1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Thunderbolt driver - NHI driver
4 *
5 * The NHI (native host interface) is the pci device that allows us to send and
6 * receive frames from the thunderbolt bus.
7 *
8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9 * Copyright (C) 2018, Intel Corporation
10 */
11
12#include <linux/pm_runtime.h>
13#include <linux/slab.h>
14#include <linux/errno.h>
15#include <linux/pci.h>
16#include <linux/interrupt.h>
17#include <linux/module.h>
18#include <linux/delay.h>
19#include <linux/property.h>
20#include <linux/platform_data/x86/apple.h>
21
22#include "nhi.h"
23#include "nhi_regs.h"
24#include "tb.h"
25
26#define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
27
28#define RING_FIRST_USABLE_HOPID	1
29
30/*
31 * Minimal number of vectors when we use MSI-X. Two for control channel
32 * Rx/Tx and the rest four are for cross domain DMA paths.
33 */
34#define MSIX_MIN_VECS		6
35#define MSIX_MAX_VECS		16
36
37#define NHI_MAILBOX_TIMEOUT	500 /* ms */
38
39static int ring_interrupt_index(const struct tb_ring *ring)
40{
41	int bit = ring->hop;
42	if (!ring->is_tx)
43		bit += ring->nhi->hop_count;
44	return bit;
45}
46
47/**
48 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
49 *
50 * ring->nhi->lock must be held.
51 */
52static void ring_interrupt_active(struct tb_ring *ring, bool active)
53{
54	int reg = REG_RING_INTERRUPT_BASE +
55		  ring_interrupt_index(ring) / 32 * 4;
56	int bit = ring_interrupt_index(ring) & 31;
57	int mask = 1 << bit;
58	u32 old, new;
59
60	if (ring->irq > 0) {
61		u32 step, shift, ivr, misc;
62		void __iomem *ivr_base;
63		int index;
64
65		if (ring->is_tx)
66			index = ring->hop;
67		else
68			index = ring->hop + ring->nhi->hop_count;
69
70		/*
71		 * Ask the hardware to clear interrupt status bits automatically
72		 * since we already know which interrupt was triggered.
73		 */
74		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
75		if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
76			misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
77			iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
78		}
79
80		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
81		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
82		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
83		ivr = ioread32(ivr_base + step);
84		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
85		if (active)
86			ivr |= ring->vector << shift;
87		iowrite32(ivr, ivr_base + step);
88	}
89
90	old = ioread32(ring->nhi->iobase + reg);
91	if (active)
92		new = old | mask;
93	else
94		new = old & ~mask;
95
96	dev_dbg(&ring->nhi->pdev->dev,
97		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
98		active ? "enabling" : "disabling", reg, bit, old, new);
99
100	if (new == old)
101		dev_WARN(&ring->nhi->pdev->dev,
102					 "interrupt for %s %d is already %s\n",
103					 RING_TYPE(ring), ring->hop,
104					 active ? "enabled" : "disabled");
105	iowrite32(new, ring->nhi->iobase + reg);
106}
107
108/**
109 * nhi_disable_interrupts() - disable interrupts for all rings
110 *
111 * Use only during init and shutdown.
112 */
113static void nhi_disable_interrupts(struct tb_nhi *nhi)
114{
115	int i = 0;
116	/* disable interrupts */
117	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
118		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
119
120	/* clear interrupt status bits */
121	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
122		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
123}
124
125/* ring helper methods */
126
127static void __iomem *ring_desc_base(struct tb_ring *ring)
128{
129	void __iomem *io = ring->nhi->iobase;
130	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
131	io += ring->hop * 16;
132	return io;
133}
134
135static void __iomem *ring_options_base(struct tb_ring *ring)
136{
137	void __iomem *io = ring->nhi->iobase;
138	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
139	io += ring->hop * 32;
140	return io;
141}
142
143static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
144{
145	/*
146	 * The other 16-bits in the register is read-only and writes to it
147	 * are ignored by the hardware so we can save one ioread32() by
148	 * filling the read-only bits with zeroes.
149	 */
150	iowrite32(cons, ring_desc_base(ring) + 8);
151}
152
153static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
154{
155	/* See ring_iowrite_cons() above for explanation */
156	iowrite32(prod << 16, ring_desc_base(ring) + 8);
157}
158
159static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
160{
161	iowrite32(value, ring_desc_base(ring) + offset);
162}
163
164static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
165{
166	iowrite32(value, ring_desc_base(ring) + offset);
167	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
168}
169
170static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
171{
172	iowrite32(value, ring_options_base(ring) + offset);
173}
174
175static bool ring_full(struct tb_ring *ring)
176{
177	return ((ring->head + 1) % ring->size) == ring->tail;
178}
179
180static bool ring_empty(struct tb_ring *ring)
181{
182	return ring->head == ring->tail;
183}
184
185/**
186 * ring_write_descriptors() - post frames from ring->queue to the controller
187 *
188 * ring->lock is held.
189 */
190static void ring_write_descriptors(struct tb_ring *ring)
191{
192	struct ring_frame *frame, *n;
193	struct ring_desc *descriptor;
194	list_for_each_entry_safe(frame, n, &ring->queue, list) {
195		if (ring_full(ring))
196			break;
197		list_move_tail(&frame->list, &ring->in_flight);
198		descriptor = &ring->descriptors[ring->head];
199		descriptor->phys = frame->buffer_phy;
200		descriptor->time = 0;
201		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
202		if (ring->is_tx) {
203			descriptor->length = frame->size;
204			descriptor->eof = frame->eof;
205			descriptor->sof = frame->sof;
206		}
207		ring->head = (ring->head + 1) % ring->size;
208		if (ring->is_tx)
209			ring_iowrite_prod(ring, ring->head);
210		else
211			ring_iowrite_cons(ring, ring->head);
212	}
213}
214
215/**
216 * ring_work() - progress completed frames
217 *
218 * If the ring is shutting down then all frames are marked as canceled and
219 * their callbacks are invoked.
220 *
221 * Otherwise we collect all completed frame from the ring buffer, write new
222 * frame to the ring buffer and invoke the callbacks for the completed frames.
223 */
224static void ring_work(struct work_struct *work)
225{
226	struct tb_ring *ring = container_of(work, typeof(*ring), work);
227	struct ring_frame *frame;
228	bool canceled = false;
229	unsigned long flags;
230	LIST_HEAD(done);
231
232	spin_lock_irqsave(&ring->lock, flags);
233
234	if (!ring->running) {
235		/*  Move all frames to done and mark them as canceled. */
236		list_splice_tail_init(&ring->in_flight, &done);
237		list_splice_tail_init(&ring->queue, &done);
238		canceled = true;
239		goto invoke_callback;
240	}
241
242	while (!ring_empty(ring)) {
243		if (!(ring->descriptors[ring->tail].flags
244				& RING_DESC_COMPLETED))
245			break;
246		frame = list_first_entry(&ring->in_flight, typeof(*frame),
247					 list);
248		list_move_tail(&frame->list, &done);
249		if (!ring->is_tx) {
250			frame->size = ring->descriptors[ring->tail].length;
251			frame->eof = ring->descriptors[ring->tail].eof;
252			frame->sof = ring->descriptors[ring->tail].sof;
253			frame->flags = ring->descriptors[ring->tail].flags;
254		}
255		ring->tail = (ring->tail + 1) % ring->size;
256	}
257	ring_write_descriptors(ring);
258
259invoke_callback:
260	/* allow callbacks to schedule new work */
261	spin_unlock_irqrestore(&ring->lock, flags);
262	while (!list_empty(&done)) {
263		frame = list_first_entry(&done, typeof(*frame), list);
264		/*
265		 * The callback may reenqueue or delete frame.
266		 * Do not hold on to it.
267		 */
268		list_del_init(&frame->list);
269		if (frame->callback)
270			frame->callback(ring, frame, canceled);
271	}
272}
273
274int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
275{
276	unsigned long flags;
277	int ret = 0;
278
279	spin_lock_irqsave(&ring->lock, flags);
280	if (ring->running) {
281		list_add_tail(&frame->list, &ring->queue);
282		ring_write_descriptors(ring);
283	} else {
284		ret = -ESHUTDOWN;
285	}
286	spin_unlock_irqrestore(&ring->lock, flags);
287	return ret;
288}
289EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
290
291/**
292 * tb_ring_poll() - Poll one completed frame from the ring
293 * @ring: Ring to poll
294 *
295 * This function can be called when @start_poll callback of the @ring
296 * has been called. It will read one completed frame from the ring and
297 * return it to the caller. Returns %NULL if there is no more completed
298 * frames.
299 */
300struct ring_frame *tb_ring_poll(struct tb_ring *ring)
301{
302	struct ring_frame *frame = NULL;
303	unsigned long flags;
304
305	spin_lock_irqsave(&ring->lock, flags);
306	if (!ring->running)
307		goto unlock;
308	if (ring_empty(ring))
309		goto unlock;
310
311	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
312		frame = list_first_entry(&ring->in_flight, typeof(*frame),
313					 list);
314		list_del_init(&frame->list);
315
316		if (!ring->is_tx) {
317			frame->size = ring->descriptors[ring->tail].length;
318			frame->eof = ring->descriptors[ring->tail].eof;
319			frame->sof = ring->descriptors[ring->tail].sof;
320			frame->flags = ring->descriptors[ring->tail].flags;
321		}
322
323		ring->tail = (ring->tail + 1) % ring->size;
324	}
325
326unlock:
327	spin_unlock_irqrestore(&ring->lock, flags);
328	return frame;
329}
330EXPORT_SYMBOL_GPL(tb_ring_poll);
331
332static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
333{
334	int idx = ring_interrupt_index(ring);
335	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
336	int bit = idx % 32;
337	u32 val;
338
339	val = ioread32(ring->nhi->iobase + reg);
340	if (mask)
341		val &= ~BIT(bit);
342	else
343		val |= BIT(bit);
344	iowrite32(val, ring->nhi->iobase + reg);
345}
346
347/* Both @nhi->lock and @ring->lock should be held */
348static void __ring_interrupt(struct tb_ring *ring)
349{
350	if (!ring->running)
351		return;
352
353	if (ring->start_poll) {
354		__ring_interrupt_mask(ring, true);
355		ring->start_poll(ring->poll_data);
356	} else {
357		schedule_work(&ring->work);
358	}
359}
360
361/**
362 * tb_ring_poll_complete() - Re-start interrupt for the ring
363 * @ring: Ring to re-start the interrupt
364 *
365 * This will re-start (unmask) the ring interrupt once the user is done
366 * with polling.
367 */
368void tb_ring_poll_complete(struct tb_ring *ring)
369{
370	unsigned long flags;
371
372	spin_lock_irqsave(&ring->nhi->lock, flags);
373	spin_lock(&ring->lock);
374	if (ring->start_poll)
375		__ring_interrupt_mask(ring, false);
376	spin_unlock(&ring->lock);
377	spin_unlock_irqrestore(&ring->nhi->lock, flags);
378}
379EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
380
381static irqreturn_t ring_msix(int irq, void *data)
382{
383	struct tb_ring *ring = data;
384
385	spin_lock(&ring->nhi->lock);
386	spin_lock(&ring->lock);
387	__ring_interrupt(ring);
388	spin_unlock(&ring->lock);
389	spin_unlock(&ring->nhi->lock);
390
391	return IRQ_HANDLED;
392}
393
394static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
395{
396	struct tb_nhi *nhi = ring->nhi;
397	unsigned long irqflags;
398	int ret;
399
400	if (!nhi->pdev->msix_enabled)
401		return 0;
402
403	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
404	if (ret < 0)
405		return ret;
406
407	ring->vector = ret;
408
409	ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
410	if (ret < 0)
411		goto err_ida_remove;
412
413	ring->irq = ret;
414
415	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
416	ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
417	if (ret)
418		goto err_ida_remove;
419
420	return 0;
421
422err_ida_remove:
423	ida_simple_remove(&nhi->msix_ida, ring->vector);
424
425	return ret;
426}
427
428static void ring_release_msix(struct tb_ring *ring)
429{
430	if (ring->irq <= 0)
431		return;
432
433	free_irq(ring->irq, ring);
434	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
435	ring->vector = 0;
436	ring->irq = 0;
437}
438
439static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
440{
441	int ret = 0;
442
443	spin_lock_irq(&nhi->lock);
444
445	if (ring->hop < 0) {
446		unsigned int i;
447
448		/*
449		 * Automatically allocate HopID from the non-reserved
450		 * range 1 .. hop_count - 1.
451		 */
452		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
453			if (ring->is_tx) {
454				if (!nhi->tx_rings[i]) {
455					ring->hop = i;
456					break;
457				}
458			} else {
459				if (!nhi->rx_rings[i]) {
460					ring->hop = i;
461					break;
462				}
463			}
464		}
465	}
466
467	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
468		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
469		ret = -EINVAL;
470		goto err_unlock;
471	}
472	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
473		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
474			 ring->hop);
475		ret = -EBUSY;
476		goto err_unlock;
477	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
478		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
479			 ring->hop);
480		ret = -EBUSY;
481		goto err_unlock;
482	}
483
484	if (ring->is_tx)
485		nhi->tx_rings[ring->hop] = ring;
486	else
487		nhi->rx_rings[ring->hop] = ring;
488
489err_unlock:
490	spin_unlock_irq(&nhi->lock);
491
492	return ret;
493}
494
495static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
496				     bool transmit, unsigned int flags,
497				     u16 sof_mask, u16 eof_mask,
498				     void (*start_poll)(void *),
499				     void *poll_data)
500{
501	struct tb_ring *ring = NULL;
502
503	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
504		transmit ? "TX" : "RX", hop, size);
505
506	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
507	if (!ring)
508		return NULL;
509
510	spin_lock_init(&ring->lock);
511	INIT_LIST_HEAD(&ring->queue);
512	INIT_LIST_HEAD(&ring->in_flight);
513	INIT_WORK(&ring->work, ring_work);
514
515	ring->nhi = nhi;
516	ring->hop = hop;
517	ring->is_tx = transmit;
518	ring->size = size;
519	ring->flags = flags;
520	ring->sof_mask = sof_mask;
521	ring->eof_mask = eof_mask;
522	ring->head = 0;
523	ring->tail = 0;
524	ring->running = false;
525	ring->start_poll = start_poll;
526	ring->poll_data = poll_data;
527
528	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
529			size * sizeof(*ring->descriptors),
530			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
531	if (!ring->descriptors)
532		goto err_free_ring;
533
534	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
535		goto err_free_descs;
536
537	if (nhi_alloc_hop(nhi, ring))
538		goto err_release_msix;
539
540	return ring;
541
542err_release_msix:
543	ring_release_msix(ring);
544err_free_descs:
545	dma_free_coherent(&ring->nhi->pdev->dev,
546			  ring->size * sizeof(*ring->descriptors),
547			  ring->descriptors, ring->descriptors_dma);
548err_free_ring:
549	kfree(ring);
550
551	return NULL;
552}
553
554/**
555 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
556 * @nhi: Pointer to the NHI the ring is to be allocated
557 * @hop: HopID (ring) to allocate
558 * @size: Number of entries in the ring
559 * @flags: Flags for the ring
560 */
561struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
562				 unsigned int flags)
563{
564	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
565}
566EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
567
568/**
569 * tb_ring_alloc_rx() - Allocate DMA ring for receive
570 * @nhi: Pointer to the NHI the ring is to be allocated
571 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
572 * @size: Number of entries in the ring
573 * @flags: Flags for the ring
574 * @sof_mask: Mask of PDF values that start a frame
575 * @eof_mask: Mask of PDF values that end a frame
576 * @start_poll: If not %NULL the ring will call this function when an
577 *		interrupt is triggered and masked, instead of callback
578 *		in each Rx frame.
579 * @poll_data: Optional data passed to @start_poll
580 */
581struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
582				 unsigned int flags, u16 sof_mask, u16 eof_mask,
583				 void (*start_poll)(void *), void *poll_data)
584{
585	return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
586			     start_poll, poll_data);
587}
588EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
589
590/**
591 * tb_ring_start() - enable a ring
592 *
593 * Must not be invoked in parallel with tb_ring_stop().
594 */
595void tb_ring_start(struct tb_ring *ring)
596{
597	u16 frame_size;
598	u32 flags;
599
600	spin_lock_irq(&ring->nhi->lock);
601	spin_lock(&ring->lock);
602	if (ring->nhi->going_away)
603		goto err;
604	if (ring->running) {
605		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
606		goto err;
607	}
608	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
609		RING_TYPE(ring), ring->hop);
610
611	if (ring->flags & RING_FLAG_FRAME) {
612		/* Means 4096 */
613		frame_size = 0;
614		flags = RING_FLAG_ENABLE;
615	} else {
616		frame_size = TB_FRAME_SIZE;
617		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
618	}
619
620	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
621	if (ring->is_tx) {
622		ring_iowrite32desc(ring, ring->size, 12);
623		ring_iowrite32options(ring, 0, 4); /* time releated ? */
624		ring_iowrite32options(ring, flags, 0);
625	} else {
626		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
627
628		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
629		ring_iowrite32options(ring, sof_eof_mask, 4);
630		ring_iowrite32options(ring, flags, 0);
631	}
632	ring_interrupt_active(ring, true);
633	ring->running = true;
634err:
635	spin_unlock(&ring->lock);
636	spin_unlock_irq(&ring->nhi->lock);
637}
638EXPORT_SYMBOL_GPL(tb_ring_start);
639
640/**
641 * tb_ring_stop() - shutdown a ring
642 *
643 * Must not be invoked from a callback.
644 *
645 * This method will disable the ring. Further calls to
646 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
647 * called.
648 *
649 * All enqueued frames will be canceled and their callbacks will be executed
650 * with frame->canceled set to true (on the callback thread). This method
651 * returns only after all callback invocations have finished.
652 */
653void tb_ring_stop(struct tb_ring *ring)
654{
655	spin_lock_irq(&ring->nhi->lock);
656	spin_lock(&ring->lock);
657	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
658		RING_TYPE(ring), ring->hop);
659	if (ring->nhi->going_away)
660		goto err;
661	if (!ring->running) {
662		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
663			 RING_TYPE(ring), ring->hop);
664		goto err;
665	}
666	ring_interrupt_active(ring, false);
667
668	ring_iowrite32options(ring, 0, 0);
669	ring_iowrite64desc(ring, 0, 0);
670	ring_iowrite32desc(ring, 0, 8);
671	ring_iowrite32desc(ring, 0, 12);
672	ring->head = 0;
673	ring->tail = 0;
674	ring->running = false;
675
676err:
677	spin_unlock(&ring->lock);
678	spin_unlock_irq(&ring->nhi->lock);
679
680	/*
681	 * schedule ring->work to invoke callbacks on all remaining frames.
682	 */
683	schedule_work(&ring->work);
684	flush_work(&ring->work);
685}
686EXPORT_SYMBOL_GPL(tb_ring_stop);
687
688/*
689 * tb_ring_free() - free ring
690 *
691 * When this method returns all invocations of ring->callback will have
692 * finished.
693 *
694 * Ring must be stopped.
695 *
696 * Must NOT be called from ring_frame->callback!
697 */
698void tb_ring_free(struct tb_ring *ring)
699{
700	spin_lock_irq(&ring->nhi->lock);
701	/*
702	 * Dissociate the ring from the NHI. This also ensures that
703	 * nhi_interrupt_work cannot reschedule ring->work.
704	 */
705	if (ring->is_tx)
706		ring->nhi->tx_rings[ring->hop] = NULL;
707	else
708		ring->nhi->rx_rings[ring->hop] = NULL;
709
710	if (ring->running) {
711		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
712			 RING_TYPE(ring), ring->hop);
713	}
714	spin_unlock_irq(&ring->nhi->lock);
715
716	ring_release_msix(ring);
717
718	dma_free_coherent(&ring->nhi->pdev->dev,
719			  ring->size * sizeof(*ring->descriptors),
720			  ring->descriptors, ring->descriptors_dma);
721
722	ring->descriptors = NULL;
723	ring->descriptors_dma = 0;
724
725
726	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
727		ring->hop);
728
729	/**
730	 * ring->work can no longer be scheduled (it is scheduled only
731	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
732	 * to finish before freeing the ring.
733	 */
734	flush_work(&ring->work);
735	kfree(ring);
736}
737EXPORT_SYMBOL_GPL(tb_ring_free);
738
739/**
740 * nhi_mailbox_cmd() - Send a command through NHI mailbox
741 * @nhi: Pointer to the NHI structure
742 * @cmd: Command to send
743 * @data: Data to be send with the command
744 *
745 * Sends mailbox command to the firmware running on NHI. Returns %0 in
746 * case of success and negative errno in case of failure.
747 */
748int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
749{
750	ktime_t timeout;
751	u32 val;
752
753	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
754
755	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
756	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
757	val |= REG_INMAIL_OP_REQUEST | cmd;
758	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
759
760	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
761	do {
762		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
763		if (!(val & REG_INMAIL_OP_REQUEST))
764			break;
765		usleep_range(10, 20);
766	} while (ktime_before(ktime_get(), timeout));
767
768	if (val & REG_INMAIL_OP_REQUEST)
769		return -ETIMEDOUT;
770	if (val & REG_INMAIL_ERROR)
771		return -EIO;
772
773	return 0;
774}
775
776/**
777 * nhi_mailbox_mode() - Return current firmware operation mode
778 * @nhi: Pointer to the NHI structure
779 *
780 * The function reads current firmware operation mode using NHI mailbox
781 * registers and returns it to the caller.
782 */
783enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
784{
785	u32 val;
786
787	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
788	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
789	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
790
791	return (enum nhi_fw_mode)val;
792}
793
794static void nhi_interrupt_work(struct work_struct *work)
795{
796	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
797	int value = 0; /* Suppress uninitialized usage warning. */
798	int bit;
799	int hop = -1;
800	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
801	struct tb_ring *ring;
802
803	spin_lock_irq(&nhi->lock);
804
805	/*
806	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
807	 * (TX, RX, RX overflow). We iterate over the bits and read a new
808	 * dwords as required. The registers are cleared on read.
809	 */
810	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
811		if (bit % 32 == 0)
812			value = ioread32(nhi->iobase
813					 + REG_RING_NOTIFY_BASE
814					 + 4 * (bit / 32));
815		if (++hop == nhi->hop_count) {
816			hop = 0;
817			type++;
818		}
819		if ((value & (1 << (bit % 32))) == 0)
820			continue;
821		if (type == 2) {
822			dev_warn(&nhi->pdev->dev,
823				 "RX overflow for ring %d\n",
824				 hop);
825			continue;
826		}
827		if (type == 0)
828			ring = nhi->tx_rings[hop];
829		else
830			ring = nhi->rx_rings[hop];
831		if (ring == NULL) {
832			dev_warn(&nhi->pdev->dev,
833				 "got interrupt for inactive %s ring %d\n",
834				 type ? "RX" : "TX",
835				 hop);
836			continue;
837		}
838
839		spin_lock(&ring->lock);
840		__ring_interrupt(ring);
841		spin_unlock(&ring->lock);
842	}
843	spin_unlock_irq(&nhi->lock);
844}
845
846static irqreturn_t nhi_msi(int irq, void *data)
847{
848	struct tb_nhi *nhi = data;
849	schedule_work(&nhi->interrupt_work);
850	return IRQ_HANDLED;
851}
852
853static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
854{
855	struct pci_dev *pdev = to_pci_dev(dev);
856	struct tb *tb = pci_get_drvdata(pdev);
857	struct tb_nhi *nhi = tb->nhi;
858	int ret;
859
860	ret = tb_domain_suspend_noirq(tb);
861	if (ret)
862		return ret;
863
864	if (nhi->ops && nhi->ops->suspend_noirq) {
865		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
866		if (ret)
867			return ret;
868	}
869
870	return 0;
871}
872
873static int nhi_suspend_noirq(struct device *dev)
874{
875	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
876}
877
878static int nhi_freeze_noirq(struct device *dev)
879{
880	struct pci_dev *pdev = to_pci_dev(dev);
881	struct tb *tb = pci_get_drvdata(pdev);
882
883	return tb_domain_freeze_noirq(tb);
884}
885
886static int nhi_thaw_noirq(struct device *dev)
887{
888	struct pci_dev *pdev = to_pci_dev(dev);
889	struct tb *tb = pci_get_drvdata(pdev);
890
891	return tb_domain_thaw_noirq(tb);
892}
893
894static bool nhi_wake_supported(struct pci_dev *pdev)
895{
896	u8 val;
897
898	/*
899	 * If power rails are sustainable for wakeup from S4 this
900	 * property is set by the BIOS.
901	 */
902	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
903		return !!val;
904
905	return true;
906}
907
908static int nhi_poweroff_noirq(struct device *dev)
909{
910	struct pci_dev *pdev = to_pci_dev(dev);
911	bool wakeup;
912
913	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
914	return __nhi_suspend_noirq(dev, wakeup);
915}
916
917static void nhi_enable_int_throttling(struct tb_nhi *nhi)
918{
919	/* Throttling is specified in 256ns increments */
920	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
921	unsigned int i;
922
923	/*
924	 * Configure interrupt throttling for all vectors even if we
925	 * only use few.
926	 */
927	for (i = 0; i < MSIX_MAX_VECS; i++) {
928		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
929		iowrite32(throttle, nhi->iobase + reg);
930	}
931}
932
933static int nhi_resume_noirq(struct device *dev)
934{
935	struct pci_dev *pdev = to_pci_dev(dev);
936	struct tb *tb = pci_get_drvdata(pdev);
937	struct tb_nhi *nhi = tb->nhi;
938	int ret;
939
940	/*
941	 * Check that the device is still there. It may be that the user
942	 * unplugged last device which causes the host controller to go
943	 * away on PCs.
944	 */
945	if (!pci_device_is_present(pdev)) {
946		nhi->going_away = true;
947	} else {
948		if (nhi->ops && nhi->ops->resume_noirq) {
949			ret = nhi->ops->resume_noirq(nhi);
950			if (ret)
951				return ret;
952		}
953		nhi_enable_int_throttling(tb->nhi);
954	}
955
956	return tb_domain_resume_noirq(tb);
957}
958
959static int nhi_suspend(struct device *dev)
960{
961	struct pci_dev *pdev = to_pci_dev(dev);
962	struct tb *tb = pci_get_drvdata(pdev);
963
964	return tb_domain_suspend(tb);
965}
966
967static void nhi_complete(struct device *dev)
968{
969	struct pci_dev *pdev = to_pci_dev(dev);
970	struct tb *tb = pci_get_drvdata(pdev);
971
972	/*
973	 * If we were runtime suspended when system suspend started,
974	 * schedule runtime resume now. It should bring the domain back
975	 * to functional state.
976	 */
977	if (pm_runtime_suspended(&pdev->dev))
978		pm_runtime_resume(&pdev->dev);
979	else
980		tb_domain_complete(tb);
981}
982
983static int nhi_runtime_suspend(struct device *dev)
984{
985	struct pci_dev *pdev = to_pci_dev(dev);
986	struct tb *tb = pci_get_drvdata(pdev);
987	struct tb_nhi *nhi = tb->nhi;
988	int ret;
989
990	ret = tb_domain_runtime_suspend(tb);
991	if (ret)
992		return ret;
993
994	if (nhi->ops && nhi->ops->runtime_suspend) {
995		ret = nhi->ops->runtime_suspend(tb->nhi);
996		if (ret)
997			return ret;
998	}
999	return 0;
1000}
1001
1002static int nhi_runtime_resume(struct device *dev)
1003{
1004	struct pci_dev *pdev = to_pci_dev(dev);
1005	struct tb *tb = pci_get_drvdata(pdev);
1006	struct tb_nhi *nhi = tb->nhi;
1007	int ret;
1008
1009	if (nhi->ops && nhi->ops->runtime_resume) {
1010		ret = nhi->ops->runtime_resume(nhi);
1011		if (ret)
1012			return ret;
1013	}
1014
1015	nhi_enable_int_throttling(nhi);
1016	return tb_domain_runtime_resume(tb);
1017}
1018
1019static void nhi_shutdown(struct tb_nhi *nhi)
1020{
1021	int i;
1022
1023	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1024
1025	for (i = 0; i < nhi->hop_count; i++) {
1026		if (nhi->tx_rings[i])
1027			dev_WARN(&nhi->pdev->dev,
1028				 "TX ring %d is still active\n", i);
1029		if (nhi->rx_rings[i])
1030			dev_WARN(&nhi->pdev->dev,
1031				 "RX ring %d is still active\n", i);
1032	}
1033	nhi_disable_interrupts(nhi);
1034	/*
1035	 * We have to release the irq before calling flush_work. Otherwise an
1036	 * already executing IRQ handler could call schedule_work again.
1037	 */
1038	if (!nhi->pdev->msix_enabled) {
1039		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1040		flush_work(&nhi->interrupt_work);
1041	}
1042	ida_destroy(&nhi->msix_ida);
1043
1044	if (nhi->ops && nhi->ops->shutdown)
1045		nhi->ops->shutdown(nhi);
1046}
1047
1048static int nhi_init_msi(struct tb_nhi *nhi)
1049{
1050	struct pci_dev *pdev = nhi->pdev;
1051	int res, irq, nvec;
1052
1053	/* In case someone left them on. */
1054	nhi_disable_interrupts(nhi);
1055
1056	nhi_enable_int_throttling(nhi);
1057
1058	ida_init(&nhi->msix_ida);
1059
1060	/*
1061	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1062	 * get all MSI-X vectors and if we succeed, each ring will have
1063	 * one MSI-X. If for some reason that does not work out, we
1064	 * fallback to a single MSI.
1065	 */
1066	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1067				     PCI_IRQ_MSIX);
1068	if (nvec < 0) {
1069		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1070		if (nvec < 0)
1071			return nvec;
1072
1073		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1074
1075		irq = pci_irq_vector(nhi->pdev, 0);
1076		if (irq < 0)
1077			return irq;
1078
1079		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1080				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1081		if (res) {
1082			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1083			return res;
1084		}
1085	}
1086
1087	return 0;
1088}
1089
1090static bool nhi_imr_valid(struct pci_dev *pdev)
1091{
1092	u8 val;
1093
1094	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1095		return !!val;
1096
1097	return true;
1098}
1099
1100/*
1101 * During suspend the Thunderbolt controller is reset and all PCIe
1102 * tunnels are lost. The NHI driver will try to reestablish all tunnels
1103 * during resume. This adds device links between the tunneled PCIe
1104 * downstream ports and the NHI so that the device core will make sure
1105 * NHI is resumed first before the rest.
1106 */
1107static void tb_apple_add_links(struct tb_nhi *nhi)
1108{
1109	struct pci_dev *upstream, *pdev;
1110
1111	if (!x86_apple_machine)
1112		return;
1113
1114	switch (nhi->pdev->device) {
1115	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1116	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1117	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1118	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1119		break;
1120	default:
1121		return;
1122	}
1123
1124	upstream = pci_upstream_bridge(nhi->pdev);
1125	while (upstream) {
1126		if (!pci_is_pcie(upstream))
1127			return;
1128		if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
1129			break;
1130		upstream = pci_upstream_bridge(upstream);
1131	}
1132
1133	if (!upstream)
1134		return;
1135
1136	/*
1137	 * For each hotplug downstream port, create add device link
1138	 * back to NHI so that PCIe tunnels can be re-established after
1139	 * sleep.
1140	 */
1141	for_each_pci_bridge(pdev, upstream->subordinate) {
1142		const struct device_link *link;
1143
1144		if (!pci_is_pcie(pdev))
1145			continue;
1146		if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
1147		    !pdev->is_hotplug_bridge)
1148			continue;
1149
1150		link = device_link_add(&pdev->dev, &nhi->pdev->dev,
1151				       DL_FLAG_AUTOREMOVE_SUPPLIER |
1152				       DL_FLAG_PM_RUNTIME);
1153		if (link) {
1154			dev_dbg(&nhi->pdev->dev, "created link from %s\n",
1155				dev_name(&pdev->dev));
1156		} else {
1157			dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
1158				 dev_name(&pdev->dev));
1159		}
1160	}
1161}
1162
1163static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1164{
1165	struct tb_nhi *nhi;
1166	struct tb *tb;
1167	int res;
1168
1169	if (!nhi_imr_valid(pdev)) {
1170		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1171		return -ENODEV;
1172	}
1173
1174	res = pcim_enable_device(pdev);
1175	if (res) {
1176		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1177		return res;
1178	}
1179
1180	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1181	if (res) {
1182		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1183		return res;
1184	}
1185
1186	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1187	if (!nhi)
1188		return -ENOMEM;
1189
1190	nhi->pdev = pdev;
1191	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1192	/* cannot fail - table is allocated bin pcim_iomap_regions */
1193	nhi->iobase = pcim_iomap_table(pdev)[0];
1194	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1195	dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1196
1197	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1198				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1199	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1200				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1201	if (!nhi->tx_rings || !nhi->rx_rings)
1202		return -ENOMEM;
1203
1204	res = nhi_init_msi(nhi);
1205	if (res) {
1206		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1207		return res;
1208	}
1209
1210	spin_lock_init(&nhi->lock);
1211
1212	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1213	if (res)
1214		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1215	if (res) {
1216		dev_err(&pdev->dev, "failed to set DMA mask\n");
1217		return res;
1218	}
1219
1220	pci_set_master(pdev);
1221
1222	if (nhi->ops && nhi->ops->init) {
1223		res = nhi->ops->init(nhi);
1224		if (res)
1225			return res;
1226	}
1227
1228	tb_apple_add_links(nhi);
1229	tb_acpi_add_links(nhi);
1230
1231	tb = icm_probe(nhi);
1232	if (!tb)
1233		tb = tb_probe(nhi);
1234	if (!tb) {
1235		dev_err(&nhi->pdev->dev,
1236			"failed to determine connection manager, aborting\n");
1237		return -ENODEV;
1238	}
1239
1240	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1241
1242	res = tb_domain_add(tb);
1243	if (res) {
1244		/*
1245		 * At this point the RX/TX rings might already have been
1246		 * activated. Do a proper shutdown.
1247		 */
1248		tb_domain_put(tb);
1249		nhi_shutdown(nhi);
1250		return res;
1251	}
1252	pci_set_drvdata(pdev, tb);
1253
1254	device_wakeup_enable(&pdev->dev);
1255
1256	pm_runtime_allow(&pdev->dev);
1257	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1258	pm_runtime_use_autosuspend(&pdev->dev);
1259	pm_runtime_put_autosuspend(&pdev->dev);
1260
1261	return 0;
1262}
1263
1264static void nhi_remove(struct pci_dev *pdev)
1265{
1266	struct tb *tb = pci_get_drvdata(pdev);
1267	struct tb_nhi *nhi = tb->nhi;
1268
1269	pm_runtime_get_sync(&pdev->dev);
1270	pm_runtime_dont_use_autosuspend(&pdev->dev);
1271	pm_runtime_forbid(&pdev->dev);
1272
1273	tb_domain_remove(tb);
1274	nhi_shutdown(nhi);
1275}
1276
1277/*
1278 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1279 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1280 * resume_noirq until we are done.
1281 */
1282static const struct dev_pm_ops nhi_pm_ops = {
1283	.suspend_noirq = nhi_suspend_noirq,
1284	.resume_noirq = nhi_resume_noirq,
1285	.freeze_noirq = nhi_freeze_noirq,  /*
1286					    * we just disable hotplug, the
1287					    * pci-tunnels stay alive.
1288					    */
1289	.thaw_noirq = nhi_thaw_noirq,
1290	.restore_noirq = nhi_resume_noirq,
1291	.suspend = nhi_suspend,
1292	.poweroff_noirq = nhi_poweroff_noirq,
1293	.poweroff = nhi_suspend,
1294	.complete = nhi_complete,
1295	.runtime_suspend = nhi_runtime_suspend,
1296	.runtime_resume = nhi_runtime_resume,
1297};
1298
1299static struct pci_device_id nhi_ids[] = {
1300	/*
1301	 * We have to specify class, the TB bridges use the same device and
1302	 * vendor (sub)id on gen 1 and gen 2 controllers.
1303	 */
1304	{
1305		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1306		.vendor = PCI_VENDOR_ID_INTEL,
1307		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1308		.subvendor = 0x2222, .subdevice = 0x1111,
1309	},
1310	{
1311		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1312		.vendor = PCI_VENDOR_ID_INTEL,
1313		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1314		.subvendor = 0x2222, .subdevice = 0x1111,
1315	},
1316	{
1317		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1318		.vendor = PCI_VENDOR_ID_INTEL,
1319		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1320		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1321	},
1322	{
1323		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1324		.vendor = PCI_VENDOR_ID_INTEL,
1325		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1326		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1327	},
1328
1329	/* Thunderbolt 3 */
1330	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1331	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1332	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1333	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1334	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1335	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1336	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1337	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1338	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1339	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1340	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1341	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1342	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1343	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1344	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1345	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1346	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1347	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1348	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1349	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1350	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1351	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1352
1353	/* Any USB4 compliant host */
1354	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1355
1356	{ 0,}
1357};
1358
1359MODULE_DEVICE_TABLE(pci, nhi_ids);
1360MODULE_LICENSE("GPL");
1361
1362static struct pci_driver nhi_driver = {
1363	.name = "thunderbolt",
1364	.id_table = nhi_ids,
1365	.probe = nhi_probe,
1366	.remove = nhi_remove,
1367	.shutdown = nhi_remove,
1368	.driver.pm = &nhi_pm_ops,
1369};
1370
1371static int __init nhi_init(void)
1372{
1373	int ret;
1374
1375	ret = tb_domain_init();
1376	if (ret)
1377		return ret;
1378	ret = pci_register_driver(&nhi_driver);
1379	if (ret)
1380		tb_domain_exit();
1381	return ret;
1382}
1383
1384static void __exit nhi_unload(void)
1385{
1386	pci_unregister_driver(&nhi_driver);
1387	tb_domain_exit();
1388}
1389
1390rootfs_initcall(nhi_init);
1391module_exit(nhi_unload);
1392