1// SPDX-License-Identifier: GPL-2.0
2/****************************************************************************
3 *
4 * Driver for the IFX 6x60 spi modem.
5 *
6 * Copyright (C) 2008 Option International
7 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
8 *		      Denis Joseph Barrow <d.barow@option.com>
9 *		      Jan Dumon <j.dumon@option.com>
10 *
11 * Copyright (C) 2009, 2010 Intel Corp
12 * Russ Gorby <russ.gorby@intel.com>
13 *
14 * Driver modified by Intel from Option gtm501l_spi.c
15 *
16 * Notes
17 * o	The driver currently assumes a single device only. If you need to
18 *	change this then look for saved_ifx_dev and add a device lookup
19 * o	The driver is intended to be big-endian safe but has never been
20 *	tested that way (no suitable hardware). There are a couple of FIXME
21 *	notes by areas that may need addressing
22 * o	Some of the GPIO naming/setup assumptions may need revisiting if
23 *	you need to use this driver for another platform.
24 *
25 *****************************************************************************/
26#include <linux/dma-mapping.h>
27#include <linux/module.h>
28#include <linux/termios.h>
29#include <linux/tty.h>
30#include <linux/device.h>
31#include <linux/spi/spi.h>
32#include <linux/kfifo.h>
33#include <linux/tty_flip.h>
34#include <linux/timer.h>
35#include <linux/serial.h>
36#include <linux/interrupt.h>
37#include <linux/irq.h>
38#include <linux/rfkill.h>
39#include <linux/fs.h>
40#include <linux/ip.h>
41#include <linux/dmapool.h>
42#include <linux/gpio/consumer.h>
43#include <linux/sched.h>
44#include <linux/time.h>
45#include <linux/wait.h>
46#include <linux/pm.h>
47#include <linux/pm_runtime.h>
48#include <linux/spi/ifx_modem.h>
49#include <linux/delay.h>
50#include <linux/reboot.h>
51
52#include "ifx6x60.h"
53
54#define IFX_SPI_MORE_MASK		0x10
55#define IFX_SPI_MORE_BIT		4	/* bit position in u8 */
56#define IFX_SPI_CTS_BIT			6	/* bit position in u8 */
57#define IFX_SPI_MODE			SPI_MODE_1
58#define IFX_SPI_TTY_ID			0
59#define IFX_SPI_TIMEOUT_SEC		2
60#define IFX_SPI_HEADER_0		(-1)
61#define IFX_SPI_HEADER_F		(-2)
62
63#define PO_POST_DELAY		200
64
65/* forward reference */
66static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
67static int ifx_modem_reboot_callback(struct notifier_block *nfb,
68				unsigned long event, void *data);
69static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
70
71/* local variables */
72static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
73static struct tty_driver *tty_drv;
74static struct ifx_spi_device *saved_ifx_dev;
75static struct lock_class_key ifx_spi_key;
76
77static struct notifier_block ifx_modem_reboot_notifier_block = {
78	.notifier_call = ifx_modem_reboot_callback,
79};
80
81static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
82{
83	gpiod_set_value(ifx_dev->gpio.pmu_reset, 1);
84	msleep(PO_POST_DELAY);
85
86	return 0;
87}
88
89static int ifx_modem_reboot_callback(struct notifier_block *nfb,
90				 unsigned long event, void *data)
91{
92	if (saved_ifx_dev)
93		ifx_modem_power_off(saved_ifx_dev);
94	else
95		pr_warn("no ifx modem active;\n");
96
97	return NOTIFY_OK;
98}
99
100/* GPIO/GPE settings */
101
102/**
103 *	mrdy_set_high		-	set MRDY GPIO
104 *	@ifx: device we are controlling
105 *
106 */
107static inline void mrdy_set_high(struct ifx_spi_device *ifx)
108{
109	gpiod_set_value(ifx->gpio.mrdy, 1);
110}
111
112/**
113 *	mrdy_set_low		-	clear MRDY GPIO
114 *	@ifx: device we are controlling
115 *
116 */
117static inline void mrdy_set_low(struct ifx_spi_device *ifx)
118{
119	gpiod_set_value(ifx->gpio.mrdy, 0);
120}
121
122/**
123 *	ifx_spi_power_state_set
124 *	@ifx_dev: our SPI device
125 *	@val: bits to set
126 *
127 *	Set bit in power status and signal power system if status becomes non-0
128 */
129static void
130ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
131{
132	unsigned long flags;
133
134	spin_lock_irqsave(&ifx_dev->power_lock, flags);
135
136	/*
137	 * if power status is already non-0, just update, else
138	 * tell power system
139	 */
140	if (!ifx_dev->power_status)
141		pm_runtime_get(&ifx_dev->spi_dev->dev);
142	ifx_dev->power_status |= val;
143
144	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
145}
146
147/**
148 *	ifx_spi_power_state_clear	-	clear power bit
149 *	@ifx_dev: our SPI device
150 *	@val: bits to clear
151 *
152 *	clear bit in power status and signal power system if status becomes 0
153 */
154static void
155ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
156{
157	unsigned long flags;
158
159	spin_lock_irqsave(&ifx_dev->power_lock, flags);
160
161	if (ifx_dev->power_status) {
162		ifx_dev->power_status &= ~val;
163		if (!ifx_dev->power_status)
164			pm_runtime_put(&ifx_dev->spi_dev->dev);
165	}
166
167	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
168}
169
170/**
171 *	swap_buf_8
172 *	@buf: our buffer
173 *	@len : number of bytes (not words) in the buffer
174 *	@end: end of buffer
175 *
176 *	Swap the contents of a buffer into big endian format
177 */
178static inline void swap_buf_8(unsigned char *buf, int len, void *end)
179{
180	/* don't swap buffer if SPI word width is 8 bits */
181	return;
182}
183
184/**
185 *	swap_buf_16
186 *	@buf: our buffer
187 *	@len : number of bytes (not words) in the buffer
188 *	@end: end of buffer
189 *
190 *	Swap the contents of a buffer into big endian format
191 */
192static inline void swap_buf_16(unsigned char *buf, int len, void *end)
193{
194	int n;
195
196	u16 *buf_16 = (u16 *)buf;
197	len = ((len + 1) >> 1);
198	if ((void *)&buf_16[len] > end) {
199		pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
200		       &buf_16[len], end);
201		return;
202	}
203	for (n = 0; n < len; n++) {
204		*buf_16 = cpu_to_be16(*buf_16);
205		buf_16++;
206	}
207}
208
209/**
210 *	swap_buf_32
211 *	@buf: our buffer
212 *	@len : number of bytes (not words) in the buffer
213 *	@end: end of buffer
214 *
215 *	Swap the contents of a buffer into big endian format
216 */
217static inline void swap_buf_32(unsigned char *buf, int len, void *end)
218{
219	int n;
220
221	u32 *buf_32 = (u32 *)buf;
222	len = (len + 3) >> 2;
223
224	if ((void *)&buf_32[len] > end) {
225		pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
226		       &buf_32[len], end);
227		return;
228	}
229	for (n = 0; n < len; n++) {
230		*buf_32 = cpu_to_be32(*buf_32);
231		buf_32++;
232	}
233}
234
235/**
236 *	mrdy_assert		-	assert MRDY line
237 *	@ifx_dev: our SPI device
238 *
239 *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
240 *	now.
241 *
242 *	FIXME: Can SRDY even go high as we are running this code ?
243 */
244static void mrdy_assert(struct ifx_spi_device *ifx_dev)
245{
246	int val = gpiod_get_value(ifx_dev->gpio.srdy);
247	if (!val) {
248		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
249				      &ifx_dev->flags)) {
250			mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
251
252		}
253	}
254	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
255	mrdy_set_high(ifx_dev);
256}
257
258/**
259 *	ifx_spi_timeout		-	SPI timeout
260 *	@t: timer in our SPI device
261 *
262 *	The SPI has timed out: hang up the tty. Users will then see a hangup
263 *	and error events.
264 */
265static void ifx_spi_timeout(struct timer_list *t)
266{
267	struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
268
269	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
270	tty_port_tty_hangup(&ifx_dev->tty_port, false);
271	mrdy_set_low(ifx_dev);
272	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
273}
274
275/* char/tty operations */
276
277/**
278 *	ifx_spi_tiocmget	-	get modem lines
279 *	@tty: our tty device
280 *
281 *	Map the signal state into Linux modem flags and report the value
282 *	in Linux terms
283 */
284static int ifx_spi_tiocmget(struct tty_struct *tty)
285{
286	unsigned int value;
287	struct ifx_spi_device *ifx_dev = tty->driver_data;
288
289	value =
290	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
291	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
292	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
293	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
294	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
295	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
296	return value;
297}
298
299/**
300 *	ifx_spi_tiocmset	-	set modem bits
301 *	@tty: the tty structure
302 *	@set: bits to set
303 *	@clear: bits to clear
304 *
305 *	The IFX6x60 only supports DTR and RTS. Set them accordingly
306 *	and flag that an update to the modem is needed.
307 *
308 *	FIXME: do we need to kick the tranfers when we do this ?
309 */
310static int ifx_spi_tiocmset(struct tty_struct *tty,
311			    unsigned int set, unsigned int clear)
312{
313	struct ifx_spi_device *ifx_dev = tty->driver_data;
314
315	if (set & TIOCM_RTS)
316		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
317	if (set & TIOCM_DTR)
318		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
319	if (clear & TIOCM_RTS)
320		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
321	if (clear & TIOCM_DTR)
322		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
323
324	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
325	return 0;
326}
327
328/**
329 *	ifx_spi_open	-	called on tty open
330 *	@tty: our tty device
331 *	@filp: file handle being associated with the tty
332 *
333 *	Open the tty interface. We let the tty_port layer do all the work
334 *	for us.
335 *
336 *	FIXME: Remove single device assumption and saved_ifx_dev
337 */
338static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
339{
340	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
341}
342
343/**
344 *	ifx_spi_close	-	called when our tty closes
345 *	@tty: the tty being closed
346 *	@filp: the file handle being closed
347 *
348 *	Perform the close of the tty. We use the tty_port layer to do all
349 *	our hard work.
350 */
351static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
352{
353	struct ifx_spi_device *ifx_dev = tty->driver_data;
354	tty_port_close(&ifx_dev->tty_port, tty, filp);
355	/* FIXME: should we do an ifx_spi_reset here ? */
356}
357
358/**
359 *	ifx_decode_spi_header	-	decode received header
360 *	@buffer: the received data
361 *	@length: decoded length
362 *	@more: decoded more flag
363 *	@received_cts: status of cts we received
364 *
365 *	Note how received_cts is handled -- if header is all F it is left
366 *	the same as it was, if header is all 0 it is set to 0 otherwise it is
367 *	taken from the incoming header.
368 *
369 *	FIXME: endianness
370 */
371static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
372			unsigned char *more, unsigned char *received_cts)
373{
374	u16 h1;
375	u16 h2;
376	u16 *in_buffer = (u16 *)buffer;
377
378	h1 = *in_buffer;
379	h2 = *(in_buffer+1);
380
381	if (h1 == 0 && h2 == 0) {
382		*received_cts = 0;
383		*more = 0;
384		return IFX_SPI_HEADER_0;
385	} else if (h1 == 0xffff && h2 == 0xffff) {
386		*more = 0;
387		/* spi_slave_cts remains as it was */
388		return IFX_SPI_HEADER_F;
389	}
390
391	*length = h1 & 0xfff;	/* upper bits of byte are flags */
392	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
393	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
394	return 0;
395}
396
397/**
398 *	ifx_setup_spi_header	-	set header fields
399 *	@txbuffer: pointer to start of SPI buffer
400 *	@tx_count: bytes
401 *	@more: indicate if more to follow
402 *
403 *	Format up an SPI header for a transfer
404 *
405 *	FIXME: endianness?
406 */
407static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
408					unsigned char more)
409{
410	*(u16 *)(txbuffer) = tx_count;
411	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
412	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
413}
414
415/**
416 *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
417 *	@ifx_dev: our SPI device
418 *
419 *	The transmit buffr needs a header and various other bits of
420 *	information followed by as much data as we can pull from the FIFO
421 *	and transfer. This function formats up a suitable buffer in the
422 *	ifx_dev->tx_buffer
423 *
424 *	FIXME: performance - should we wake the tty when the queue is half
425 *			     empty ?
426 */
427static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
428{
429	int temp_count;
430	int queue_length;
431	int tx_count;
432	unsigned char *tx_buffer;
433
434	tx_buffer = ifx_dev->tx_buffer;
435
436	/* make room for required SPI header */
437	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
438	tx_count = IFX_SPI_HEADER_OVERHEAD;
439
440	/* clear to signal no more data if this turns out to be the
441	 * last buffer sent in a sequence */
442	ifx_dev->spi_more = 0;
443
444	/* if modem cts is set, just send empty buffer */
445	if (!ifx_dev->spi_slave_cts) {
446		/* see if there's tx data */
447		queue_length = kfifo_len(&ifx_dev->tx_fifo);
448		if (queue_length != 0) {
449			/* data to mux -- see if there's room for it */
450			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
451			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
452					tx_buffer, temp_count,
453					&ifx_dev->fifo_lock);
454
455			/* update buffer pointer and data count in message */
456			tx_buffer += temp_count;
457			tx_count += temp_count;
458			if (temp_count == queue_length)
459				/* poke port to get more data */
460				tty_port_tty_wakeup(&ifx_dev->tty_port);
461			else /* more data in port, use next SPI message */
462				ifx_dev->spi_more = 1;
463		}
464	}
465	/* have data and info for header -- set up SPI header in buffer */
466	/* spi header needs payload size, not entire buffer size */
467	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
468					tx_count-IFX_SPI_HEADER_OVERHEAD,
469					ifx_dev->spi_more);
470	/* swap actual data in the buffer */
471	ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
472		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
473	return tx_count;
474}
475
476/**
477 *	ifx_spi_write		-	line discipline write
478 *	@tty: our tty device
479 *	@buf: pointer to buffer to write (kernel space)
480 *	@count: size of buffer
481 *
482 *	Write the characters we have been given into the FIFO. If the device
483 *	is not active then activate it, when the SRDY line is asserted back
484 *	this will commence I/O
485 */
486static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
487			 int count)
488{
489	struct ifx_spi_device *ifx_dev = tty->driver_data;
490	unsigned char *tmp_buf = (unsigned char *)buf;
491	unsigned long flags;
492	bool is_fifo_empty;
493	int tx_count;
494
495	spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
496	is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
497	tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
498	spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
499	if (is_fifo_empty)
500		mrdy_assert(ifx_dev);
501
502	return tx_count;
503}
504
505/**
506 *	ifx_spi_chars_in_buffer	-	line discipline helper
507 *	@tty: our tty device
508 *
509 *	Report how much data we can accept before we drop bytes. As we use
510 *	a simple FIFO this is nice and easy.
511 */
512static int ifx_spi_write_room(struct tty_struct *tty)
513{
514	struct ifx_spi_device *ifx_dev = tty->driver_data;
515	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
516}
517
518/**
519 *	ifx_spi_chars_in_buffer	-	line discipline helper
520 *	@tty: our tty device
521 *
522 *	Report how many characters we have buffered. In our case this is the
523 *	number of bytes sitting in our transmit FIFO.
524 */
525static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
526{
527	struct ifx_spi_device *ifx_dev = tty->driver_data;
528	return kfifo_len(&ifx_dev->tx_fifo);
529}
530
531/**
532 *	ifx_port_hangup
533 *	@tty: our tty
534 *
535 *	tty port hang up. Called when tty_hangup processing is invoked either
536 *	by loss of carrier, or by software (eg vhangup). Serialized against
537 *	activate/shutdown by the tty layer.
538 */
539static void ifx_spi_hangup(struct tty_struct *tty)
540{
541	struct ifx_spi_device *ifx_dev = tty->driver_data;
542	tty_port_hangup(&ifx_dev->tty_port);
543}
544
545/**
546 *	ifx_port_activate
547 *	@port: our tty port
548 *
549 *	tty port activate method - called for first open. Serialized
550 *	with hangup and shutdown by the tty layer.
551 */
552static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
553{
554	struct ifx_spi_device *ifx_dev =
555		container_of(port, struct ifx_spi_device, tty_port);
556
557	/* clear any old data; can't do this in 'close' */
558	kfifo_reset(&ifx_dev->tx_fifo);
559
560	/* clear any flag which may be set in port shutdown procedure */
561	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
562	clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
563
564	/* put port data into this tty */
565	tty->driver_data = ifx_dev;
566
567	/* allows flip string push from int context */
568	port->low_latency = 1;
569
570	/* set flag to allows data transfer */
571	set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
572
573	return 0;
574}
575
576/**
577 *	ifx_port_shutdown
578 *	@port: our tty port
579 *
580 *	tty port shutdown method - called for last port close. Serialized
581 *	with hangup and activate by the tty layer.
582 */
583static void ifx_port_shutdown(struct tty_port *port)
584{
585	struct ifx_spi_device *ifx_dev =
586		container_of(port, struct ifx_spi_device, tty_port);
587
588	clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
589	mrdy_set_low(ifx_dev);
590	del_timer(&ifx_dev->spi_timer);
591	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
592	tasklet_kill(&ifx_dev->io_work_tasklet);
593}
594
595static const struct tty_port_operations ifx_tty_port_ops = {
596	.activate = ifx_port_activate,
597	.shutdown = ifx_port_shutdown,
598};
599
600static const struct tty_operations ifx_spi_serial_ops = {
601	.open = ifx_spi_open,
602	.close = ifx_spi_close,
603	.write = ifx_spi_write,
604	.hangup = ifx_spi_hangup,
605	.write_room = ifx_spi_write_room,
606	.chars_in_buffer = ifx_spi_chars_in_buffer,
607	.tiocmget = ifx_spi_tiocmget,
608	.tiocmset = ifx_spi_tiocmset,
609};
610
611/**
612 *	ifx_spi_insert_fip_string	-	queue received data
613 *	@ifx_dev: our SPI device
614 *	@chars: buffer we have received
615 *	@size: number of chars reeived
616 *
617 *	Queue bytes to the tty assuming the tty side is currently open. If
618 *	not the discard the data.
619 */
620static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
621				    unsigned char *chars, size_t size)
622{
623	tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
624	tty_flip_buffer_push(&ifx_dev->tty_port);
625}
626
627/**
628 *	ifx_spi_complete	-	SPI transfer completed
629 *	@ctx: our SPI device
630 *
631 *	An SPI transfer has completed. Process any received data and kick off
632 *	any further transmits we can commence.
633 */
634static void ifx_spi_complete(void *ctx)
635{
636	struct ifx_spi_device *ifx_dev = ctx;
637	int length;
638	int actual_length;
639	unsigned char more = 0;
640	unsigned char cts;
641	int local_write_pending = 0;
642	int queue_length;
643	int srdy;
644	int decode_result;
645
646	mrdy_set_low(ifx_dev);
647
648	if (!ifx_dev->spi_msg.status) {
649		/* check header validity, get comm flags */
650		ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
651			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
652		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
653				&length, &more, &cts);
654		if (decode_result == IFX_SPI_HEADER_0) {
655			dev_dbg(&ifx_dev->spi_dev->dev,
656				"ignore input: invalid header 0");
657			ifx_dev->spi_slave_cts = 0;
658			goto complete_exit;
659		} else if (decode_result == IFX_SPI_HEADER_F) {
660			dev_dbg(&ifx_dev->spi_dev->dev,
661				"ignore input: invalid header F");
662			goto complete_exit;
663		}
664
665		ifx_dev->spi_slave_cts = cts;
666
667		actual_length = min((unsigned int)length,
668					ifx_dev->spi_msg.actual_length);
669		ifx_dev->swap_buf(
670			(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
671			 actual_length,
672			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
673		ifx_spi_insert_flip_string(
674			ifx_dev,
675			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
676			(size_t)actual_length);
677	} else {
678		more = 0;
679		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
680		       ifx_dev->spi_msg.status);
681	}
682
683complete_exit:
684	if (ifx_dev->write_pending) {
685		ifx_dev->write_pending = 0;
686		local_write_pending = 1;
687	}
688
689	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
690
691	queue_length = kfifo_len(&ifx_dev->tx_fifo);
692	srdy = gpiod_get_value(ifx_dev->gpio.srdy);
693	if (!srdy)
694		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
695
696	/* schedule output if there is more to do */
697	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
698		tasklet_schedule(&ifx_dev->io_work_tasklet);
699	else {
700		if (more || ifx_dev->spi_more || queue_length > 0 ||
701			local_write_pending) {
702			if (ifx_dev->spi_slave_cts) {
703				if (more)
704					mrdy_assert(ifx_dev);
705			} else
706				mrdy_assert(ifx_dev);
707		} else {
708			/*
709			 * poke line discipline driver if any for more data
710			 * may or may not get more data to write
711			 * for now, say not busy
712			 */
713			ifx_spi_power_state_clear(ifx_dev,
714						  IFX_SPI_POWER_DATA_PENDING);
715			tty_port_tty_wakeup(&ifx_dev->tty_port);
716		}
717	}
718}
719
720/**
721 *	ifx_spio_io		-	I/O tasklet
722 *	@data: our SPI device
723 *
724 *	Queue data for transmission if possible and then kick off the
725 *	transfer.
726 */
727static void ifx_spi_io(struct tasklet_struct *t)
728{
729	int retval;
730	struct ifx_spi_device *ifx_dev = from_tasklet(ifx_dev, t,
731						      io_work_tasklet);
732
733	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
734		test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
735		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
736			ifx_dev->gpio.unack_srdy_int_nb--;
737
738		ifx_spi_prepare_tx_buffer(ifx_dev);
739
740		spi_message_init(&ifx_dev->spi_msg);
741		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
742
743		ifx_dev->spi_msg.context = ifx_dev;
744		ifx_dev->spi_msg.complete = ifx_spi_complete;
745
746		/* set up our spi transfer */
747		/* note len is BYTES, not transfers */
748		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
749		ifx_dev->spi_xfer.cs_change = 0;
750		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
751		/* ifx_dev->spi_xfer.speed_hz = 390625; */
752		ifx_dev->spi_xfer.bits_per_word =
753			ifx_dev->spi_dev->bits_per_word;
754
755		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
756		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
757
758		/*
759		 * setup dma pointers
760		 */
761		if (ifx_dev->use_dma) {
762			ifx_dev->spi_msg.is_dma_mapped = 1;
763			ifx_dev->tx_dma = ifx_dev->tx_bus;
764			ifx_dev->rx_dma = ifx_dev->rx_bus;
765			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
766			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
767		} else {
768			ifx_dev->spi_msg.is_dma_mapped = 0;
769			ifx_dev->tx_dma = (dma_addr_t)0;
770			ifx_dev->rx_dma = (dma_addr_t)0;
771			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
772			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
773		}
774
775		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
776
777		/* Assert MRDY. This may have already been done by the write
778		 * routine.
779		 */
780		mrdy_assert(ifx_dev);
781
782		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
783		if (retval) {
784			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
785				  &ifx_dev->flags);
786			tasklet_schedule(&ifx_dev->io_work_tasklet);
787			return;
788		}
789	} else
790		ifx_dev->write_pending = 1;
791}
792
793/**
794 *	ifx_spi_free_port	-	free up the tty side
795 *	@ifx_dev: IFX device going away
796 *
797 *	Unregister and free up a port when the device goes away
798 */
799static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
800{
801	if (ifx_dev->tty_dev)
802		tty_unregister_device(tty_drv, ifx_dev->minor);
803	tty_port_destroy(&ifx_dev->tty_port);
804	kfifo_free(&ifx_dev->tx_fifo);
805}
806
807/**
808 *	ifx_spi_create_port	-	create a new port
809 *	@ifx_dev: our spi device
810 *
811 *	Allocate and initialise the tty port that goes with this interface
812 *	and add it to the tty layer so that it can be opened.
813 */
814static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
815{
816	int ret = 0;
817	struct tty_port *pport = &ifx_dev->tty_port;
818
819	spin_lock_init(&ifx_dev->fifo_lock);
820	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
821		&ifx_spi_key, 0);
822
823	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
824		ret = -ENOMEM;
825		goto error_ret;
826	}
827
828	tty_port_init(pport);
829	pport->ops = &ifx_tty_port_ops;
830	ifx_dev->minor = IFX_SPI_TTY_ID;
831	ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
832			ifx_dev->minor, &ifx_dev->spi_dev->dev);
833	if (IS_ERR(ifx_dev->tty_dev)) {
834		dev_dbg(&ifx_dev->spi_dev->dev,
835			"%s: registering tty device failed", __func__);
836		ret = PTR_ERR(ifx_dev->tty_dev);
837		goto error_port;
838	}
839	return 0;
840
841error_port:
842	tty_port_destroy(pport);
843error_ret:
844	ifx_spi_free_port(ifx_dev);
845	return ret;
846}
847
848/**
849 *	ifx_spi_handle_srdy		-	handle SRDY
850 *	@ifx_dev: device asserting SRDY
851 *
852 *	Check our device state and see what we need to kick off when SRDY
853 *	is asserted. This usually means killing the timer and firing off the
854 *	I/O processing.
855 */
856static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
857{
858	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
859		del_timer(&ifx_dev->spi_timer);
860		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
861	}
862
863	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
864
865	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
866		tasklet_schedule(&ifx_dev->io_work_tasklet);
867	else
868		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
869}
870
871/**
872 *	ifx_spi_srdy_interrupt	-	SRDY asserted
873 *	@irq: our IRQ number
874 *	@dev: our ifx device
875 *
876 *	The modem asserted SRDY. Handle the srdy event
877 */
878static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
879{
880	struct ifx_spi_device *ifx_dev = dev;
881	ifx_dev->gpio.unack_srdy_int_nb++;
882	ifx_spi_handle_srdy(ifx_dev);
883	return IRQ_HANDLED;
884}
885
886/**
887 *	ifx_spi_reset_interrupt	-	Modem has changed reset state
888 *	@irq: interrupt number
889 *	@dev: our device pointer
890 *
891 *	The modem has either entered or left reset state. Check the GPIO
892 *	line to see which.
893 *
894 *	FIXME: review locking on MR_INPROGRESS versus
895 *	parallel unsolicited reset/solicited reset
896 */
897static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
898{
899	struct ifx_spi_device *ifx_dev = dev;
900	int val = gpiod_get_value(ifx_dev->gpio.reset_out);
901	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
902
903	if (val == 0) {
904		/* entered reset */
905		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
906		if (!solreset) {
907			/* unsolicited reset  */
908			tty_port_tty_hangup(&ifx_dev->tty_port, false);
909		}
910	} else {
911		/* exited reset */
912		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
913		if (solreset) {
914			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
915			wake_up(&ifx_dev->mdm_reset_wait);
916		}
917	}
918	return IRQ_HANDLED;
919}
920
921/**
922 *	ifx_spi_free_device - free device
923 *	@ifx_dev: device to free
924 *
925 *	Free the IFX device
926 */
927static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
928{
929	ifx_spi_free_port(ifx_dev);
930	dma_free_coherent(&ifx_dev->spi_dev->dev,
931				IFX_SPI_TRANSFER_SIZE,
932				ifx_dev->tx_buffer,
933				ifx_dev->tx_bus);
934	dma_free_coherent(&ifx_dev->spi_dev->dev,
935				IFX_SPI_TRANSFER_SIZE,
936				ifx_dev->rx_buffer,
937				ifx_dev->rx_bus);
938}
939
940/**
941 *	ifx_spi_reset	-	reset modem
942 *	@ifx_dev: modem to reset
943 *
944 *	Perform a reset on the modem
945 */
946static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
947{
948	int ret;
949	/*
950	 * set up modem power, reset
951	 *
952	 * delays are required on some platforms for the modem
953	 * to reset properly
954	 */
955	set_bit(MR_START, &ifx_dev->mdm_reset_state);
956	gpiod_set_value(ifx_dev->gpio.po, 0);
957	gpiod_set_value(ifx_dev->gpio.reset, 0);
958	msleep(25);
959	gpiod_set_value(ifx_dev->gpio.reset, 1);
960	msleep(1);
961	gpiod_set_value(ifx_dev->gpio.po, 1);
962	msleep(1);
963	gpiod_set_value(ifx_dev->gpio.po, 0);
964	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
965				 test_bit(MR_COMPLETE,
966					  &ifx_dev->mdm_reset_state),
967				 IFX_RESET_TIMEOUT);
968	if (!ret)
969		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
970			 ifx_dev->mdm_reset_state);
971
972	ifx_dev->mdm_reset_state = 0;
973	return ret;
974}
975
976/**
977 *	ifx_spi_spi_probe	-	probe callback
978 *	@spi: our possible matching SPI device
979 *
980 *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
981 *	GPIO setup.
982 *
983 *	FIXME:
984 *	-	Support for multiple devices
985 *	-	Split out MID specific GPIO handling eventually
986 */
987
988static int ifx_spi_spi_probe(struct spi_device *spi)
989{
990	int ret;
991	int srdy;
992	struct ifx_modem_platform_data *pl_data;
993	struct ifx_spi_device *ifx_dev;
994	struct device *dev = &spi->dev;
995
996	if (saved_ifx_dev) {
997		dev_dbg(dev, "ignoring subsequent detection");
998		return -ENODEV;
999	}
1000
1001	pl_data = dev_get_platdata(dev);
1002	if (!pl_data) {
1003		dev_err(dev, "missing platform data!");
1004		return -ENODEV;
1005	}
1006
1007	/* initialize structure to hold our device variables */
1008	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1009	if (!ifx_dev) {
1010		dev_err(dev, "spi device allocation failed");
1011		return -ENOMEM;
1012	}
1013	saved_ifx_dev = ifx_dev;
1014	ifx_dev->spi_dev = spi;
1015	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1016	spin_lock_init(&ifx_dev->write_lock);
1017	spin_lock_init(&ifx_dev->power_lock);
1018	ifx_dev->power_status = 0;
1019	timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
1020	ifx_dev->modem = pl_data->modem_type;
1021	ifx_dev->use_dma = pl_data->use_dma;
1022	ifx_dev->max_hz = pl_data->max_hz;
1023	/* initialize spi mode, etc */
1024	spi->max_speed_hz = ifx_dev->max_hz;
1025	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1026	spi->bits_per_word = spi_bpw;
1027	ret = spi_setup(spi);
1028	if (ret) {
1029		dev_err(dev, "SPI setup wasn't successful %d", ret);
1030		kfree(ifx_dev);
1031		return -ENODEV;
1032	}
1033
1034	/* init swap_buf function according to word width configuration */
1035	if (spi->bits_per_word == 32)
1036		ifx_dev->swap_buf = swap_buf_32;
1037	else if (spi->bits_per_word == 16)
1038		ifx_dev->swap_buf = swap_buf_16;
1039	else
1040		ifx_dev->swap_buf = swap_buf_8;
1041
1042	/* ensure SPI protocol flags are initialized to enable transfer */
1043	ifx_dev->spi_more = 0;
1044	ifx_dev->spi_slave_cts = 0;
1045
1046	/*initialize transfer and dma buffers */
1047	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1048				IFX_SPI_TRANSFER_SIZE,
1049				&ifx_dev->tx_bus,
1050				GFP_KERNEL);
1051	if (!ifx_dev->tx_buffer) {
1052		dev_err(dev, "DMA-TX buffer allocation failed");
1053		ret = -ENOMEM;
1054		goto error_ret;
1055	}
1056	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1057				IFX_SPI_TRANSFER_SIZE,
1058				&ifx_dev->rx_bus,
1059				GFP_KERNEL);
1060	if (!ifx_dev->rx_buffer) {
1061		dev_err(dev, "DMA-RX buffer allocation failed");
1062		ret = -ENOMEM;
1063		goto error_ret;
1064	}
1065
1066	/* initialize waitq for modem reset */
1067	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1068
1069	spi_set_drvdata(spi, ifx_dev);
1070	tasklet_setup(&ifx_dev->io_work_tasklet, ifx_spi_io);
1071
1072	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1073
1074	/* create our tty port */
1075	ret = ifx_spi_create_port(ifx_dev);
1076	if (ret != 0) {
1077		dev_err(dev, "create default tty port failed");
1078		goto error_ret;
1079	}
1080
1081	ifx_dev->gpio.reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
1082	if (IS_ERR(ifx_dev->gpio.reset)) {
1083		dev_err(dev, "could not obtain reset GPIO\n");
1084		ret = PTR_ERR(ifx_dev->gpio.reset);
1085		goto error_ret;
1086	}
1087	gpiod_set_consumer_name(ifx_dev->gpio.reset, "ifxModem reset");
1088	ifx_dev->gpio.po = devm_gpiod_get(dev, "power", GPIOD_OUT_LOW);
1089	if (IS_ERR(ifx_dev->gpio.po)) {
1090		dev_err(dev, "could not obtain power GPIO\n");
1091		ret = PTR_ERR(ifx_dev->gpio.po);
1092		goto error_ret;
1093	}
1094	gpiod_set_consumer_name(ifx_dev->gpio.po, "ifxModem power");
1095	ifx_dev->gpio.mrdy = devm_gpiod_get(dev, "mrdy", GPIOD_OUT_LOW);
1096	if (IS_ERR(ifx_dev->gpio.mrdy)) {
1097		dev_err(dev, "could not obtain mrdy GPIO\n");
1098		ret = PTR_ERR(ifx_dev->gpio.mrdy);
1099		goto error_ret;
1100	}
1101	gpiod_set_consumer_name(ifx_dev->gpio.mrdy, "ifxModem mrdy");
1102	ifx_dev->gpio.srdy = devm_gpiod_get(dev, "srdy", GPIOD_IN);
1103	if (IS_ERR(ifx_dev->gpio.srdy)) {
1104		dev_err(dev, "could not obtain srdy GPIO\n");
1105		ret = PTR_ERR(ifx_dev->gpio.srdy);
1106		goto error_ret;
1107	}
1108	gpiod_set_consumer_name(ifx_dev->gpio.srdy, "ifxModem srdy");
1109	ifx_dev->gpio.reset_out = devm_gpiod_get(dev, "rst_out", GPIOD_IN);
1110	if (IS_ERR(ifx_dev->gpio.reset_out)) {
1111		dev_err(dev, "could not obtain rst_out GPIO\n");
1112		ret = PTR_ERR(ifx_dev->gpio.reset_out);
1113		goto error_ret;
1114	}
1115	gpiod_set_consumer_name(ifx_dev->gpio.reset_out, "ifxModem reset out");
1116	ifx_dev->gpio.pmu_reset = devm_gpiod_get(dev, "pmu_reset", GPIOD_ASIS);
1117	if (IS_ERR(ifx_dev->gpio.pmu_reset)) {
1118		dev_err(dev, "could not obtain pmu_reset GPIO\n");
1119		ret = PTR_ERR(ifx_dev->gpio.pmu_reset);
1120		goto error_ret;
1121	}
1122	gpiod_set_consumer_name(ifx_dev->gpio.pmu_reset, "ifxModem PMU reset");
1123
1124	ret = request_irq(gpiod_to_irq(ifx_dev->gpio.reset_out),
1125			  ifx_spi_reset_interrupt,
1126			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1127			  ifx_dev);
1128	if (ret) {
1129		dev_err(dev, "Unable to get irq %x\n",
1130			gpiod_to_irq(ifx_dev->gpio.reset_out));
1131		goto error_ret;
1132	}
1133
1134	ret = ifx_spi_reset(ifx_dev);
1135
1136	ret = request_irq(gpiod_to_irq(ifx_dev->gpio.srdy),
1137			  ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1138			  ifx_dev);
1139	if (ret) {
1140		dev_err(dev, "Unable to get irq %x",
1141			gpiod_to_irq(ifx_dev->gpio.srdy));
1142		goto error_ret2;
1143	}
1144
1145	/* set pm runtime power state and register with power system */
1146	pm_runtime_set_active(dev);
1147	pm_runtime_enable(dev);
1148
1149	/* handle case that modem is already signaling SRDY */
1150	/* no outgoing tty open at this point, this just satisfies the
1151	 * modem's read and should reset communication properly
1152	 */
1153	srdy = gpiod_get_value(ifx_dev->gpio.srdy);
1154
1155	if (srdy) {
1156		mrdy_assert(ifx_dev);
1157		ifx_spi_handle_srdy(ifx_dev);
1158	} else
1159		mrdy_set_low(ifx_dev);
1160	return 0;
1161
1162error_ret2:
1163	free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1164error_ret:
1165	ifx_spi_free_device(ifx_dev);
1166	saved_ifx_dev = NULL;
1167	return ret;
1168}
1169
1170/**
1171 *	ifx_spi_spi_remove	-	SPI device was removed
1172 *	@spi: SPI device
1173 *
1174 *	FIXME: We should be shutting the device down here not in
1175 *	the module unload path.
1176 */
1177
1178static int ifx_spi_spi_remove(struct spi_device *spi)
1179{
1180	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1181	/* stop activity */
1182	tasklet_kill(&ifx_dev->io_work_tasklet);
1183
1184	pm_runtime_disable(&spi->dev);
1185
1186	/* free irq */
1187	free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1188	free_irq(gpiod_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1189
1190	/* free allocations */
1191	ifx_spi_free_device(ifx_dev);
1192
1193	saved_ifx_dev = NULL;
1194	return 0;
1195}
1196
1197/**
1198 *	ifx_spi_spi_shutdown	-	called on SPI shutdown
1199 *	@spi: SPI device
1200 *
1201 *	No action needs to be taken here
1202 */
1203
1204static void ifx_spi_spi_shutdown(struct spi_device *spi)
1205{
1206	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1207
1208	ifx_modem_power_off(ifx_dev);
1209}
1210
1211/*
1212 * various suspends and resumes have nothing to do
1213 * no hardware to save state for
1214 */
1215
1216/**
1217 *	ifx_spi_pm_suspend	-	suspend modem on system suspend
1218 *	@dev: device being suspended
1219 *
1220 *	Suspend the modem. No action needed on Intel MID platforms, may
1221 *	need extending for other systems.
1222 */
1223static int ifx_spi_pm_suspend(struct device *dev)
1224{
1225	return 0;
1226}
1227
1228/**
1229 *	ifx_spi_pm_resume	-	resume modem on system resume
1230 *	@dev: device being suspended
1231 *
1232 *	Allow the modem to resume. No action needed.
1233 *
1234 *	FIXME: do we need to reset anything here ?
1235 */
1236static int ifx_spi_pm_resume(struct device *dev)
1237{
1238	return 0;
1239}
1240
1241/**
1242 *	ifx_spi_pm_runtime_resume	-	suspend modem
1243 *	@dev: device being suspended
1244 *
1245 *	Allow the modem to resume. No action needed.
1246 */
1247static int ifx_spi_pm_runtime_resume(struct device *dev)
1248{
1249	return 0;
1250}
1251
1252/**
1253 *	ifx_spi_pm_runtime_suspend	-	suspend modem
1254 *	@dev: device being suspended
1255 *
1256 *	Allow the modem to suspend and thus suspend to continue up the
1257 *	device tree.
1258 */
1259static int ifx_spi_pm_runtime_suspend(struct device *dev)
1260{
1261	return 0;
1262}
1263
1264/**
1265 *	ifx_spi_pm_runtime_idle		-	check if modem idle
1266 *	@dev: our device
1267 *
1268 *	Check conditions and queue runtime suspend if idle.
1269 */
1270static int ifx_spi_pm_runtime_idle(struct device *dev)
1271{
1272	struct spi_device *spi = to_spi_device(dev);
1273	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1274
1275	if (!ifx_dev->power_status)
1276		pm_runtime_suspend(dev);
1277
1278	return 0;
1279}
1280
1281static const struct dev_pm_ops ifx_spi_pm = {
1282	.resume = ifx_spi_pm_resume,
1283	.suspend = ifx_spi_pm_suspend,
1284	.runtime_resume = ifx_spi_pm_runtime_resume,
1285	.runtime_suspend = ifx_spi_pm_runtime_suspend,
1286	.runtime_idle = ifx_spi_pm_runtime_idle
1287};
1288
1289static const struct spi_device_id ifx_id_table[] = {
1290	{"ifx6160", 0},
1291	{"ifx6260", 0},
1292	{ }
1293};
1294MODULE_DEVICE_TABLE(spi, ifx_id_table);
1295
1296/* spi operations */
1297static struct spi_driver ifx_spi_driver = {
1298	.driver = {
1299		.name = DRVNAME,
1300		.pm = &ifx_spi_pm,
1301	},
1302	.probe = ifx_spi_spi_probe,
1303	.shutdown = ifx_spi_spi_shutdown,
1304	.remove = ifx_spi_spi_remove,
1305	.id_table = ifx_id_table
1306};
1307
1308/**
1309 *	ifx_spi_exit	-	module exit
1310 *
1311 *	Unload the module.
1312 */
1313
1314static void __exit ifx_spi_exit(void)
1315{
1316	/* unregister */
1317	spi_unregister_driver(&ifx_spi_driver);
1318	tty_unregister_driver(tty_drv);
1319	put_tty_driver(tty_drv);
1320	unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1321}
1322
1323/**
1324 *	ifx_spi_init		-	module entry point
1325 *
1326 *	Initialise the SPI and tty interfaces for the IFX SPI driver
1327 *	We need to initialize upper-edge spi driver after the tty
1328 *	driver because otherwise the spi probe will race
1329 */
1330
1331static int __init ifx_spi_init(void)
1332{
1333	int result;
1334
1335	tty_drv = alloc_tty_driver(1);
1336	if (!tty_drv) {
1337		pr_err("%s: alloc_tty_driver failed", DRVNAME);
1338		return -ENOMEM;
1339	}
1340
1341	tty_drv->driver_name = DRVNAME;
1342	tty_drv->name = TTYNAME;
1343	tty_drv->minor_start = IFX_SPI_TTY_ID;
1344	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1345	tty_drv->subtype = SERIAL_TYPE_NORMAL;
1346	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1347	tty_drv->init_termios = tty_std_termios;
1348
1349	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1350
1351	result = tty_register_driver(tty_drv);
1352	if (result) {
1353		pr_err("%s: tty_register_driver failed(%d)",
1354			DRVNAME, result);
1355		goto err_free_tty;
1356	}
1357
1358	result = spi_register_driver(&ifx_spi_driver);
1359	if (result) {
1360		pr_err("%s: spi_register_driver failed(%d)",
1361			DRVNAME, result);
1362		goto err_unreg_tty;
1363	}
1364
1365	result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1366	if (result) {
1367		pr_err("%s: register ifx modem reboot notifier failed(%d)",
1368			DRVNAME, result);
1369		goto err_unreg_spi;
1370	}
1371
1372	return 0;
1373err_unreg_spi:
1374	spi_unregister_driver(&ifx_spi_driver);
1375err_unreg_tty:
1376	tty_unregister_driver(tty_drv);
1377err_free_tty:
1378	put_tty_driver(tty_drv);
1379
1380	return result;
1381}
1382
1383module_init(ifx_spi_init);
1384module_exit(ifx_spi_exit);
1385
1386MODULE_AUTHOR("Intel");
1387MODULE_DESCRIPTION("IFX6x60 spi driver");
1388MODULE_LICENSE("GPL");
1389MODULE_INFO(Version, "0.1-IFX6x60");
1390