1// SPDX-License-Identifier: GPL-2.0+
2/*
3 *  Driver for AMBA serial ports
4 *
5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 *  Copyright 1999 ARM Limited
8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9 *  Copyright (C) 2010 ST-Ericsson SA
10 *
11 * This is a generic driver for ARM AMBA-type serial ports.  They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs.  If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
17 */
18
19#include <linux/module.h>
20#include <linux/ioport.h>
21#include <linux/init.h>
22#include <linux/console.h>
23#include <linux/sysrq.h>
24#include <linux/device.h>
25#include <linux/tty.h>
26#include <linux/tty_flip.h>
27#include <linux/serial_core.h>
28#include <linux/serial.h>
29#include <linux/amba/bus.h>
30#include <linux/amba/serial.h>
31#include <linux/clk.h>
32#include <linux/slab.h>
33#include <linux/dmaengine.h>
34#include <linux/dma-mapping.h>
35#include <linux/scatterlist.h>
36#include <linux/delay.h>
37#include <linux/types.h>
38#include <linux/of.h>
39#include <linux/of_device.h>
40#include <linux/pinctrl/consumer.h>
41#include <linux/sizes.h>
42#include <linux/io.h>
43#include <linux/acpi.h>
44
45#include "amba-pl011.h"
46
47#define UART_NR			14
48
49#define SERIAL_AMBA_MAJOR	204
50#define SERIAL_AMBA_MINOR	64
51#define SERIAL_AMBA_NR		UART_NR
52
53#define AMBA_ISR_PASS_LIMIT	256
54
55#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
56#define UART_DUMMY_DR_RX	(1 << 16)
57
58static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
59	[REG_DR] = UART01x_DR,
60	[REG_FR] = UART01x_FR,
61	[REG_LCRH_RX] = UART011_LCRH,
62	[REG_LCRH_TX] = UART011_LCRH,
63	[REG_IBRD] = UART011_IBRD,
64	[REG_FBRD] = UART011_FBRD,
65	[REG_CR] = UART011_CR,
66	[REG_IFLS] = UART011_IFLS,
67	[REG_IMSC] = UART011_IMSC,
68	[REG_RIS] = UART011_RIS,
69	[REG_MIS] = UART011_MIS,
70	[REG_ICR] = UART011_ICR,
71	[REG_DMACR] = UART011_DMACR,
72};
73
74/* There is by now at least one vendor with differing details, so handle it */
75struct vendor_data {
76	const u16		*reg_offset;
77	unsigned int		ifls;
78	unsigned int		fr_busy;
79	unsigned int		fr_dsr;
80	unsigned int		fr_cts;
81	unsigned int		fr_ri;
82	unsigned int		inv_fr;
83	bool			access_32b;
84	bool			oversampling;
85	bool			dma_threshold;
86	bool			cts_event_workaround;
87	bool			always_enabled;
88	bool			fixed_options;
89
90	unsigned int (*get_fifosize)(struct amba_device *dev);
91};
92
93static unsigned int get_fifosize_arm(struct amba_device *dev)
94{
95	return amba_rev(dev) < 3 ? 16 : 32;
96}
97
98static struct vendor_data vendor_arm = {
99	.reg_offset		= pl011_std_offsets,
100	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
101	.fr_busy		= UART01x_FR_BUSY,
102	.fr_dsr			= UART01x_FR_DSR,
103	.fr_cts			= UART01x_FR_CTS,
104	.fr_ri			= UART011_FR_RI,
105	.oversampling		= false,
106	.dma_threshold		= false,
107	.cts_event_workaround	= false,
108	.always_enabled		= false,
109	.fixed_options		= false,
110	.get_fifosize		= get_fifosize_arm,
111};
112
113static const struct vendor_data vendor_sbsa = {
114	.reg_offset		= pl011_std_offsets,
115	.fr_busy		= UART01x_FR_BUSY,
116	.fr_dsr			= UART01x_FR_DSR,
117	.fr_cts			= UART01x_FR_CTS,
118	.fr_ri			= UART011_FR_RI,
119	.access_32b		= true,
120	.oversampling		= false,
121	.dma_threshold		= false,
122	.cts_event_workaround	= false,
123	.always_enabled		= true,
124	.fixed_options		= true,
125};
126
127#ifdef CONFIG_ACPI_SPCR_TABLE
128static const struct vendor_data vendor_qdt_qdf2400_e44 = {
129	.reg_offset		= pl011_std_offsets,
130	.fr_busy		= UART011_FR_TXFE,
131	.fr_dsr			= UART01x_FR_DSR,
132	.fr_cts			= UART01x_FR_CTS,
133	.fr_ri			= UART011_FR_RI,
134	.inv_fr			= UART011_FR_TXFE,
135	.access_32b		= true,
136	.oversampling		= false,
137	.dma_threshold		= false,
138	.cts_event_workaround	= false,
139	.always_enabled		= true,
140	.fixed_options		= true,
141};
142#endif
143
144static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
145	[REG_DR] = UART01x_DR,
146	[REG_ST_DMAWM] = ST_UART011_DMAWM,
147	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
148	[REG_FR] = UART01x_FR,
149	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
150	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
151	[REG_IBRD] = UART011_IBRD,
152	[REG_FBRD] = UART011_FBRD,
153	[REG_CR] = UART011_CR,
154	[REG_IFLS] = UART011_IFLS,
155	[REG_IMSC] = UART011_IMSC,
156	[REG_RIS] = UART011_RIS,
157	[REG_MIS] = UART011_MIS,
158	[REG_ICR] = UART011_ICR,
159	[REG_DMACR] = UART011_DMACR,
160	[REG_ST_XFCR] = ST_UART011_XFCR,
161	[REG_ST_XON1] = ST_UART011_XON1,
162	[REG_ST_XON2] = ST_UART011_XON2,
163	[REG_ST_XOFF1] = ST_UART011_XOFF1,
164	[REG_ST_XOFF2] = ST_UART011_XOFF2,
165	[REG_ST_ITCR] = ST_UART011_ITCR,
166	[REG_ST_ITIP] = ST_UART011_ITIP,
167	[REG_ST_ABCR] = ST_UART011_ABCR,
168	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
169};
170
171static unsigned int get_fifosize_st(struct amba_device *dev)
172{
173	return 64;
174}
175
176static struct vendor_data vendor_st = {
177	.reg_offset		= pl011_st_offsets,
178	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
179	.fr_busy		= UART01x_FR_BUSY,
180	.fr_dsr			= UART01x_FR_DSR,
181	.fr_cts			= UART01x_FR_CTS,
182	.fr_ri			= UART011_FR_RI,
183	.oversampling		= true,
184	.dma_threshold		= true,
185	.cts_event_workaround	= true,
186	.always_enabled		= false,
187	.fixed_options		= false,
188	.get_fifosize		= get_fifosize_st,
189};
190
191static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
192	[REG_DR] = ZX_UART011_DR,
193	[REG_FR] = ZX_UART011_FR,
194	[REG_LCRH_RX] = ZX_UART011_LCRH,
195	[REG_LCRH_TX] = ZX_UART011_LCRH,
196	[REG_IBRD] = ZX_UART011_IBRD,
197	[REG_FBRD] = ZX_UART011_FBRD,
198	[REG_CR] = ZX_UART011_CR,
199	[REG_IFLS] = ZX_UART011_IFLS,
200	[REG_IMSC] = ZX_UART011_IMSC,
201	[REG_RIS] = ZX_UART011_RIS,
202	[REG_MIS] = ZX_UART011_MIS,
203	[REG_ICR] = ZX_UART011_ICR,
204	[REG_DMACR] = ZX_UART011_DMACR,
205};
206
207static unsigned int get_fifosize_zte(struct amba_device *dev)
208{
209	return 16;
210}
211
212static struct vendor_data vendor_zte = {
213	.reg_offset		= pl011_zte_offsets,
214	.access_32b		= true,
215	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
216	.fr_busy		= ZX_UART01x_FR_BUSY,
217	.fr_dsr			= ZX_UART01x_FR_DSR,
218	.fr_cts			= ZX_UART01x_FR_CTS,
219	.fr_ri			= ZX_UART011_FR_RI,
220	.get_fifosize		= get_fifosize_zte,
221};
222
223/* Deals with DMA transactions */
224
225struct pl011_dmabuf {
226	dma_addr_t		dma;
227	size_t			len;
228	char			*buf;
229};
230
231struct pl011_dmarx_data {
232	struct dma_chan		*chan;
233	struct completion	complete;
234	bool			use_buf_b;
235	struct pl011_dmabuf	dbuf_a;
236	struct pl011_dmabuf	dbuf_b;
237	dma_cookie_t		cookie;
238	bool			running;
239	struct timer_list	timer;
240	unsigned int last_residue;
241	unsigned long last_jiffies;
242	bool auto_poll_rate;
243	unsigned int poll_rate;
244	unsigned int poll_timeout;
245};
246
247struct pl011_dmatx_data {
248	struct dma_chan		*chan;
249	dma_addr_t		dma;
250	size_t			len;
251	char			*buf;
252	bool			queued;
253};
254
255/*
256 * We wrap our port structure around the generic uart_port.
257 */
258struct uart_amba_port {
259	struct uart_port	port;
260	const u16		*reg_offset;
261	struct clk		*clk;
262	const struct vendor_data *vendor;
263	unsigned int		dmacr;		/* dma control reg */
264	unsigned int		im;		/* interrupt mask */
265	unsigned int		old_status;
266	unsigned int		fifosize;	/* vendor-specific */
267	unsigned int		old_cr;		/* state during shutdown */
268	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
269	char			type[12];
270#ifdef CONFIG_DMA_ENGINE
271	/* DMA stuff */
272	bool			using_tx_dma;
273	bool			using_rx_dma;
274	struct pl011_dmarx_data dmarx;
275	struct pl011_dmatx_data	dmatx;
276	bool			dma_probed;
277#endif
278};
279
280static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
281	unsigned int reg)
282{
283	return uap->reg_offset[reg];
284}
285
286static unsigned int pl011_read(const struct uart_amba_port *uap,
287	unsigned int reg)
288{
289	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
290
291	return (uap->port.iotype == UPIO_MEM32) ?
292		readl_relaxed(addr) : readw_relaxed(addr);
293}
294
295static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
296	unsigned int reg)
297{
298	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
299
300	if (uap->port.iotype == UPIO_MEM32)
301		writel_relaxed(val, addr);
302	else
303		writew_relaxed(val, addr);
304}
305
306/*
307 * Reads up to 256 characters from the FIFO or until it's empty and
308 * inserts them into the TTY layer. Returns the number of characters
309 * read from the FIFO.
310 */
311static int pl011_fifo_to_tty(struct uart_amba_port *uap)
312{
313	unsigned int ch, flag, fifotaken;
314	int sysrq;
315	u16 status;
316
317	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
318		status = pl011_read(uap, REG_FR);
319		if (status & UART01x_FR_RXFE)
320			break;
321
322		/* Take chars from the FIFO and update status */
323		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
324		flag = TTY_NORMAL;
325		uap->port.icount.rx++;
326
327		if (unlikely(ch & UART_DR_ERROR)) {
328			if (ch & UART011_DR_BE) {
329				ch &= ~(UART011_DR_FE | UART011_DR_PE);
330				uap->port.icount.brk++;
331				if (uart_handle_break(&uap->port))
332					continue;
333			} else if (ch & UART011_DR_PE)
334				uap->port.icount.parity++;
335			else if (ch & UART011_DR_FE)
336				uap->port.icount.frame++;
337			if (ch & UART011_DR_OE)
338				uap->port.icount.overrun++;
339
340			ch &= uap->port.read_status_mask;
341
342			if (ch & UART011_DR_BE)
343				flag = TTY_BREAK;
344			else if (ch & UART011_DR_PE)
345				flag = TTY_PARITY;
346			else if (ch & UART011_DR_FE)
347				flag = TTY_FRAME;
348		}
349
350		spin_unlock(&uap->port.lock);
351		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
352		spin_lock(&uap->port.lock);
353
354		if (!sysrq)
355			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
356	}
357
358	return fifotaken;
359}
360
361
362/*
363 * All the DMA operation mode stuff goes inside this ifdef.
364 * This assumes that you have a generic DMA device interface,
365 * no custom DMA interfaces are supported.
366 */
367#ifdef CONFIG_DMA_ENGINE
368
369#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
370
371static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
372	enum dma_data_direction dir)
373{
374	db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
375				     &db->dma, GFP_KERNEL);
376	if (!db->buf)
377		return -ENOMEM;
378	db->len = PL011_DMA_BUFFER_SIZE;
379
380	return 0;
381}
382
383static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
384	enum dma_data_direction dir)
385{
386	if (db->buf) {
387		dma_free_coherent(chan->device->dev,
388				  PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
389	}
390}
391
392static void pl011_dma_probe(struct uart_amba_port *uap)
393{
394	/* DMA is the sole user of the platform data right now */
395	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
396	struct device *dev = uap->port.dev;
397	struct dma_slave_config tx_conf = {
398		.dst_addr = uap->port.mapbase +
399				 pl011_reg_to_offset(uap, REG_DR),
400		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
401		.direction = DMA_MEM_TO_DEV,
402		.dst_maxburst = uap->fifosize >> 1,
403		.device_fc = false,
404	};
405	struct dma_chan *chan;
406	dma_cap_mask_t mask;
407
408	uap->dma_probed = true;
409	chan = dma_request_chan(dev, "tx");
410	if (IS_ERR(chan)) {
411		if (PTR_ERR(chan) == -EPROBE_DEFER) {
412			uap->dma_probed = false;
413			return;
414		}
415
416		/* We need platform data */
417		if (!plat || !plat->dma_filter) {
418			dev_info(uap->port.dev, "no DMA platform data\n");
419			return;
420		}
421
422		/* Try to acquire a generic DMA engine slave TX channel */
423		dma_cap_zero(mask);
424		dma_cap_set(DMA_SLAVE, mask);
425
426		chan = dma_request_channel(mask, plat->dma_filter,
427						plat->dma_tx_param);
428		if (!chan) {
429			dev_err(uap->port.dev, "no TX DMA channel!\n");
430			return;
431		}
432	}
433
434	dmaengine_slave_config(chan, &tx_conf);
435	uap->dmatx.chan = chan;
436
437	dev_info(uap->port.dev, "DMA channel TX %s\n",
438		 dma_chan_name(uap->dmatx.chan));
439
440	/* Optionally make use of an RX channel as well */
441	chan = dma_request_slave_channel(dev, "rx");
442
443	if (!chan && plat && plat->dma_rx_param) {
444		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
445
446		if (!chan) {
447			dev_err(uap->port.dev, "no RX DMA channel!\n");
448			return;
449		}
450	}
451
452	if (chan) {
453		struct dma_slave_config rx_conf = {
454			.src_addr = uap->port.mapbase +
455				pl011_reg_to_offset(uap, REG_DR),
456			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
457			.direction = DMA_DEV_TO_MEM,
458			.src_maxburst = uap->fifosize >> 2,
459			.device_fc = false,
460		};
461		struct dma_slave_caps caps;
462
463		/*
464		 * Some DMA controllers provide information on their capabilities.
465		 * If the controller does, check for suitable residue processing
466		 * otherwise assime all is well.
467		 */
468		if (0 == dma_get_slave_caps(chan, &caps)) {
469			if (caps.residue_granularity ==
470					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
471				dma_release_channel(chan);
472				dev_info(uap->port.dev,
473					"RX DMA disabled - no residue processing\n");
474				return;
475			}
476		}
477		dmaengine_slave_config(chan, &rx_conf);
478		uap->dmarx.chan = chan;
479
480		uap->dmarx.auto_poll_rate = false;
481		if (plat && plat->dma_rx_poll_enable) {
482			/* Set poll rate if specified. */
483			if (plat->dma_rx_poll_rate) {
484				uap->dmarx.auto_poll_rate = false;
485				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
486			} else {
487				/*
488				 * 100 ms defaults to poll rate if not
489				 * specified. This will be adjusted with
490				 * the baud rate at set_termios.
491				 */
492				uap->dmarx.auto_poll_rate = true;
493				uap->dmarx.poll_rate =  100;
494			}
495			/* 3 secs defaults poll_timeout if not specified. */
496			if (plat->dma_rx_poll_timeout)
497				uap->dmarx.poll_timeout =
498					plat->dma_rx_poll_timeout;
499			else
500				uap->dmarx.poll_timeout = 3000;
501		} else if (!plat && dev->of_node) {
502			uap->dmarx.auto_poll_rate = of_property_read_bool(
503						dev->of_node, "auto-poll");
504			if (uap->dmarx.auto_poll_rate) {
505				u32 x;
506
507				if (0 == of_property_read_u32(dev->of_node,
508						"poll-rate-ms", &x))
509					uap->dmarx.poll_rate = x;
510				else
511					uap->dmarx.poll_rate = 100;
512				if (0 == of_property_read_u32(dev->of_node,
513						"poll-timeout-ms", &x))
514					uap->dmarx.poll_timeout = x;
515				else
516					uap->dmarx.poll_timeout = 3000;
517			}
518		}
519		dev_info(uap->port.dev, "DMA channel RX %s\n",
520			 dma_chan_name(uap->dmarx.chan));
521	}
522}
523
524static void pl011_dma_remove(struct uart_amba_port *uap)
525{
526	if (uap->dmatx.chan)
527		dma_release_channel(uap->dmatx.chan);
528	if (uap->dmarx.chan)
529		dma_release_channel(uap->dmarx.chan);
530}
531
532/* Forward declare these for the refill routine */
533static int pl011_dma_tx_refill(struct uart_amba_port *uap);
534static void pl011_start_tx_pio(struct uart_amba_port *uap);
535
536/*
537 * The current DMA TX buffer has been sent.
538 * Try to queue up another DMA buffer.
539 */
540static void pl011_dma_tx_callback(void *data)
541{
542	struct uart_amba_port *uap = data;
543	struct pl011_dmatx_data *dmatx = &uap->dmatx;
544	unsigned long flags;
545	u16 dmacr;
546
547	spin_lock_irqsave(&uap->port.lock, flags);
548	if (uap->dmatx.queued)
549		dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
550				dmatx->len, DMA_TO_DEVICE);
551
552	dmacr = uap->dmacr;
553	uap->dmacr = dmacr & ~UART011_TXDMAE;
554	pl011_write(uap->dmacr, uap, REG_DMACR);
555
556	/*
557	 * If TX DMA was disabled, it means that we've stopped the DMA for
558	 * some reason (eg, XOFF received, or we want to send an X-char.)
559	 *
560	 * Note: we need to be careful here of a potential race between DMA
561	 * and the rest of the driver - if the driver disables TX DMA while
562	 * a TX buffer completing, we must update the tx queued status to
563	 * get further refills (hence we check dmacr).
564	 */
565	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
566	    uart_circ_empty(&uap->port.state->xmit)) {
567		uap->dmatx.queued = false;
568		spin_unlock_irqrestore(&uap->port.lock, flags);
569		return;
570	}
571
572	if (pl011_dma_tx_refill(uap) <= 0)
573		/*
574		 * We didn't queue a DMA buffer for some reason, but we
575		 * have data pending to be sent.  Re-enable the TX IRQ.
576		 */
577		pl011_start_tx_pio(uap);
578
579	spin_unlock_irqrestore(&uap->port.lock, flags);
580}
581
582/*
583 * Try to refill the TX DMA buffer.
584 * Locking: called with port lock held and IRQs disabled.
585 * Returns:
586 *   1 if we queued up a TX DMA buffer.
587 *   0 if we didn't want to handle this by DMA
588 *  <0 on error
589 */
590static int pl011_dma_tx_refill(struct uart_amba_port *uap)
591{
592	struct pl011_dmatx_data *dmatx = &uap->dmatx;
593	struct dma_chan *chan = dmatx->chan;
594	struct dma_device *dma_dev = chan->device;
595	struct dma_async_tx_descriptor *desc;
596	struct circ_buf *xmit = &uap->port.state->xmit;
597	unsigned int count;
598
599	/*
600	 * Try to avoid the overhead involved in using DMA if the
601	 * transaction fits in the first half of the FIFO, by using
602	 * the standard interrupt handling.  This ensures that we
603	 * issue a uart_write_wakeup() at the appropriate time.
604	 */
605	count = uart_circ_chars_pending(xmit);
606	if (count < (uap->fifosize >> 1)) {
607		uap->dmatx.queued = false;
608		return 0;
609	}
610
611	/*
612	 * Bodge: don't send the last character by DMA, as this
613	 * will prevent XON from notifying us to restart DMA.
614	 */
615	count -= 1;
616
617	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
618	if (count > PL011_DMA_BUFFER_SIZE)
619		count = PL011_DMA_BUFFER_SIZE;
620
621	if (xmit->tail < xmit->head)
622		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
623	else {
624		size_t first = UART_XMIT_SIZE - xmit->tail;
625		size_t second;
626
627		if (first > count)
628			first = count;
629		second = count - first;
630
631		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
632		if (second)
633			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
634	}
635
636	dmatx->len = count;
637	dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
638				    DMA_TO_DEVICE);
639	if (dmatx->dma == DMA_MAPPING_ERROR) {
640		uap->dmatx.queued = false;
641		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
642		return -EBUSY;
643	}
644
645	desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
646					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
647	if (!desc) {
648		dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
649		uap->dmatx.queued = false;
650		/*
651		 * If DMA cannot be used right now, we complete this
652		 * transaction via IRQ and let the TTY layer retry.
653		 */
654		dev_dbg(uap->port.dev, "TX DMA busy\n");
655		return -EBUSY;
656	}
657
658	/* Some data to go along to the callback */
659	desc->callback = pl011_dma_tx_callback;
660	desc->callback_param = uap;
661
662	/* All errors should happen at prepare time */
663	dmaengine_submit(desc);
664
665	/* Fire the DMA transaction */
666	dma_dev->device_issue_pending(chan);
667
668	uap->dmacr |= UART011_TXDMAE;
669	pl011_write(uap->dmacr, uap, REG_DMACR);
670	uap->dmatx.queued = true;
671
672	/*
673	 * Now we know that DMA will fire, so advance the ring buffer
674	 * with the stuff we just dispatched.
675	 */
676	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
677	uap->port.icount.tx += count;
678
679	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
680		uart_write_wakeup(&uap->port);
681
682	return 1;
683}
684
685/*
686 * We received a transmit interrupt without a pending X-char but with
687 * pending characters.
688 * Locking: called with port lock held and IRQs disabled.
689 * Returns:
690 *   false if we want to use PIO to transmit
691 *   true if we queued a DMA buffer
692 */
693static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
694{
695	if (!uap->using_tx_dma)
696		return false;
697
698	/*
699	 * If we already have a TX buffer queued, but received a
700	 * TX interrupt, it will be because we've just sent an X-char.
701	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
702	 */
703	if (uap->dmatx.queued) {
704		uap->dmacr |= UART011_TXDMAE;
705		pl011_write(uap->dmacr, uap, REG_DMACR);
706		uap->im &= ~UART011_TXIM;
707		pl011_write(uap->im, uap, REG_IMSC);
708		return true;
709	}
710
711	/*
712	 * We don't have a TX buffer queued, so try to queue one.
713	 * If we successfully queued a buffer, mask the TX IRQ.
714	 */
715	if (pl011_dma_tx_refill(uap) > 0) {
716		uap->im &= ~UART011_TXIM;
717		pl011_write(uap->im, uap, REG_IMSC);
718		return true;
719	}
720	return false;
721}
722
723/*
724 * Stop the DMA transmit (eg, due to received XOFF).
725 * Locking: called with port lock held and IRQs disabled.
726 */
727static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
728{
729	if (uap->dmatx.queued) {
730		uap->dmacr &= ~UART011_TXDMAE;
731		pl011_write(uap->dmacr, uap, REG_DMACR);
732	}
733}
734
735/*
736 * Try to start a DMA transmit, or in the case of an XON/OFF
737 * character queued for send, try to get that character out ASAP.
738 * Locking: called with port lock held and IRQs disabled.
739 * Returns:
740 *   false if we want the TX IRQ to be enabled
741 *   true if we have a buffer queued
742 */
743static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
744{
745	u16 dmacr;
746
747	if (!uap->using_tx_dma)
748		return false;
749
750	if (!uap->port.x_char) {
751		/* no X-char, try to push chars out in DMA mode */
752		bool ret = true;
753
754		if (!uap->dmatx.queued) {
755			if (pl011_dma_tx_refill(uap) > 0) {
756				uap->im &= ~UART011_TXIM;
757				pl011_write(uap->im, uap, REG_IMSC);
758			} else
759				ret = false;
760		} else if (!(uap->dmacr & UART011_TXDMAE)) {
761			uap->dmacr |= UART011_TXDMAE;
762			pl011_write(uap->dmacr, uap, REG_DMACR);
763		}
764		return ret;
765	}
766
767	/*
768	 * We have an X-char to send.  Disable DMA to prevent it loading
769	 * the TX fifo, and then see if we can stuff it into the FIFO.
770	 */
771	dmacr = uap->dmacr;
772	uap->dmacr &= ~UART011_TXDMAE;
773	pl011_write(uap->dmacr, uap, REG_DMACR);
774
775	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
776		/*
777		 * No space in the FIFO, so enable the transmit interrupt
778		 * so we know when there is space.  Note that once we've
779		 * loaded the character, we should just re-enable DMA.
780		 */
781		return false;
782	}
783
784	pl011_write(uap->port.x_char, uap, REG_DR);
785	uap->port.icount.tx++;
786	uap->port.x_char = 0;
787
788	/* Success - restore the DMA state */
789	uap->dmacr = dmacr;
790	pl011_write(dmacr, uap, REG_DMACR);
791
792	return true;
793}
794
795/*
796 * Flush the transmit buffer.
797 * Locking: called with port lock held and IRQs disabled.
798 */
799static void pl011_dma_flush_buffer(struct uart_port *port)
800__releases(&uap->port.lock)
801__acquires(&uap->port.lock)
802{
803	struct uart_amba_port *uap =
804	    container_of(port, struct uart_amba_port, port);
805
806	if (!uap->using_tx_dma)
807		return;
808
809	dmaengine_terminate_async(uap->dmatx.chan);
810
811	if (uap->dmatx.queued) {
812		dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
813				 uap->dmatx.len, DMA_TO_DEVICE);
814		uap->dmatx.queued = false;
815		uap->dmacr &= ~UART011_TXDMAE;
816		pl011_write(uap->dmacr, uap, REG_DMACR);
817	}
818}
819
820static void pl011_dma_rx_callback(void *data);
821
822static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
823{
824	struct dma_chan *rxchan = uap->dmarx.chan;
825	struct pl011_dmarx_data *dmarx = &uap->dmarx;
826	struct dma_async_tx_descriptor *desc;
827	struct pl011_dmabuf *dbuf;
828
829	if (!rxchan)
830		return -EIO;
831
832	/* Start the RX DMA job */
833	dbuf = uap->dmarx.use_buf_b ?
834		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
835	desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
836					DMA_DEV_TO_MEM,
837					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
838	/*
839	 * If the DMA engine is busy and cannot prepare a
840	 * channel, no big deal, the driver will fall back
841	 * to interrupt mode as a result of this error code.
842	 */
843	if (!desc) {
844		uap->dmarx.running = false;
845		dmaengine_terminate_all(rxchan);
846		return -EBUSY;
847	}
848
849	/* Some data to go along to the callback */
850	desc->callback = pl011_dma_rx_callback;
851	desc->callback_param = uap;
852	dmarx->cookie = dmaengine_submit(desc);
853	dma_async_issue_pending(rxchan);
854
855	uap->dmacr |= UART011_RXDMAE;
856	pl011_write(uap->dmacr, uap, REG_DMACR);
857	uap->dmarx.running = true;
858
859	uap->im &= ~UART011_RXIM;
860	pl011_write(uap->im, uap, REG_IMSC);
861
862	return 0;
863}
864
865/*
866 * This is called when either the DMA job is complete, or
867 * the FIFO timeout interrupt occurred. This must be called
868 * with the port spinlock uap->port.lock held.
869 */
870static void pl011_dma_rx_chars(struct uart_amba_port *uap,
871			       u32 pending, bool use_buf_b,
872			       bool readfifo)
873{
874	struct tty_port *port = &uap->port.state->port;
875	struct pl011_dmabuf *dbuf = use_buf_b ?
876		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
877	int dma_count = 0;
878	u32 fifotaken = 0; /* only used for vdbg() */
879
880	struct pl011_dmarx_data *dmarx = &uap->dmarx;
881	int dmataken = 0;
882
883	if (uap->dmarx.poll_rate) {
884		/* The data can be taken by polling */
885		dmataken = dbuf->len - dmarx->last_residue;
886		/* Recalculate the pending size */
887		if (pending >= dmataken)
888			pending -= dmataken;
889	}
890
891	/* Pick the remain data from the DMA */
892	if (pending) {
893
894		/*
895		 * First take all chars in the DMA pipe, then look in the FIFO.
896		 * Note that tty_insert_flip_buf() tries to take as many chars
897		 * as it can.
898		 */
899		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
900				pending);
901
902		uap->port.icount.rx += dma_count;
903		if (dma_count < pending)
904			dev_warn(uap->port.dev,
905				 "couldn't insert all characters (TTY is full?)\n");
906	}
907
908	/* Reset the last_residue for Rx DMA poll */
909	if (uap->dmarx.poll_rate)
910		dmarx->last_residue = dbuf->len;
911
912	/*
913	 * Only continue with trying to read the FIFO if all DMA chars have
914	 * been taken first.
915	 */
916	if (dma_count == pending && readfifo) {
917		/* Clear any error flags */
918		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
919			    UART011_FEIS, uap, REG_ICR);
920
921		/*
922		 * If we read all the DMA'd characters, and we had an
923		 * incomplete buffer, that could be due to an rx error, or
924		 * maybe we just timed out. Read any pending chars and check
925		 * the error status.
926		 *
927		 * Error conditions will only occur in the FIFO, these will
928		 * trigger an immediate interrupt and stop the DMA job, so we
929		 * will always find the error in the FIFO, never in the DMA
930		 * buffer.
931		 */
932		fifotaken = pl011_fifo_to_tty(uap);
933	}
934
935	spin_unlock(&uap->port.lock);
936	dev_vdbg(uap->port.dev,
937		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
938		 dma_count, fifotaken);
939	tty_flip_buffer_push(port);
940	spin_lock(&uap->port.lock);
941}
942
943static void pl011_dma_rx_irq(struct uart_amba_port *uap)
944{
945	struct pl011_dmarx_data *dmarx = &uap->dmarx;
946	struct dma_chan *rxchan = dmarx->chan;
947	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
948		&dmarx->dbuf_b : &dmarx->dbuf_a;
949	size_t pending;
950	struct dma_tx_state state;
951	enum dma_status dmastat;
952
953	/*
954	 * Pause the transfer so we can trust the current counter,
955	 * do this before we pause the PL011 block, else we may
956	 * overflow the FIFO.
957	 */
958	if (dmaengine_pause(rxchan))
959		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
960	dmastat = rxchan->device->device_tx_status(rxchan,
961						   dmarx->cookie, &state);
962	if (dmastat != DMA_PAUSED)
963		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
964
965	/* Disable RX DMA - incoming data will wait in the FIFO */
966	uap->dmacr &= ~UART011_RXDMAE;
967	pl011_write(uap->dmacr, uap, REG_DMACR);
968	uap->dmarx.running = false;
969
970	pending = dbuf->len - state.residue;
971	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
972	/* Then we terminate the transfer - we now know our residue */
973	dmaengine_terminate_all(rxchan);
974
975	/*
976	 * This will take the chars we have so far and insert
977	 * into the framework.
978	 */
979	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
980
981	/* Switch buffer & re-trigger DMA job */
982	dmarx->use_buf_b = !dmarx->use_buf_b;
983	if (pl011_dma_rx_trigger_dma(uap)) {
984		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
985			"fall back to interrupt mode\n");
986		uap->im |= UART011_RXIM;
987		pl011_write(uap->im, uap, REG_IMSC);
988	}
989}
990
991static void pl011_dma_rx_callback(void *data)
992{
993	struct uart_amba_port *uap = data;
994	struct pl011_dmarx_data *dmarx = &uap->dmarx;
995	struct dma_chan *rxchan = dmarx->chan;
996	bool lastbuf = dmarx->use_buf_b;
997	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
998		&dmarx->dbuf_b : &dmarx->dbuf_a;
999	size_t pending;
1000	struct dma_tx_state state;
1001	int ret;
1002
1003	/*
1004	 * This completion interrupt occurs typically when the
1005	 * RX buffer is totally stuffed but no timeout has yet
1006	 * occurred. When that happens, we just want the RX
1007	 * routine to flush out the secondary DMA buffer while
1008	 * we immediately trigger the next DMA job.
1009	 */
1010	spin_lock_irq(&uap->port.lock);
1011	/*
1012	 * Rx data can be taken by the UART interrupts during
1013	 * the DMA irq handler. So we check the residue here.
1014	 */
1015	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1016	pending = dbuf->len - state.residue;
1017	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1018	/* Then we terminate the transfer - we now know our residue */
1019	dmaengine_terminate_all(rxchan);
1020
1021	uap->dmarx.running = false;
1022	dmarx->use_buf_b = !lastbuf;
1023	ret = pl011_dma_rx_trigger_dma(uap);
1024
1025	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1026	spin_unlock_irq(&uap->port.lock);
1027	/*
1028	 * Do this check after we picked the DMA chars so we don't
1029	 * get some IRQ immediately from RX.
1030	 */
1031	if (ret) {
1032		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1033			"fall back to interrupt mode\n");
1034		uap->im |= UART011_RXIM;
1035		pl011_write(uap->im, uap, REG_IMSC);
1036	}
1037}
1038
1039/*
1040 * Stop accepting received characters, when we're shutting down or
1041 * suspending this port.
1042 * Locking: called with port lock held and IRQs disabled.
1043 */
1044static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1045{
1046	if (!uap->using_rx_dma)
1047		return;
1048
1049	/* FIXME.  Just disable the DMA enable */
1050	uap->dmacr &= ~UART011_RXDMAE;
1051	pl011_write(uap->dmacr, uap, REG_DMACR);
1052}
1053
1054/*
1055 * Timer handler for Rx DMA polling.
1056 * Every polling, It checks the residue in the dma buffer and transfer
1057 * data to the tty. Also, last_residue is updated for the next polling.
1058 */
1059static void pl011_dma_rx_poll(struct timer_list *t)
1060{
1061	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1062	struct tty_port *port = &uap->port.state->port;
1063	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1064	struct dma_chan *rxchan = uap->dmarx.chan;
1065	unsigned long flags = 0;
1066	unsigned int dmataken = 0;
1067	unsigned int size = 0;
1068	struct pl011_dmabuf *dbuf;
1069	int dma_count;
1070	struct dma_tx_state state;
1071
1072	dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1073	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1074	if (likely(state.residue < dmarx->last_residue)) {
1075		dmataken = dbuf->len - dmarx->last_residue;
1076		size = dmarx->last_residue - state.residue;
1077		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1078				size);
1079		if (dma_count == size)
1080			dmarx->last_residue =  state.residue;
1081		dmarx->last_jiffies = jiffies;
1082	}
1083	tty_flip_buffer_push(port);
1084
1085	/*
1086	 * If no data is received in poll_timeout, the driver will fall back
1087	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1088	 */
1089	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1090			> uap->dmarx.poll_timeout) {
1091
1092		spin_lock_irqsave(&uap->port.lock, flags);
1093		pl011_dma_rx_stop(uap);
1094		uap->im |= UART011_RXIM;
1095		pl011_write(uap->im, uap, REG_IMSC);
1096		spin_unlock_irqrestore(&uap->port.lock, flags);
1097
1098		uap->dmarx.running = false;
1099		dmaengine_terminate_all(rxchan);
1100		del_timer(&uap->dmarx.timer);
1101	} else {
1102		mod_timer(&uap->dmarx.timer,
1103			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1104	}
1105}
1106
1107static void pl011_dma_startup(struct uart_amba_port *uap)
1108{
1109	int ret;
1110
1111	if (!uap->dma_probed)
1112		pl011_dma_probe(uap);
1113
1114	if (!uap->dmatx.chan)
1115		return;
1116
1117	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1118	if (!uap->dmatx.buf) {
1119		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1120		uap->port.fifosize = uap->fifosize;
1121		return;
1122	}
1123
1124	uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1125
1126	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1127	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1128	uap->using_tx_dma = true;
1129
1130	if (!uap->dmarx.chan)
1131		goto skip_rx;
1132
1133	/* Allocate and map DMA RX buffers */
1134	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1135			       DMA_FROM_DEVICE);
1136	if (ret) {
1137		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1138			"RX buffer A", ret);
1139		goto skip_rx;
1140	}
1141
1142	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1143			       DMA_FROM_DEVICE);
1144	if (ret) {
1145		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1146			"RX buffer B", ret);
1147		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1148				 DMA_FROM_DEVICE);
1149		goto skip_rx;
1150	}
1151
1152	uap->using_rx_dma = true;
1153
1154skip_rx:
1155	/* Turn on DMA error (RX/TX will be enabled on demand) */
1156	uap->dmacr |= UART011_DMAONERR;
1157	pl011_write(uap->dmacr, uap, REG_DMACR);
1158
1159	/*
1160	 * ST Micro variants has some specific dma burst threshold
1161	 * compensation. Set this to 16 bytes, so burst will only
1162	 * be issued above/below 16 bytes.
1163	 */
1164	if (uap->vendor->dma_threshold)
1165		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1166			    uap, REG_ST_DMAWM);
1167
1168	if (uap->using_rx_dma) {
1169		if (pl011_dma_rx_trigger_dma(uap))
1170			dev_dbg(uap->port.dev, "could not trigger initial "
1171				"RX DMA job, fall back to interrupt mode\n");
1172		if (uap->dmarx.poll_rate) {
1173			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1174			mod_timer(&uap->dmarx.timer,
1175				jiffies +
1176				msecs_to_jiffies(uap->dmarx.poll_rate));
1177			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1178			uap->dmarx.last_jiffies = jiffies;
1179		}
1180	}
1181}
1182
1183static void pl011_dma_shutdown(struct uart_amba_port *uap)
1184{
1185	if (!(uap->using_tx_dma || uap->using_rx_dma))
1186		return;
1187
1188	/* Disable RX and TX DMA */
1189	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1190		cpu_relax();
1191
1192	spin_lock_irq(&uap->port.lock);
1193	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1194	pl011_write(uap->dmacr, uap, REG_DMACR);
1195	spin_unlock_irq(&uap->port.lock);
1196
1197	if (uap->using_tx_dma) {
1198		/* In theory, this should already be done by pl011_dma_flush_buffer */
1199		dmaengine_terminate_all(uap->dmatx.chan);
1200		if (uap->dmatx.queued) {
1201			dma_unmap_single(uap->dmatx.chan->device->dev,
1202					 uap->dmatx.dma, uap->dmatx.len,
1203					 DMA_TO_DEVICE);
1204			uap->dmatx.queued = false;
1205		}
1206
1207		kfree(uap->dmatx.buf);
1208		uap->using_tx_dma = false;
1209	}
1210
1211	if (uap->using_rx_dma) {
1212		dmaengine_terminate_all(uap->dmarx.chan);
1213		/* Clean up the RX DMA */
1214		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1215		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1216		if (uap->dmarx.poll_rate)
1217			del_timer_sync(&uap->dmarx.timer);
1218		uap->using_rx_dma = false;
1219	}
1220}
1221
1222static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1223{
1224	return uap->using_rx_dma;
1225}
1226
1227static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1228{
1229	return uap->using_rx_dma && uap->dmarx.running;
1230}
1231
1232#else
1233/* Blank functions if the DMA engine is not available */
1234static inline void pl011_dma_remove(struct uart_amba_port *uap)
1235{
1236}
1237
1238static inline void pl011_dma_startup(struct uart_amba_port *uap)
1239{
1240}
1241
1242static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1243{
1244}
1245
1246static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1247{
1248	return false;
1249}
1250
1251static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1256{
1257	return false;
1258}
1259
1260static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1261{
1262}
1263
1264static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1265{
1266}
1267
1268static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1269{
1270	return -EIO;
1271}
1272
1273static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1274{
1275	return false;
1276}
1277
1278static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1279{
1280	return false;
1281}
1282
1283#define pl011_dma_flush_buffer	NULL
1284#endif
1285
1286static void pl011_stop_tx(struct uart_port *port)
1287{
1288	struct uart_amba_port *uap =
1289	    container_of(port, struct uart_amba_port, port);
1290
1291	uap->im &= ~UART011_TXIM;
1292	pl011_write(uap->im, uap, REG_IMSC);
1293	pl011_dma_tx_stop(uap);
1294}
1295
1296static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1297
1298/* Start TX with programmed I/O only (no DMA) */
1299static void pl011_start_tx_pio(struct uart_amba_port *uap)
1300{
1301	if (pl011_tx_chars(uap, false)) {
1302		uap->im |= UART011_TXIM;
1303		pl011_write(uap->im, uap, REG_IMSC);
1304	}
1305}
1306
1307static void pl011_start_tx(struct uart_port *port)
1308{
1309	struct uart_amba_port *uap =
1310	    container_of(port, struct uart_amba_port, port);
1311
1312	if (!pl011_dma_tx_start(uap))
1313		pl011_start_tx_pio(uap);
1314}
1315
1316static void pl011_stop_rx(struct uart_port *port)
1317{
1318	struct uart_amba_port *uap =
1319	    container_of(port, struct uart_amba_port, port);
1320
1321	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1322		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1323	pl011_write(uap->im, uap, REG_IMSC);
1324
1325	pl011_dma_rx_stop(uap);
1326}
1327
1328static void pl011_throttle_rx(struct uart_port *port)
1329{
1330	unsigned long flags;
1331
1332	spin_lock_irqsave(&port->lock, flags);
1333	pl011_stop_rx(port);
1334	spin_unlock_irqrestore(&port->lock, flags);
1335}
1336
1337static void pl011_enable_ms(struct uart_port *port)
1338{
1339	struct uart_amba_port *uap =
1340	    container_of(port, struct uart_amba_port, port);
1341
1342	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1343	pl011_write(uap->im, uap, REG_IMSC);
1344}
1345
1346static void pl011_rx_chars(struct uart_amba_port *uap)
1347__releases(&uap->port.lock)
1348__acquires(&uap->port.lock)
1349{
1350	pl011_fifo_to_tty(uap);
1351
1352	spin_unlock(&uap->port.lock);
1353	tty_flip_buffer_push(&uap->port.state->port);
1354	/*
1355	 * If we were temporarily out of DMA mode for a while,
1356	 * attempt to switch back to DMA mode again.
1357	 */
1358	if (pl011_dma_rx_available(uap)) {
1359		if (pl011_dma_rx_trigger_dma(uap)) {
1360			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1361				"fall back to interrupt mode again\n");
1362			uap->im |= UART011_RXIM;
1363			pl011_write(uap->im, uap, REG_IMSC);
1364		} else {
1365#ifdef CONFIG_DMA_ENGINE
1366			/* Start Rx DMA poll */
1367			if (uap->dmarx.poll_rate) {
1368				uap->dmarx.last_jiffies = jiffies;
1369				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1370				mod_timer(&uap->dmarx.timer,
1371					jiffies +
1372					msecs_to_jiffies(uap->dmarx.poll_rate));
1373			}
1374#endif
1375		}
1376	}
1377	spin_lock(&uap->port.lock);
1378}
1379
1380static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1381			  bool from_irq)
1382{
1383	if (unlikely(!from_irq) &&
1384	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1385		return false; /* unable to transmit character */
1386
1387	pl011_write(c, uap, REG_DR);
1388	uap->port.icount.tx++;
1389
1390	return true;
1391}
1392
1393/* Returns true if tx interrupts have to be (kept) enabled  */
1394static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1395{
1396	struct circ_buf *xmit = &uap->port.state->xmit;
1397	int count = uap->fifosize >> 1;
1398
1399	if (uap->port.x_char) {
1400		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1401			return true;
1402		uap->port.x_char = 0;
1403		--count;
1404	}
1405	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1406		pl011_stop_tx(&uap->port);
1407		return false;
1408	}
1409
1410	/* If we are using DMA mode, try to send some characters. */
1411	if (pl011_dma_tx_irq(uap))
1412		return true;
1413
1414	do {
1415		if (likely(from_irq) && count-- == 0)
1416			break;
1417
1418		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1419			break;
1420
1421		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1422	} while (!uart_circ_empty(xmit));
1423
1424	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1425		uart_write_wakeup(&uap->port);
1426
1427	if (uart_circ_empty(xmit)) {
1428		pl011_stop_tx(&uap->port);
1429		return false;
1430	}
1431	return true;
1432}
1433
1434static void pl011_modem_status(struct uart_amba_port *uap)
1435{
1436	unsigned int status, delta;
1437
1438	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1439
1440	delta = status ^ uap->old_status;
1441	uap->old_status = status;
1442
1443	if (!delta)
1444		return;
1445
1446	if (delta & UART01x_FR_DCD)
1447		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1448
1449	if (delta & uap->vendor->fr_dsr)
1450		uap->port.icount.dsr++;
1451
1452	if (delta & uap->vendor->fr_cts)
1453		uart_handle_cts_change(&uap->port,
1454				       status & uap->vendor->fr_cts);
1455
1456	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1457}
1458
1459static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1460{
1461	if (!uap->vendor->cts_event_workaround)
1462		return;
1463
1464	/* workaround to make sure that all bits are unlocked.. */
1465	pl011_write(0x00, uap, REG_ICR);
1466
1467	/*
1468	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1469	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1470	 * so add 2 dummy reads
1471	 */
1472	pl011_read(uap, REG_ICR);
1473	pl011_read(uap, REG_ICR);
1474}
1475
1476static irqreturn_t pl011_int(int irq, void *dev_id)
1477{
1478	struct uart_amba_port *uap = dev_id;
1479	unsigned long flags;
1480	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1481	int handled = 0;
1482
1483	spin_lock_irqsave(&uap->port.lock, flags);
1484	status = pl011_read(uap, REG_RIS) & uap->im;
1485	if (status) {
1486		do {
1487			check_apply_cts_event_workaround(uap);
1488
1489			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1490					       UART011_RXIS),
1491				    uap, REG_ICR);
1492
1493			if (status & (UART011_RTIS|UART011_RXIS)) {
1494				if (pl011_dma_rx_running(uap))
1495					pl011_dma_rx_irq(uap);
1496				else
1497					pl011_rx_chars(uap);
1498			}
1499			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1500				      UART011_CTSMIS|UART011_RIMIS))
1501				pl011_modem_status(uap);
1502			if (status & UART011_TXIS)
1503				pl011_tx_chars(uap, true);
1504
1505			if (pass_counter-- == 0)
1506				break;
1507
1508			status = pl011_read(uap, REG_RIS) & uap->im;
1509		} while (status != 0);
1510		handled = 1;
1511	}
1512
1513	spin_unlock_irqrestore(&uap->port.lock, flags);
1514
1515	return IRQ_RETVAL(handled);
1516}
1517
1518static unsigned int pl011_tx_empty(struct uart_port *port)
1519{
1520	struct uart_amba_port *uap =
1521	    container_of(port, struct uart_amba_port, port);
1522
1523	/* Allow feature register bits to be inverted to work around errata */
1524	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1525
1526	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1527							0 : TIOCSER_TEMT;
1528}
1529
1530static unsigned int pl011_get_mctrl(struct uart_port *port)
1531{
1532	struct uart_amba_port *uap =
1533	    container_of(port, struct uart_amba_port, port);
1534	unsigned int result = 0;
1535	unsigned int status = pl011_read(uap, REG_FR);
1536
1537#define TIOCMBIT(uartbit, tiocmbit)	\
1538	if (status & uartbit)		\
1539		result |= tiocmbit
1540
1541	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1542	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1543	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1544	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1545#undef TIOCMBIT
1546	return result;
1547}
1548
1549static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1550{
1551	struct uart_amba_port *uap =
1552	    container_of(port, struct uart_amba_port, port);
1553	unsigned int cr;
1554
1555	cr = pl011_read(uap, REG_CR);
1556
1557#define	TIOCMBIT(tiocmbit, uartbit)		\
1558	if (mctrl & tiocmbit)		\
1559		cr |= uartbit;		\
1560	else				\
1561		cr &= ~uartbit
1562
1563	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1564	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1565	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1566	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1567	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1568
1569	if (port->status & UPSTAT_AUTORTS) {
1570		/* We need to disable auto-RTS if we want to turn RTS off */
1571		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1572	}
1573#undef TIOCMBIT
1574
1575	pl011_write(cr, uap, REG_CR);
1576}
1577
1578static void pl011_break_ctl(struct uart_port *port, int break_state)
1579{
1580	struct uart_amba_port *uap =
1581	    container_of(port, struct uart_amba_port, port);
1582	unsigned long flags;
1583	unsigned int lcr_h;
1584
1585	spin_lock_irqsave(&uap->port.lock, flags);
1586	lcr_h = pl011_read(uap, REG_LCRH_TX);
1587	if (break_state == -1)
1588		lcr_h |= UART01x_LCRH_BRK;
1589	else
1590		lcr_h &= ~UART01x_LCRH_BRK;
1591	pl011_write(lcr_h, uap, REG_LCRH_TX);
1592	spin_unlock_irqrestore(&uap->port.lock, flags);
1593}
1594
1595#ifdef CONFIG_CONSOLE_POLL
1596
1597static void pl011_quiesce_irqs(struct uart_port *port)
1598{
1599	struct uart_amba_port *uap =
1600	    container_of(port, struct uart_amba_port, port);
1601
1602	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1603	/*
1604	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1605	 * we simply mask it. start_tx() will unmask it.
1606	 *
1607	 * Note we can race with start_tx(), and if the race happens, the
1608	 * polling user might get another interrupt just after we clear it.
1609	 * But it should be OK and can happen even w/o the race, e.g.
1610	 * controller immediately got some new data and raised the IRQ.
1611	 *
1612	 * And whoever uses polling routines assumes that it manages the device
1613	 * (including tx queue), so we're also fine with start_tx()'s caller
1614	 * side.
1615	 */
1616	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1617		    REG_IMSC);
1618}
1619
1620static int pl011_get_poll_char(struct uart_port *port)
1621{
1622	struct uart_amba_port *uap =
1623	    container_of(port, struct uart_amba_port, port);
1624	unsigned int status;
1625
1626	/*
1627	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1628	 * debugger.
1629	 */
1630	pl011_quiesce_irqs(port);
1631
1632	status = pl011_read(uap, REG_FR);
1633	if (status & UART01x_FR_RXFE)
1634		return NO_POLL_CHAR;
1635
1636	return pl011_read(uap, REG_DR);
1637}
1638
1639static void pl011_put_poll_char(struct uart_port *port,
1640			 unsigned char ch)
1641{
1642	struct uart_amba_port *uap =
1643	    container_of(port, struct uart_amba_port, port);
1644
1645	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1646		cpu_relax();
1647
1648	pl011_write(ch, uap, REG_DR);
1649}
1650
1651#endif /* CONFIG_CONSOLE_POLL */
1652
1653static int pl011_hwinit(struct uart_port *port)
1654{
1655	struct uart_amba_port *uap =
1656	    container_of(port, struct uart_amba_port, port);
1657	int retval;
1658
1659	/* Optionaly enable pins to be muxed in and configured */
1660	pinctrl_pm_select_default_state(port->dev);
1661
1662	/*
1663	 * Try to enable the clock producer.
1664	 */
1665	retval = clk_prepare_enable(uap->clk);
1666	if (retval)
1667		return retval;
1668
1669	uap->port.uartclk = clk_get_rate(uap->clk);
1670
1671	/* Clear pending error and receive interrupts */
1672	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1673		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1674		    uap, REG_ICR);
1675
1676	/*
1677	 * Save interrupts enable mask, and enable RX interrupts in case if
1678	 * the interrupt is used for NMI entry.
1679	 */
1680	uap->im = pl011_read(uap, REG_IMSC);
1681	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1682
1683	if (dev_get_platdata(uap->port.dev)) {
1684		struct amba_pl011_data *plat;
1685
1686		plat = dev_get_platdata(uap->port.dev);
1687		if (plat->init)
1688			plat->init();
1689	}
1690	return 0;
1691}
1692
1693static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1694{
1695	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1696	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1697}
1698
1699static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1700{
1701	pl011_write(lcr_h, uap, REG_LCRH_RX);
1702	if (pl011_split_lcrh(uap)) {
1703		int i;
1704		/*
1705		 * Wait 10 PCLKs before writing LCRH_TX register,
1706		 * to get this delay write read only register 10 times
1707		 */
1708		for (i = 0; i < 10; ++i)
1709			pl011_write(0xff, uap, REG_MIS);
1710		pl011_write(lcr_h, uap, REG_LCRH_TX);
1711	}
1712}
1713
1714static int pl011_allocate_irq(struct uart_amba_port *uap)
1715{
1716	pl011_write(uap->im, uap, REG_IMSC);
1717
1718	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1719}
1720
1721/*
1722 * Enable interrupts, only timeouts when using DMA
1723 * if initial RX DMA job failed, start in interrupt mode
1724 * as well.
1725 */
1726static void pl011_enable_interrupts(struct uart_amba_port *uap)
1727{
1728	unsigned long flags;
1729	unsigned int i;
1730
1731	spin_lock_irqsave(&uap->port.lock, flags);
1732
1733	/* Clear out any spuriously appearing RX interrupts */
1734	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1735
1736	/*
1737	 * RXIS is asserted only when the RX FIFO transitions from below
1738	 * to above the trigger threshold.  If the RX FIFO is already
1739	 * full to the threshold this can't happen and RXIS will now be
1740	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1741	 */
1742	for (i = 0; i < uap->fifosize * 2; ++i) {
1743		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1744			break;
1745
1746		pl011_read(uap, REG_DR);
1747	}
1748
1749	uap->im = UART011_RTIM;
1750	if (!pl011_dma_rx_running(uap))
1751		uap->im |= UART011_RXIM;
1752	pl011_write(uap->im, uap, REG_IMSC);
1753	spin_unlock_irqrestore(&uap->port.lock, flags);
1754}
1755
1756static void pl011_unthrottle_rx(struct uart_port *port)
1757{
1758	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1759	unsigned long flags;
1760
1761	spin_lock_irqsave(&uap->port.lock, flags);
1762
1763	uap->im = UART011_RTIM;
1764	if (!pl011_dma_rx_running(uap))
1765		uap->im |= UART011_RXIM;
1766
1767	pl011_write(uap->im, uap, REG_IMSC);
1768
1769	spin_unlock_irqrestore(&uap->port.lock, flags);
1770}
1771
1772static int pl011_startup(struct uart_port *port)
1773{
1774	struct uart_amba_port *uap =
1775	    container_of(port, struct uart_amba_port, port);
1776	unsigned int cr;
1777	int retval;
1778
1779	retval = pl011_hwinit(port);
1780	if (retval)
1781		goto clk_dis;
1782
1783	retval = pl011_allocate_irq(uap);
1784	if (retval)
1785		goto clk_dis;
1786
1787	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1788
1789	spin_lock_irq(&uap->port.lock);
1790
1791	/* restore RTS and DTR */
1792	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1793	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1794	pl011_write(cr, uap, REG_CR);
1795
1796	spin_unlock_irq(&uap->port.lock);
1797
1798	/*
1799	 * initialise the old status of the modem signals
1800	 */
1801	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1802
1803	/* Startup DMA */
1804	pl011_dma_startup(uap);
1805
1806	pl011_enable_interrupts(uap);
1807
1808	return 0;
1809
1810 clk_dis:
1811	clk_disable_unprepare(uap->clk);
1812	return retval;
1813}
1814
1815static int sbsa_uart_startup(struct uart_port *port)
1816{
1817	struct uart_amba_port *uap =
1818		container_of(port, struct uart_amba_port, port);
1819	int retval;
1820
1821	retval = pl011_hwinit(port);
1822	if (retval)
1823		return retval;
1824
1825	retval = pl011_allocate_irq(uap);
1826	if (retval)
1827		return retval;
1828
1829	/* The SBSA UART does not support any modem status lines. */
1830	uap->old_status = 0;
1831
1832	pl011_enable_interrupts(uap);
1833
1834	return 0;
1835}
1836
1837static void pl011_shutdown_channel(struct uart_amba_port *uap,
1838					unsigned int lcrh)
1839{
1840      unsigned long val;
1841
1842      val = pl011_read(uap, lcrh);
1843      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1844      pl011_write(val, uap, lcrh);
1845}
1846
1847/*
1848 * disable the port. It should not disable RTS and DTR.
1849 * Also RTS and DTR state should be preserved to restore
1850 * it during startup().
1851 */
1852static void pl011_disable_uart(struct uart_amba_port *uap)
1853{
1854	unsigned int cr;
1855
1856	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1857	spin_lock_irq(&uap->port.lock);
1858	cr = pl011_read(uap, REG_CR);
1859	uap->old_cr = cr;
1860	cr &= UART011_CR_RTS | UART011_CR_DTR;
1861	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1862	pl011_write(cr, uap, REG_CR);
1863	spin_unlock_irq(&uap->port.lock);
1864
1865	/*
1866	 * disable break condition and fifos
1867	 */
1868	pl011_shutdown_channel(uap, REG_LCRH_RX);
1869	if (pl011_split_lcrh(uap))
1870		pl011_shutdown_channel(uap, REG_LCRH_TX);
1871}
1872
1873static void pl011_disable_interrupts(struct uart_amba_port *uap)
1874{
1875	spin_lock_irq(&uap->port.lock);
1876
1877	/* mask all interrupts and clear all pending ones */
1878	uap->im = 0;
1879	pl011_write(uap->im, uap, REG_IMSC);
1880	pl011_write(0xffff, uap, REG_ICR);
1881
1882	spin_unlock_irq(&uap->port.lock);
1883}
1884
1885static void pl011_shutdown(struct uart_port *port)
1886{
1887	struct uart_amba_port *uap =
1888		container_of(port, struct uart_amba_port, port);
1889
1890	pl011_disable_interrupts(uap);
1891
1892	pl011_dma_shutdown(uap);
1893
1894	free_irq(uap->port.irq, uap);
1895
1896	pl011_disable_uart(uap);
1897
1898	/*
1899	 * Shut down the clock producer
1900	 */
1901	clk_disable_unprepare(uap->clk);
1902	/* Optionally let pins go into sleep states */
1903	pinctrl_pm_select_sleep_state(port->dev);
1904
1905	if (dev_get_platdata(uap->port.dev)) {
1906		struct amba_pl011_data *plat;
1907
1908		plat = dev_get_platdata(uap->port.dev);
1909		if (plat->exit)
1910			plat->exit();
1911	}
1912
1913	if (uap->port.ops->flush_buffer)
1914		uap->port.ops->flush_buffer(port);
1915}
1916
1917static void sbsa_uart_shutdown(struct uart_port *port)
1918{
1919	struct uart_amba_port *uap =
1920		container_of(port, struct uart_amba_port, port);
1921
1922	pl011_disable_interrupts(uap);
1923
1924	free_irq(uap->port.irq, uap);
1925
1926	if (uap->port.ops->flush_buffer)
1927		uap->port.ops->flush_buffer(port);
1928}
1929
1930static void
1931pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1932{
1933	port->read_status_mask = UART011_DR_OE | 255;
1934	if (termios->c_iflag & INPCK)
1935		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1936	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1937		port->read_status_mask |= UART011_DR_BE;
1938
1939	/*
1940	 * Characters to ignore
1941	 */
1942	port->ignore_status_mask = 0;
1943	if (termios->c_iflag & IGNPAR)
1944		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1945	if (termios->c_iflag & IGNBRK) {
1946		port->ignore_status_mask |= UART011_DR_BE;
1947		/*
1948		 * If we're ignoring parity and break indicators,
1949		 * ignore overruns too (for real raw support).
1950		 */
1951		if (termios->c_iflag & IGNPAR)
1952			port->ignore_status_mask |= UART011_DR_OE;
1953	}
1954
1955	/*
1956	 * Ignore all characters if CREAD is not set.
1957	 */
1958	if ((termios->c_cflag & CREAD) == 0)
1959		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1960}
1961
1962static void
1963pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1964		     struct ktermios *old)
1965{
1966	struct uart_amba_port *uap =
1967	    container_of(port, struct uart_amba_port, port);
1968	unsigned int lcr_h, old_cr;
1969	unsigned long flags;
1970	unsigned int baud, quot, clkdiv;
1971
1972	if (uap->vendor->oversampling)
1973		clkdiv = 8;
1974	else
1975		clkdiv = 16;
1976
1977	/*
1978	 * Ask the core to calculate the divisor for us.
1979	 */
1980	baud = uart_get_baud_rate(port, termios, old, 0,
1981				  port->uartclk / clkdiv);
1982#ifdef CONFIG_DMA_ENGINE
1983	/*
1984	 * Adjust RX DMA polling rate with baud rate if not specified.
1985	 */
1986	if (uap->dmarx.auto_poll_rate)
1987		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1988#endif
1989
1990	if (baud > port->uartclk/16)
1991		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1992	else
1993		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1994
1995	switch (termios->c_cflag & CSIZE) {
1996	case CS5:
1997		lcr_h = UART01x_LCRH_WLEN_5;
1998		break;
1999	case CS6:
2000		lcr_h = UART01x_LCRH_WLEN_6;
2001		break;
2002	case CS7:
2003		lcr_h = UART01x_LCRH_WLEN_7;
2004		break;
2005	default: // CS8
2006		lcr_h = UART01x_LCRH_WLEN_8;
2007		break;
2008	}
2009	if (termios->c_cflag & CSTOPB)
2010		lcr_h |= UART01x_LCRH_STP2;
2011	if (termios->c_cflag & PARENB) {
2012		lcr_h |= UART01x_LCRH_PEN;
2013		if (!(termios->c_cflag & PARODD))
2014			lcr_h |= UART01x_LCRH_EPS;
2015		if (termios->c_cflag & CMSPAR)
2016			lcr_h |= UART011_LCRH_SPS;
2017	}
2018	if (uap->fifosize > 1)
2019		lcr_h |= UART01x_LCRH_FEN;
2020
2021	spin_lock_irqsave(&port->lock, flags);
2022
2023	/*
2024	 * Update the per-port timeout.
2025	 */
2026	uart_update_timeout(port, termios->c_cflag, baud);
2027
2028	pl011_setup_status_masks(port, termios);
2029
2030	if (UART_ENABLE_MS(port, termios->c_cflag))
2031		pl011_enable_ms(port);
2032
2033	/* first, disable everything */
2034	old_cr = pl011_read(uap, REG_CR);
2035	pl011_write(0, uap, REG_CR);
2036
2037	if (termios->c_cflag & CRTSCTS) {
2038		if (old_cr & UART011_CR_RTS)
2039			old_cr |= UART011_CR_RTSEN;
2040
2041		old_cr |= UART011_CR_CTSEN;
2042		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2043	} else {
2044		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2045		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2046	}
2047
2048	if (uap->vendor->oversampling) {
2049		if (baud > port->uartclk / 16)
2050			old_cr |= ST_UART011_CR_OVSFACT;
2051		else
2052			old_cr &= ~ST_UART011_CR_OVSFACT;
2053	}
2054
2055	/*
2056	 * Workaround for the ST Micro oversampling variants to
2057	 * increase the bitrate slightly, by lowering the divisor,
2058	 * to avoid delayed sampling of start bit at high speeds,
2059	 * else we see data corruption.
2060	 */
2061	if (uap->vendor->oversampling) {
2062		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2063			quot -= 1;
2064		else if ((baud > 3250000) && (quot > 2))
2065			quot -= 2;
2066	}
2067	/* Set baud rate */
2068	pl011_write(quot & 0x3f, uap, REG_FBRD);
2069	pl011_write(quot >> 6, uap, REG_IBRD);
2070
2071	/*
2072	 * ----------v----------v----------v----------v-----
2073	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2074	 * REG_FBRD & REG_IBRD.
2075	 * ----------^----------^----------^----------^-----
2076	 */
2077	pl011_write_lcr_h(uap, lcr_h);
2078	pl011_write(old_cr, uap, REG_CR);
2079
2080	spin_unlock_irqrestore(&port->lock, flags);
2081}
2082
2083static void
2084sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2085		      struct ktermios *old)
2086{
2087	struct uart_amba_port *uap =
2088	    container_of(port, struct uart_amba_port, port);
2089	unsigned long flags;
2090
2091	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2092
2093	/* The SBSA UART only supports 8n1 without hardware flow control. */
2094	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2095	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2096	termios->c_cflag |= CS8 | CLOCAL;
2097
2098	spin_lock_irqsave(&port->lock, flags);
2099	uart_update_timeout(port, CS8, uap->fixed_baud);
2100	pl011_setup_status_masks(port, termios);
2101	spin_unlock_irqrestore(&port->lock, flags);
2102}
2103
2104static const char *pl011_type(struct uart_port *port)
2105{
2106	struct uart_amba_port *uap =
2107	    container_of(port, struct uart_amba_port, port);
2108	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2109}
2110
2111/*
2112 * Configure/autoconfigure the port.
2113 */
2114static void pl011_config_port(struct uart_port *port, int flags)
2115{
2116	if (flags & UART_CONFIG_TYPE)
2117		port->type = PORT_AMBA;
2118}
2119
2120/*
2121 * verify the new serial_struct (for TIOCSSERIAL).
2122 */
2123static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2124{
2125	int ret = 0;
2126	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2127		ret = -EINVAL;
2128	if (ser->irq < 0 || ser->irq >= nr_irqs)
2129		ret = -EINVAL;
2130	if (ser->baud_base < 9600)
2131		ret = -EINVAL;
2132	if (port->mapbase != (unsigned long) ser->iomem_base)
2133		ret = -EINVAL;
2134	return ret;
2135}
2136
2137static const struct uart_ops amba_pl011_pops = {
2138	.tx_empty	= pl011_tx_empty,
2139	.set_mctrl	= pl011_set_mctrl,
2140	.get_mctrl	= pl011_get_mctrl,
2141	.stop_tx	= pl011_stop_tx,
2142	.start_tx	= pl011_start_tx,
2143	.stop_rx	= pl011_stop_rx,
2144	.throttle	= pl011_throttle_rx,
2145	.unthrottle	= pl011_unthrottle_rx,
2146	.enable_ms	= pl011_enable_ms,
2147	.break_ctl	= pl011_break_ctl,
2148	.startup	= pl011_startup,
2149	.shutdown	= pl011_shutdown,
2150	.flush_buffer	= pl011_dma_flush_buffer,
2151	.set_termios	= pl011_set_termios,
2152	.type		= pl011_type,
2153	.config_port	= pl011_config_port,
2154	.verify_port	= pl011_verify_port,
2155#ifdef CONFIG_CONSOLE_POLL
2156	.poll_init     = pl011_hwinit,
2157	.poll_get_char = pl011_get_poll_char,
2158	.poll_put_char = pl011_put_poll_char,
2159#endif
2160};
2161
2162static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2163{
2164}
2165
2166static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2167{
2168	return 0;
2169}
2170
2171static const struct uart_ops sbsa_uart_pops = {
2172	.tx_empty	= pl011_tx_empty,
2173	.set_mctrl	= sbsa_uart_set_mctrl,
2174	.get_mctrl	= sbsa_uart_get_mctrl,
2175	.stop_tx	= pl011_stop_tx,
2176	.start_tx	= pl011_start_tx,
2177	.stop_rx	= pl011_stop_rx,
2178	.startup	= sbsa_uart_startup,
2179	.shutdown	= sbsa_uart_shutdown,
2180	.set_termios	= sbsa_uart_set_termios,
2181	.type		= pl011_type,
2182	.config_port	= pl011_config_port,
2183	.verify_port	= pl011_verify_port,
2184#ifdef CONFIG_CONSOLE_POLL
2185	.poll_init     = pl011_hwinit,
2186	.poll_get_char = pl011_get_poll_char,
2187	.poll_put_char = pl011_put_poll_char,
2188#endif
2189};
2190
2191static struct uart_amba_port *amba_ports[UART_NR];
2192
2193#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2194
2195static void pl011_console_putchar(struct uart_port *port, int ch)
2196{
2197	struct uart_amba_port *uap =
2198	    container_of(port, struct uart_amba_port, port);
2199
2200	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2201		cpu_relax();
2202	pl011_write(ch, uap, REG_DR);
2203}
2204
2205static void
2206pl011_console_write(struct console *co, const char *s, unsigned int count)
2207{
2208	struct uart_amba_port *uap = amba_ports[co->index];
2209	unsigned int old_cr = 0, new_cr;
2210	unsigned long flags;
2211	int locked = 1;
2212
2213	clk_enable(uap->clk);
2214
2215	local_irq_save(flags);
2216	if (uap->port.sysrq)
2217		locked = 0;
2218	else if (oops_in_progress)
2219		locked = spin_trylock(&uap->port.lock);
2220	else
2221		spin_lock(&uap->port.lock);
2222
2223	/*
2224	 *	First save the CR then disable the interrupts
2225	 */
2226	if (!uap->vendor->always_enabled) {
2227		old_cr = pl011_read(uap, REG_CR);
2228		new_cr = old_cr & ~UART011_CR_CTSEN;
2229		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2230		pl011_write(new_cr, uap, REG_CR);
2231	}
2232
2233	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2234
2235	/*
2236	 *	Finally, wait for transmitter to become empty and restore the
2237	 *	TCR. Allow feature register bits to be inverted to work around
2238	 *	errata.
2239	 */
2240	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2241						& uap->vendor->fr_busy)
2242		cpu_relax();
2243	if (!uap->vendor->always_enabled)
2244		pl011_write(old_cr, uap, REG_CR);
2245
2246	if (locked)
2247		spin_unlock(&uap->port.lock);
2248	local_irq_restore(flags);
2249
2250	clk_disable(uap->clk);
2251}
2252
2253static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2254				      int *parity, int *bits)
2255{
2256	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2257		unsigned int lcr_h, ibrd, fbrd;
2258
2259		lcr_h = pl011_read(uap, REG_LCRH_TX);
2260
2261		*parity = 'n';
2262		if (lcr_h & UART01x_LCRH_PEN) {
2263			if (lcr_h & UART01x_LCRH_EPS)
2264				*parity = 'e';
2265			else
2266				*parity = 'o';
2267		}
2268
2269		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2270			*bits = 7;
2271		else
2272			*bits = 8;
2273
2274		ibrd = pl011_read(uap, REG_IBRD);
2275		fbrd = pl011_read(uap, REG_FBRD);
2276
2277		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2278
2279		if (uap->vendor->oversampling) {
2280			if (pl011_read(uap, REG_CR)
2281				  & ST_UART011_CR_OVSFACT)
2282				*baud *= 2;
2283		}
2284	}
2285}
2286
2287static int pl011_console_setup(struct console *co, char *options)
2288{
2289	struct uart_amba_port *uap;
2290	int baud = 38400;
2291	int bits = 8;
2292	int parity = 'n';
2293	int flow = 'n';
2294	int ret;
2295
2296	/*
2297	 * Check whether an invalid uart number has been specified, and
2298	 * if so, search for the first available port that does have
2299	 * console support.
2300	 */
2301	if (co->index >= UART_NR)
2302		co->index = 0;
2303	uap = amba_ports[co->index];
2304	if (!uap)
2305		return -ENODEV;
2306
2307	/* Allow pins to be muxed in and configured */
2308	pinctrl_pm_select_default_state(uap->port.dev);
2309
2310	ret = clk_prepare(uap->clk);
2311	if (ret)
2312		return ret;
2313
2314	if (dev_get_platdata(uap->port.dev)) {
2315		struct amba_pl011_data *plat;
2316
2317		plat = dev_get_platdata(uap->port.dev);
2318		if (plat->init)
2319			plat->init();
2320	}
2321
2322	uap->port.uartclk = clk_get_rate(uap->clk);
2323
2324	if (uap->vendor->fixed_options) {
2325		baud = uap->fixed_baud;
2326	} else {
2327		if (options)
2328			uart_parse_options(options,
2329					   &baud, &parity, &bits, &flow);
2330		else
2331			pl011_console_get_options(uap, &baud, &parity, &bits);
2332	}
2333
2334	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2335}
2336
2337/**
2338 *	pl011_console_match - non-standard console matching
2339 *	@co:	  registering console
2340 *	@name:	  name from console command line
2341 *	@idx:	  index from console command line
2342 *	@options: ptr to option string from console command line
2343 *
2344 *	Only attempts to match console command lines of the form:
2345 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2346 *	    console=pl011,0x<addr>[,<options>]
2347 *	This form is used to register an initial earlycon boot console and
2348 *	replace it with the amba_console at pl011 driver init.
2349 *
2350 *	Performs console setup for a match (as required by interface)
2351 *	If no <options> are specified, then assume the h/w is already setup.
2352 *
2353 *	Returns 0 if console matches; otherwise non-zero to use default matching
2354 */
2355static int pl011_console_match(struct console *co, char *name, int idx,
2356			       char *options)
2357{
2358	unsigned char iotype;
2359	resource_size_t addr;
2360	int i;
2361
2362	/*
2363	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2364	 * have a distinct console name, so make sure we check for that.
2365	 * The actual implementation of the erratum occurs in the probe
2366	 * function.
2367	 */
2368	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2369		return -ENODEV;
2370
2371	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2372		return -ENODEV;
2373
2374	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2375		return -ENODEV;
2376
2377	/* try to match the port specified on the command line */
2378	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2379		struct uart_port *port;
2380
2381		if (!amba_ports[i])
2382			continue;
2383
2384		port = &amba_ports[i]->port;
2385
2386		if (port->mapbase != addr)
2387			continue;
2388
2389		co->index = i;
2390		port->cons = co;
2391		return pl011_console_setup(co, options);
2392	}
2393
2394	return -ENODEV;
2395}
2396
2397static struct uart_driver amba_reg;
2398static struct console amba_console = {
2399	.name		= "ttyAMA",
2400	.write		= pl011_console_write,
2401	.device		= uart_console_device,
2402	.setup		= pl011_console_setup,
2403	.match		= pl011_console_match,
2404	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2405	.index		= -1,
2406	.data		= &amba_reg,
2407};
2408
2409#define AMBA_CONSOLE	(&amba_console)
2410
2411static void qdf2400_e44_putc(struct uart_port *port, int c)
2412{
2413	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2414		cpu_relax();
2415	writel(c, port->membase + UART01x_DR);
2416	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2417		cpu_relax();
2418}
2419
2420static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2421{
2422	struct earlycon_device *dev = con->data;
2423
2424	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2425}
2426
2427static void pl011_putc(struct uart_port *port, int c)
2428{
2429	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2430		cpu_relax();
2431	if (port->iotype == UPIO_MEM32)
2432		writel(c, port->membase + UART01x_DR);
2433	else
2434		writeb(c, port->membase + UART01x_DR);
2435	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2436		cpu_relax();
2437}
2438
2439static void pl011_early_write(struct console *con, const char *s, unsigned n)
2440{
2441	struct earlycon_device *dev = con->data;
2442
2443	uart_console_write(&dev->port, s, n, pl011_putc);
2444}
2445
2446#ifdef CONFIG_CONSOLE_POLL
2447static int pl011_getc(struct uart_port *port)
2448{
2449	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2450		return NO_POLL_CHAR;
2451
2452	if (port->iotype == UPIO_MEM32)
2453		return readl(port->membase + UART01x_DR);
2454	else
2455		return readb(port->membase + UART01x_DR);
2456}
2457
2458static int pl011_early_read(struct console *con, char *s, unsigned int n)
2459{
2460	struct earlycon_device *dev = con->data;
2461	int ch, num_read = 0;
2462
2463	while (num_read < n) {
2464		ch = pl011_getc(&dev->port);
2465		if (ch == NO_POLL_CHAR)
2466			break;
2467
2468		s[num_read++] = ch;
2469	}
2470
2471	return num_read;
2472}
2473#else
2474#define pl011_early_read NULL
2475#endif
2476
2477/*
2478 * On non-ACPI systems, earlycon is enabled by specifying
2479 * "earlycon=pl011,<address>" on the kernel command line.
2480 *
2481 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2482 * by specifying only "earlycon" on the command line.  Because it requires
2483 * SPCR, the console starts after ACPI is parsed, which is later than a
2484 * traditional early console.
2485 *
2486 * To get the traditional early console that starts before ACPI is parsed,
2487 * specify the full "earlycon=pl011,<address>" option.
2488 */
2489static int __init pl011_early_console_setup(struct earlycon_device *device,
2490					    const char *opt)
2491{
2492	if (!device->port.membase)
2493		return -ENODEV;
2494
2495	device->con->write = pl011_early_write;
2496	device->con->read = pl011_early_read;
2497
2498	return 0;
2499}
2500OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2501OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2502
2503/*
2504 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2505 * Erratum 44, traditional earlycon can be enabled by specifying
2506 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2507 *
2508 * Alternatively, you can just specify "earlycon", and the early console
2509 * will be enabled with the information from the SPCR table.  In this
2510 * case, the SPCR code will detect the need for the E44 work-around,
2511 * and set the console name to "qdf2400_e44".
2512 */
2513static int __init
2514qdf2400_e44_early_console_setup(struct earlycon_device *device,
2515				const char *opt)
2516{
2517	if (!device->port.membase)
2518		return -ENODEV;
2519
2520	device->con->write = qdf2400_e44_early_write;
2521	return 0;
2522}
2523EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2524
2525#else
2526#define AMBA_CONSOLE	NULL
2527#endif
2528
2529static struct uart_driver amba_reg = {
2530	.owner			= THIS_MODULE,
2531	.driver_name		= "ttyAMA",
2532	.dev_name		= "ttyAMA",
2533	.major			= SERIAL_AMBA_MAJOR,
2534	.minor			= SERIAL_AMBA_MINOR,
2535	.nr			= UART_NR,
2536	.cons			= AMBA_CONSOLE,
2537};
2538
2539static int pl011_probe_dt_alias(int index, struct device *dev)
2540{
2541	struct device_node *np;
2542	static bool seen_dev_with_alias = false;
2543	static bool seen_dev_without_alias = false;
2544	int ret = index;
2545
2546	if (!IS_ENABLED(CONFIG_OF))
2547		return ret;
2548
2549	np = dev->of_node;
2550	if (!np)
2551		return ret;
2552
2553	ret = of_alias_get_id(np, "serial");
2554	if (ret < 0) {
2555		seen_dev_without_alias = true;
2556		ret = index;
2557	} else {
2558		seen_dev_with_alias = true;
2559		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2560			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2561			ret = index;
2562		}
2563	}
2564
2565	if (seen_dev_with_alias && seen_dev_without_alias)
2566		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2567
2568	return ret;
2569}
2570
2571/* unregisters the driver also if no more ports are left */
2572static void pl011_unregister_port(struct uart_amba_port *uap)
2573{
2574	int i;
2575	bool busy = false;
2576
2577	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2578		if (amba_ports[i] == uap)
2579			amba_ports[i] = NULL;
2580		else if (amba_ports[i])
2581			busy = true;
2582	}
2583	pl011_dma_remove(uap);
2584	if (!busy)
2585		uart_unregister_driver(&amba_reg);
2586}
2587
2588static int pl011_find_free_port(void)
2589{
2590	int i;
2591
2592	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2593		if (amba_ports[i] == NULL)
2594			return i;
2595
2596	return -EBUSY;
2597}
2598
2599static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2600			    struct resource *mmiobase, int index)
2601{
2602	void __iomem *base;
2603
2604	base = devm_ioremap_resource(dev, mmiobase);
2605	if (IS_ERR(base))
2606		return PTR_ERR(base);
2607
2608	index = pl011_probe_dt_alias(index, dev);
2609
2610	uap->old_cr = 0;
2611	uap->port.dev = dev;
2612	uap->port.mapbase = mmiobase->start;
2613	uap->port.membase = base;
2614	uap->port.fifosize = uap->fifosize;
2615	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2616	uap->port.flags = UPF_BOOT_AUTOCONF;
2617	uap->port.line = index;
2618
2619	amba_ports[index] = uap;
2620
2621	return 0;
2622}
2623
2624static int pl011_register_port(struct uart_amba_port *uap)
2625{
2626	int ret, i;
2627
2628	/* Ensure interrupts from this UART are masked and cleared */
2629	pl011_write(0, uap, REG_IMSC);
2630	pl011_write(0xffff, uap, REG_ICR);
2631
2632	if (!amba_reg.state) {
2633		ret = uart_register_driver(&amba_reg);
2634		if (ret < 0) {
2635			dev_err(uap->port.dev,
2636				"Failed to register AMBA-PL011 driver\n");
2637			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2638				if (amba_ports[i] == uap)
2639					amba_ports[i] = NULL;
2640			return ret;
2641		}
2642	}
2643
2644	ret = uart_add_one_port(&amba_reg, &uap->port);
2645	if (ret)
2646		pl011_unregister_port(uap);
2647
2648	return ret;
2649}
2650
2651static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2652{
2653	struct uart_amba_port *uap;
2654	struct vendor_data *vendor = id->data;
2655	int portnr, ret;
2656
2657	portnr = pl011_find_free_port();
2658	if (portnr < 0)
2659		return portnr;
2660
2661	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2662			   GFP_KERNEL);
2663	if (!uap)
2664		return -ENOMEM;
2665
2666	uap->clk = devm_clk_get(&dev->dev, NULL);
2667	if (IS_ERR(uap->clk))
2668		return PTR_ERR(uap->clk);
2669
2670	uap->reg_offset = vendor->reg_offset;
2671	uap->vendor = vendor;
2672	uap->fifosize = vendor->get_fifosize(dev);
2673	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2674	uap->port.irq = dev->irq[0];
2675	uap->port.ops = &amba_pl011_pops;
2676
2677	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2678
2679	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2680	if (ret)
2681		return ret;
2682
2683	amba_set_drvdata(dev, uap);
2684
2685	return pl011_register_port(uap);
2686}
2687
2688static void pl011_remove(struct amba_device *dev)
2689{
2690	struct uart_amba_port *uap = amba_get_drvdata(dev);
2691
2692	uart_remove_one_port(&amba_reg, &uap->port);
2693	pl011_unregister_port(uap);
2694}
2695
2696#ifdef CONFIG_PM_SLEEP
2697static int pl011_suspend(struct device *dev)
2698{
2699	struct uart_amba_port *uap = dev_get_drvdata(dev);
2700
2701	if (!uap)
2702		return -EINVAL;
2703
2704	return uart_suspend_port(&amba_reg, &uap->port);
2705}
2706
2707static int pl011_resume(struct device *dev)
2708{
2709	struct uart_amba_port *uap = dev_get_drvdata(dev);
2710
2711	if (!uap)
2712		return -EINVAL;
2713
2714	return uart_resume_port(&amba_reg, &uap->port);
2715}
2716#endif
2717
2718static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2719
2720static int sbsa_uart_probe(struct platform_device *pdev)
2721{
2722	struct uart_amba_port *uap;
2723	struct resource *r;
2724	int portnr, ret;
2725	int baudrate;
2726
2727	/*
2728	 * Check the mandatory baud rate parameter in the DT node early
2729	 * so that we can easily exit with the error.
2730	 */
2731	if (pdev->dev.of_node) {
2732		struct device_node *np = pdev->dev.of_node;
2733
2734		ret = of_property_read_u32(np, "current-speed", &baudrate);
2735		if (ret)
2736			return ret;
2737	} else {
2738		baudrate = 115200;
2739	}
2740
2741	portnr = pl011_find_free_port();
2742	if (portnr < 0)
2743		return portnr;
2744
2745	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2746			   GFP_KERNEL);
2747	if (!uap)
2748		return -ENOMEM;
2749
2750	ret = platform_get_irq(pdev, 0);
2751	if (ret < 0)
2752		return ret;
2753	uap->port.irq	= ret;
2754
2755#ifdef CONFIG_ACPI_SPCR_TABLE
2756	if (qdf2400_e44_present) {
2757		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2758		uap->vendor = &vendor_qdt_qdf2400_e44;
2759	} else
2760#endif
2761		uap->vendor = &vendor_sbsa;
2762
2763	uap->reg_offset	= uap->vendor->reg_offset;
2764	uap->fifosize	= 32;
2765	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2766	uap->port.ops	= &sbsa_uart_pops;
2767	uap->fixed_baud = baudrate;
2768
2769	snprintf(uap->type, sizeof(uap->type), "SBSA");
2770
2771	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2772
2773	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2774	if (ret)
2775		return ret;
2776
2777	platform_set_drvdata(pdev, uap);
2778
2779	return pl011_register_port(uap);
2780}
2781
2782static int sbsa_uart_remove(struct platform_device *pdev)
2783{
2784	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2785
2786	uart_remove_one_port(&amba_reg, &uap->port);
2787	pl011_unregister_port(uap);
2788	return 0;
2789}
2790
2791static const struct of_device_id sbsa_uart_of_match[] = {
2792	{ .compatible = "arm,sbsa-uart", },
2793	{},
2794};
2795MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2796
2797static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2798	{ "ARMH0011", 0 },
2799	{ "ARMHB000", 0 },
2800	{},
2801};
2802MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2803
2804static struct platform_driver arm_sbsa_uart_platform_driver = {
2805	.probe		= sbsa_uart_probe,
2806	.remove		= sbsa_uart_remove,
2807	.driver	= {
2808		.name	= "sbsa-uart",
2809		.pm	= &pl011_dev_pm_ops,
2810		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2811		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2812		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2813	},
2814};
2815
2816static const struct amba_id pl011_ids[] = {
2817	{
2818		.id	= 0x00041011,
2819		.mask	= 0x000fffff,
2820		.data	= &vendor_arm,
2821	},
2822	{
2823		.id	= 0x00380802,
2824		.mask	= 0x00ffffff,
2825		.data	= &vendor_st,
2826	},
2827	{
2828		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2829		.mask	= 0x00ffffff,
2830		.data	= &vendor_zte,
2831	},
2832	{ 0, 0 },
2833};
2834
2835MODULE_DEVICE_TABLE(amba, pl011_ids);
2836
2837static struct amba_driver pl011_driver = {
2838	.drv = {
2839		.name	= "uart-pl011",
2840		.pm	= &pl011_dev_pm_ops,
2841		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2842	},
2843	.id_table	= pl011_ids,
2844	.probe		= pl011_probe,
2845	.remove		= pl011_remove,
2846};
2847
2848static int __init pl011_init(void)
2849{
2850	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2851
2852	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2853		pr_warn("could not register SBSA UART platform driver\n");
2854	return amba_driver_register(&pl011_driver);
2855}
2856
2857static void __exit pl011_exit(void)
2858{
2859	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2860	amba_driver_unregister(&pl011_driver);
2861}
2862
2863/*
2864 * While this can be a module, if builtin it's most likely the console
2865 * So let's leave module_exit but move module_init to an earlier place
2866 */
2867arch_initcall(pl011_init);
2868module_exit(pl011_exit);
2869
2870MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2871MODULE_DESCRIPTION("ARM AMBA serial port driver");
2872MODULE_LICENSE("GPL");
2873