xref: /kernel/linux/linux-5.10/drivers/tty/serial/imx.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for Motorola/Freescale IMX serial ports
4 *
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 * Author: Sascha Hauer <sascha@saschahauer.de>
8 * Copyright (C) 2004 Pengutronix
9 */
10
11#include <linux/module.h>
12#include <linux/ioport.h>
13#include <linux/init.h>
14#include <linux/console.h>
15#include <linux/sysrq.h>
16#include <linux/platform_device.h>
17#include <linux/tty.h>
18#include <linux/tty_flip.h>
19#include <linux/serial_core.h>
20#include <linux/serial.h>
21#include <linux/clk.h>
22#include <linux/delay.h>
23#include <linux/ktime.h>
24#include <linux/pinctrl/consumer.h>
25#include <linux/rational.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28#include <linux/of_device.h>
29#include <linux/io.h>
30#include <linux/dma-mapping.h>
31
32#include <asm/irq.h>
33#include <linux/platform_data/serial-imx.h>
34#include <linux/platform_data/dma-imx.h>
35
36#include "serial_mctrl_gpio.h"
37
38/* Register definitions */
39#define URXD0 0x0  /* Receiver Register */
40#define URTX0 0x40 /* Transmitter Register */
41#define UCR1  0x80 /* Control Register 1 */
42#define UCR2  0x84 /* Control Register 2 */
43#define UCR3  0x88 /* Control Register 3 */
44#define UCR4  0x8c /* Control Register 4 */
45#define UFCR  0x90 /* FIFO Control Register */
46#define USR1  0x94 /* Status Register 1 */
47#define USR2  0x98 /* Status Register 2 */
48#define UESC  0x9c /* Escape Character Register */
49#define UTIM  0xa0 /* Escape Timer Register */
50#define UBIR  0xa4 /* BRM Incremental Register */
51#define UBMR  0xa8 /* BRM Modulator Register */
52#define UBRC  0xac /* Baud Rate Count Register */
53#define IMX21_ONEMS 0xb0 /* One Millisecond register */
54#define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
55#define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
56
57/* UART Control Register Bit Fields.*/
58#define URXD_DUMMY_READ (1<<16)
59#define URXD_CHARRDY	(1<<15)
60#define URXD_ERR	(1<<14)
61#define URXD_OVRRUN	(1<<13)
62#define URXD_FRMERR	(1<<12)
63#define URXD_BRK	(1<<11)
64#define URXD_PRERR	(1<<10)
65#define URXD_RX_DATA	(0xFF<<0)
66#define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
67#define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
68#define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
69#define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
70#define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
71#define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
72#define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
73#define UCR1_IREN	(1<<7)	/* Infrared interface enable */
74#define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
75#define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
76#define UCR1_SNDBRK	(1<<4)	/* Send break */
77#define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
78#define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
79#define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
80#define UCR1_DOZE	(1<<1)	/* Doze */
81#define UCR1_UARTEN	(1<<0)	/* UART enabled */
82#define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
83#define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
84#define UCR2_CTSC	(1<<13)	/* CTS pin control */
85#define UCR2_CTS	(1<<12)	/* Clear to send */
86#define UCR2_ESCEN	(1<<11)	/* Escape enable */
87#define UCR2_PREN	(1<<8)	/* Parity enable */
88#define UCR2_PROE	(1<<7)	/* Parity odd/even */
89#define UCR2_STPB	(1<<6)	/* Stop */
90#define UCR2_WS		(1<<5)	/* Word size */
91#define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
92#define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
93#define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
94#define UCR2_RXEN	(1<<1)	/* Receiver enabled */
95#define UCR2_SRST	(1<<0)	/* SW reset */
96#define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
97#define UCR3_PARERREN	(1<<12) /* Parity enable */
98#define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
99#define UCR3_DSR	(1<<10) /* Data set ready */
100#define UCR3_DCD	(1<<9)	/* Data carrier detect */
101#define UCR3_RI		(1<<8)	/* Ring indicator */
102#define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
103#define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
104#define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
105#define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
106#define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
107#define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
108#define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
109#define UCR3_BPEN	(1<<0)	/* Preset registers enable */
110#define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
111#define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
112#define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
113#define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
114#define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
115#define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
116#define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
117#define UCR4_IRSC	(1<<5)	/* IR special case */
118#define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
119#define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
120#define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
121#define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
122#define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
123#define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
124#define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
125#define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
126#define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
127#define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
128#define USR1_RTSS	(1<<14) /* RTS pin status */
129#define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
130#define USR1_RTSD	(1<<12) /* RTS delta */
131#define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
132#define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
133#define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
134#define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
135#define USR1_DTRD	(1<<7)	 /* DTR Delta */
136#define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
137#define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
138#define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
139#define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
140#define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
141#define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
142#define USR2_IDLE	 (1<<12) /* Idle condition */
143#define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
144#define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
145#define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
146#define USR2_WAKE	 (1<<7)	 /* Wake */
147#define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
148#define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
149#define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
150#define USR2_BRCD	 (1<<2)	 /* Break condition */
151#define USR2_ORE	(1<<1)	 /* Overrun error */
152#define USR2_RDR	(1<<0)	 /* Recv data ready */
153#define UTS_FRCPERR	(1<<13) /* Force parity error */
154#define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
155#define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
156#define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
157#define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
158#define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
159#define UTS_SOFTRST	 (1<<0)	 /* Software reset */
160
161/* We've been assigned a range on the "Low-density serial ports" major */
162#define SERIAL_IMX_MAJOR	207
163#define MINOR_START		16
164#define DEV_NAME		"ttymxc"
165
166/*
167 * This determines how often we check the modem status signals
168 * for any change.  They generally aren't connected to an IRQ
169 * so we have to poll them.  We also check immediately before
170 * filling the TX fifo incase CTS has been dropped.
171 */
172#define MCTRL_TIMEOUT	(250*HZ/1000)
173
174#define DRIVER_NAME "IMX-uart"
175
176#define UART_NR 8
177
178/* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
179enum imx_uart_type {
180	IMX1_UART,
181	IMX21_UART,
182	IMX53_UART,
183	IMX6Q_UART,
184};
185
186/* device type dependent stuff */
187struct imx_uart_data {
188	unsigned uts_reg;
189	enum imx_uart_type devtype;
190};
191
192enum imx_tx_state {
193	OFF,
194	WAIT_AFTER_RTS,
195	SEND,
196	WAIT_AFTER_SEND,
197};
198
199struct imx_port {
200	struct uart_port	port;
201	struct timer_list	timer;
202	unsigned int		old_status;
203	unsigned int		have_rtscts:1;
204	unsigned int		have_rtsgpio:1;
205	unsigned int		dte_mode:1;
206	unsigned int		inverted_tx:1;
207	unsigned int		inverted_rx:1;
208	struct clk		*clk_ipg;
209	struct clk		*clk_per;
210	const struct imx_uart_data *devdata;
211
212	struct mctrl_gpios *gpios;
213
214	/* shadow registers */
215	unsigned int ucr1;
216	unsigned int ucr2;
217	unsigned int ucr3;
218	unsigned int ucr4;
219	unsigned int ufcr;
220
221	/* DMA fields */
222	unsigned int		dma_is_enabled:1;
223	unsigned int		dma_is_rxing:1;
224	unsigned int		dma_is_txing:1;
225	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
226	struct scatterlist	rx_sgl, tx_sgl[2];
227	void			*rx_buf;
228	struct circ_buf		rx_ring;
229	unsigned int		rx_periods;
230	dma_cookie_t		rx_cookie;
231	unsigned int		tx_bytes;
232	unsigned int		dma_tx_nents;
233	unsigned int            saved_reg[10];
234	bool			context_saved;
235
236	enum imx_tx_state	tx_state;
237	struct hrtimer		trigger_start_tx;
238	struct hrtimer		trigger_stop_tx;
239};
240
241struct imx_port_ucrs {
242	unsigned int	ucr1;
243	unsigned int	ucr2;
244	unsigned int	ucr3;
245};
246
247static struct imx_uart_data imx_uart_devdata[] = {
248	[IMX1_UART] = {
249		.uts_reg = IMX1_UTS,
250		.devtype = IMX1_UART,
251	},
252	[IMX21_UART] = {
253		.uts_reg = IMX21_UTS,
254		.devtype = IMX21_UART,
255	},
256	[IMX53_UART] = {
257		.uts_reg = IMX21_UTS,
258		.devtype = IMX53_UART,
259	},
260	[IMX6Q_UART] = {
261		.uts_reg = IMX21_UTS,
262		.devtype = IMX6Q_UART,
263	},
264};
265
266static const struct platform_device_id imx_uart_devtype[] = {
267	{
268		.name = "imx1-uart",
269		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],
270	}, {
271		.name = "imx21-uart",
272		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART],
273	}, {
274		.name = "imx53-uart",
275		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART],
276	}, {
277		.name = "imx6q-uart",
278		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART],
279	}, {
280		/* sentinel */
281	}
282};
283MODULE_DEVICE_TABLE(platform, imx_uart_devtype);
284
285static const struct of_device_id imx_uart_dt_ids[] = {
286	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
287	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
288	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
289	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
290	{ /* sentinel */ }
291};
292MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
293
294static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
295{
296	switch (offset) {
297	case UCR1:
298		sport->ucr1 = val;
299		break;
300	case UCR2:
301		sport->ucr2 = val;
302		break;
303	case UCR3:
304		sport->ucr3 = val;
305		break;
306	case UCR4:
307		sport->ucr4 = val;
308		break;
309	case UFCR:
310		sport->ufcr = val;
311		break;
312	default:
313		break;
314	}
315	writel(val, sport->port.membase + offset);
316}
317
318static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
319{
320	switch (offset) {
321	case UCR1:
322		return sport->ucr1;
323		break;
324	case UCR2:
325		/*
326		 * UCR2_SRST is the only bit in the cached registers that might
327		 * differ from the value that was last written. As it only
328		 * automatically becomes one after being cleared, reread
329		 * conditionally.
330		 */
331		if (!(sport->ucr2 & UCR2_SRST))
332			sport->ucr2 = readl(sport->port.membase + offset);
333		return sport->ucr2;
334		break;
335	case UCR3:
336		return sport->ucr3;
337		break;
338	case UCR4:
339		return sport->ucr4;
340		break;
341	case UFCR:
342		return sport->ufcr;
343		break;
344	default:
345		return readl(sport->port.membase + offset);
346	}
347}
348
349static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
350{
351	return sport->devdata->uts_reg;
352}
353
354static inline int imx_uart_is_imx1(struct imx_port *sport)
355{
356	return sport->devdata->devtype == IMX1_UART;
357}
358
359static inline int imx_uart_is_imx21(struct imx_port *sport)
360{
361	return sport->devdata->devtype == IMX21_UART;
362}
363
364static inline int imx_uart_is_imx53(struct imx_port *sport)
365{
366	return sport->devdata->devtype == IMX53_UART;
367}
368
369static inline int imx_uart_is_imx6q(struct imx_port *sport)
370{
371	return sport->devdata->devtype == IMX6Q_UART;
372}
373/*
374 * Save and restore functions for UCR1, UCR2 and UCR3 registers
375 */
376#if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
377static void imx_uart_ucrs_save(struct imx_port *sport,
378			       struct imx_port_ucrs *ucr)
379{
380	/* save control registers */
381	ucr->ucr1 = imx_uart_readl(sport, UCR1);
382	ucr->ucr2 = imx_uart_readl(sport, UCR2);
383	ucr->ucr3 = imx_uart_readl(sport, UCR3);
384}
385
386static void imx_uart_ucrs_restore(struct imx_port *sport,
387				  struct imx_port_ucrs *ucr)
388{
389	/* restore control registers */
390	imx_uart_writel(sport, ucr->ucr1, UCR1);
391	imx_uart_writel(sport, ucr->ucr2, UCR2);
392	imx_uart_writel(sport, ucr->ucr3, UCR3);
393}
394#endif
395
396/* called with port.lock taken and irqs caller dependent */
397static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
398{
399	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
400
401	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
402}
403
404/* called with port.lock taken and irqs caller dependent */
405static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
406{
407	*ucr2 &= ~UCR2_CTSC;
408	*ucr2 |= UCR2_CTS;
409
410	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
411}
412
413static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
414{
415       long sec = msec / MSEC_PER_SEC;
416       long nsec = (msec % MSEC_PER_SEC) * 1000000;
417       ktime_t t = ktime_set(sec, nsec);
418
419       hrtimer_start(hrt, t, HRTIMER_MODE_REL);
420}
421
422/* called with port.lock taken and irqs off */
423static void imx_uart_start_rx(struct uart_port *port)
424{
425	struct imx_port *sport = (struct imx_port *)port;
426	unsigned int ucr1, ucr2;
427
428	ucr1 = imx_uart_readl(sport, UCR1);
429	ucr2 = imx_uart_readl(sport, UCR2);
430
431	ucr2 |= UCR2_RXEN;
432
433	if (sport->dma_is_enabled) {
434		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
435	} else {
436		ucr1 |= UCR1_RRDYEN;
437		ucr2 |= UCR2_ATEN;
438	}
439
440	/* Write UCR2 first as it includes RXEN */
441	imx_uart_writel(sport, ucr2, UCR2);
442	imx_uart_writel(sport, ucr1, UCR1);
443}
444
445/* called with port.lock taken and irqs off */
446static void imx_uart_stop_tx(struct uart_port *port)
447{
448	struct imx_port *sport = (struct imx_port *)port;
449	u32 ucr1, ucr4, usr2;
450
451	if (sport->tx_state == OFF)
452		return;
453
454	/*
455	 * We are maybe in the SMP context, so if the DMA TX thread is running
456	 * on other cpu, we have to wait for it to finish.
457	 */
458	if (sport->dma_is_txing)
459		return;
460
461	ucr1 = imx_uart_readl(sport, UCR1);
462	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
463
464	ucr4 = imx_uart_readl(sport, UCR4);
465	usr2 = imx_uart_readl(sport, USR2);
466	if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) {
467		/* The shifter is still busy, so retry once TC triggers */
468		return;
469	}
470
471	ucr4 &= ~UCR4_TCEN;
472	imx_uart_writel(sport, ucr4, UCR4);
473
474	/* in rs485 mode disable transmitter */
475	if (port->rs485.flags & SER_RS485_ENABLED) {
476		if (sport->tx_state == SEND) {
477			sport->tx_state = WAIT_AFTER_SEND;
478			start_hrtimer_ms(&sport->trigger_stop_tx,
479					 port->rs485.delay_rts_after_send);
480			return;
481		}
482
483		if (sport->tx_state == WAIT_AFTER_RTS ||
484		    sport->tx_state == WAIT_AFTER_SEND) {
485			u32 ucr2;
486
487			hrtimer_try_to_cancel(&sport->trigger_start_tx);
488
489			ucr2 = imx_uart_readl(sport, UCR2);
490			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
491				imx_uart_rts_active(sport, &ucr2);
492			else
493				imx_uart_rts_inactive(sport, &ucr2);
494			imx_uart_writel(sport, ucr2, UCR2);
495
496			imx_uart_start_rx(port);
497
498			sport->tx_state = OFF;
499		}
500	} else {
501		sport->tx_state = OFF;
502	}
503}
504
505/* called with port.lock taken and irqs off */
506static void imx_uart_stop_rx(struct uart_port *port)
507{
508	struct imx_port *sport = (struct imx_port *)port;
509	u32 ucr1, ucr2, ucr4;
510
511	ucr1 = imx_uart_readl(sport, UCR1);
512	ucr2 = imx_uart_readl(sport, UCR2);
513	ucr4 = imx_uart_readl(sport, UCR4);
514
515	if (sport->dma_is_enabled) {
516		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
517	} else {
518		ucr1 &= ~UCR1_RRDYEN;
519		ucr2 &= ~UCR2_ATEN;
520		ucr4 &= ~UCR4_OREN;
521	}
522	imx_uart_writel(sport, ucr1, UCR1);
523	imx_uart_writel(sport, ucr4, UCR4);
524
525	ucr2 &= ~UCR2_RXEN;
526	imx_uart_writel(sport, ucr2, UCR2);
527}
528
529/* called with port.lock taken and irqs off */
530static void imx_uart_enable_ms(struct uart_port *port)
531{
532	struct imx_port *sport = (struct imx_port *)port;
533
534	mod_timer(&sport->timer, jiffies);
535
536	mctrl_gpio_enable_ms(sport->gpios);
537}
538
539static void imx_uart_dma_tx(struct imx_port *sport);
540
541/* called with port.lock taken and irqs off */
542static inline void imx_uart_transmit_buffer(struct imx_port *sport)
543{
544	struct circ_buf *xmit = &sport->port.state->xmit;
545
546	if (sport->port.x_char) {
547		/* Send next char */
548		imx_uart_writel(sport, sport->port.x_char, URTX0);
549		sport->port.icount.tx++;
550		sport->port.x_char = 0;
551		return;
552	}
553
554	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
555		imx_uart_stop_tx(&sport->port);
556		return;
557	}
558
559	if (sport->dma_is_enabled) {
560		u32 ucr1;
561		/*
562		 * We've just sent a X-char Ensure the TX DMA is enabled
563		 * and the TX IRQ is disabled.
564		 **/
565		ucr1 = imx_uart_readl(sport, UCR1);
566		ucr1 &= ~UCR1_TRDYEN;
567		if (sport->dma_is_txing) {
568			ucr1 |= UCR1_TXDMAEN;
569			imx_uart_writel(sport, ucr1, UCR1);
570		} else {
571			imx_uart_writel(sport, ucr1, UCR1);
572			imx_uart_dma_tx(sport);
573		}
574
575		return;
576	}
577
578	while (!uart_circ_empty(xmit) &&
579	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
580		/* send xmit->buf[xmit->tail]
581		 * out the port here */
582		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
583		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
584		sport->port.icount.tx++;
585	}
586
587	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
588		uart_write_wakeup(&sport->port);
589
590	if (uart_circ_empty(xmit))
591		imx_uart_stop_tx(&sport->port);
592}
593
594static void imx_uart_dma_tx_callback(void *data)
595{
596	struct imx_port *sport = data;
597	struct scatterlist *sgl = &sport->tx_sgl[0];
598	struct circ_buf *xmit = &sport->port.state->xmit;
599	unsigned long flags;
600	u32 ucr1;
601
602	spin_lock_irqsave(&sport->port.lock, flags);
603
604	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
605
606	ucr1 = imx_uart_readl(sport, UCR1);
607	ucr1 &= ~UCR1_TXDMAEN;
608	imx_uart_writel(sport, ucr1, UCR1);
609
610	/* update the stat */
611	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
612	sport->port.icount.tx += sport->tx_bytes;
613
614	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
615
616	sport->dma_is_txing = 0;
617
618	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
619		uart_write_wakeup(&sport->port);
620
621	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
622		imx_uart_dma_tx(sport);
623	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
624		u32 ucr4 = imx_uart_readl(sport, UCR4);
625		ucr4 |= UCR4_TCEN;
626		imx_uart_writel(sport, ucr4, UCR4);
627	}
628
629	spin_unlock_irqrestore(&sport->port.lock, flags);
630}
631
632/* called with port.lock taken and irqs off */
633static void imx_uart_dma_tx(struct imx_port *sport)
634{
635	struct circ_buf *xmit = &sport->port.state->xmit;
636	struct scatterlist *sgl = sport->tx_sgl;
637	struct dma_async_tx_descriptor *desc;
638	struct dma_chan	*chan = sport->dma_chan_tx;
639	struct device *dev = sport->port.dev;
640	u32 ucr1, ucr4;
641	int ret;
642
643	if (sport->dma_is_txing)
644		return;
645
646	ucr4 = imx_uart_readl(sport, UCR4);
647	ucr4 &= ~UCR4_TCEN;
648	imx_uart_writel(sport, ucr4, UCR4);
649
650	sport->tx_bytes = uart_circ_chars_pending(xmit);
651
652	if (xmit->tail < xmit->head || xmit->head == 0) {
653		sport->dma_tx_nents = 1;
654		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
655	} else {
656		sport->dma_tx_nents = 2;
657		sg_init_table(sgl, 2);
658		sg_set_buf(sgl, xmit->buf + xmit->tail,
659				UART_XMIT_SIZE - xmit->tail);
660		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
661	}
662
663	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
664	if (ret == 0) {
665		dev_err(dev, "DMA mapping error for TX.\n");
666		return;
667	}
668	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
669					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
670	if (!desc) {
671		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
672			     DMA_TO_DEVICE);
673		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
674		return;
675	}
676	desc->callback = imx_uart_dma_tx_callback;
677	desc->callback_param = sport;
678
679	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
680			uart_circ_chars_pending(xmit));
681
682	ucr1 = imx_uart_readl(sport, UCR1);
683	ucr1 |= UCR1_TXDMAEN;
684	imx_uart_writel(sport, ucr1, UCR1);
685
686	/* fire it */
687	sport->dma_is_txing = 1;
688	dmaengine_submit(desc);
689	dma_async_issue_pending(chan);
690	return;
691}
692
693/* called with port.lock taken and irqs off */
694static void imx_uart_start_tx(struct uart_port *port)
695{
696	struct imx_port *sport = (struct imx_port *)port;
697	u32 ucr1;
698
699	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
700		return;
701
702	/*
703	 * We cannot simply do nothing here if sport->tx_state == SEND already
704	 * because UCR1_TXMPTYEN might already have been cleared in
705	 * imx_uart_stop_tx(), but tx_state is still SEND.
706	 */
707
708	if (port->rs485.flags & SER_RS485_ENABLED) {
709		if (sport->tx_state == OFF) {
710			u32 ucr2 = imx_uart_readl(sport, UCR2);
711			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
712				imx_uart_rts_active(sport, &ucr2);
713			else
714				imx_uart_rts_inactive(sport, &ucr2);
715			imx_uart_writel(sport, ucr2, UCR2);
716
717			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
718				imx_uart_stop_rx(port);
719
720			sport->tx_state = WAIT_AFTER_RTS;
721			start_hrtimer_ms(&sport->trigger_start_tx,
722					 port->rs485.delay_rts_before_send);
723			return;
724		}
725
726		if (sport->tx_state == WAIT_AFTER_SEND
727		    || sport->tx_state == WAIT_AFTER_RTS) {
728
729			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
730
731			/*
732			 * Enable transmitter and shifter empty irq only if DMA
733			 * is off.  In the DMA case this is done in the
734			 * tx-callback.
735			 */
736			if (!sport->dma_is_enabled) {
737				u32 ucr4 = imx_uart_readl(sport, UCR4);
738				ucr4 |= UCR4_TCEN;
739				imx_uart_writel(sport, ucr4, UCR4);
740			}
741
742			sport->tx_state = SEND;
743		}
744	} else {
745		sport->tx_state = SEND;
746	}
747
748	if (!sport->dma_is_enabled) {
749		ucr1 = imx_uart_readl(sport, UCR1);
750		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
751	}
752
753	if (sport->dma_is_enabled) {
754		if (sport->port.x_char) {
755			/* We have X-char to send, so enable TX IRQ and
756			 * disable TX DMA to let TX interrupt to send X-char */
757			ucr1 = imx_uart_readl(sport, UCR1);
758			ucr1 &= ~UCR1_TXDMAEN;
759			ucr1 |= UCR1_TRDYEN;
760			imx_uart_writel(sport, ucr1, UCR1);
761			return;
762		}
763
764		if (!uart_circ_empty(&port->state->xmit) &&
765		    !uart_tx_stopped(port))
766			imx_uart_dma_tx(sport);
767		return;
768	}
769}
770
771static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
772{
773	struct imx_port *sport = dev_id;
774	u32 usr1;
775
776	imx_uart_writel(sport, USR1_RTSD, USR1);
777	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
778	uart_handle_cts_change(&sport->port, !!usr1);
779	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
780
781	return IRQ_HANDLED;
782}
783
784static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
785{
786	struct imx_port *sport = dev_id;
787	irqreturn_t ret;
788
789	spin_lock(&sport->port.lock);
790
791	ret = __imx_uart_rtsint(irq, dev_id);
792
793	spin_unlock(&sport->port.lock);
794
795	return ret;
796}
797
798static irqreturn_t imx_uart_txint(int irq, void *dev_id)
799{
800	struct imx_port *sport = dev_id;
801
802	spin_lock(&sport->port.lock);
803	imx_uart_transmit_buffer(sport);
804	spin_unlock(&sport->port.lock);
805	return IRQ_HANDLED;
806}
807
808static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
809{
810	struct imx_port *sport = dev_id;
811	unsigned int rx, flg, ignored = 0;
812	struct tty_port *port = &sport->port.state->port;
813
814	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
815		u32 usr2;
816
817		flg = TTY_NORMAL;
818		sport->port.icount.rx++;
819
820		rx = imx_uart_readl(sport, URXD0);
821
822		usr2 = imx_uart_readl(sport, USR2);
823		if (usr2 & USR2_BRCD) {
824			imx_uart_writel(sport, USR2_BRCD, USR2);
825			if (uart_handle_break(&sport->port))
826				continue;
827		}
828
829		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
830			continue;
831
832		if (unlikely(rx & URXD_ERR)) {
833			if (rx & URXD_BRK)
834				sport->port.icount.brk++;
835			else if (rx & URXD_PRERR)
836				sport->port.icount.parity++;
837			else if (rx & URXD_FRMERR)
838				sport->port.icount.frame++;
839			if (rx & URXD_OVRRUN)
840				sport->port.icount.overrun++;
841
842			if (rx & sport->port.ignore_status_mask) {
843				if (++ignored > 100)
844					goto out;
845				continue;
846			}
847
848			rx &= (sport->port.read_status_mask | 0xFF);
849
850			if (rx & URXD_BRK)
851				flg = TTY_BREAK;
852			else if (rx & URXD_PRERR)
853				flg = TTY_PARITY;
854			else if (rx & URXD_FRMERR)
855				flg = TTY_FRAME;
856			if (rx & URXD_OVRRUN)
857				flg = TTY_OVERRUN;
858
859			sport->port.sysrq = 0;
860		}
861
862		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
863			goto out;
864
865		if (tty_insert_flip_char(port, rx, flg) == 0)
866			sport->port.icount.buf_overrun++;
867	}
868
869out:
870	tty_flip_buffer_push(port);
871
872	return IRQ_HANDLED;
873}
874
875static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
876{
877	struct imx_port *sport = dev_id;
878	irqreturn_t ret;
879
880	spin_lock(&sport->port.lock);
881
882	ret = __imx_uart_rxint(irq, dev_id);
883
884	spin_unlock(&sport->port.lock);
885
886	return ret;
887}
888
889static void imx_uart_clear_rx_errors(struct imx_port *sport);
890
891/*
892 * We have a modem side uart, so the meanings of RTS and CTS are inverted.
893 */
894static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
895{
896	unsigned int tmp = TIOCM_DSR;
897	unsigned usr1 = imx_uart_readl(sport, USR1);
898	unsigned usr2 = imx_uart_readl(sport, USR2);
899
900	if (usr1 & USR1_RTSS)
901		tmp |= TIOCM_CTS;
902
903	/* in DCE mode DCDIN is always 0 */
904	if (!(usr2 & USR2_DCDIN))
905		tmp |= TIOCM_CAR;
906
907	if (sport->dte_mode)
908		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
909			tmp |= TIOCM_RI;
910
911	return tmp;
912}
913
914/*
915 * Handle any change of modem status signal since we were last called.
916 */
917static void imx_uart_mctrl_check(struct imx_port *sport)
918{
919	unsigned int status, changed;
920
921	status = imx_uart_get_hwmctrl(sport);
922	changed = status ^ sport->old_status;
923
924	if (changed == 0)
925		return;
926
927	sport->old_status = status;
928
929	if (changed & TIOCM_RI && status & TIOCM_RI)
930		sport->port.icount.rng++;
931	if (changed & TIOCM_DSR)
932		sport->port.icount.dsr++;
933	if (changed & TIOCM_CAR)
934		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
935	if (changed & TIOCM_CTS)
936		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
937
938	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
939}
940
941static irqreturn_t imx_uart_int(int irq, void *dev_id)
942{
943	struct imx_port *sport = dev_id;
944	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
945	irqreturn_t ret = IRQ_NONE;
946	unsigned long flags = 0;
947
948	/*
949	 * IRQs might not be disabled upon entering this interrupt handler,
950	 * e.g. when interrupt handlers are forced to be threaded. To support
951	 * this scenario as well, disable IRQs when acquiring the spinlock.
952	 */
953	spin_lock_irqsave(&sport->port.lock, flags);
954
955	usr1 = imx_uart_readl(sport, USR1);
956	usr2 = imx_uart_readl(sport, USR2);
957	ucr1 = imx_uart_readl(sport, UCR1);
958	ucr2 = imx_uart_readl(sport, UCR2);
959	ucr3 = imx_uart_readl(sport, UCR3);
960	ucr4 = imx_uart_readl(sport, UCR4);
961
962	/*
963	 * Even if a condition is true that can trigger an irq only handle it if
964	 * the respective irq source is enabled. This prevents some undesired
965	 * actions, for example if a character that sits in the RX FIFO and that
966	 * should be fetched via DMA is tried to be fetched using PIO. Or the
967	 * receiver is currently off and so reading from URXD0 results in an
968	 * exception. So just mask the (raw) status bits for disabled irqs.
969	 */
970	if ((ucr1 & UCR1_RRDYEN) == 0)
971		usr1 &= ~USR1_RRDY;
972	if ((ucr2 & UCR2_ATEN) == 0)
973		usr1 &= ~USR1_AGTIM;
974	if ((ucr1 & UCR1_TRDYEN) == 0)
975		usr1 &= ~USR1_TRDY;
976	if ((ucr4 & UCR4_TCEN) == 0)
977		usr2 &= ~USR2_TXDC;
978	if ((ucr3 & UCR3_DTRDEN) == 0)
979		usr1 &= ~USR1_DTRD;
980	if ((ucr1 & UCR1_RTSDEN) == 0)
981		usr1 &= ~USR1_RTSD;
982	if ((ucr3 & UCR3_AWAKEN) == 0)
983		usr1 &= ~USR1_AWAKE;
984	if ((ucr4 & UCR4_OREN) == 0)
985		usr2 &= ~USR2_ORE;
986
987	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
988		imx_uart_writel(sport, USR1_AGTIM, USR1);
989
990		__imx_uart_rxint(irq, dev_id);
991		ret = IRQ_HANDLED;
992	}
993
994	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
995		imx_uart_transmit_buffer(sport);
996		ret = IRQ_HANDLED;
997	}
998
999	if (usr1 & USR1_DTRD) {
1000		imx_uart_writel(sport, USR1_DTRD, USR1);
1001
1002		imx_uart_mctrl_check(sport);
1003
1004		ret = IRQ_HANDLED;
1005	}
1006
1007	if (usr1 & USR1_RTSD) {
1008		__imx_uart_rtsint(irq, dev_id);
1009		ret = IRQ_HANDLED;
1010	}
1011
1012	if (usr1 & USR1_AWAKE) {
1013		imx_uart_writel(sport, USR1_AWAKE, USR1);
1014		ret = IRQ_HANDLED;
1015	}
1016
1017	if (usr2 & USR2_ORE) {
1018		sport->port.icount.overrun++;
1019		imx_uart_writel(sport, USR2_ORE, USR2);
1020		ret = IRQ_HANDLED;
1021	}
1022
1023	spin_unlock_irqrestore(&sport->port.lock, flags);
1024
1025	return ret;
1026}
1027
1028/*
1029 * Return TIOCSER_TEMT when transmitter is not busy.
1030 */
1031static unsigned int imx_uart_tx_empty(struct uart_port *port)
1032{
1033	struct imx_port *sport = (struct imx_port *)port;
1034	unsigned int ret;
1035
1036	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1037
1038	/* If the TX DMA is working, return 0. */
1039	if (sport->dma_is_txing)
1040		ret = 0;
1041
1042	return ret;
1043}
1044
1045/* called with port.lock taken and irqs off */
1046static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1047{
1048	struct imx_port *sport = (struct imx_port *)port;
1049	unsigned int ret = imx_uart_get_hwmctrl(sport);
1050
1051	mctrl_gpio_get(sport->gpios, &ret);
1052
1053	return ret;
1054}
1055
1056/* called with port.lock taken and irqs off */
1057static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1058{
1059	struct imx_port *sport = (struct imx_port *)port;
1060	u32 ucr3, uts;
1061
1062	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1063		u32 ucr2;
1064
1065		/*
1066		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1067		 * setting if RTS is raised.
1068		 */
1069		ucr2 = imx_uart_readl(sport, UCR2);
1070		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1071		if (mctrl & TIOCM_RTS) {
1072			ucr2 |= UCR2_CTS;
1073			/*
1074			 * UCR2_IRTS is unset if and only if the port is
1075			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1076			 * to get the state to restore to.
1077			 */
1078			if (!(ucr2 & UCR2_IRTS))
1079				ucr2 |= UCR2_CTSC;
1080		}
1081		imx_uart_writel(sport, ucr2, UCR2);
1082	}
1083
1084	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1085	if (!(mctrl & TIOCM_DTR))
1086		ucr3 |= UCR3_DSR;
1087	imx_uart_writel(sport, ucr3, UCR3);
1088
1089	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1090	if (mctrl & TIOCM_LOOP)
1091		uts |= UTS_LOOP;
1092	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1093
1094	mctrl_gpio_set(sport->gpios, mctrl);
1095}
1096
1097/*
1098 * Interrupts always disabled.
1099 */
1100static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1101{
1102	struct imx_port *sport = (struct imx_port *)port;
1103	unsigned long flags;
1104	u32 ucr1;
1105
1106	spin_lock_irqsave(&sport->port.lock, flags);
1107
1108	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1109
1110	if (break_state != 0)
1111		ucr1 |= UCR1_SNDBRK;
1112
1113	imx_uart_writel(sport, ucr1, UCR1);
1114
1115	spin_unlock_irqrestore(&sport->port.lock, flags);
1116}
1117
1118/*
1119 * This is our per-port timeout handler, for checking the
1120 * modem status signals.
1121 */
1122static void imx_uart_timeout(struct timer_list *t)
1123{
1124	struct imx_port *sport = from_timer(sport, t, timer);
1125	unsigned long flags;
1126
1127	if (sport->port.state) {
1128		spin_lock_irqsave(&sport->port.lock, flags);
1129		imx_uart_mctrl_check(sport);
1130		spin_unlock_irqrestore(&sport->port.lock, flags);
1131
1132		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1133	}
1134}
1135
1136/*
1137 * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1138 *   [1] the RX DMA buffer is full.
1139 *   [2] the aging timer expires
1140 *
1141 * Condition [2] is triggered when a character has been sitting in the FIFO
1142 * for at least 8 byte durations.
1143 */
1144static void imx_uart_dma_rx_callback(void *data)
1145{
1146	struct imx_port *sport = data;
1147	struct dma_chan	*chan = sport->dma_chan_rx;
1148	struct scatterlist *sgl = &sport->rx_sgl;
1149	struct tty_port *port = &sport->port.state->port;
1150	struct dma_tx_state state;
1151	struct circ_buf *rx_ring = &sport->rx_ring;
1152	enum dma_status status;
1153	unsigned int w_bytes = 0;
1154	unsigned int r_bytes;
1155	unsigned int bd_size;
1156
1157	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1158
1159	if (status == DMA_ERROR) {
1160		imx_uart_clear_rx_errors(sport);
1161		return;
1162	}
1163
1164	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1165
1166		/*
1167		 * The state-residue variable represents the empty space
1168		 * relative to the entire buffer. Taking this in consideration
1169		 * the head is always calculated base on the buffer total
1170		 * length - DMA transaction residue. The UART script from the
1171		 * SDMA firmware will jump to the next buffer descriptor,
1172		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1173		 * Taking this in consideration the tail is always at the
1174		 * beginning of the buffer descriptor that contains the head.
1175		 */
1176
1177		/* Calculate the head */
1178		rx_ring->head = sg_dma_len(sgl) - state.residue;
1179
1180		/* Calculate the tail. */
1181		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1182		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1183
1184		if (rx_ring->head <= sg_dma_len(sgl) &&
1185		    rx_ring->head > rx_ring->tail) {
1186
1187			/* Move data from tail to head */
1188			r_bytes = rx_ring->head - rx_ring->tail;
1189
1190			/* CPU claims ownership of RX DMA buffer */
1191			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1192				DMA_FROM_DEVICE);
1193
1194			w_bytes = tty_insert_flip_string(port,
1195				sport->rx_buf + rx_ring->tail, r_bytes);
1196
1197			/* UART retrieves ownership of RX DMA buffer */
1198			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1199				DMA_FROM_DEVICE);
1200
1201			if (w_bytes != r_bytes)
1202				sport->port.icount.buf_overrun++;
1203
1204			sport->port.icount.rx += w_bytes;
1205		} else	{
1206			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1207			WARN_ON(rx_ring->head <= rx_ring->tail);
1208		}
1209	}
1210
1211	if (w_bytes) {
1212		tty_flip_buffer_push(port);
1213		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1214	}
1215}
1216
1217/* RX DMA buffer periods */
1218#define RX_DMA_PERIODS	16
1219#define RX_BUF_SIZE	(RX_DMA_PERIODS * PAGE_SIZE / 4)
1220
1221static int imx_uart_start_rx_dma(struct imx_port *sport)
1222{
1223	struct scatterlist *sgl = &sport->rx_sgl;
1224	struct dma_chan	*chan = sport->dma_chan_rx;
1225	struct device *dev = sport->port.dev;
1226	struct dma_async_tx_descriptor *desc;
1227	int ret;
1228
1229	sport->rx_ring.head = 0;
1230	sport->rx_ring.tail = 0;
1231	sport->rx_periods = RX_DMA_PERIODS;
1232
1233	sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
1234	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1235	if (ret == 0) {
1236		dev_err(dev, "DMA mapping error for RX.\n");
1237		return -EINVAL;
1238	}
1239
1240	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1241		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1242		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1243
1244	if (!desc) {
1245		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1246		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1247		return -EINVAL;
1248	}
1249	desc->callback = imx_uart_dma_rx_callback;
1250	desc->callback_param = sport;
1251
1252	dev_dbg(dev, "RX: prepare for the DMA.\n");
1253	sport->dma_is_rxing = 1;
1254	sport->rx_cookie = dmaengine_submit(desc);
1255	dma_async_issue_pending(chan);
1256	return 0;
1257}
1258
1259static void imx_uart_clear_rx_errors(struct imx_port *sport)
1260{
1261	struct tty_port *port = &sport->port.state->port;
1262	u32 usr1, usr2;
1263
1264	usr1 = imx_uart_readl(sport, USR1);
1265	usr2 = imx_uart_readl(sport, USR2);
1266
1267	if (usr2 & USR2_BRCD) {
1268		sport->port.icount.brk++;
1269		imx_uart_writel(sport, USR2_BRCD, USR2);
1270		uart_handle_break(&sport->port);
1271		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1272			sport->port.icount.buf_overrun++;
1273		tty_flip_buffer_push(port);
1274	} else {
1275		if (usr1 & USR1_FRAMERR) {
1276			sport->port.icount.frame++;
1277			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1278		} else if (usr1 & USR1_PARITYERR) {
1279			sport->port.icount.parity++;
1280			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1281		}
1282	}
1283
1284	if (usr2 & USR2_ORE) {
1285		sport->port.icount.overrun++;
1286		imx_uart_writel(sport, USR2_ORE, USR2);
1287	}
1288
1289}
1290
1291#define TXTL_DEFAULT 2 /* reset default */
1292#define RXTL_DEFAULT 1 /* reset default */
1293#define TXTL_DMA 8 /* DMA burst setting */
1294#define RXTL_DMA 9 /* DMA burst setting */
1295
1296static void imx_uart_setup_ufcr(struct imx_port *sport,
1297				unsigned char txwl, unsigned char rxwl)
1298{
1299	unsigned int val;
1300
1301	/* set receiver / transmitter trigger level */
1302	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1303	val |= txwl << UFCR_TXTL_SHF | rxwl;
1304	imx_uart_writel(sport, val, UFCR);
1305}
1306
1307static void imx_uart_dma_exit(struct imx_port *sport)
1308{
1309	if (sport->dma_chan_rx) {
1310		dmaengine_terminate_sync(sport->dma_chan_rx);
1311		dma_release_channel(sport->dma_chan_rx);
1312		sport->dma_chan_rx = NULL;
1313		sport->rx_cookie = -EINVAL;
1314		kfree(sport->rx_buf);
1315		sport->rx_buf = NULL;
1316	}
1317
1318	if (sport->dma_chan_tx) {
1319		dmaengine_terminate_sync(sport->dma_chan_tx);
1320		dma_release_channel(sport->dma_chan_tx);
1321		sport->dma_chan_tx = NULL;
1322	}
1323}
1324
1325static int imx_uart_dma_init(struct imx_port *sport)
1326{
1327	struct dma_slave_config slave_config = {};
1328	struct device *dev = sport->port.dev;
1329	int ret;
1330
1331	/* Prepare for RX : */
1332	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1333	if (!sport->dma_chan_rx) {
1334		dev_dbg(dev, "cannot get the DMA channel.\n");
1335		ret = -EINVAL;
1336		goto err;
1337	}
1338
1339	slave_config.direction = DMA_DEV_TO_MEM;
1340	slave_config.src_addr = sport->port.mapbase + URXD0;
1341	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1342	/* one byte less than the watermark level to enable the aging timer */
1343	slave_config.src_maxburst = RXTL_DMA - 1;
1344	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1345	if (ret) {
1346		dev_err(dev, "error in RX dma configuration.\n");
1347		goto err;
1348	}
1349
1350	sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
1351	if (!sport->rx_buf) {
1352		ret = -ENOMEM;
1353		goto err;
1354	}
1355	sport->rx_ring.buf = sport->rx_buf;
1356
1357	/* Prepare for TX : */
1358	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1359	if (!sport->dma_chan_tx) {
1360		dev_err(dev, "cannot get the TX DMA channel!\n");
1361		ret = -EINVAL;
1362		goto err;
1363	}
1364
1365	slave_config.direction = DMA_MEM_TO_DEV;
1366	slave_config.dst_addr = sport->port.mapbase + URTX0;
1367	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1368	slave_config.dst_maxburst = TXTL_DMA;
1369	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1370	if (ret) {
1371		dev_err(dev, "error in TX dma configuration.");
1372		goto err;
1373	}
1374
1375	return 0;
1376err:
1377	imx_uart_dma_exit(sport);
1378	return ret;
1379}
1380
1381static void imx_uart_enable_dma(struct imx_port *sport)
1382{
1383	u32 ucr1;
1384
1385	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1386
1387	/* set UCR1 */
1388	ucr1 = imx_uart_readl(sport, UCR1);
1389	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1390	imx_uart_writel(sport, ucr1, UCR1);
1391
1392	sport->dma_is_enabled = 1;
1393}
1394
1395static void imx_uart_disable_dma(struct imx_port *sport)
1396{
1397	u32 ucr1;
1398
1399	/* clear UCR1 */
1400	ucr1 = imx_uart_readl(sport, UCR1);
1401	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1402	imx_uart_writel(sport, ucr1, UCR1);
1403
1404	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1405
1406	sport->dma_is_enabled = 0;
1407}
1408
1409/* half the RX buffer size */
1410#define CTSTL 16
1411
1412static int imx_uart_startup(struct uart_port *port)
1413{
1414	struct imx_port *sport = (struct imx_port *)port;
1415	int retval, i;
1416	unsigned long flags;
1417	int dma_is_inited = 0;
1418	u32 ucr1, ucr2, ucr3, ucr4;
1419
1420	retval = clk_prepare_enable(sport->clk_per);
1421	if (retval)
1422		return retval;
1423	retval = clk_prepare_enable(sport->clk_ipg);
1424	if (retval) {
1425		clk_disable_unprepare(sport->clk_per);
1426		return retval;
1427	}
1428
1429	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1430
1431	/* disable the DREN bit (Data Ready interrupt enable) before
1432	 * requesting IRQs
1433	 */
1434	ucr4 = imx_uart_readl(sport, UCR4);
1435
1436	/* set the trigger level for CTS */
1437	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1438	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1439
1440	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1441
1442	/* Can we enable the DMA support? */
1443	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1444		dma_is_inited = 1;
1445
1446	spin_lock_irqsave(&sport->port.lock, flags);
1447	/* Reset fifo's and state machines */
1448	i = 100;
1449
1450	ucr2 = imx_uart_readl(sport, UCR2);
1451	ucr2 &= ~UCR2_SRST;
1452	imx_uart_writel(sport, ucr2, UCR2);
1453
1454	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1455		udelay(1);
1456
1457	/*
1458	 * Finally, clear and enable interrupts
1459	 */
1460	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1461	imx_uart_writel(sport, USR2_ORE, USR2);
1462
1463	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1464	ucr1 |= UCR1_UARTEN;
1465	if (sport->have_rtscts)
1466		ucr1 |= UCR1_RTSDEN;
1467
1468	imx_uart_writel(sport, ucr1, UCR1);
1469
1470	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1471	if (!dma_is_inited)
1472		ucr4 |= UCR4_OREN;
1473	if (sport->inverted_rx)
1474		ucr4 |= UCR4_INVR;
1475	imx_uart_writel(sport, ucr4, UCR4);
1476
1477	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1478	/*
1479	 * configure tx polarity before enabling tx
1480	 */
1481	if (sport->inverted_tx)
1482		ucr3 |= UCR3_INVT;
1483
1484	if (!imx_uart_is_imx1(sport)) {
1485		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1486
1487		if (sport->dte_mode)
1488			/* disable broken interrupts */
1489			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1490	}
1491	imx_uart_writel(sport, ucr3, UCR3);
1492
1493	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1494	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1495	if (!sport->have_rtscts)
1496		ucr2 |= UCR2_IRTS;
1497	/*
1498	 * make sure the edge sensitive RTS-irq is disabled,
1499	 * we're using RTSD instead.
1500	 */
1501	if (!imx_uart_is_imx1(sport))
1502		ucr2 &= ~UCR2_RTSEN;
1503	imx_uart_writel(sport, ucr2, UCR2);
1504
1505	/*
1506	 * Enable modem status interrupts
1507	 */
1508	imx_uart_enable_ms(&sport->port);
1509
1510	if (dma_is_inited) {
1511		imx_uart_enable_dma(sport);
1512		imx_uart_start_rx_dma(sport);
1513	} else {
1514		ucr1 = imx_uart_readl(sport, UCR1);
1515		ucr1 |= UCR1_RRDYEN;
1516		imx_uart_writel(sport, ucr1, UCR1);
1517
1518		ucr2 = imx_uart_readl(sport, UCR2);
1519		ucr2 |= UCR2_ATEN;
1520		imx_uart_writel(sport, ucr2, UCR2);
1521	}
1522
1523	spin_unlock_irqrestore(&sport->port.lock, flags);
1524
1525	return 0;
1526}
1527
1528static void imx_uart_shutdown(struct uart_port *port)
1529{
1530	struct imx_port *sport = (struct imx_port *)port;
1531	unsigned long flags;
1532	u32 ucr1, ucr2, ucr4;
1533
1534	if (sport->dma_is_enabled) {
1535		dmaengine_terminate_sync(sport->dma_chan_tx);
1536		if (sport->dma_is_txing) {
1537			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1538				     sport->dma_tx_nents, DMA_TO_DEVICE);
1539			sport->dma_is_txing = 0;
1540		}
1541		dmaengine_terminate_sync(sport->dma_chan_rx);
1542		if (sport->dma_is_rxing) {
1543			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1544				     1, DMA_FROM_DEVICE);
1545			sport->dma_is_rxing = 0;
1546		}
1547
1548		spin_lock_irqsave(&sport->port.lock, flags);
1549		imx_uart_stop_tx(port);
1550		imx_uart_stop_rx(port);
1551		imx_uart_disable_dma(sport);
1552		spin_unlock_irqrestore(&sport->port.lock, flags);
1553		imx_uart_dma_exit(sport);
1554	}
1555
1556	mctrl_gpio_disable_ms(sport->gpios);
1557
1558	spin_lock_irqsave(&sport->port.lock, flags);
1559	ucr2 = imx_uart_readl(sport, UCR2);
1560	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1561	imx_uart_writel(sport, ucr2, UCR2);
1562	spin_unlock_irqrestore(&sport->port.lock, flags);
1563
1564	/*
1565	 * Stop our timer.
1566	 */
1567	del_timer_sync(&sport->timer);
1568
1569	/*
1570	 * Disable all interrupts, port and break condition.
1571	 */
1572
1573	spin_lock_irqsave(&sport->port.lock, flags);
1574
1575	ucr1 = imx_uart_readl(sport, UCR1);
1576	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1577	imx_uart_writel(sport, ucr1, UCR1);
1578
1579	ucr4 = imx_uart_readl(sport, UCR4);
1580	ucr4 &= ~UCR4_TCEN;
1581	imx_uart_writel(sport, ucr4, UCR4);
1582
1583	spin_unlock_irqrestore(&sport->port.lock, flags);
1584
1585	clk_disable_unprepare(sport->clk_per);
1586	clk_disable_unprepare(sport->clk_ipg);
1587}
1588
1589/* called with port.lock taken and irqs off */
1590static void imx_uart_flush_buffer(struct uart_port *port)
1591{
1592	struct imx_port *sport = (struct imx_port *)port;
1593	struct scatterlist *sgl = &sport->tx_sgl[0];
1594	u32 ucr2;
1595	int i = 100, ubir, ubmr, uts;
1596
1597	if (!sport->dma_chan_tx)
1598		return;
1599
1600	sport->tx_bytes = 0;
1601	dmaengine_terminate_all(sport->dma_chan_tx);
1602	if (sport->dma_is_txing) {
1603		u32 ucr1;
1604
1605		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1606			     DMA_TO_DEVICE);
1607		ucr1 = imx_uart_readl(sport, UCR1);
1608		ucr1 &= ~UCR1_TXDMAEN;
1609		imx_uart_writel(sport, ucr1, UCR1);
1610		sport->dma_is_txing = 0;
1611	}
1612
1613	/*
1614	 * According to the Reference Manual description of the UART SRST bit:
1615	 *
1616	 * "Reset the transmit and receive state machines,
1617	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1618	 * and UTS[6-3]".
1619	 *
1620	 * We don't need to restore the old values from USR1, USR2, URXD and
1621	 * UTXD. UBRC is read only, so only save/restore the other three
1622	 * registers.
1623	 */
1624	ubir = imx_uart_readl(sport, UBIR);
1625	ubmr = imx_uart_readl(sport, UBMR);
1626	uts = imx_uart_readl(sport, IMX21_UTS);
1627
1628	ucr2 = imx_uart_readl(sport, UCR2);
1629	ucr2 &= ~UCR2_SRST;
1630	imx_uart_writel(sport, ucr2, UCR2);
1631
1632	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1633		udelay(1);
1634
1635	/* Restore the registers */
1636	imx_uart_writel(sport, ubir, UBIR);
1637	imx_uart_writel(sport, ubmr, UBMR);
1638	imx_uart_writel(sport, uts, IMX21_UTS);
1639}
1640
1641static void
1642imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1643		     struct ktermios *old)
1644{
1645	struct imx_port *sport = (struct imx_port *)port;
1646	unsigned long flags;
1647	u32 ucr2, old_ucr2, ufcr;
1648	unsigned int baud, quot;
1649	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1650	unsigned long div;
1651	unsigned long num, denom, old_ubir, old_ubmr;
1652	uint64_t tdiv64;
1653
1654	/*
1655	 * We only support CS7 and CS8.
1656	 */
1657	while ((termios->c_cflag & CSIZE) != CS7 &&
1658	       (termios->c_cflag & CSIZE) != CS8) {
1659		termios->c_cflag &= ~CSIZE;
1660		termios->c_cflag |= old_csize;
1661		old_csize = CS8;
1662	}
1663
1664	del_timer_sync(&sport->timer);
1665
1666	/*
1667	 * Ask the core to calculate the divisor for us.
1668	 */
1669	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1670	quot = uart_get_divisor(port, baud);
1671
1672	spin_lock_irqsave(&sport->port.lock, flags);
1673
1674	/*
1675	 * Read current UCR2 and save it for future use, then clear all the bits
1676	 * except those we will or may need to preserve.
1677	 */
1678	old_ucr2 = imx_uart_readl(sport, UCR2);
1679	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1680
1681	ucr2 |= UCR2_SRST | UCR2_IRTS;
1682	if ((termios->c_cflag & CSIZE) == CS8)
1683		ucr2 |= UCR2_WS;
1684
1685	if (!sport->have_rtscts)
1686		termios->c_cflag &= ~CRTSCTS;
1687
1688	if (port->rs485.flags & SER_RS485_ENABLED) {
1689		/*
1690		 * RTS is mandatory for rs485 operation, so keep
1691		 * it under manual control and keep transmitter
1692		 * disabled.
1693		 */
1694		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1695			imx_uart_rts_active(sport, &ucr2);
1696		else
1697			imx_uart_rts_inactive(sport, &ucr2);
1698
1699	} else if (termios->c_cflag & CRTSCTS) {
1700		/*
1701		 * Only let receiver control RTS output if we were not requested
1702		 * to have RTS inactive (which then should take precedence).
1703		 */
1704		if (ucr2 & UCR2_CTS)
1705			ucr2 |= UCR2_CTSC;
1706	}
1707
1708	if (termios->c_cflag & CRTSCTS)
1709		ucr2 &= ~UCR2_IRTS;
1710	if (termios->c_cflag & CSTOPB)
1711		ucr2 |= UCR2_STPB;
1712	if (termios->c_cflag & PARENB) {
1713		ucr2 |= UCR2_PREN;
1714		if (termios->c_cflag & PARODD)
1715			ucr2 |= UCR2_PROE;
1716	}
1717
1718	sport->port.read_status_mask = 0;
1719	if (termios->c_iflag & INPCK)
1720		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1721	if (termios->c_iflag & (BRKINT | PARMRK))
1722		sport->port.read_status_mask |= URXD_BRK;
1723
1724	/*
1725	 * Characters to ignore
1726	 */
1727	sport->port.ignore_status_mask = 0;
1728	if (termios->c_iflag & IGNPAR)
1729		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1730	if (termios->c_iflag & IGNBRK) {
1731		sport->port.ignore_status_mask |= URXD_BRK;
1732		/*
1733		 * If we're ignoring parity and break indicators,
1734		 * ignore overruns too (for real raw support).
1735		 */
1736		if (termios->c_iflag & IGNPAR)
1737			sport->port.ignore_status_mask |= URXD_OVRRUN;
1738	}
1739
1740	if ((termios->c_cflag & CREAD) == 0)
1741		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1742
1743	/*
1744	 * Update the per-port timeout.
1745	 */
1746	uart_update_timeout(port, termios->c_cflag, baud);
1747
1748	/* custom-baudrate handling */
1749	div = sport->port.uartclk / (baud * 16);
1750	if (baud == 38400 && quot != div)
1751		baud = sport->port.uartclk / (quot * 16);
1752
1753	div = sport->port.uartclk / (baud * 16);
1754	if (div > 7)
1755		div = 7;
1756	if (!div)
1757		div = 1;
1758
1759	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1760		1 << 16, 1 << 16, &num, &denom);
1761
1762	tdiv64 = sport->port.uartclk;
1763	tdiv64 *= num;
1764	do_div(tdiv64, denom * 16 * div);
1765	tty_termios_encode_baud_rate(termios,
1766				(speed_t)tdiv64, (speed_t)tdiv64);
1767
1768	num -= 1;
1769	denom -= 1;
1770
1771	ufcr = imx_uart_readl(sport, UFCR);
1772	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1773	imx_uart_writel(sport, ufcr, UFCR);
1774
1775	/*
1776	 *  Two registers below should always be written both and in this
1777	 *  particular order. One consequence is that we need to check if any of
1778	 *  them changes and then update both. We do need the check for change
1779	 *  as even writing the same values seem to "restart"
1780	 *  transmission/receiving logic in the hardware, that leads to data
1781	 *  breakage even when rate doesn't in fact change. E.g., user switches
1782	 *  RTS/CTS handshake and suddenly gets broken bytes.
1783	 */
1784	old_ubir = imx_uart_readl(sport, UBIR);
1785	old_ubmr = imx_uart_readl(sport, UBMR);
1786	if (old_ubir != num || old_ubmr != denom) {
1787		imx_uart_writel(sport, num, UBIR);
1788		imx_uart_writel(sport, denom, UBMR);
1789	}
1790
1791	if (!imx_uart_is_imx1(sport))
1792		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1793				IMX21_ONEMS);
1794
1795	imx_uart_writel(sport, ucr2, UCR2);
1796
1797	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1798		imx_uart_enable_ms(&sport->port);
1799
1800	spin_unlock_irqrestore(&sport->port.lock, flags);
1801}
1802
1803static const char *imx_uart_type(struct uart_port *port)
1804{
1805	struct imx_port *sport = (struct imx_port *)port;
1806
1807	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1808}
1809
1810/*
1811 * Configure/autoconfigure the port.
1812 */
1813static void imx_uart_config_port(struct uart_port *port, int flags)
1814{
1815	struct imx_port *sport = (struct imx_port *)port;
1816
1817	if (flags & UART_CONFIG_TYPE)
1818		sport->port.type = PORT_IMX;
1819}
1820
1821/*
1822 * Verify the new serial_struct (for TIOCSSERIAL).
1823 * The only change we allow are to the flags and type, and
1824 * even then only between PORT_IMX and PORT_UNKNOWN
1825 */
1826static int
1827imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1828{
1829	struct imx_port *sport = (struct imx_port *)port;
1830	int ret = 0;
1831
1832	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1833		ret = -EINVAL;
1834	if (sport->port.irq != ser->irq)
1835		ret = -EINVAL;
1836	if (ser->io_type != UPIO_MEM)
1837		ret = -EINVAL;
1838	if (sport->port.uartclk / 16 != ser->baud_base)
1839		ret = -EINVAL;
1840	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1841		ret = -EINVAL;
1842	if (sport->port.iobase != ser->port)
1843		ret = -EINVAL;
1844	if (ser->hub6 != 0)
1845		ret = -EINVAL;
1846	return ret;
1847}
1848
1849#if defined(CONFIG_CONSOLE_POLL)
1850
1851static int imx_uart_poll_init(struct uart_port *port)
1852{
1853	struct imx_port *sport = (struct imx_port *)port;
1854	unsigned long flags;
1855	u32 ucr1, ucr2;
1856	int retval;
1857
1858	retval = clk_prepare_enable(sport->clk_ipg);
1859	if (retval)
1860		return retval;
1861	retval = clk_prepare_enable(sport->clk_per);
1862	if (retval)
1863		clk_disable_unprepare(sport->clk_ipg);
1864
1865	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1866
1867	spin_lock_irqsave(&sport->port.lock, flags);
1868
1869	/*
1870	 * Be careful about the order of enabling bits here. First enable the
1871	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1872	 * This prevents that a character that already sits in the RX fifo is
1873	 * triggering an irq but the try to fetch it from there results in an
1874	 * exception because UARTEN or RXEN is still off.
1875	 */
1876	ucr1 = imx_uart_readl(sport, UCR1);
1877	ucr2 = imx_uart_readl(sport, UCR2);
1878
1879	if (imx_uart_is_imx1(sport))
1880		ucr1 |= IMX1_UCR1_UARTCLKEN;
1881
1882	ucr1 |= UCR1_UARTEN;
1883	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1884
1885	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1886	ucr2 &= ~UCR2_ATEN;
1887
1888	imx_uart_writel(sport, ucr1, UCR1);
1889	imx_uart_writel(sport, ucr2, UCR2);
1890
1891	/* now enable irqs */
1892	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1893	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1894
1895	spin_unlock_irqrestore(&sport->port.lock, flags);
1896
1897	return 0;
1898}
1899
1900static int imx_uart_poll_get_char(struct uart_port *port)
1901{
1902	struct imx_port *sport = (struct imx_port *)port;
1903	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1904		return NO_POLL_CHAR;
1905
1906	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1907}
1908
1909static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1910{
1911	struct imx_port *sport = (struct imx_port *)port;
1912	unsigned int status;
1913
1914	/* drain */
1915	do {
1916		status = imx_uart_readl(sport, USR1);
1917	} while (~status & USR1_TRDY);
1918
1919	/* write */
1920	imx_uart_writel(sport, c, URTX0);
1921
1922	/* flush */
1923	do {
1924		status = imx_uart_readl(sport, USR2);
1925	} while (~status & USR2_TXDC);
1926}
1927#endif
1928
1929/* called with port.lock taken and irqs off or from .probe without locking */
1930static int imx_uart_rs485_config(struct uart_port *port,
1931				 struct serial_rs485 *rs485conf)
1932{
1933	struct imx_port *sport = (struct imx_port *)port;
1934	u32 ucr2;
1935
1936	/* RTS is required to control the transmitter */
1937	if (!sport->have_rtscts && !sport->have_rtsgpio)
1938		rs485conf->flags &= ~SER_RS485_ENABLED;
1939
1940	if (rs485conf->flags & SER_RS485_ENABLED) {
1941		/* Enable receiver if low-active RTS signal is requested */
1942		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1943		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1944			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1945
1946		/* disable transmitter */
1947		ucr2 = imx_uart_readl(sport, UCR2);
1948		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1949			imx_uart_rts_active(sport, &ucr2);
1950		else
1951			imx_uart_rts_inactive(sport, &ucr2);
1952		imx_uart_writel(sport, ucr2, UCR2);
1953	}
1954
1955	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1956	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1957	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1958		imx_uart_start_rx(port);
1959
1960	port->rs485 = *rs485conf;
1961
1962	return 0;
1963}
1964
1965static const struct uart_ops imx_uart_pops = {
1966	.tx_empty	= imx_uart_tx_empty,
1967	.set_mctrl	= imx_uart_set_mctrl,
1968	.get_mctrl	= imx_uart_get_mctrl,
1969	.stop_tx	= imx_uart_stop_tx,
1970	.start_tx	= imx_uart_start_tx,
1971	.stop_rx	= imx_uart_stop_rx,
1972	.enable_ms	= imx_uart_enable_ms,
1973	.break_ctl	= imx_uart_break_ctl,
1974	.startup	= imx_uart_startup,
1975	.shutdown	= imx_uart_shutdown,
1976	.flush_buffer	= imx_uart_flush_buffer,
1977	.set_termios	= imx_uart_set_termios,
1978	.type		= imx_uart_type,
1979	.config_port	= imx_uart_config_port,
1980	.verify_port	= imx_uart_verify_port,
1981#if defined(CONFIG_CONSOLE_POLL)
1982	.poll_init      = imx_uart_poll_init,
1983	.poll_get_char  = imx_uart_poll_get_char,
1984	.poll_put_char  = imx_uart_poll_put_char,
1985#endif
1986};
1987
1988static struct imx_port *imx_uart_ports[UART_NR];
1989
1990#if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1991static void imx_uart_console_putchar(struct uart_port *port, int ch)
1992{
1993	struct imx_port *sport = (struct imx_port *)port;
1994
1995	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1996		barrier();
1997
1998	imx_uart_writel(sport, ch, URTX0);
1999}
2000
2001/*
2002 * Interrupts are disabled on entering
2003 */
2004static void
2005imx_uart_console_write(struct console *co, const char *s, unsigned int count)
2006{
2007	struct imx_port *sport = imx_uart_ports[co->index];
2008	struct imx_port_ucrs old_ucr;
2009	unsigned int ucr1;
2010	unsigned long flags = 0;
2011	int locked = 1;
2012
2013	if (sport->port.sysrq)
2014		locked = 0;
2015	else if (oops_in_progress)
2016		locked = spin_trylock_irqsave(&sport->port.lock, flags);
2017	else
2018		spin_lock_irqsave(&sport->port.lock, flags);
2019
2020	/*
2021	 *	First, save UCR1/2/3 and then disable interrupts
2022	 */
2023	imx_uart_ucrs_save(sport, &old_ucr);
2024	ucr1 = old_ucr.ucr1;
2025
2026	if (imx_uart_is_imx1(sport))
2027		ucr1 |= IMX1_UCR1_UARTCLKEN;
2028	ucr1 |= UCR1_UARTEN;
2029	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2030
2031	imx_uart_writel(sport, ucr1, UCR1);
2032
2033	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2034
2035	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2036
2037	/*
2038	 *	Finally, wait for transmitter to become empty
2039	 *	and restore UCR1/2/3
2040	 */
2041	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2042
2043	imx_uart_ucrs_restore(sport, &old_ucr);
2044
2045	if (locked)
2046		spin_unlock_irqrestore(&sport->port.lock, flags);
2047}
2048
2049/*
2050 * If the port was already initialised (eg, by a boot loader),
2051 * try to determine the current setup.
2052 */
2053static void
2054imx_uart_console_get_options(struct imx_port *sport, int *baud,
2055			     int *parity, int *bits)
2056{
2057
2058	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2059		/* ok, the port was enabled */
2060		unsigned int ucr2, ubir, ubmr, uartclk;
2061		unsigned int baud_raw;
2062		unsigned int ucfr_rfdiv;
2063
2064		ucr2 = imx_uart_readl(sport, UCR2);
2065
2066		*parity = 'n';
2067		if (ucr2 & UCR2_PREN) {
2068			if (ucr2 & UCR2_PROE)
2069				*parity = 'o';
2070			else
2071				*parity = 'e';
2072		}
2073
2074		if (ucr2 & UCR2_WS)
2075			*bits = 8;
2076		else
2077			*bits = 7;
2078
2079		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2080		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2081
2082		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2083		if (ucfr_rfdiv == 6)
2084			ucfr_rfdiv = 7;
2085		else
2086			ucfr_rfdiv = 6 - ucfr_rfdiv;
2087
2088		uartclk = clk_get_rate(sport->clk_per);
2089		uartclk /= ucfr_rfdiv;
2090
2091		{	/*
2092			 * The next code provides exact computation of
2093			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2094			 * without need of float support or long long division,
2095			 * which would be required to prevent 32bit arithmetic overflow
2096			 */
2097			unsigned int mul = ubir + 1;
2098			unsigned int div = 16 * (ubmr + 1);
2099			unsigned int rem = uartclk % div;
2100
2101			baud_raw = (uartclk / div) * mul;
2102			baud_raw += (rem * mul + div / 2) / div;
2103			*baud = (baud_raw + 50) / 100 * 100;
2104		}
2105
2106		if (*baud != baud_raw)
2107			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2108				baud_raw, *baud);
2109	}
2110}
2111
2112static int
2113imx_uart_console_setup(struct console *co, char *options)
2114{
2115	struct imx_port *sport;
2116	int baud = 9600;
2117	int bits = 8;
2118	int parity = 'n';
2119	int flow = 'n';
2120	int retval;
2121
2122	/*
2123	 * Check whether an invalid uart number has been specified, and
2124	 * if so, search for the first available port that does have
2125	 * console support.
2126	 */
2127	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2128		co->index = 0;
2129	sport = imx_uart_ports[co->index];
2130	if (sport == NULL)
2131		return -ENODEV;
2132
2133	/* For setting the registers, we only need to enable the ipg clock. */
2134	retval = clk_prepare_enable(sport->clk_ipg);
2135	if (retval)
2136		goto error_console;
2137
2138	if (options)
2139		uart_parse_options(options, &baud, &parity, &bits, &flow);
2140	else
2141		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2142
2143	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2144
2145	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2146
2147	if (retval) {
2148		clk_disable_unprepare(sport->clk_ipg);
2149		goto error_console;
2150	}
2151
2152	retval = clk_prepare_enable(sport->clk_per);
2153	if (retval)
2154		clk_disable_unprepare(sport->clk_ipg);
2155
2156error_console:
2157	return retval;
2158}
2159
2160static struct uart_driver imx_uart_uart_driver;
2161static struct console imx_uart_console = {
2162	.name		= DEV_NAME,
2163	.write		= imx_uart_console_write,
2164	.device		= uart_console_device,
2165	.setup		= imx_uart_console_setup,
2166	.flags		= CON_PRINTBUFFER,
2167	.index		= -1,
2168	.data		= &imx_uart_uart_driver,
2169};
2170
2171#define IMX_CONSOLE	&imx_uart_console
2172
2173#else
2174#define IMX_CONSOLE	NULL
2175#endif
2176
2177static struct uart_driver imx_uart_uart_driver = {
2178	.owner          = THIS_MODULE,
2179	.driver_name    = DRIVER_NAME,
2180	.dev_name       = DEV_NAME,
2181	.major          = SERIAL_IMX_MAJOR,
2182	.minor          = MINOR_START,
2183	.nr             = ARRAY_SIZE(imx_uart_ports),
2184	.cons           = IMX_CONSOLE,
2185};
2186
2187#ifdef CONFIG_OF
2188/*
2189 * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it
2190 * could successfully get all information from dt or a negative errno.
2191 */
2192static int imx_uart_probe_dt(struct imx_port *sport,
2193			     struct platform_device *pdev)
2194{
2195	struct device_node *np = pdev->dev.of_node;
2196	int ret;
2197
2198	sport->devdata = of_device_get_match_data(&pdev->dev);
2199	if (!sport->devdata)
2200		/* no device tree device */
2201		return 1;
2202
2203	ret = of_alias_get_id(np, "serial");
2204	if (ret < 0) {
2205		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2206		return ret;
2207	}
2208	sport->port.line = ret;
2209
2210	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2211	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2212		sport->have_rtscts = 1;
2213
2214	if (of_get_property(np, "fsl,dte-mode", NULL))
2215		sport->dte_mode = 1;
2216
2217	if (of_get_property(np, "rts-gpios", NULL))
2218		sport->have_rtsgpio = 1;
2219
2220	if (of_get_property(np, "fsl,inverted-tx", NULL))
2221		sport->inverted_tx = 1;
2222
2223	if (of_get_property(np, "fsl,inverted-rx", NULL))
2224		sport->inverted_rx = 1;
2225
2226	return 0;
2227}
2228#else
2229static inline int imx_uart_probe_dt(struct imx_port *sport,
2230				    struct platform_device *pdev)
2231{
2232	return 1;
2233}
2234#endif
2235
2236static void imx_uart_probe_pdata(struct imx_port *sport,
2237				 struct platform_device *pdev)
2238{
2239	struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev);
2240
2241	sport->port.line = pdev->id;
2242	sport->devdata = (struct imx_uart_data	*) pdev->id_entry->driver_data;
2243
2244	if (!pdata)
2245		return;
2246
2247	if (pdata->flags & IMXUART_HAVE_RTSCTS)
2248		sport->have_rtscts = 1;
2249}
2250
2251static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2252{
2253	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2254	unsigned long flags;
2255
2256	spin_lock_irqsave(&sport->port.lock, flags);
2257	if (sport->tx_state == WAIT_AFTER_RTS)
2258		imx_uart_start_tx(&sport->port);
2259	spin_unlock_irqrestore(&sport->port.lock, flags);
2260
2261	return HRTIMER_NORESTART;
2262}
2263
2264static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2265{
2266	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2267	unsigned long flags;
2268
2269	spin_lock_irqsave(&sport->port.lock, flags);
2270	if (sport->tx_state == WAIT_AFTER_SEND)
2271		imx_uart_stop_tx(&sport->port);
2272	spin_unlock_irqrestore(&sport->port.lock, flags);
2273
2274	return HRTIMER_NORESTART;
2275}
2276
2277static int imx_uart_probe(struct platform_device *pdev)
2278{
2279	struct imx_port *sport;
2280	void __iomem *base;
2281	int ret = 0;
2282	u32 ucr1;
2283	struct resource *res;
2284	int txirq, rxirq, rtsirq;
2285
2286	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2287	if (!sport)
2288		return -ENOMEM;
2289
2290	ret = imx_uart_probe_dt(sport, pdev);
2291	if (ret > 0)
2292		imx_uart_probe_pdata(sport, pdev);
2293	else if (ret < 0)
2294		return ret;
2295
2296	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2297		dev_err(&pdev->dev, "serial%d out of range\n",
2298			sport->port.line);
2299		return -EINVAL;
2300	}
2301
2302	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2303	base = devm_ioremap_resource(&pdev->dev, res);
2304	if (IS_ERR(base))
2305		return PTR_ERR(base);
2306
2307	rxirq = platform_get_irq(pdev, 0);
2308	if (rxirq < 0)
2309		return rxirq;
2310	txirq = platform_get_irq_optional(pdev, 1);
2311	rtsirq = platform_get_irq_optional(pdev, 2);
2312
2313	sport->port.dev = &pdev->dev;
2314	sport->port.mapbase = res->start;
2315	sport->port.membase = base;
2316	sport->port.type = PORT_IMX,
2317	sport->port.iotype = UPIO_MEM;
2318	sport->port.irq = rxirq;
2319	sport->port.fifosize = 32;
2320	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2321	sport->port.ops = &imx_uart_pops;
2322	sport->port.rs485_config = imx_uart_rs485_config;
2323	sport->port.flags = UPF_BOOT_AUTOCONF;
2324	timer_setup(&sport->timer, imx_uart_timeout, 0);
2325
2326	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2327	if (IS_ERR(sport->gpios))
2328		return PTR_ERR(sport->gpios);
2329
2330	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2331	if (IS_ERR(sport->clk_ipg)) {
2332		ret = PTR_ERR(sport->clk_ipg);
2333		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2334		return ret;
2335	}
2336
2337	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2338	if (IS_ERR(sport->clk_per)) {
2339		ret = PTR_ERR(sport->clk_per);
2340		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2341		return ret;
2342	}
2343
2344	sport->port.uartclk = clk_get_rate(sport->clk_per);
2345
2346	/* For register access, we only need to enable the ipg clock. */
2347	ret = clk_prepare_enable(sport->clk_ipg);
2348	if (ret) {
2349		dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret);
2350		return ret;
2351	}
2352
2353	/* initialize shadow register values */
2354	sport->ucr1 = readl(sport->port.membase + UCR1);
2355	sport->ucr2 = readl(sport->port.membase + UCR2);
2356	sport->ucr3 = readl(sport->port.membase + UCR3);
2357	sport->ucr4 = readl(sport->port.membase + UCR4);
2358	sport->ufcr = readl(sport->port.membase + UFCR);
2359
2360	ret = uart_get_rs485_mode(&sport->port);
2361	if (ret)
2362		goto err_clk;
2363
2364	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2365	    (!sport->have_rtscts && !sport->have_rtsgpio))
2366		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2367
2368	/*
2369	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2370	 * signal cannot be set low during transmission in case the
2371	 * receiver is off (limitation of the i.MX UART IP).
2372	 */
2373	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2374	    sport->have_rtscts && !sport->have_rtsgpio &&
2375	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2376	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2377		dev_err(&pdev->dev,
2378			"low-active RTS not possible when receiver is off, enabling receiver\n");
2379
2380	/* Disable interrupts before requesting them */
2381	ucr1 = imx_uart_readl(sport, UCR1);
2382	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2383	imx_uart_writel(sport, ucr1, UCR1);
2384
2385	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2386		/*
2387		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2388		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2389		 * and DCD (when they are outputs) or enables the respective
2390		 * irqs. So set this bit early, i.e. before requesting irqs.
2391		 */
2392		u32 ufcr = imx_uart_readl(sport, UFCR);
2393		if (!(ufcr & UFCR_DCEDTE))
2394			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2395
2396		/*
2397		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2398		 * enabled later because they cannot be cleared
2399		 * (confirmed on i.MX25) which makes them unusable.
2400		 */
2401		imx_uart_writel(sport,
2402				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2403				UCR3);
2404
2405	} else {
2406		u32 ucr3 = UCR3_DSR;
2407		u32 ufcr = imx_uart_readl(sport, UFCR);
2408		if (ufcr & UFCR_DCEDTE)
2409			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2410
2411		if (!imx_uart_is_imx1(sport))
2412			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2413		imx_uart_writel(sport, ucr3, UCR3);
2414	}
2415
2416	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2417	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2418	sport->trigger_start_tx.function = imx_trigger_start_tx;
2419	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2420
2421	/*
2422	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2423	 * chips only have one interrupt.
2424	 */
2425	if (txirq > 0) {
2426		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2427				       dev_name(&pdev->dev), sport);
2428		if (ret) {
2429			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2430				ret);
2431			goto err_clk;
2432		}
2433
2434		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2435				       dev_name(&pdev->dev), sport);
2436		if (ret) {
2437			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2438				ret);
2439			goto err_clk;
2440		}
2441
2442		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2443				       dev_name(&pdev->dev), sport);
2444		if (ret) {
2445			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2446				ret);
2447			goto err_clk;
2448		}
2449	} else {
2450		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2451				       dev_name(&pdev->dev), sport);
2452		if (ret) {
2453			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2454			goto err_clk;
2455		}
2456	}
2457
2458	imx_uart_ports[sport->port.line] = sport;
2459
2460	platform_set_drvdata(pdev, sport);
2461
2462	ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2463
2464err_clk:
2465	clk_disable_unprepare(sport->clk_ipg);
2466
2467	return ret;
2468}
2469
2470static int imx_uart_remove(struct platform_device *pdev)
2471{
2472	struct imx_port *sport = platform_get_drvdata(pdev);
2473
2474	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2475}
2476
2477static void imx_uart_restore_context(struct imx_port *sport)
2478{
2479	unsigned long flags;
2480
2481	spin_lock_irqsave(&sport->port.lock, flags);
2482	if (!sport->context_saved) {
2483		spin_unlock_irqrestore(&sport->port.lock, flags);
2484		return;
2485	}
2486
2487	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2488	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2489	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2490	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2491	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2492	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2493	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2494	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2495	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2496	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2497	sport->context_saved = false;
2498	spin_unlock_irqrestore(&sport->port.lock, flags);
2499}
2500
2501static void imx_uart_save_context(struct imx_port *sport)
2502{
2503	unsigned long flags;
2504
2505	/* Save necessary regs */
2506	spin_lock_irqsave(&sport->port.lock, flags);
2507	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2508	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2509	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2510	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2511	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2512	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2513	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2514	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2515	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2516	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2517	sport->context_saved = true;
2518	spin_unlock_irqrestore(&sport->port.lock, flags);
2519}
2520
2521static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2522{
2523	u32 ucr3;
2524
2525	ucr3 = imx_uart_readl(sport, UCR3);
2526	if (on) {
2527		imx_uart_writel(sport, USR1_AWAKE, USR1);
2528		ucr3 |= UCR3_AWAKEN;
2529	} else {
2530		ucr3 &= ~UCR3_AWAKEN;
2531	}
2532	imx_uart_writel(sport, ucr3, UCR3);
2533
2534	if (sport->have_rtscts) {
2535		u32 ucr1 = imx_uart_readl(sport, UCR1);
2536		if (on)
2537			ucr1 |= UCR1_RTSDEN;
2538		else
2539			ucr1 &= ~UCR1_RTSDEN;
2540		imx_uart_writel(sport, ucr1, UCR1);
2541	}
2542}
2543
2544static int imx_uart_suspend_noirq(struct device *dev)
2545{
2546	struct imx_port *sport = dev_get_drvdata(dev);
2547
2548	imx_uart_save_context(sport);
2549
2550	clk_disable(sport->clk_ipg);
2551
2552	pinctrl_pm_select_sleep_state(dev);
2553
2554	return 0;
2555}
2556
2557static int imx_uart_resume_noirq(struct device *dev)
2558{
2559	struct imx_port *sport = dev_get_drvdata(dev);
2560	int ret;
2561
2562	pinctrl_pm_select_default_state(dev);
2563
2564	ret = clk_enable(sport->clk_ipg);
2565	if (ret)
2566		return ret;
2567
2568	imx_uart_restore_context(sport);
2569
2570	return 0;
2571}
2572
2573static int imx_uart_suspend(struct device *dev)
2574{
2575	struct imx_port *sport = dev_get_drvdata(dev);
2576	int ret;
2577
2578	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2579	disable_irq(sport->port.irq);
2580
2581	ret = clk_prepare_enable(sport->clk_ipg);
2582	if (ret)
2583		return ret;
2584
2585	/* enable wakeup from i.MX UART */
2586	imx_uart_enable_wakeup(sport, true);
2587
2588	return 0;
2589}
2590
2591static int imx_uart_resume(struct device *dev)
2592{
2593	struct imx_port *sport = dev_get_drvdata(dev);
2594
2595	/* disable wakeup from i.MX UART */
2596	imx_uart_enable_wakeup(sport, false);
2597
2598	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2599	enable_irq(sport->port.irq);
2600
2601	clk_disable_unprepare(sport->clk_ipg);
2602
2603	return 0;
2604}
2605
2606static int imx_uart_freeze(struct device *dev)
2607{
2608	struct imx_port *sport = dev_get_drvdata(dev);
2609
2610	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2611
2612	return clk_prepare_enable(sport->clk_ipg);
2613}
2614
2615static int imx_uart_thaw(struct device *dev)
2616{
2617	struct imx_port *sport = dev_get_drvdata(dev);
2618
2619	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2620
2621	clk_disable_unprepare(sport->clk_ipg);
2622
2623	return 0;
2624}
2625
2626static const struct dev_pm_ops imx_uart_pm_ops = {
2627	.suspend_noirq = imx_uart_suspend_noirq,
2628	.resume_noirq = imx_uart_resume_noirq,
2629	.freeze_noirq = imx_uart_suspend_noirq,
2630	.thaw_noirq = imx_uart_resume_noirq,
2631	.restore_noirq = imx_uart_resume_noirq,
2632	.suspend = imx_uart_suspend,
2633	.resume = imx_uart_resume,
2634	.freeze = imx_uart_freeze,
2635	.thaw = imx_uart_thaw,
2636	.restore = imx_uart_thaw,
2637};
2638
2639static struct platform_driver imx_uart_platform_driver = {
2640	.probe = imx_uart_probe,
2641	.remove = imx_uart_remove,
2642
2643	.id_table = imx_uart_devtype,
2644	.driver = {
2645		.name = "imx-uart",
2646		.of_match_table = imx_uart_dt_ids,
2647		.pm = &imx_uart_pm_ops,
2648	},
2649};
2650
2651static int __init imx_uart_init(void)
2652{
2653	int ret = uart_register_driver(&imx_uart_uart_driver);
2654
2655	if (ret)
2656		return ret;
2657
2658	ret = platform_driver_register(&imx_uart_platform_driver);
2659	if (ret != 0)
2660		uart_unregister_driver(&imx_uart_uart_driver);
2661
2662	return ret;
2663}
2664
2665static void __exit imx_uart_exit(void)
2666{
2667	platform_driver_unregister(&imx_uart_platform_driver);
2668	uart_unregister_driver(&imx_uart_uart_driver);
2669}
2670
2671module_init(imx_uart_init);
2672module_exit(imx_uart_exit);
2673
2674MODULE_AUTHOR("Sascha Hauer");
2675MODULE_DESCRIPTION("IMX generic serial port driver");
2676MODULE_LICENSE("GPL");
2677MODULE_ALIAS("platform:imx-uart");
2678