that 2090 * settings don't persist across reuse. 2091 * 2092 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev. 2093 * tty->count should protect the rest. 2094 * ->siglock protects ->signal/->sighand 2095 * 2096 * Note: the tty_unlock/lock cases without a ref are only safe due to 2097 * tty_mutex 2098 */ 2099 2100static int tty_open(struct inode *inode, struct file *filp) 2101{ 2102 struct tty_struct *tty; 2103 int noctty, retval; 2104 dev_t device = inode->i_rdev; 2105 unsigned saved_flags = filp->f_flags; 2106 2107 nonseekable_open(inode, filp); 2108 2109retry_open: 2110 retval = tty_alloc_file(filp); 2111 if (retval) 2112 return -ENOMEM; 2113 2114 tty = tty_open_current_tty(device, filp); 2115 if (!tty) 2116 tty = tty_open_by_driver(device, filp); 2117 2118 if (IS_ERR(tty)) { 2119 tty_free_file(filp); 2120 retval = PTR_ERR(tty); 2121 if (retval != -EAGAIN || signal_pending(current)) 2122 return retval; 2123 schedule(); 2124 goto retry_open; 2125 } 2126 2127 tty_add_file(tty, filp); 2128 2129 check_tty_count(tty, __func__); 2130 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count); 2131 2132 if (tty->ops->open) 2133 retval = tty->ops->open(tty, filp); 2134 else 2135 retval = -ENODEV; 2136 filp->f_flags = saved_flags; 2137 2138 if (retval) { 2139 tty_debug_hangup(tty, "open error %d, releasing\n", retval); 2140 2141 tty_unlock(tty); /* need to call tty_release without BTM */ 2142 tty_release(inode, filp); 2143 if (retval != -ERESTARTSYS) 2144 return retval; 2145 2146 if (signal_pending(current)) 2147 return retval; 2148 2149 schedule(); 2150 /* 2151 * Need to reset f_op in case a hangup happened. 2152 */ 2153 if (tty_hung_up_p(filp)) 2154 filp->f_op = &tty_fops; 2155 goto retry_open; 2156 } 2157 clear_bit(TTY_HUPPED, &tty->flags); 2158 2159 noctty = (filp->f_flags & O_NOCTTY) || 2160 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) || 2161 device == MKDEV(TTYAUX_MAJOR, 1) || 2162 (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2163 tty->driver->subtype == PTY_TYPE_MASTER); 2164 if (!noctty) 2165 tty_open_proc_set_tty(filp, tty); 2166 tty_unlock(tty); 2167 return 0; 2168} 2169 2170 2171 2172/** 2173 * tty_poll - check tty status 2174 * @filp: file being polled 2175 * @wait: poll wait structures to update 2176 * 2177 * Call the line discipline polling method to obtain the poll 2178 * status of the device. 2179 * 2180 * Locking: locks called line discipline but ldisc poll method 2181 * may be re-entered freely by other callers. 2182 */ 2183 2184static __poll_t tty_poll(struct file *filp, poll_table *wait) 2185{ 2186 struct tty_struct *tty = file_tty(filp); 2187 struct tty_ldisc *ld; 2188 __poll_t ret = 0; 2189 2190 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll")) 2191 return 0; 2192 2193 ld = tty_ldisc_ref_wait(tty); 2194 if (!ld) 2195 return hung_up_tty_poll(filp, wait); 2196 if (ld->ops->poll) 2197 ret = ld->ops->poll(tty, filp, wait); 2198 tty_ldisc_deref(ld); 2199 return ret; 2200} 2201 2202static int __tty_fasync(int fd, struct file *filp, int on) 2203{ 2204 struct tty_struct *tty = file_tty(filp); 2205 unsigned long flags; 2206 int retval = 0; 2207 2208 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync")) 2209 goto out; 2210 2211 retval = fasync_helper(fd, filp, on, &tty->fasync); 2212 if (retval <= 0) 2213 goto out; 2214 2215 if (on) { 2216 enum pid_type type; 2217 struct pid *pid; 2218 2219 spin_lock_irqsave(&tty->ctrl_lock, flags); 2220 if (tty->pgrp) { 2221 pid = tty->pgrp; 2222 type = PIDTYPE_PGID; 2223 } else { 2224 pid = task_pid(current); 2225 type = PIDTYPE_TGID; 2226 } 2227 get_pid(pid); 2228 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 2229 __f_setown(filp, pid, type, 0); 2230 put_pid(pid); 2231 retval = 0; 2232 } 2233out: 2234 return retval; 2235} 2236 2237static int tty_fasync(int fd, struct file *filp, int on) 2238{ 2239 struct tty_struct *tty = file_tty(filp); 2240 int retval = -ENOTTY; 2241 2242 tty_lock(tty); 2243 if (!tty_hung_up_p(filp)) 2244 retval = __tty_fasync(fd, filp, on); 2245 tty_unlock(tty); 2246 2247 return retval; 2248} 2249 2250/** 2251 * tiocsti - fake input character 2252 * @tty: tty to fake input into 2253 * @p: pointer to character 2254 * 2255 * Fake input to a tty device. Does the necessary locking and 2256 * input management. 2257 * 2258 * FIXME: does not honour flow control ?? 2259 * 2260 * Locking: 2261 * Called functions take tty_ldiscs_lock 2262 * current->signal->tty check is safe without locks 2263 */ 2264 2265static int tiocsti(struct tty_struct *tty, char __user *p) 2266{ 2267 char ch, mbz = 0; 2268 struct tty_ldisc *ld; 2269 2270 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN)) 2271 return -EPERM; 2272 if (get_user(ch, p)) 2273 return -EFAULT; 2274 tty_audit_tiocsti(tty, ch); 2275 ld = tty_ldisc_ref_wait(tty); 2276 if (!ld) 2277 return -EIO; 2278 tty_buffer_lock_exclusive(tty->port); 2279 if (ld->ops->receive_buf) 2280 ld->ops->receive_buf(tty, &ch, &mbz, 1); 2281 tty_buffer_unlock_exclusive(tty->port); 2282 tty_ldisc_deref(ld); 2283 return 0; 2284} 2285 2286/** 2287 * tiocgwinsz - implement window query ioctl 2288 * @tty: tty 2289 * @arg: user buffer for result 2290 * 2291 * Copies the kernel idea of the window size into the user buffer. 2292 * 2293 * Locking: tty->winsize_mutex is taken to ensure the winsize data 2294 * is consistent. 2295 */ 2296 2297static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg) 2298{ 2299 int err; 2300 2301 mutex_lock(&tty->winsize_mutex); 2302 err = copy_to_user(arg, &tty->winsize, sizeof(*arg)); 2303 mutex_unlock(&tty->winsize_mutex); 2304 2305 return err ? -EFAULT: 0; 2306} 2307 2308/** 2309 * tty_do_resize - resize event 2310 * @tty: tty being resized 2311 * @ws: new dimensions 2312 * 2313 * Update the termios variables and send the necessary signals to 2314 * peform a terminal resize correctly 2315 */ 2316 2317int tty_do_resize(struct tty_struct *tty, struct winsize *ws) 2318{ 2319 struct pid *pgrp; 2320 2321 /* Lock the tty */ 2322 mutex_lock(&tty->winsize_mutex); 2323 if (!memcmp(ws, &tty->winsize, sizeof(*ws))) 2324 goto done; 2325 2326 /* Signal the foreground process group */ 2327 pgrp = tty_get_pgrp(tty); 2328 if (pgrp) 2329 kill_pgrp(pgrp, SIGWINCH, 1); 2330 put_pid(pgrp); 2331 2332 tty->winsize = *ws; 2333done: 2334 mutex_unlock(&tty->winsize_mutex); 2335 return 0; 2336} 2337EXPORT_SYMBOL(tty_do_resize); 2338 2339/** 2340 * tiocswinsz - implement window size set ioctl 2341 * @tty: tty side of tty 2342 * @arg: user buffer for result 2343 * 2344 * Copies the user idea of the window size to the kernel. Traditionally 2345 * this is just advisory information but for the Linux console it 2346 * actually has driver level meaning and triggers a VC resize. 2347 * 2348 * Locking: 2349 * Driver dependent. The default do_resize method takes the 2350 * tty termios mutex and ctrl_lock. The console takes its own lock 2351 * then calls into the default method. 2352 */ 2353 2354static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg) 2355{ 2356 struct winsize tmp_ws; 2357 if (copy_from_user(&tmp_ws, arg, sizeof(*arg))) 2358 return -EFAULT; 2359 2360 if (tty->ops->resize) 2361 return tty->ops->resize(tty, &tmp_ws); 2362 else 2363 return tty_do_resize(tty, &tmp_ws); 2364} 2365 2366/** 2367 * tioccons - allow admin to move logical console 2368 * @file: the file to become console 2369 * 2370 * Allow the administrator to move the redirected console device 2371 * 2372 * Locking: uses redirect_lock to guard the redirect information 2373 */ 2374 2375static int tioccons(struct file *file) 2376{ 2377 if (!capable(CAP_SYS_ADMIN)) 2378 return -EPERM; 2379 if (file->f_op->write_iter == redirected_tty_write) { 2380 struct file *f; 2381 spin_lock(&redirect_lock); 2382 f = redirect; 2383 redirect = NULL; 2384 spin_unlock(&redirect_lock); 2385 if (f) 2386 fput(f); 2387 return 0; 2388 } 2389 if (file->f_op->write_iter != tty_write) 2390 return -ENOTTY; 2391 if (!(file->f_mode & FMODE_WRITE)) 2392 return -EBADF; 2393 if (!(file->f_mode & FMODE_CAN_WRITE)) 2394 return -EINVAL; 2395 spin_lock(&redirect_lock); 2396 if (redirect) { 2397 spin_unlock(&redirect_lock); 2398 return -EBUSY; 2399 } 2400 redirect = get_file(file); 2401 spin_unlock(&redirect_lock); 2402 return 0; 2403} 2404 2405/** 2406 * tiocsetd - set line discipline 2407 * @tty: tty device 2408 * @p: pointer to user data 2409 * 2410 * Set the line discipline according to user request. 2411 * 2412 * Locking: see tty_set_ldisc, this function is just a helper 2413 */ 2414 2415static int tiocsetd(struct tty_struct *tty, int __user *p) 2416{ 2417 int disc; 2418 int ret; 2419 2420 if (get_user(disc, p)) 2421 return -EFAULT; 2422 2423 ret = tty_set_ldisc(tty, disc); 2424 2425 return ret; 2426} 2427 2428/** 2429 * tiocgetd - get line discipline 2430 * @tty: tty device 2431 * @p: pointer to user data 2432 * 2433 * Retrieves the line discipline id directly from the ldisc. 2434 * 2435 * Locking: waits for ldisc reference (in case the line discipline 2436 * is changing or the tty is being hungup) 2437 */ 2438 2439static int tiocgetd(struct tty_struct *tty, int __user *p) 2440{ 2441 struct tty_ldisc *ld; 2442 int ret; 2443 2444 ld = tty_ldisc_ref_wait(tty); 2445 if (!ld) 2446 return -EIO; 2447 ret = put_user(ld->ops->num, p); 2448 tty_ldisc_deref(ld); 2449 return ret; 2450} 2451 2452/** 2453 * send_break - performed time break 2454 * @tty: device to break on 2455 * @duration: timeout in mS 2456 * 2457 * Perform a timed break on hardware that lacks its own driver level 2458 * timed break functionality. 2459 * 2460 * Locking: 2461 * atomic_write_lock serializes 2462 * 2463 */ 2464 2465static int send_break(struct tty_struct *tty, unsigned int duration) 2466{ 2467 int retval; 2468 2469 if (tty->ops->break_ctl == NULL) 2470 return 0; 2471 2472 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK) 2473 return tty->ops->break_ctl(tty, duration); 2474 2475 /* Do the work ourselves */ 2476 if (tty_write_lock(tty, false) < 0) 2477 return -EINTR; 2478 2479 retval = tty->ops->break_ctl(tty, -1); 2480 if (!retval) { 2481 msleep_interruptible(duration); 2482 retval = tty->ops->break_ctl(tty, 0); 2483 } else if (retval == -EOPNOTSUPP) { 2484 /* some drivers can tell only dynamically */ 2485 retval = 0; 2486 } 2487 tty_write_unlock(tty); 2488 2489 if (signal_pending(current)) 2490 retval = -EINTR; 2491 2492 return retval; 2493} 2494 2495/** 2496 * tty_tiocmget - get modem status 2497 * @tty: tty device 2498 * @p: pointer to result 2499 * 2500 * Obtain the modem status bits from the tty driver if the feature 2501 * is supported. Return -ENOTTY if it is not available. 2502 * 2503 * Locking: none (up to the driver) 2504 */ 2505 2506static int tty_tiocmget(struct tty_struct *tty, int __user *p) 2507{ 2508 int retval = -ENOTTY; 2509 2510 if (tty->ops->tiocmget) { 2511 retval = tty->ops->tiocmget(tty); 2512 2513 if (retval >= 0) 2514 retval = put_user(retval, p); 2515 } 2516 return retval; 2517} 2518 2519/** 2520 * tty_tiocmset - set modem status 2521 * @tty: tty device 2522 * @cmd: command - clear bits, set bits or set all 2523 * @p: pointer to desired bits 2524 * 2525 * Set the modem status bits from the tty driver if the feature 2526 * is supported. Return -ENOTTY if it is not available. 2527 * 2528 * Locking: none (up to the driver) 2529 */ 2530 2531static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd, 2532 unsigned __user *p) 2533{ 2534 int retval; 2535 unsigned int set, clear, val; 2536 2537 if (tty->ops->tiocmset == NULL) 2538 return -ENOTTY; 2539 2540 retval = get_user(val, p); 2541 if (retval) 2542 return retval; 2543 set = clear = 0; 2544 switch (cmd) { 2545 case TIOCMBIS: 2546 set = val; 2547 break; 2548 case TIOCMBIC: 2549 clear = val; 2550 break; 2551 case TIOCMSET: 2552 set = val; 2553 clear = ~val; 2554 break; 2555 } 2556 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2557 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP; 2558 return tty->ops->tiocmset(tty, set, clear); 2559} 2560 2561static int tty_tiocgicount(struct tty_struct *tty, void __user *arg) 2562{ 2563 int retval = -EINVAL; 2564 struct serial_icounter_struct icount; 2565 memset(&icount, 0, sizeof(icount)); 2566 if (tty->ops->get_icount) 2567 retval = tty->ops->get_icount(tty, &icount); 2568 if (retval != 0) 2569 return retval; 2570 if (copy_to_user(arg, &icount, sizeof(icount))) 2571 return -EFAULT; 2572 return 0; 2573} 2574 2575static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss) 2576{ 2577 static DEFINE_RATELIMIT_STATE(depr_flags, 2578 DEFAULT_RATELIMIT_INTERVAL, 2579 DEFAULT_RATELIMIT_BURST); 2580 char comm[TASK_COMM_LEN]; 2581 struct serial_struct v; 2582 int flags; 2583 2584 if (copy_from_user(&v, ss, sizeof(*ss))) 2585 return -EFAULT; 2586 2587 flags = v.flags & ASYNC_DEPRECATED; 2588 2589 if (flags && __ratelimit(&depr_flags)) 2590 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2591 __func__, get_task_comm(comm, current), flags); 2592 if (!tty->ops->set_serial) 2593 return -ENOTTY; 2594 return tty->ops->set_serial(tty, &v); 2595} 2596 2597static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss) 2598{ 2599 struct serial_struct v; 2600 int err; 2601 2602 memset(&v, 0, sizeof(v)); 2603 if (!tty->ops->get_serial) 2604 return -ENOTTY; 2605 err = tty->ops->get_serial(tty, &v); 2606 if (!err && copy_to_user(ss, &v, sizeof(v))) 2607 err = -EFAULT; 2608 return err; 2609} 2610 2611/* 2612 * if pty, return the slave side (real_tty) 2613 * otherwise, return self 2614 */ 2615static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty) 2616{ 2617 if (tty->driver->type == TTY_DRIVER_TYPE_PTY && 2618 tty->driver->subtype == PTY_TYPE_MASTER) 2619 tty = tty->link; 2620 return tty; 2621} 2622 2623/* 2624 * Split this up, as gcc can choke on it otherwise.. 2625 */ 2626long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2627{ 2628 struct tty_struct *tty = file_tty(file); 2629 struct tty_struct *real_tty; 2630 void __user *p = (void __user *)arg; 2631 int retval; 2632 struct tty_ldisc *ld; 2633 2634 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2635 return -EINVAL; 2636 2637 real_tty = tty_pair_get_tty(tty); 2638 2639 /* 2640 * Factor out some common prep work 2641 */ 2642 switch (cmd) { 2643 case TIOCSETD: 2644 case TIOCSBRK: 2645 case TIOCCBRK: 2646 case TCSBRK: 2647 case TCSBRKP: 2648 retval = tty_check_change(tty); 2649 if (retval) 2650 return retval; 2651 if (cmd != TIOCCBRK) { 2652 tty_wait_until_sent(tty, 0); 2653 if (signal_pending(current)) 2654 return -EINTR; 2655 } 2656 break; 2657 } 2658 2659 /* 2660 * Now do the stuff. 2661 */ 2662 switch (cmd) { 2663 case TIOCSTI: 2664 return tiocsti(tty, p); 2665 case TIOCGWINSZ: 2666 return tiocgwinsz(real_tty, p); 2667 case TIOCSWINSZ: 2668 return tiocswinsz(real_tty, p); 2669 case TIOCCONS: 2670 return real_tty != tty ? -EINVAL : tioccons(file); 2671 case TIOCEXCL: 2672 set_bit(TTY_EXCLUSIVE, &tty->flags); 2673 return 0; 2674 case TIOCNXCL: 2675 clear_bit(TTY_EXCLUSIVE, &tty->flags); 2676 return 0; 2677 case TIOCGEXCL: 2678 { 2679 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags); 2680 return put_user(excl, (int __user *)p); 2681 } 2682 case TIOCGETD: 2683 return tiocgetd(tty, p); 2684 case TIOCSETD: 2685 return tiocsetd(tty, p); 2686 case TIOCVHANGUP: 2687 if (!capable(CAP_SYS_ADMIN)) 2688 return -EPERM; 2689 tty_vhangup(tty); 2690 return 0; 2691 case TIOCGDEV: 2692 { 2693 unsigned int ret = new_encode_dev(tty_devnum(real_tty)); 2694 return put_user(ret, (unsigned int __user *)p); 2695 } 2696 /* 2697 * Break handling 2698 */ 2699 case TIOCSBRK: /* Turn break on, unconditionally */ 2700 if (tty->ops->break_ctl) 2701 return tty->ops->break_ctl(tty, -1); 2702 return 0; 2703 case TIOCCBRK: /* Turn break off, unconditionally */ 2704 if (tty->ops->break_ctl) 2705 return tty->ops->break_ctl(tty, 0); 2706 return 0; 2707 case TCSBRK: /* SVID version: non-zero arg --> no break */ 2708 /* non-zero arg means wait for all output data 2709 * to be sent (performed above) but don't send break. 2710 * This is used by the tcdrain() termios function. 2711 */ 2712 if (!arg) 2713 return send_break(tty, 250); 2714 return 0; 2715 case TCSBRKP: /* support for POSIX tcsendbreak() */ 2716 return send_break(tty, arg ? arg*100 : 250); 2717 2718 case TIOCMGET: 2719 return tty_tiocmget(tty, p); 2720 case TIOCMSET: 2721 case TIOCMBIC: 2722 case TIOCMBIS: 2723 return tty_tiocmset(tty, cmd, p); 2724 case TIOCGICOUNT: 2725 return tty_tiocgicount(tty, p); 2726 case TCFLSH: 2727 switch (arg) { 2728 case TCIFLUSH: 2729 case TCIOFLUSH: 2730 /* flush tty buffer and allow ldisc to process ioctl */ 2731 tty_buffer_flush(tty, NULL); 2732 break; 2733 } 2734 break; 2735 case TIOCSSERIAL: 2736 return tty_tiocsserial(tty, p); 2737 case TIOCGSERIAL: 2738 return tty_tiocgserial(tty, p); 2739 case TIOCGPTPEER: 2740 /* Special because the struct file is needed */ 2741 return ptm_open_peer(file, tty, (int)arg); 2742 default: 2743 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg); 2744 if (retval != -ENOIOCTLCMD) 2745 return retval; 2746 } 2747 if (tty->ops->ioctl) { 2748 retval = tty->ops->ioctl(tty, cmd, arg); 2749 if (retval != -ENOIOCTLCMD) 2750 return retval; 2751 } 2752 ld = tty_ldisc_ref_wait(tty); 2753 if (!ld) 2754 return hung_up_tty_ioctl(file, cmd, arg); 2755 retval = -EINVAL; 2756 if (ld->ops->ioctl) { 2757 retval = ld->ops->ioctl(tty, file, cmd, arg); 2758 if (retval == -ENOIOCTLCMD) 2759 retval = -ENOTTY; 2760 } 2761 tty_ldisc_deref(ld); 2762 return retval; 2763} 2764 2765#ifdef CONFIG_COMPAT 2766 2767struct serial_struct32 { 2768 compat_int_t type; 2769 compat_int_t line; 2770 compat_uint_t port; 2771 compat_int_t irq; 2772 compat_int_t flags; 2773 compat_int_t xmit_fifo_size; 2774 compat_int_t custom_divisor; 2775 compat_int_t baud_base; 2776 unsigned short close_delay; 2777 char io_type; 2778 char reserved_char; 2779 compat_int_t hub6; 2780 unsigned short closing_wait; /* time to wait before closing */ 2781 unsigned short closing_wait2; /* no longer used... */ 2782 compat_uint_t iomem_base; 2783 unsigned short iomem_reg_shift; 2784 unsigned int port_high; 2785 /* compat_ulong_t iomap_base FIXME */ 2786 compat_int_t reserved; 2787}; 2788 2789static int compat_tty_tiocsserial(struct tty_struct *tty, 2790 struct serial_struct32 __user *ss) 2791{ 2792 static DEFINE_RATELIMIT_STATE(depr_flags, 2793 DEFAULT_RATELIMIT_INTERVAL, 2794 DEFAULT_RATELIMIT_BURST); 2795 char comm[TASK_COMM_LEN]; 2796 struct serial_struct32 v32; 2797 struct serial_struct v; 2798 int flags; 2799 2800 if (copy_from_user(&v32, ss, sizeof(*ss))) 2801 return -EFAULT; 2802 2803 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base)); 2804 v.iomem_base = compat_ptr(v32.iomem_base); 2805 v.iomem_reg_shift = v32.iomem_reg_shift; 2806 v.port_high = v32.port_high; 2807 v.iomap_base = 0; 2808 2809 flags = v.flags & ASYNC_DEPRECATED; 2810 2811 if (flags && __ratelimit(&depr_flags)) 2812 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n", 2813 __func__, get_task_comm(comm, current), flags); 2814 if (!tty->ops->set_serial) 2815 return -ENOTTY; 2816 return tty->ops->set_serial(tty, &v); 2817} 2818 2819static int compat_tty_tiocgserial(struct tty_struct *tty, 2820 struct serial_struct32 __user *ss) 2821{ 2822 struct serial_struct32 v32; 2823 struct serial_struct v; 2824 int err; 2825 2826 memset(&v, 0, sizeof(v)); 2827 memset(&v32, 0, sizeof(v32)); 2828 2829 if (!tty->ops->get_serial) 2830 return -ENOTTY; 2831 err = tty->ops->get_serial(tty, &v); 2832 if (!err) { 2833 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base)); 2834 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ? 2835 0xfffffff : ptr_to_compat(v.iomem_base); 2836 v32.iomem_reg_shift = v.iomem_reg_shift; 2837 v32.port_high = v.port_high; 2838 if (copy_to_user(ss, &v32, sizeof(v32))) 2839 err = -EFAULT; 2840 } 2841 return err; 2842} 2843static long tty_compat_ioctl(struct file *file, unsigned int cmd, 2844 unsigned long arg) 2845{ 2846 struct tty_struct *tty = file_tty(file); 2847 struct tty_ldisc *ld; 2848 int retval = -ENOIOCTLCMD; 2849 2850 switch (cmd) { 2851 case TIOCOUTQ: 2852 case TIOCSTI: 2853 case TIOCGWINSZ: 2854 case TIOCSWINSZ: 2855 case TIOCGEXCL: 2856 case TIOCGETD: 2857 case TIOCSETD: 2858 case TIOCGDEV: 2859 case TIOCMGET: 2860 case TIOCMSET: 2861 case TIOCMBIC: 2862 case TIOCMBIS: 2863 case TIOCGICOUNT: 2864 case TIOCGPGRP: 2865 case TIOCSPGRP: 2866 case TIOCGSID: 2867 case TIOCSERGETLSR: 2868 case TIOCGRS485: 2869 case TIOCSRS485: 2870#ifdef TIOCGETP 2871 case TIOCGETP: 2872 case TIOCSETP: 2873 case TIOCSETN: 2874#endif 2875#ifdef TIOCGETC 2876 case TIOCGETC: 2877 case TIOCSETC: 2878#endif 2879#ifdef TIOCGLTC 2880 case TIOCGLTC: 2881 case TIOCSLTC: 2882#endif 2883 case TCSETSF: 2884 case TCSETSW: 2885 case TCSETS: 2886 case TCGETS: 2887#ifdef TCGETS2 2888 case TCGETS2: 2889 case TCSETSF2: 2890 case TCSETSW2: 2891 case TCSETS2: 2892#endif 2893 case TCGETA: 2894 case TCSETAF: 2895 case TCSETAW: 2896 case TCSETA: 2897 case TIOCGLCKTRMIOS: 2898 case TIOCSLCKTRMIOS: 2899#ifdef TCGETX 2900 case TCGETX: 2901 case TCSETX: 2902 case TCSETXW: 2903 case TCSETXF: 2904#endif 2905 case TIOCGSOFTCAR: 2906 case TIOCSSOFTCAR: 2907 2908 case PPPIOCGCHAN: 2909 case PPPIOCGUNIT: 2910 return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2911 case TIOCCONS: 2912 case TIOCEXCL: 2913 case TIOCNXCL: 2914 case TIOCVHANGUP: 2915 case TIOCSBRK: 2916 case TIOCCBRK: 2917 case TCSBRK: 2918 case TCSBRKP: 2919 case TCFLSH: 2920 case TIOCGPTPEER: 2921 case TIOCNOTTY: 2922 case TIOCSCTTY: 2923 case TCXONC: 2924 case TIOCMIWAIT: 2925 case TIOCSERCONFIG: 2926 return tty_ioctl(file, cmd, arg); 2927 } 2928 2929 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl")) 2930 return -EINVAL; 2931 2932 switch (cmd) { 2933 case TIOCSSERIAL: 2934 return compat_tty_tiocsserial(tty, compat_ptr(arg)); 2935 case TIOCGSERIAL: 2936 return compat_tty_tiocgserial(tty, compat_ptr(arg)); 2937 } 2938 if (tty->ops->compat_ioctl) { 2939 retval = tty->ops->compat_ioctl(tty, cmd, arg); 2940 if (retval != -ENOIOCTLCMD) 2941 return retval; 2942 } 2943 2944 ld = tty_ldisc_ref_wait(tty); 2945 if (!ld) 2946 return hung_up_tty_compat_ioctl(file, cmd, arg); 2947 if (ld->ops->compat_ioctl) 2948 retval = ld->ops->compat_ioctl(tty, file, cmd, arg); 2949 if (retval == -ENOIOCTLCMD && ld->ops->ioctl) 2950 retval = ld->ops->ioctl(tty, file, 2951 (unsigned long)compat_ptr(cmd), arg); 2952 tty_ldisc_deref(ld); 2953 2954 return retval; 2955} 2956#endif 2957 2958static int this_tty(const void *t, struct file *file, unsigned fd) 2959{ 2960 if (likely(file->f_op->read_iter != tty_read)) 2961 return 0; 2962 return file_tty(file) != t ? 0 : fd + 1; 2963} 2964 2965/* 2966 * This implements the "Secure Attention Key" --- the idea is to 2967 * prevent trojan horses by killing all processes associated with this 2968 * tty when the user hits the "Secure Attention Key". Required for 2969 * super-paranoid applications --- see the Orange Book for more details. 2970 * 2971 * This code could be nicer; ideally it should send a HUP, wait a few 2972 * seconds, then send a INT, and then a KILL signal. But you then 2973 * have to coordinate with the init process, since all processes associated 2974 * with the current tty must be dead before the new getty is allowed 2975 * to spawn. 2976 * 2977 * Now, if it would be correct ;-/ The current code has a nasty hole - 2978 * it doesn't catch files in flight. We may send the descriptor to ourselves 2979 * via AF_UNIX socket, close it and later fetch from socket. FIXME. 2980 * 2981 * Nasty bug: do_SAK is being called in interrupt context. This can 2982 * deadlock. We punt it up to process context. AKPM - 16Mar2001 2983 */ 2984void __do_SAK(struct tty_struct *tty) 2985{ 2986#ifdef TTY_SOFT_SAK 2987 tty_hangup(tty); 2988#else 2989 struct task_struct *g, *p; 2990 struct pid *session; 2991 int i; 2992 unsigned long flags; 2993 2994 if (!tty) 2995 return; 2996 2997 spin_lock_irqsave(&tty->ctrl_lock, flags); 2998 session = get_pid(tty->session); 2999 spin_unlock_irqrestore(&tty->ctrl_lock, flags); 3000 3001 tty_ldisc_flush(tty); 3002 3003 tty_driver_flush_buffer(tty); 3004 3005 read_lock(&tasklist_lock); 3006 /* Kill the entire session */ 3007 do_each_pid_task(session, PIDTYPE_SID, p) { 3008 tty_notice(tty, "SAK: killed process %d (%s): by session\n", 3009 task_pid_nr(p), p->comm); 3010 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID); 3011 } while_each_pid_task(session, PIDTYPE_SID, p); 3012 3013 /* Now kill any processes that happen to have the tty open */ 3014 do_each_thread(g, p) { 3015 if (p->signal->tty == tty) { 3016 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n", 3017 task_pid_nr(p), p->comm); 3018 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID); 3019 continue; 3020 } 3021 task_lock(p); 3022 i = iterate_fd(p->files, 0, this_tty, tty); 3023 if (i != 0) { 3024 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n", 3025 task_pid_nr(p), p->comm, i - 1); 3026 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID); 3027 } 3028 task_unlock(p); 3029 } while_each_thread(g, p); 3030 read_unlock(&tasklist_lock); 3031 put_pid(session); 3032#endif 3033} 3034 3035static void do_SAK_work(struct work_struct *work) 3036{ 3037 struct tty_struct *tty = 3038 container_of(work, struct tty_struct, SAK_work); 3039 __do_SAK(tty); 3040} 3041 3042/* 3043 * The tq handling here is a little racy - tty->SAK_work may already be queued. 3044 * Fortunately we don't need to worry, because if ->SAK_work is already queued, 3045 * the values which we write to it will be identical to the values which it 3046 * already has. --akpm 3047 */ 3048void do_SAK(struct tty_struct *tty) 3049{ 3050 if (!tty) 3051 return; 3052 schedule_work(&tty->SAK_work); 3053} 3054 3055EXPORT_SYMBOL(do_SAK); 3056 3057/* Must put_device() after it's unused! */ 3058static struct device *tty_get_device(struct tty_struct *tty) 3059{ 3060 dev_t devt = tty_devnum(tty); 3061 return class_find_device_by_devt(tty_class, devt); 3062} 3063 3064 3065/** 3066 * alloc_tty_struct 3067 * 3068 * This subroutine allocates and initializes a tty structure. 3069 * 3070 * Locking: none - tty in question is not exposed at this point 3071 */ 3072 3073struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx) 3074{ 3075 struct tty_struct *tty; 3076 3077 tty = kzalloc(sizeof(*tty), GFP_KERNEL); 3078 if (!tty) 3079 return NULL; 3080 3081 kref_init(&tty->kref); 3082 tty->magic = TTY_MAGIC; 3083 if (tty_ldisc_init(tty)) { 3084 kfree(tty); 3085 return NULL; 3086 } 3087 tty->session = NULL; 3088 tty->pgrp = NULL; 3089 mutex_init(&tty->legacy_mutex); 3090 mutex_init(&tty->throttle_mutex); 3091 init_rwsem(&tty->termios_rwsem); 3092 mutex_init(&tty->winsize_mutex); 3093 init_ldsem(&tty->ldisc_sem); 3094 init_waitqueue_head(&tty->write_wait); 3095 init_waitqueue_head(&tty->read_wait); 3096 INIT_WORK(&tty->hangup_work, do_tty_hangup); 3097 mutex_init(&tty->atomic_write_lock); 3098 spin_lock_init(&tty->ctrl_lock); 3099 spin_lock_init(&tty->flow_lock); 3100 spin_lock_init(&tty->files_lock); 3101 INIT_LIST_HEAD(&tty->tty_files); 3102 INIT_WORK(&tty->SAK_work, do_SAK_work); 3103 3104 tty->driver = driver; 3105 tty->ops = driver->ops; 3106 tty->index = idx; 3107 tty_line_name(driver, idx, tty->name); 3108 tty->dev = tty_get_device(tty); 3109 3110 return tty; 3111} 3112 3113/** 3114 * tty_put_char - write one character to a tty 3115 * @tty: tty 3116 * @ch: character 3117 * 3118 * Write one byte to the tty using the provided put_char method 3119 * if present. Returns the number of characters successfully output. 3120 * 3121 * Note: the specific put_char operation in the driver layer may go 3122 * away soon. Don't call it directly, use this method 3123 */ 3124 3125int tty_put_char(struct tty_struct *tty, unsigned char ch) 3126{ 3127 if (tty->ops->put_char) 3128 return tty->ops->put_char(tty, ch); 3129 return tty->ops->write(tty, &ch, 1); 3130} 3131EXPORT_SYMBOL_GPL(tty_put_char); 3132 3133struct class *tty_class; 3134 3135static int tty_cdev_add(struct tty_driver *driver, dev_t dev, 3136 unsigned int index, unsigned int count) 3137{ 3138 int err; 3139 3140 /* init here, since reused cdevs cause crashes */ 3141 driver->cdevs[index] = cdev_alloc(); 3142 if (!driver->cdevs[index]) 3143 return -ENOMEM; 3144 driver->cdevs[index]->ops = &tty_fops; 3145 driver->cdevs[index]->owner = driver->owner; 3146 err = cdev_add(driver->cdevs[index], dev, count); 3147 if (err) 3148 kobject_put(&driver->cdevs[index]->kobj); 3149 return err; 3150} 3151 3152/** 3153 * tty_register_device - register a tty device 3154 * @driver: the tty driver that describes the tty device 3155 * @index: the index in the tty driver for this tty device 3156 * @device: a struct device that is associated with this tty device. 3157 * This field is optional, if there is no known struct device 3158 * for this tty device it can be set to NULL safely. 3159 * 3160 * Returns a pointer to the struct device for this tty device 3161 * (or ERR_PTR(-EFOO) on error). 3162 * 3163 * This call is required to be made to register an individual tty device 3164 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3165 * that bit is not set, this function should not be called by a tty 3166 * driver. 3167 * 3168 * Locking: ?? 3169 */ 3170 3171struct device *tty_register_device(struct tty_driver *driver, unsigned index, 3172 struct device *device) 3173{ 3174 return tty_register_device_attr(driver, index, device, NULL, NULL); 3175} 3176EXPORT_SYMBOL(tty_register_device); 3177 3178static void tty_device_create_release(struct device *dev) 3179{ 3180 dev_dbg(dev, "releasing...\n"); 3181 kfree(dev); 3182} 3183 3184/** 3185 * tty_register_device_attr - register a tty device 3186 * @driver: the tty driver that describes the tty device 3187 * @index: the index in the tty driver for this tty device 3188 * @device: a struct device that is associated with this tty device. 3189 * This field is optional, if there is no known struct device 3190 * for this tty device it can be set to NULL safely. 3191 * @drvdata: Driver data to be set to device. 3192 * @attr_grp: Attribute group to be set on device. 3193 * 3194 * Returns a pointer to the struct device for this tty device 3195 * (or ERR_PTR(-EFOO) on error). 3196 * 3197 * This call is required to be made to register an individual tty device 3198 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If 3199 * that bit is not set, this function should not be called by a tty 3200 * driver. 3201 * 3202 * Locking: ?? 3203 */ 3204struct device *tty_register_device_attr(struct tty_driver *driver, 3205 unsigned index, struct device *device, 3206 void *drvdata, 3207 const struct attribute_group **attr_grp) 3208{ 3209 char name[64]; 3210 dev_t devt = MKDEV(driver->major, driver->minor_start) + index; 3211 struct ktermios *tp; 3212 struct device *dev; 3213 int retval; 3214 3215 if (index >= driver->num) { 3216 pr_err("%s: Attempt to register invalid tty line number (%d)\n", 3217 driver->name, index); 3218 return ERR_PTR(-EINVAL); 3219 } 3220 3221 if (driver->type == TTY_DRIVER_TYPE_PTY) 3222 pty_line_name(driver, index, name); 3223 else 3224 tty_line_name(driver, index, name); 3225 3226 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3227 if (!dev) 3228 return ERR_PTR(-ENOMEM); 3229 3230 dev->devt = devt; 3231 dev->class = tty_class; 3232 dev->parent = device; 3233 dev->release = tty_device_create_release; 3234 dev_set_name(dev, "%s", name); 3235 dev->groups = attr_grp; 3236 dev_set_drvdata(dev, drvdata); 3237 3238 dev_set_uevent_suppress(dev, 1); 3239 3240 retval = device_register(dev); 3241 if (retval) 3242 goto err_put; 3243 3244 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3245 /* 3246 * Free any saved termios data so that the termios state is 3247 * reset when reusing a minor number. 3248 */ 3249 tp = driver->termios[index]; 3250 if (tp) { 3251 driver->termios[index] = NULL; 3252 kfree(tp); 3253 } 3254 3255 retval = tty_cdev_add(driver, devt, index, 1); 3256 if (retval) 3257 goto err_del; 3258 } 3259 3260 dev_set_uevent_suppress(dev, 0); 3261 kobject_uevent(&dev->kobj, KOBJ_ADD); 3262 3263 return dev; 3264 3265err_del: 3266 device_del(dev); 3267err_put: 3268 put_device(dev); 3269 3270 return ERR_PTR(retval); 3271} 3272EXPORT_SYMBOL_GPL(tty_register_device_attr); 3273 3274/** 3275 * tty_unregister_device - unregister a tty device 3276 * @driver: the tty driver that describes the tty device 3277 * @index: the index in the tty driver for this tty device 3278 * 3279 * If a tty device is registered with a call to tty_register_device() then 3280 * this function must be called when the tty device is gone. 3281 * 3282 * Locking: ?? 3283 */ 3284 3285void tty_unregister_device(struct tty_driver *driver, unsigned index) 3286{ 3287 device_destroy(tty_class, 3288 MKDEV(driver->major, driver->minor_start) + index); 3289 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3290 cdev_del(driver->cdevs[index]); 3291 driver->cdevs[index] = NULL; 3292 } 3293} 3294EXPORT_SYMBOL(tty_unregister_device); 3295 3296/** 3297 * __tty_alloc_driver -- allocate tty driver 3298 * @lines: count of lines this driver can handle at most 3299 * @owner: module which is responsible for this driver 3300 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags 3301 * 3302 * This should not be called directly, some of the provided macros should be 3303 * used instead. Use IS_ERR and friends on @retval. 3304 */ 3305struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner, 3306 unsigned long flags) 3307{ 3308 struct tty_driver *driver; 3309 unsigned int cdevs = 1; 3310 int err; 3311 3312 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1)) 3313 return ERR_PTR(-EINVAL); 3314 3315 driver = kzalloc(sizeof(*driver), GFP_KERNEL); 3316 if (!driver) 3317 return ERR_PTR(-ENOMEM); 3318 3319 kref_init(&driver->kref); 3320 driver->magic = TTY_DRIVER_MAGIC; 3321 driver->num = lines; 3322 driver->owner = owner; 3323 driver->flags = flags; 3324 3325 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) { 3326 driver->ttys = kcalloc(lines, sizeof(*driver->ttys), 3327 GFP_KERNEL); 3328 driver->termios = kcalloc(lines, sizeof(*driver->termios), 3329 GFP_KERNEL); 3330 if (!driver->ttys || !driver->termios) { 3331 err = -ENOMEM; 3332 goto err_free_all; 3333 } 3334 } 3335 3336 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) { 3337 driver->ports = kcalloc(lines, sizeof(*driver->ports), 3338 GFP_KERNEL); 3339 if (!driver->ports) { 3340 err = -ENOMEM; 3341 goto err_free_all; 3342 } 3343 cdevs = lines; 3344 } 3345 3346 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL); 3347 if (!driver->cdevs) { 3348 err = -ENOMEM; 3349 goto err_free_all; 3350 } 3351 3352 return driver; 3353err_free_all: 3354 kfree(driver->ports); 3355 kfree(driver->ttys); 3356 kfree(driver->termios); 3357 kfree(driver->cdevs); 3358 kfree(driver); 3359 return ERR_PTR(err); 3360} 3361EXPORT_SYMBOL(__tty_alloc_driver); 3362 3363static void destruct_tty_driver(struct kref *kref) 3364{ 3365 struct tty_driver *driver = container_of(kref, struct tty_driver, kref); 3366 int i; 3367 struct ktermios *tp; 3368 3369 if (driver->flags & TTY_DRIVER_INSTALLED) { 3370 for (i = 0; i < driver->num; i++) { 3371 tp = driver->termios[i]; 3372 if (tp) { 3373 driver->termios[i] = NULL; 3374 kfree(tp); 3375 } 3376 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) 3377 tty_unregister_device(driver, i); 3378 } 3379 proc_tty_unregister_driver(driver); 3380 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) 3381 cdev_del(driver->cdevs[0]); 3382 } 3383 kfree(driver->cdevs); 3384 kfree(driver->ports); 3385 kfree(driver->termios); 3386 kfree(driver->ttys); 3387 kfree(driver); 3388} 3389 3390void tty_driver_kref_put(struct tty_driver *driver) 3391{ 3392 kref_put(&driver->kref, destruct_tty_driver); 3393} 3394EXPORT_SYMBOL(tty_driver_kref_put); 3395 3396void tty_set_operations(struct tty_driver *driver, 3397 const struct tty_operations *op) 3398{ 3399 driver->ops = op; 3400}; 3401EXPORT_SYMBOL(tty_set_operations); 3402 3403void put_tty_driver(struct tty_driver *d) 3404{ 3405 tty_driver_kref_put(d); 3406} 3407EXPORT_SYMBOL(put_tty_driver); 3408 3409/* 3410 * Called by a tty driver to register itself. 3411 */ 3412int tty_register_driver(struct tty_driver *driver) 3413{ 3414 int error; 3415 int i; 3416 dev_t dev; 3417 struct device *d; 3418 3419 if (!driver->major) { 3420 error = alloc_chrdev_region(&dev, driver->minor_start, 3421 driver->num, driver->name); 3422 if (!error) { 3423 driver->major = MAJOR(dev); 3424 driver->minor_start = MINOR(dev); 3425 } 3426 } else { 3427 dev = MKDEV(driver->major, driver->minor_start); 3428 error = register_chrdev_region(dev, driver->num, driver->name); 3429 } 3430 if (error < 0) 3431 goto err; 3432 3433 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) { 3434 error = tty_cdev_add(driver, dev, 0, driver->num); 3435 if (error) 3436 goto err_unreg_char; 3437 } 3438 3439 mutex_lock(&tty_mutex); 3440 list_add(&driver->tty_drivers, &tty_drivers); 3441 mutex_unlock(&tty_mutex); 3442 3443 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) { 3444 for (i = 0; i < driver->num; i++) { 3445 d = tty_register_device(driver, i, NULL); 3446 if (IS_ERR(d)) { 3447 error = PTR_ERR(d); 3448 goto err_unreg_devs; 3449 } 3450 } 3451 } 3452 proc_tty_register_driver(driver); 3453 driver->flags |= TTY_DRIVER_INSTALLED; 3454 return 0; 3455 3456err_unreg_devs: 3457 for (i--; i >= 0; i--) 3458 tty_unregister_device(driver, i); 3459 3460 mutex_lock(&tty_mutex); 3461 list_del(&driver->tty_drivers); 3462 mutex_unlock(&tty_mutex); 3463 3464err_unreg_char: 3465 unregister_chrdev_region(dev, driver->num); 3466err: 3467 return error; 3468} 3469EXPORT_SYMBOL(tty_register_driver); 3470 3471/* 3472 * Called by a tty driver to unregister itself. 3473 */ 3474int tty_unregister_driver(struct tty_driver *driver) 3475{ 3476#if 0 3477 /* FIXME */ 3478 if (driver->refcount) 3479 return -EBUSY; 3480#endif 3481 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start), 3482 driver->num); 3483 mutex_lock(&tty_mutex); 3484 list_del(&driver->tty_drivers); 3485 mutex_unlock(&tty_mutex); 3486 return 0; 3487} 3488 3489EXPORT_SYMBOL(tty_unregister_driver); 3490 3491dev_t tty_devnum(struct tty_struct *tty) 3492{ 3493 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index; 3494} 3495EXPORT_SYMBOL(tty_devnum); 3496 3497void tty_default_fops(struct file_operations *fops) 3498{ 3499 *fops = tty_fops; 3500} 3501 3502static char *tty_devnode(struct device *dev, umode_t *mode) 3503{ 3504 if (!mode) 3505 return NULL; 3506 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) || 3507 dev->devt == MKDEV(TTYAUX_MAJOR, 2)) 3508 *mode = 0666; 3509 return NULL; 3510} 3511 3512static int __init tty_class_init(void) 3513{ 3514 tty_class = class_create(THIS_MODULE, "tty"); 3515 if (IS_ERR(tty_class)) 3516 return PTR_ERR(tty_class); 3517 tty_class->devnode = tty_devnode; 3518 return 0; 3519} 3520 3521postcore_initcall(tty_class_init); 3522 3523/* 3/2004 jmc: why do these devices exist? */ 3524static struct cdev tty_cdev, console_cdev; 3525 3526static ssize_t show_cons_active(struct device *dev, 3527 struct device_attribute *attr, char *buf) 3528{ 3529 struct console *cs[16]; 3530 int i = 0; 3531 struct console *c; 3532 ssize_t count = 0; 3533 3534 console_lock(); 3535 for_each_console(c) { 3536 if (!c->device) 3537 continue; 3538 if (!c->write) 3539 continue; 3540 if ((c->flags & CON_ENABLED) == 0) 3541 continue; 3542 cs[i++] = c; 3543 if (i >= ARRAY_SIZE(cs)) 3544 break; 3545 } 3546 while (i--) { 3547 int index = cs[i]->index; 3548 struct tty_driver *drv = cs[i]->device(cs[i], &index); 3549 3550 /* don't resolve tty0 as some programs depend on it */ 3551 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR)) 3552 count += tty_line_name(drv, index, buf + count); 3553 else 3554 count += sprintf(buf + count, "%s%d", 3555 cs[i]->name, cs[i]->index); 3556 3557 count += sprintf(buf + count, "%c", i ? ' ':'\n'); 3558 } 3559 console_unlock(); 3560 3561 return count; 3562} 3563static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL); 3564 3565static struct attribute *cons_dev_attrs[] = { 3566 &dev_attr_active.attr, 3567 NULL 3568}; 3569 3570ATTRIBUTE_GROUPS(cons_dev); 3571 3572static struct device *consdev; 3573 3574void console_sysfs_notify(void) 3575{ 3576 if (consdev) 3577 sysfs_notify(&consdev->kobj, NULL, "active"); 3578} 3579 3580/* 3581 * Ok, now we can initialize the rest of the tty devices and can count 3582 * on memory allocations, interrupts etc.. 3583 */ 3584int __init tty_init(void) 3585{ 3586 tty_sysctl_init(); 3587 cdev_init(&tty_cdev, &tty_fops); 3588 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) || 3589 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0) 3590 panic("Couldn't register /dev/tty driver\n"); 3591 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty"); 3592 3593 cdev_init(&console_cdev, &console_fops); 3594 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) || 3595 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0) 3596 panic("Couldn't register /dev/console driver\n"); 3597 consdev = device_create_with_groups(tty_class, NULL, 3598 MKDEV(TTYAUX_MAJOR, 1), NULL, 3599 cons_dev_groups, "console"); 3600 if (IS_ERR(consdev)) 3601 consdev = NULL; 3602 3603#ifdef CONFIG_VT 3604 vty_init(&console_fops); 3605#endif 3606 return 0; 3607} 3608 3609