18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * TI Bandgap temperature sensor driver
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/
68c2ecf20Sopenharmony_ci * Author: J Keerthy <j-keerthy@ti.com>
78c2ecf20Sopenharmony_ci * Author: Moiz Sonasath <m-sonasath@ti.com>
88c2ecf20Sopenharmony_ci * Couple of fixes, DT and MFD adaptation:
98c2ecf20Sopenharmony_ci *   Eduardo Valentin <eduardo.valentin@ti.com>
108c2ecf20Sopenharmony_ci */
118c2ecf20Sopenharmony_ci
128c2ecf20Sopenharmony_ci#include <linux/module.h>
138c2ecf20Sopenharmony_ci#include <linux/export.h>
148c2ecf20Sopenharmony_ci#include <linux/init.h>
158c2ecf20Sopenharmony_ci#include <linux/kernel.h>
168c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
178c2ecf20Sopenharmony_ci#include <linux/clk.h>
188c2ecf20Sopenharmony_ci#include <linux/gpio/consumer.h>
198c2ecf20Sopenharmony_ci#include <linux/platform_device.h>
208c2ecf20Sopenharmony_ci#include <linux/err.h>
218c2ecf20Sopenharmony_ci#include <linux/types.h>
228c2ecf20Sopenharmony_ci#include <linux/spinlock.h>
238c2ecf20Sopenharmony_ci#include <linux/sys_soc.h>
248c2ecf20Sopenharmony_ci#include <linux/reboot.h>
258c2ecf20Sopenharmony_ci#include <linux/of_device.h>
268c2ecf20Sopenharmony_ci#include <linux/of_platform.h>
278c2ecf20Sopenharmony_ci#include <linux/of_irq.h>
288c2ecf20Sopenharmony_ci#include <linux/io.h>
298c2ecf20Sopenharmony_ci#include <linux/cpu_pm.h>
308c2ecf20Sopenharmony_ci#include <linux/device.h>
318c2ecf20Sopenharmony_ci#include <linux/pm_runtime.h>
328c2ecf20Sopenharmony_ci#include <linux/pm.h>
338c2ecf20Sopenharmony_ci#include <linux/of.h>
348c2ecf20Sopenharmony_ci#include <linux/of_device.h>
358c2ecf20Sopenharmony_ci
368c2ecf20Sopenharmony_ci#include "ti-bandgap.h"
378c2ecf20Sopenharmony_ci
388c2ecf20Sopenharmony_cistatic int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id);
398c2ecf20Sopenharmony_ci#ifdef CONFIG_PM_SLEEP
408c2ecf20Sopenharmony_cistatic int bandgap_omap_cpu_notifier(struct notifier_block *nb,
418c2ecf20Sopenharmony_ci				  unsigned long cmd, void *v);
428c2ecf20Sopenharmony_ci#endif
438c2ecf20Sopenharmony_ci
448c2ecf20Sopenharmony_ci/***   Helper functions to access registers and their bitfields   ***/
458c2ecf20Sopenharmony_ci
468c2ecf20Sopenharmony_ci/**
478c2ecf20Sopenharmony_ci * ti_bandgap_readl() - simple read helper function
488c2ecf20Sopenharmony_ci * @bgp: pointer to ti_bandgap structure
498c2ecf20Sopenharmony_ci * @reg: desired register (offset) to be read
508c2ecf20Sopenharmony_ci *
518c2ecf20Sopenharmony_ci * Helper function to read bandgap registers. It uses the io remapped area.
528c2ecf20Sopenharmony_ci * Return: the register value.
538c2ecf20Sopenharmony_ci */
548c2ecf20Sopenharmony_cistatic u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg)
558c2ecf20Sopenharmony_ci{
568c2ecf20Sopenharmony_ci	return readl(bgp->base + reg);
578c2ecf20Sopenharmony_ci}
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_ci/**
608c2ecf20Sopenharmony_ci * ti_bandgap_writel() - simple write helper function
618c2ecf20Sopenharmony_ci * @bgp: pointer to ti_bandgap structure
628c2ecf20Sopenharmony_ci * @val: desired register value to be written
638c2ecf20Sopenharmony_ci * @reg: desired register (offset) to be written
648c2ecf20Sopenharmony_ci *
658c2ecf20Sopenharmony_ci * Helper function to write bandgap registers. It uses the io remapped area.
668c2ecf20Sopenharmony_ci */
678c2ecf20Sopenharmony_cistatic void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg)
688c2ecf20Sopenharmony_ci{
698c2ecf20Sopenharmony_ci	writel(val, bgp->base + reg);
708c2ecf20Sopenharmony_ci}
718c2ecf20Sopenharmony_ci
728c2ecf20Sopenharmony_ci/**
738c2ecf20Sopenharmony_ci * DOC: macro to update bits.
748c2ecf20Sopenharmony_ci *
758c2ecf20Sopenharmony_ci * RMW_BITS() - used to read, modify and update bandgap bitfields.
768c2ecf20Sopenharmony_ci *            The value passed will be shifted.
778c2ecf20Sopenharmony_ci */
788c2ecf20Sopenharmony_ci#define RMW_BITS(bgp, id, reg, mask, val)			\
798c2ecf20Sopenharmony_cido {								\
808c2ecf20Sopenharmony_ci	struct temp_sensor_registers *t;			\
818c2ecf20Sopenharmony_ci	u32 r;							\
828c2ecf20Sopenharmony_ci								\
838c2ecf20Sopenharmony_ci	t = bgp->conf->sensors[(id)].registers;		\
848c2ecf20Sopenharmony_ci	r = ti_bandgap_readl(bgp, t->reg);			\
858c2ecf20Sopenharmony_ci	r &= ~t->mask;						\
868c2ecf20Sopenharmony_ci	r |= (val) << __ffs(t->mask);				\
878c2ecf20Sopenharmony_ci	ti_bandgap_writel(bgp, r, t->reg);			\
888c2ecf20Sopenharmony_ci} while (0)
898c2ecf20Sopenharmony_ci
908c2ecf20Sopenharmony_ci/***   Basic helper functions   ***/
918c2ecf20Sopenharmony_ci
928c2ecf20Sopenharmony_ci/**
938c2ecf20Sopenharmony_ci * ti_bandgap_power() - controls the power state of a bandgap device
948c2ecf20Sopenharmony_ci * @bgp: pointer to ti_bandgap structure
958c2ecf20Sopenharmony_ci * @on: desired power state (1 - on, 0 - off)
968c2ecf20Sopenharmony_ci *
978c2ecf20Sopenharmony_ci * Used to power on/off a bandgap device instance. Only used on those
988c2ecf20Sopenharmony_ci * that features tempsoff bit.
998c2ecf20Sopenharmony_ci *
1008c2ecf20Sopenharmony_ci * Return: 0 on success, -ENOTSUPP if tempsoff is not supported.
1018c2ecf20Sopenharmony_ci */
1028c2ecf20Sopenharmony_cistatic int ti_bandgap_power(struct ti_bandgap *bgp, bool on)
1038c2ecf20Sopenharmony_ci{
1048c2ecf20Sopenharmony_ci	int i;
1058c2ecf20Sopenharmony_ci
1068c2ecf20Sopenharmony_ci	if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH))
1078c2ecf20Sopenharmony_ci		return -ENOTSUPP;
1088c2ecf20Sopenharmony_ci
1098c2ecf20Sopenharmony_ci	for (i = 0; i < bgp->conf->sensor_count; i++)
1108c2ecf20Sopenharmony_ci		/* active on 0 */
1118c2ecf20Sopenharmony_ci		RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on);
1128c2ecf20Sopenharmony_ci	return 0;
1138c2ecf20Sopenharmony_ci}
1148c2ecf20Sopenharmony_ci
1158c2ecf20Sopenharmony_ci/**
1168c2ecf20Sopenharmony_ci * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature
1178c2ecf20Sopenharmony_ci * @bgp: pointer to ti_bandgap structure
1188c2ecf20Sopenharmony_ci * @reg: desired register (offset) to be read
1198c2ecf20Sopenharmony_ci *
1208c2ecf20Sopenharmony_ci * Function to read dra7 bandgap sensor temperature. This is done separately
1218c2ecf20Sopenharmony_ci * so as to workaround the errata "Bandgap Temperature read Dtemp can be
1228c2ecf20Sopenharmony_ci * corrupted" - Errata ID: i814".
1238c2ecf20Sopenharmony_ci * Read accesses to registers listed below can be corrupted due to incorrect
1248c2ecf20Sopenharmony_ci * resynchronization between clock domains.
1258c2ecf20Sopenharmony_ci * Read access to registers below can be corrupted :
1268c2ecf20Sopenharmony_ci * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4)
1278c2ecf20Sopenharmony_ci * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n
1288c2ecf20Sopenharmony_ci *
1298c2ecf20Sopenharmony_ci * Return: the register value.
1308c2ecf20Sopenharmony_ci */
1318c2ecf20Sopenharmony_cistatic u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp,  u32 reg)
1328c2ecf20Sopenharmony_ci{
1338c2ecf20Sopenharmony_ci	u32 val1, val2;
1348c2ecf20Sopenharmony_ci
1358c2ecf20Sopenharmony_ci	val1 = ti_bandgap_readl(bgp, reg);
1368c2ecf20Sopenharmony_ci	val2 = ti_bandgap_readl(bgp, reg);
1378c2ecf20Sopenharmony_ci
1388c2ecf20Sopenharmony_ci	/* If both times we read the same value then that is right */
1398c2ecf20Sopenharmony_ci	if (val1 == val2)
1408c2ecf20Sopenharmony_ci		return val1;
1418c2ecf20Sopenharmony_ci
1428c2ecf20Sopenharmony_ci	/* if val1 and val2 are different read it third time */
1438c2ecf20Sopenharmony_ci	return ti_bandgap_readl(bgp, reg);
1448c2ecf20Sopenharmony_ci}
1458c2ecf20Sopenharmony_ci
1468c2ecf20Sopenharmony_ci/**
1478c2ecf20Sopenharmony_ci * ti_bandgap_read_temp() - helper function to read sensor temperature
1488c2ecf20Sopenharmony_ci * @bgp: pointer to ti_bandgap structure
1498c2ecf20Sopenharmony_ci * @id: bandgap sensor id
1508c2ecf20Sopenharmony_ci *
1518c2ecf20Sopenharmony_ci * Function to concentrate the steps to read sensor temperature register.
1528c2ecf20Sopenharmony_ci * This function is desired because, depending on bandgap device version,
1538c2ecf20Sopenharmony_ci * it might be needed to freeze the bandgap state machine, before fetching
1548c2ecf20Sopenharmony_ci * the register value.
1558c2ecf20Sopenharmony_ci *
1568c2ecf20Sopenharmony_ci * Return: temperature in ADC values.
1578c2ecf20Sopenharmony_ci */
1588c2ecf20Sopenharmony_cistatic u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id)
1598c2ecf20Sopenharmony_ci{
1608c2ecf20Sopenharmony_ci	struct temp_sensor_registers *tsr;
1618c2ecf20Sopenharmony_ci	u32 temp, reg;
1628c2ecf20Sopenharmony_ci
1638c2ecf20Sopenharmony_ci	tsr = bgp->conf->sensors[id].registers;
1648c2ecf20Sopenharmony_ci	reg = tsr->temp_sensor_ctrl;
1658c2ecf20Sopenharmony_ci
1668c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
1678c2ecf20Sopenharmony_ci		RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
1688c2ecf20Sopenharmony_ci		/*
1698c2ecf20Sopenharmony_ci		 * In case we cannot read from cur_dtemp / dtemp_0,
1708c2ecf20Sopenharmony_ci		 * then we read from the last valid temp read
1718c2ecf20Sopenharmony_ci		 */
1728c2ecf20Sopenharmony_ci		reg = tsr->ctrl_dtemp_1;
1738c2ecf20Sopenharmony_ci	}
1748c2ecf20Sopenharmony_ci
1758c2ecf20Sopenharmony_ci	/* read temperature */
1768c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, ERRATA_814))
1778c2ecf20Sopenharmony_ci		temp = ti_errata814_bandgap_read_temp(bgp, reg);
1788c2ecf20Sopenharmony_ci	else
1798c2ecf20Sopenharmony_ci		temp = ti_bandgap_readl(bgp, reg);
1808c2ecf20Sopenharmony_ci
1818c2ecf20Sopenharmony_ci	temp &= tsr->bgap_dtemp_mask;
1828c2ecf20Sopenharmony_ci
1838c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, FREEZE_BIT))
1848c2ecf20Sopenharmony_ci		RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
1858c2ecf20Sopenharmony_ci
1868c2ecf20Sopenharmony_ci	return temp;
1878c2ecf20Sopenharmony_ci}
1888c2ecf20Sopenharmony_ci
1898c2ecf20Sopenharmony_ci/***   IRQ handlers   ***/
1908c2ecf20Sopenharmony_ci
1918c2ecf20Sopenharmony_ci/**
1928c2ecf20Sopenharmony_ci * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs
1938c2ecf20Sopenharmony_ci * @irq: IRQ number
1948c2ecf20Sopenharmony_ci * @data: private data (struct ti_bandgap *)
1958c2ecf20Sopenharmony_ci *
1968c2ecf20Sopenharmony_ci * This is the Talert handler. Use it only if bandgap device features
1978c2ecf20Sopenharmony_ci * HAS(TALERT). This handler goes over all sensors and checks their
1988c2ecf20Sopenharmony_ci * conditions and acts accordingly. In case there are events pending,
1998c2ecf20Sopenharmony_ci * it will reset the event mask to wait for the opposite event (next event).
2008c2ecf20Sopenharmony_ci * Every time there is a new event, it will be reported to thermal layer.
2018c2ecf20Sopenharmony_ci *
2028c2ecf20Sopenharmony_ci * Return: IRQ_HANDLED
2038c2ecf20Sopenharmony_ci */
2048c2ecf20Sopenharmony_cistatic irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data)
2058c2ecf20Sopenharmony_ci{
2068c2ecf20Sopenharmony_ci	struct ti_bandgap *bgp = data;
2078c2ecf20Sopenharmony_ci	struct temp_sensor_registers *tsr;
2088c2ecf20Sopenharmony_ci	u32 t_hot = 0, t_cold = 0, ctrl;
2098c2ecf20Sopenharmony_ci	int i;
2108c2ecf20Sopenharmony_ci
2118c2ecf20Sopenharmony_ci	spin_lock(&bgp->lock);
2128c2ecf20Sopenharmony_ci	for (i = 0; i < bgp->conf->sensor_count; i++) {
2138c2ecf20Sopenharmony_ci		tsr = bgp->conf->sensors[i].registers;
2148c2ecf20Sopenharmony_ci		ctrl = ti_bandgap_readl(bgp, tsr->bgap_status);
2158c2ecf20Sopenharmony_ci
2168c2ecf20Sopenharmony_ci		/* Read the status of t_hot */
2178c2ecf20Sopenharmony_ci		t_hot = ctrl & tsr->status_hot_mask;
2188c2ecf20Sopenharmony_ci
2198c2ecf20Sopenharmony_ci		/* Read the status of t_cold */
2208c2ecf20Sopenharmony_ci		t_cold = ctrl & tsr->status_cold_mask;
2218c2ecf20Sopenharmony_ci
2228c2ecf20Sopenharmony_ci		if (!t_cold && !t_hot)
2238c2ecf20Sopenharmony_ci			continue;
2248c2ecf20Sopenharmony_ci
2258c2ecf20Sopenharmony_ci		ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
2268c2ecf20Sopenharmony_ci		/*
2278c2ecf20Sopenharmony_ci		 * One TALERT interrupt: Two sources
2288c2ecf20Sopenharmony_ci		 * If the interrupt is due to t_hot then mask t_hot and
2298c2ecf20Sopenharmony_ci		 * and unmask t_cold else mask t_cold and unmask t_hot
2308c2ecf20Sopenharmony_ci		 */
2318c2ecf20Sopenharmony_ci		if (t_hot) {
2328c2ecf20Sopenharmony_ci			ctrl &= ~tsr->mask_hot_mask;
2338c2ecf20Sopenharmony_ci			ctrl |= tsr->mask_cold_mask;
2348c2ecf20Sopenharmony_ci		} else if (t_cold) {
2358c2ecf20Sopenharmony_ci			ctrl &= ~tsr->mask_cold_mask;
2368c2ecf20Sopenharmony_ci			ctrl |= tsr->mask_hot_mask;
2378c2ecf20Sopenharmony_ci		}
2388c2ecf20Sopenharmony_ci
2398c2ecf20Sopenharmony_ci		ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
2408c2ecf20Sopenharmony_ci
2418c2ecf20Sopenharmony_ci		dev_dbg(bgp->dev,
2428c2ecf20Sopenharmony_ci			"%s: IRQ from %s sensor: hotevent %d coldevent %d\n",
2438c2ecf20Sopenharmony_ci			__func__, bgp->conf->sensors[i].domain,
2448c2ecf20Sopenharmony_ci			t_hot, t_cold);
2458c2ecf20Sopenharmony_ci
2468c2ecf20Sopenharmony_ci		/* report temperature to whom may concern */
2478c2ecf20Sopenharmony_ci		if (bgp->conf->report_temperature)
2488c2ecf20Sopenharmony_ci			bgp->conf->report_temperature(bgp, i);
2498c2ecf20Sopenharmony_ci	}
2508c2ecf20Sopenharmony_ci	spin_unlock(&bgp->lock);
2518c2ecf20Sopenharmony_ci
2528c2ecf20Sopenharmony_ci	return IRQ_HANDLED;
2538c2ecf20Sopenharmony_ci}
2548c2ecf20Sopenharmony_ci
2558c2ecf20Sopenharmony_ci/**
2568c2ecf20Sopenharmony_ci * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal
2578c2ecf20Sopenharmony_ci * @irq: IRQ number
2588c2ecf20Sopenharmony_ci * @data: private data (unused)
2598c2ecf20Sopenharmony_ci *
2608c2ecf20Sopenharmony_ci * This is the Tshut handler. Use it only if bandgap device features
2618c2ecf20Sopenharmony_ci * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown
2628c2ecf20Sopenharmony_ci * the system.
2638c2ecf20Sopenharmony_ci *
2648c2ecf20Sopenharmony_ci * Return: IRQ_HANDLED
2658c2ecf20Sopenharmony_ci */
2668c2ecf20Sopenharmony_cistatic irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data)
2678c2ecf20Sopenharmony_ci{
2688c2ecf20Sopenharmony_ci	pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n",
2698c2ecf20Sopenharmony_ci		 __func__);
2708c2ecf20Sopenharmony_ci
2718c2ecf20Sopenharmony_ci	orderly_poweroff(true);
2728c2ecf20Sopenharmony_ci
2738c2ecf20Sopenharmony_ci	return IRQ_HANDLED;
2748c2ecf20Sopenharmony_ci}
2758c2ecf20Sopenharmony_ci
2768c2ecf20Sopenharmony_ci/***   Helper functions which manipulate conversion ADC <-> mi Celsius   ***/
2778c2ecf20Sopenharmony_ci
2788c2ecf20Sopenharmony_ci/**
2798c2ecf20Sopenharmony_ci * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale
2808c2ecf20Sopenharmony_ci * @bgp: struct ti_bandgap pointer
2818c2ecf20Sopenharmony_ci * @adc_val: value in ADC representation
2828c2ecf20Sopenharmony_ci * @t: address where to write the resulting temperature in mCelsius
2838c2ecf20Sopenharmony_ci *
2848c2ecf20Sopenharmony_ci * Simple conversion from ADC representation to mCelsius. In case the ADC value
2858c2ecf20Sopenharmony_ci * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
2868c2ecf20Sopenharmony_ci * The conversion table is indexed by the ADC values.
2878c2ecf20Sopenharmony_ci *
2888c2ecf20Sopenharmony_ci * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val
2898c2ecf20Sopenharmony_ci * argument is out of the ADC conv table range.
2908c2ecf20Sopenharmony_ci */
2918c2ecf20Sopenharmony_cistatic
2928c2ecf20Sopenharmony_ciint ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t)
2938c2ecf20Sopenharmony_ci{
2948c2ecf20Sopenharmony_ci	const struct ti_bandgap_data *conf = bgp->conf;
2958c2ecf20Sopenharmony_ci
2968c2ecf20Sopenharmony_ci	/* look up for temperature in the table and return the temperature */
2978c2ecf20Sopenharmony_ci	if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val)
2988c2ecf20Sopenharmony_ci		return -ERANGE;
2998c2ecf20Sopenharmony_ci
3008c2ecf20Sopenharmony_ci	*t = bgp->conf->conv_table[adc_val - conf->adc_start_val];
3018c2ecf20Sopenharmony_ci	return 0;
3028c2ecf20Sopenharmony_ci}
3038c2ecf20Sopenharmony_ci
3048c2ecf20Sopenharmony_ci/**
3058c2ecf20Sopenharmony_ci * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap
3068c2ecf20Sopenharmony_ci * @bgp: struct ti_bandgap pointer
3078c2ecf20Sopenharmony_ci * @id: bandgap sensor id
3088c2ecf20Sopenharmony_ci *
3098c2ecf20Sopenharmony_ci * Checks if the bandgap pointer is valid and if the sensor id is also
3108c2ecf20Sopenharmony_ci * applicable.
3118c2ecf20Sopenharmony_ci *
3128c2ecf20Sopenharmony_ci * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if
3138c2ecf20Sopenharmony_ci * @id cannot index @bgp sensors.
3148c2ecf20Sopenharmony_ci */
3158c2ecf20Sopenharmony_cistatic inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id)
3168c2ecf20Sopenharmony_ci{
3178c2ecf20Sopenharmony_ci	if (!bgp || IS_ERR(bgp)) {
3188c2ecf20Sopenharmony_ci		pr_err("%s: invalid bandgap pointer\n", __func__);
3198c2ecf20Sopenharmony_ci		return -EINVAL;
3208c2ecf20Sopenharmony_ci	}
3218c2ecf20Sopenharmony_ci
3228c2ecf20Sopenharmony_ci	if ((id < 0) || (id >= bgp->conf->sensor_count)) {
3238c2ecf20Sopenharmony_ci		dev_err(bgp->dev, "%s: sensor id out of range (%d)\n",
3248c2ecf20Sopenharmony_ci			__func__, id);
3258c2ecf20Sopenharmony_ci		return -ERANGE;
3268c2ecf20Sopenharmony_ci	}
3278c2ecf20Sopenharmony_ci
3288c2ecf20Sopenharmony_ci	return 0;
3298c2ecf20Sopenharmony_ci}
3308c2ecf20Sopenharmony_ci
3318c2ecf20Sopenharmony_ci/**
3328c2ecf20Sopenharmony_ci * ti_bandgap_read_counter() - read the sensor counter
3338c2ecf20Sopenharmony_ci * @bgp: pointer to bandgap instance
3348c2ecf20Sopenharmony_ci * @id: sensor id
3358c2ecf20Sopenharmony_ci * @interval: resulting update interval in miliseconds
3368c2ecf20Sopenharmony_ci */
3378c2ecf20Sopenharmony_cistatic void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id,
3388c2ecf20Sopenharmony_ci				    int *interval)
3398c2ecf20Sopenharmony_ci{
3408c2ecf20Sopenharmony_ci	struct temp_sensor_registers *tsr;
3418c2ecf20Sopenharmony_ci	int time;
3428c2ecf20Sopenharmony_ci
3438c2ecf20Sopenharmony_ci	tsr = bgp->conf->sensors[id].registers;
3448c2ecf20Sopenharmony_ci	time = ti_bandgap_readl(bgp, tsr->bgap_counter);
3458c2ecf20Sopenharmony_ci	time = (time & tsr->counter_mask) >>
3468c2ecf20Sopenharmony_ci					__ffs(tsr->counter_mask);
3478c2ecf20Sopenharmony_ci	time = time * 1000 / bgp->clk_rate;
3488c2ecf20Sopenharmony_ci	*interval = time;
3498c2ecf20Sopenharmony_ci}
3508c2ecf20Sopenharmony_ci
3518c2ecf20Sopenharmony_ci/**
3528c2ecf20Sopenharmony_ci * ti_bandgap_read_counter_delay() - read the sensor counter delay
3538c2ecf20Sopenharmony_ci * @bgp: pointer to bandgap instance
3548c2ecf20Sopenharmony_ci * @id: sensor id
3558c2ecf20Sopenharmony_ci * @interval: resulting update interval in miliseconds
3568c2ecf20Sopenharmony_ci */
3578c2ecf20Sopenharmony_cistatic void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id,
3588c2ecf20Sopenharmony_ci					  int *interval)
3598c2ecf20Sopenharmony_ci{
3608c2ecf20Sopenharmony_ci	struct temp_sensor_registers *tsr;
3618c2ecf20Sopenharmony_ci	int reg_val;
3628c2ecf20Sopenharmony_ci
3638c2ecf20Sopenharmony_ci	tsr = bgp->conf->sensors[id].registers;
3648c2ecf20Sopenharmony_ci
3658c2ecf20Sopenharmony_ci	reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
3668c2ecf20Sopenharmony_ci	reg_val = (reg_val & tsr->mask_counter_delay_mask) >>
3678c2ecf20Sopenharmony_ci				__ffs(tsr->mask_counter_delay_mask);
3688c2ecf20Sopenharmony_ci	switch (reg_val) {
3698c2ecf20Sopenharmony_ci	case 0:
3708c2ecf20Sopenharmony_ci		*interval = 0;
3718c2ecf20Sopenharmony_ci		break;
3728c2ecf20Sopenharmony_ci	case 1:
3738c2ecf20Sopenharmony_ci		*interval = 1;
3748c2ecf20Sopenharmony_ci		break;
3758c2ecf20Sopenharmony_ci	case 2:
3768c2ecf20Sopenharmony_ci		*interval = 10;
3778c2ecf20Sopenharmony_ci		break;
3788c2ecf20Sopenharmony_ci	case 3:
3798c2ecf20Sopenharmony_ci		*interval = 100;
3808c2ecf20Sopenharmony_ci		break;
3818c2ecf20Sopenharmony_ci	case 4:
3828c2ecf20Sopenharmony_ci		*interval = 250;
3838c2ecf20Sopenharmony_ci		break;
3848c2ecf20Sopenharmony_ci	case 5:
3858c2ecf20Sopenharmony_ci		*interval = 500;
3868c2ecf20Sopenharmony_ci		break;
3878c2ecf20Sopenharmony_ci	default:
3888c2ecf20Sopenharmony_ci		dev_warn(bgp->dev, "Wrong counter delay value read from register %X",
3898c2ecf20Sopenharmony_ci			 reg_val);
3908c2ecf20Sopenharmony_ci	}
3918c2ecf20Sopenharmony_ci}
3928c2ecf20Sopenharmony_ci
3938c2ecf20Sopenharmony_ci/**
3948c2ecf20Sopenharmony_ci * ti_bandgap_read_update_interval() - read the sensor update interval
3958c2ecf20Sopenharmony_ci * @bgp: pointer to bandgap instance
3968c2ecf20Sopenharmony_ci * @id: sensor id
3978c2ecf20Sopenharmony_ci * @interval: resulting update interval in miliseconds
3988c2ecf20Sopenharmony_ci *
3998c2ecf20Sopenharmony_ci * Return: 0 on success or the proper error code
4008c2ecf20Sopenharmony_ci */
4018c2ecf20Sopenharmony_ciint ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id,
4028c2ecf20Sopenharmony_ci				    int *interval)
4038c2ecf20Sopenharmony_ci{
4048c2ecf20Sopenharmony_ci	int ret = 0;
4058c2ecf20Sopenharmony_ci
4068c2ecf20Sopenharmony_ci	ret = ti_bandgap_validate(bgp, id);
4078c2ecf20Sopenharmony_ci	if (ret)
4088c2ecf20Sopenharmony_ci		goto exit;
4098c2ecf20Sopenharmony_ci
4108c2ecf20Sopenharmony_ci	if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
4118c2ecf20Sopenharmony_ci	    !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
4128c2ecf20Sopenharmony_ci		ret = -ENOTSUPP;
4138c2ecf20Sopenharmony_ci		goto exit;
4148c2ecf20Sopenharmony_ci	}
4158c2ecf20Sopenharmony_ci
4168c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, COUNTER)) {
4178c2ecf20Sopenharmony_ci		ti_bandgap_read_counter(bgp, id, interval);
4188c2ecf20Sopenharmony_ci		goto exit;
4198c2ecf20Sopenharmony_ci	}
4208c2ecf20Sopenharmony_ci
4218c2ecf20Sopenharmony_ci	ti_bandgap_read_counter_delay(bgp, id, interval);
4228c2ecf20Sopenharmony_ciexit:
4238c2ecf20Sopenharmony_ci	return ret;
4248c2ecf20Sopenharmony_ci}
4258c2ecf20Sopenharmony_ci
4268c2ecf20Sopenharmony_ci/**
4278c2ecf20Sopenharmony_ci * ti_bandgap_write_counter_delay() - set the counter_delay
4288c2ecf20Sopenharmony_ci * @bgp: pointer to bandgap instance
4298c2ecf20Sopenharmony_ci * @id: sensor id
4308c2ecf20Sopenharmony_ci * @interval: desired update interval in miliseconds
4318c2ecf20Sopenharmony_ci *
4328c2ecf20Sopenharmony_ci * Return: 0 on success or the proper error code
4338c2ecf20Sopenharmony_ci */
4348c2ecf20Sopenharmony_cistatic int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id,
4358c2ecf20Sopenharmony_ci					  u32 interval)
4368c2ecf20Sopenharmony_ci{
4378c2ecf20Sopenharmony_ci	int rval;
4388c2ecf20Sopenharmony_ci
4398c2ecf20Sopenharmony_ci	switch (interval) {
4408c2ecf20Sopenharmony_ci	case 0: /* Immediate conversion */
4418c2ecf20Sopenharmony_ci		rval = 0x0;
4428c2ecf20Sopenharmony_ci		break;
4438c2ecf20Sopenharmony_ci	case 1: /* Conversion after ever 1ms */
4448c2ecf20Sopenharmony_ci		rval = 0x1;
4458c2ecf20Sopenharmony_ci		break;
4468c2ecf20Sopenharmony_ci	case 10: /* Conversion after ever 10ms */
4478c2ecf20Sopenharmony_ci		rval = 0x2;
4488c2ecf20Sopenharmony_ci		break;
4498c2ecf20Sopenharmony_ci	case 100: /* Conversion after ever 100ms */
4508c2ecf20Sopenharmony_ci		rval = 0x3;
4518c2ecf20Sopenharmony_ci		break;
4528c2ecf20Sopenharmony_ci	case 250: /* Conversion after ever 250ms */
4538c2ecf20Sopenharmony_ci		rval = 0x4;
4548c2ecf20Sopenharmony_ci		break;
4558c2ecf20Sopenharmony_ci	case 500: /* Conversion after ever 500ms */
4568c2ecf20Sopenharmony_ci		rval = 0x5;
4578c2ecf20Sopenharmony_ci		break;
4588c2ecf20Sopenharmony_ci	default:
4598c2ecf20Sopenharmony_ci		dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval);
4608c2ecf20Sopenharmony_ci		return -EINVAL;
4618c2ecf20Sopenharmony_ci	}
4628c2ecf20Sopenharmony_ci
4638c2ecf20Sopenharmony_ci	spin_lock(&bgp->lock);
4648c2ecf20Sopenharmony_ci	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval);
4658c2ecf20Sopenharmony_ci	spin_unlock(&bgp->lock);
4668c2ecf20Sopenharmony_ci
4678c2ecf20Sopenharmony_ci	return 0;
4688c2ecf20Sopenharmony_ci}
4698c2ecf20Sopenharmony_ci
4708c2ecf20Sopenharmony_ci/**
4718c2ecf20Sopenharmony_ci * ti_bandgap_write_counter() - set the bandgap sensor counter
4728c2ecf20Sopenharmony_ci * @bgp: pointer to bandgap instance
4738c2ecf20Sopenharmony_ci * @id: sensor id
4748c2ecf20Sopenharmony_ci * @interval: desired update interval in miliseconds
4758c2ecf20Sopenharmony_ci */
4768c2ecf20Sopenharmony_cistatic void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id,
4778c2ecf20Sopenharmony_ci				     u32 interval)
4788c2ecf20Sopenharmony_ci{
4798c2ecf20Sopenharmony_ci	interval = interval * bgp->clk_rate / 1000;
4808c2ecf20Sopenharmony_ci	spin_lock(&bgp->lock);
4818c2ecf20Sopenharmony_ci	RMW_BITS(bgp, id, bgap_counter, counter_mask, interval);
4828c2ecf20Sopenharmony_ci	spin_unlock(&bgp->lock);
4838c2ecf20Sopenharmony_ci}
4848c2ecf20Sopenharmony_ci
4858c2ecf20Sopenharmony_ci/**
4868c2ecf20Sopenharmony_ci * ti_bandgap_write_update_interval() - set the update interval
4878c2ecf20Sopenharmony_ci * @bgp: pointer to bandgap instance
4888c2ecf20Sopenharmony_ci * @id: sensor id
4898c2ecf20Sopenharmony_ci * @interval: desired update interval in miliseconds
4908c2ecf20Sopenharmony_ci *
4918c2ecf20Sopenharmony_ci * Return: 0 on success or the proper error code
4928c2ecf20Sopenharmony_ci */
4938c2ecf20Sopenharmony_ciint ti_bandgap_write_update_interval(struct ti_bandgap *bgp,
4948c2ecf20Sopenharmony_ci				     int id, u32 interval)
4958c2ecf20Sopenharmony_ci{
4968c2ecf20Sopenharmony_ci	int ret = ti_bandgap_validate(bgp, id);
4978c2ecf20Sopenharmony_ci	if (ret)
4988c2ecf20Sopenharmony_ci		goto exit;
4998c2ecf20Sopenharmony_ci
5008c2ecf20Sopenharmony_ci	if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
5018c2ecf20Sopenharmony_ci	    !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
5028c2ecf20Sopenharmony_ci		ret = -ENOTSUPP;
5038c2ecf20Sopenharmony_ci		goto exit;
5048c2ecf20Sopenharmony_ci	}
5058c2ecf20Sopenharmony_ci
5068c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, COUNTER)) {
5078c2ecf20Sopenharmony_ci		ti_bandgap_write_counter(bgp, id, interval);
5088c2ecf20Sopenharmony_ci		goto exit;
5098c2ecf20Sopenharmony_ci	}
5108c2ecf20Sopenharmony_ci
5118c2ecf20Sopenharmony_ci	ret = ti_bandgap_write_counter_delay(bgp, id, interval);
5128c2ecf20Sopenharmony_ciexit:
5138c2ecf20Sopenharmony_ci	return ret;
5148c2ecf20Sopenharmony_ci}
5158c2ecf20Sopenharmony_ci
5168c2ecf20Sopenharmony_ci/**
5178c2ecf20Sopenharmony_ci * ti_bandgap_read_temperature() - report current temperature
5188c2ecf20Sopenharmony_ci * @bgp: pointer to bandgap instance
5198c2ecf20Sopenharmony_ci * @id: sensor id
5208c2ecf20Sopenharmony_ci * @temperature: resulting temperature
5218c2ecf20Sopenharmony_ci *
5228c2ecf20Sopenharmony_ci * Return: 0 on success or the proper error code
5238c2ecf20Sopenharmony_ci */
5248c2ecf20Sopenharmony_ciint ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id,
5258c2ecf20Sopenharmony_ci				int *temperature)
5268c2ecf20Sopenharmony_ci{
5278c2ecf20Sopenharmony_ci	u32 temp;
5288c2ecf20Sopenharmony_ci	int ret;
5298c2ecf20Sopenharmony_ci
5308c2ecf20Sopenharmony_ci	ret = ti_bandgap_validate(bgp, id);
5318c2ecf20Sopenharmony_ci	if (ret)
5328c2ecf20Sopenharmony_ci		return ret;
5338c2ecf20Sopenharmony_ci
5348c2ecf20Sopenharmony_ci	if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) {
5358c2ecf20Sopenharmony_ci		ret = ti_bandgap_force_single_read(bgp, id);
5368c2ecf20Sopenharmony_ci		if (ret)
5378c2ecf20Sopenharmony_ci			return ret;
5388c2ecf20Sopenharmony_ci	}
5398c2ecf20Sopenharmony_ci
5408c2ecf20Sopenharmony_ci	spin_lock(&bgp->lock);
5418c2ecf20Sopenharmony_ci	temp = ti_bandgap_read_temp(bgp, id);
5428c2ecf20Sopenharmony_ci	spin_unlock(&bgp->lock);
5438c2ecf20Sopenharmony_ci
5448c2ecf20Sopenharmony_ci	ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
5458c2ecf20Sopenharmony_ci	if (ret)
5468c2ecf20Sopenharmony_ci		return -EIO;
5478c2ecf20Sopenharmony_ci
5488c2ecf20Sopenharmony_ci	*temperature = temp;
5498c2ecf20Sopenharmony_ci
5508c2ecf20Sopenharmony_ci	return 0;
5518c2ecf20Sopenharmony_ci}
5528c2ecf20Sopenharmony_ci
5538c2ecf20Sopenharmony_ci/**
5548c2ecf20Sopenharmony_ci * ti_bandgap_set_sensor_data() - helper function to store thermal
5558c2ecf20Sopenharmony_ci * framework related data.
5568c2ecf20Sopenharmony_ci * @bgp: pointer to bandgap instance
5578c2ecf20Sopenharmony_ci * @id: sensor id
5588c2ecf20Sopenharmony_ci * @data: thermal framework related data to be stored
5598c2ecf20Sopenharmony_ci *
5608c2ecf20Sopenharmony_ci * Return: 0 on success or the proper error code
5618c2ecf20Sopenharmony_ci */
5628c2ecf20Sopenharmony_ciint ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data)
5638c2ecf20Sopenharmony_ci{
5648c2ecf20Sopenharmony_ci	int ret = ti_bandgap_validate(bgp, id);
5658c2ecf20Sopenharmony_ci	if (ret)
5668c2ecf20Sopenharmony_ci		return ret;
5678c2ecf20Sopenharmony_ci
5688c2ecf20Sopenharmony_ci	bgp->regval[id].data = data;
5698c2ecf20Sopenharmony_ci
5708c2ecf20Sopenharmony_ci	return 0;
5718c2ecf20Sopenharmony_ci}
5728c2ecf20Sopenharmony_ci
5738c2ecf20Sopenharmony_ci/**
5748c2ecf20Sopenharmony_ci * ti_bandgap_get_sensor_data() - helper function to get thermal
5758c2ecf20Sopenharmony_ci * framework related data.
5768c2ecf20Sopenharmony_ci * @bgp: pointer to bandgap instance
5778c2ecf20Sopenharmony_ci * @id: sensor id
5788c2ecf20Sopenharmony_ci *
5798c2ecf20Sopenharmony_ci * Return: data stored by set function with sensor id on success or NULL
5808c2ecf20Sopenharmony_ci */
5818c2ecf20Sopenharmony_civoid *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id)
5828c2ecf20Sopenharmony_ci{
5838c2ecf20Sopenharmony_ci	int ret = ti_bandgap_validate(bgp, id);
5848c2ecf20Sopenharmony_ci	if (ret)
5858c2ecf20Sopenharmony_ci		return ERR_PTR(ret);
5868c2ecf20Sopenharmony_ci
5878c2ecf20Sopenharmony_ci	return bgp->regval[id].data;
5888c2ecf20Sopenharmony_ci}
5898c2ecf20Sopenharmony_ci
5908c2ecf20Sopenharmony_ci/***   Helper functions used during device initialization   ***/
5918c2ecf20Sopenharmony_ci
5928c2ecf20Sopenharmony_ci/**
5938c2ecf20Sopenharmony_ci * ti_bandgap_force_single_read() - executes 1 single ADC conversion
5948c2ecf20Sopenharmony_ci * @bgp: pointer to struct ti_bandgap
5958c2ecf20Sopenharmony_ci * @id: sensor id which it is desired to read 1 temperature
5968c2ecf20Sopenharmony_ci *
5978c2ecf20Sopenharmony_ci * Used to initialize the conversion state machine and set it to a valid
5988c2ecf20Sopenharmony_ci * state. Called during device initialization and context restore events.
5998c2ecf20Sopenharmony_ci *
6008c2ecf20Sopenharmony_ci * Return: 0
6018c2ecf20Sopenharmony_ci */
6028c2ecf20Sopenharmony_cistatic int
6038c2ecf20Sopenharmony_citi_bandgap_force_single_read(struct ti_bandgap *bgp, int id)
6048c2ecf20Sopenharmony_ci{
6058c2ecf20Sopenharmony_ci	u32 counter = 1000;
6068c2ecf20Sopenharmony_ci	struct temp_sensor_registers *tsr;
6078c2ecf20Sopenharmony_ci
6088c2ecf20Sopenharmony_ci	/* Select single conversion mode */
6098c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
6108c2ecf20Sopenharmony_ci		RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0);
6118c2ecf20Sopenharmony_ci
6128c2ecf20Sopenharmony_ci	/* Start of Conversion = 1 */
6138c2ecf20Sopenharmony_ci	RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1);
6148c2ecf20Sopenharmony_ci
6158c2ecf20Sopenharmony_ci	/* Wait for EOCZ going up */
6168c2ecf20Sopenharmony_ci	tsr = bgp->conf->sensors[id].registers;
6178c2ecf20Sopenharmony_ci
6188c2ecf20Sopenharmony_ci	while (--counter) {
6198c2ecf20Sopenharmony_ci		if (ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
6208c2ecf20Sopenharmony_ci		    tsr->bgap_eocz_mask)
6218c2ecf20Sopenharmony_ci			break;
6228c2ecf20Sopenharmony_ci	}
6238c2ecf20Sopenharmony_ci
6248c2ecf20Sopenharmony_ci	/* Start of Conversion = 0 */
6258c2ecf20Sopenharmony_ci	RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0);
6268c2ecf20Sopenharmony_ci
6278c2ecf20Sopenharmony_ci	/* Wait for EOCZ going down */
6288c2ecf20Sopenharmony_ci	counter = 1000;
6298c2ecf20Sopenharmony_ci	while (--counter) {
6308c2ecf20Sopenharmony_ci		if (!(ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
6318c2ecf20Sopenharmony_ci		      tsr->bgap_eocz_mask))
6328c2ecf20Sopenharmony_ci			break;
6338c2ecf20Sopenharmony_ci	}
6348c2ecf20Sopenharmony_ci
6358c2ecf20Sopenharmony_ci	return 0;
6368c2ecf20Sopenharmony_ci}
6378c2ecf20Sopenharmony_ci
6388c2ecf20Sopenharmony_ci/**
6398c2ecf20Sopenharmony_ci * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode
6408c2ecf20Sopenharmony_ci * @bgp: pointer to struct ti_bandgap
6418c2ecf20Sopenharmony_ci *
6428c2ecf20Sopenharmony_ci * Call this function only if HAS(MODE_CONFIG) is set. As this driver may
6438c2ecf20Sopenharmony_ci * be used for junction temperature monitoring, it is desirable that the
6448c2ecf20Sopenharmony_ci * sensors are operational all the time, so that alerts are generated
6458c2ecf20Sopenharmony_ci * properly.
6468c2ecf20Sopenharmony_ci *
6478c2ecf20Sopenharmony_ci * Return: 0
6488c2ecf20Sopenharmony_ci */
6498c2ecf20Sopenharmony_cistatic int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp)
6508c2ecf20Sopenharmony_ci{
6518c2ecf20Sopenharmony_ci	int i;
6528c2ecf20Sopenharmony_ci
6538c2ecf20Sopenharmony_ci	for (i = 0; i < bgp->conf->sensor_count; i++) {
6548c2ecf20Sopenharmony_ci		/* Perform a single read just before enabling continuous */
6558c2ecf20Sopenharmony_ci		ti_bandgap_force_single_read(bgp, i);
6568c2ecf20Sopenharmony_ci		RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1);
6578c2ecf20Sopenharmony_ci	}
6588c2ecf20Sopenharmony_ci
6598c2ecf20Sopenharmony_ci	return 0;
6608c2ecf20Sopenharmony_ci}
6618c2ecf20Sopenharmony_ci
6628c2ecf20Sopenharmony_ci/**
6638c2ecf20Sopenharmony_ci * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor
6648c2ecf20Sopenharmony_ci * @bgp: pointer to struct ti_bandgap
6658c2ecf20Sopenharmony_ci * @id: id of the individual sensor
6668c2ecf20Sopenharmony_ci * @trend: Pointer to trend.
6678c2ecf20Sopenharmony_ci *
6688c2ecf20Sopenharmony_ci * This function needs to be called to fetch the temperature trend of a
6698c2ecf20Sopenharmony_ci * Particular sensor. The function computes the difference in temperature
6708c2ecf20Sopenharmony_ci * w.r.t time. For the bandgaps with built in history buffer the temperatures
6718c2ecf20Sopenharmony_ci * are read from the buffer and for those without the Buffer -ENOTSUPP is
6728c2ecf20Sopenharmony_ci * returned.
6738c2ecf20Sopenharmony_ci *
6748c2ecf20Sopenharmony_ci * Return: 0 if no error, else return corresponding error. If no
6758c2ecf20Sopenharmony_ci *		error then the trend value is passed on to trend parameter
6768c2ecf20Sopenharmony_ci */
6778c2ecf20Sopenharmony_ciint ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend)
6788c2ecf20Sopenharmony_ci{
6798c2ecf20Sopenharmony_ci	struct temp_sensor_registers *tsr;
6808c2ecf20Sopenharmony_ci	u32 temp1, temp2, reg1, reg2;
6818c2ecf20Sopenharmony_ci	int t1, t2, interval, ret = 0;
6828c2ecf20Sopenharmony_ci
6838c2ecf20Sopenharmony_ci	ret = ti_bandgap_validate(bgp, id);
6848c2ecf20Sopenharmony_ci	if (ret)
6858c2ecf20Sopenharmony_ci		goto exit;
6868c2ecf20Sopenharmony_ci
6878c2ecf20Sopenharmony_ci	if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) ||
6888c2ecf20Sopenharmony_ci	    !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
6898c2ecf20Sopenharmony_ci		ret = -ENOTSUPP;
6908c2ecf20Sopenharmony_ci		goto exit;
6918c2ecf20Sopenharmony_ci	}
6928c2ecf20Sopenharmony_ci
6938c2ecf20Sopenharmony_ci	spin_lock(&bgp->lock);
6948c2ecf20Sopenharmony_ci
6958c2ecf20Sopenharmony_ci	tsr = bgp->conf->sensors[id].registers;
6968c2ecf20Sopenharmony_ci
6978c2ecf20Sopenharmony_ci	/* Freeze and read the last 2 valid readings */
6988c2ecf20Sopenharmony_ci	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
6998c2ecf20Sopenharmony_ci	reg1 = tsr->ctrl_dtemp_1;
7008c2ecf20Sopenharmony_ci	reg2 = tsr->ctrl_dtemp_2;
7018c2ecf20Sopenharmony_ci
7028c2ecf20Sopenharmony_ci	/* read temperature from history buffer */
7038c2ecf20Sopenharmony_ci	temp1 = ti_bandgap_readl(bgp, reg1);
7048c2ecf20Sopenharmony_ci	temp1 &= tsr->bgap_dtemp_mask;
7058c2ecf20Sopenharmony_ci
7068c2ecf20Sopenharmony_ci	temp2 = ti_bandgap_readl(bgp, reg2);
7078c2ecf20Sopenharmony_ci	temp2 &= tsr->bgap_dtemp_mask;
7088c2ecf20Sopenharmony_ci
7098c2ecf20Sopenharmony_ci	/* Convert from adc values to mCelsius temperature */
7108c2ecf20Sopenharmony_ci	ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1);
7118c2ecf20Sopenharmony_ci	if (ret)
7128c2ecf20Sopenharmony_ci		goto unfreeze;
7138c2ecf20Sopenharmony_ci
7148c2ecf20Sopenharmony_ci	ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2);
7158c2ecf20Sopenharmony_ci	if (ret)
7168c2ecf20Sopenharmony_ci		goto unfreeze;
7178c2ecf20Sopenharmony_ci
7188c2ecf20Sopenharmony_ci	/* Fetch the update interval */
7198c2ecf20Sopenharmony_ci	ret = ti_bandgap_read_update_interval(bgp, id, &interval);
7208c2ecf20Sopenharmony_ci	if (ret)
7218c2ecf20Sopenharmony_ci		goto unfreeze;
7228c2ecf20Sopenharmony_ci
7238c2ecf20Sopenharmony_ci	/* Set the interval to 1 ms if bandgap counter delay is not set */
7248c2ecf20Sopenharmony_ci	if (interval == 0)
7258c2ecf20Sopenharmony_ci		interval = 1;
7268c2ecf20Sopenharmony_ci
7278c2ecf20Sopenharmony_ci	*trend = (t1 - t2) / interval;
7288c2ecf20Sopenharmony_ci
7298c2ecf20Sopenharmony_ci	dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n",
7308c2ecf20Sopenharmony_ci		t1, t2, *trend);
7318c2ecf20Sopenharmony_ci
7328c2ecf20Sopenharmony_ciunfreeze:
7338c2ecf20Sopenharmony_ci	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
7348c2ecf20Sopenharmony_ci	spin_unlock(&bgp->lock);
7358c2ecf20Sopenharmony_ciexit:
7368c2ecf20Sopenharmony_ci	return ret;
7378c2ecf20Sopenharmony_ci}
7388c2ecf20Sopenharmony_ci
7398c2ecf20Sopenharmony_ci/**
7408c2ecf20Sopenharmony_ci * ti_bandgap_tshut_init() - setup and initialize tshut handling
7418c2ecf20Sopenharmony_ci * @bgp: pointer to struct ti_bandgap
7428c2ecf20Sopenharmony_ci * @pdev: pointer to device struct platform_device
7438c2ecf20Sopenharmony_ci *
7448c2ecf20Sopenharmony_ci * Call this function only in case the bandgap features HAS(TSHUT).
7458c2ecf20Sopenharmony_ci * In this case, the driver needs to handle the TSHUT signal as an IRQ.
7468c2ecf20Sopenharmony_ci * The IRQ is wired as a GPIO, and for this purpose, it is required
7478c2ecf20Sopenharmony_ci * to specify which GPIO line is used. TSHUT IRQ is fired anytime
7488c2ecf20Sopenharmony_ci * one of the bandgap sensors violates the TSHUT high/hot threshold.
7498c2ecf20Sopenharmony_ci * And in that case, the system must go off.
7508c2ecf20Sopenharmony_ci *
7518c2ecf20Sopenharmony_ci * Return: 0 if no error, else error status
7528c2ecf20Sopenharmony_ci */
7538c2ecf20Sopenharmony_cistatic int ti_bandgap_tshut_init(struct ti_bandgap *bgp,
7548c2ecf20Sopenharmony_ci				 struct platform_device *pdev)
7558c2ecf20Sopenharmony_ci{
7568c2ecf20Sopenharmony_ci	int status;
7578c2ecf20Sopenharmony_ci
7588c2ecf20Sopenharmony_ci	status = request_irq(gpiod_to_irq(bgp->tshut_gpiod),
7598c2ecf20Sopenharmony_ci			     ti_bandgap_tshut_irq_handler,
7608c2ecf20Sopenharmony_ci			     IRQF_TRIGGER_RISING, "tshut", NULL);
7618c2ecf20Sopenharmony_ci	if (status)
7628c2ecf20Sopenharmony_ci		dev_err(bgp->dev, "request irq failed for TSHUT");
7638c2ecf20Sopenharmony_ci
7648c2ecf20Sopenharmony_ci	return 0;
7658c2ecf20Sopenharmony_ci}
7668c2ecf20Sopenharmony_ci
7678c2ecf20Sopenharmony_ci/**
7688c2ecf20Sopenharmony_ci * ti_bandgap_alert_init() - setup and initialize talert handling
7698c2ecf20Sopenharmony_ci * @bgp: pointer to struct ti_bandgap
7708c2ecf20Sopenharmony_ci * @pdev: pointer to device struct platform_device
7718c2ecf20Sopenharmony_ci *
7728c2ecf20Sopenharmony_ci * Call this function only in case the bandgap features HAS(TALERT).
7738c2ecf20Sopenharmony_ci * In this case, the driver needs to handle the TALERT signals as an IRQs.
7748c2ecf20Sopenharmony_ci * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold)
7758c2ecf20Sopenharmony_ci * are violated. In these situation, the driver must reprogram the thresholds,
7768c2ecf20Sopenharmony_ci * accordingly to specified policy.
7778c2ecf20Sopenharmony_ci *
7788c2ecf20Sopenharmony_ci * Return: 0 if no error, else return corresponding error.
7798c2ecf20Sopenharmony_ci */
7808c2ecf20Sopenharmony_cistatic int ti_bandgap_talert_init(struct ti_bandgap *bgp,
7818c2ecf20Sopenharmony_ci				  struct platform_device *pdev)
7828c2ecf20Sopenharmony_ci{
7838c2ecf20Sopenharmony_ci	int ret;
7848c2ecf20Sopenharmony_ci
7858c2ecf20Sopenharmony_ci	bgp->irq = platform_get_irq(pdev, 0);
7868c2ecf20Sopenharmony_ci	if (bgp->irq < 0)
7878c2ecf20Sopenharmony_ci		return bgp->irq;
7888c2ecf20Sopenharmony_ci
7898c2ecf20Sopenharmony_ci	ret = request_threaded_irq(bgp->irq, NULL,
7908c2ecf20Sopenharmony_ci				   ti_bandgap_talert_irq_handler,
7918c2ecf20Sopenharmony_ci				   IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
7928c2ecf20Sopenharmony_ci				   "talert", bgp);
7938c2ecf20Sopenharmony_ci	if (ret) {
7948c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "Request threaded irq failed.\n");
7958c2ecf20Sopenharmony_ci		return ret;
7968c2ecf20Sopenharmony_ci	}
7978c2ecf20Sopenharmony_ci
7988c2ecf20Sopenharmony_ci	return 0;
7998c2ecf20Sopenharmony_ci}
8008c2ecf20Sopenharmony_ci
8018c2ecf20Sopenharmony_cistatic const struct of_device_id of_ti_bandgap_match[];
8028c2ecf20Sopenharmony_ci/**
8038c2ecf20Sopenharmony_ci * ti_bandgap_build() - parse DT and setup a struct ti_bandgap
8048c2ecf20Sopenharmony_ci * @pdev: pointer to device struct platform_device
8058c2ecf20Sopenharmony_ci *
8068c2ecf20Sopenharmony_ci * Used to read the device tree properties accordingly to the bandgap
8078c2ecf20Sopenharmony_ci * matching version. Based on bandgap version and its capabilities it
8088c2ecf20Sopenharmony_ci * will build a struct ti_bandgap out of the required DT entries.
8098c2ecf20Sopenharmony_ci *
8108c2ecf20Sopenharmony_ci * Return: valid bandgap structure if successful, else returns ERR_PTR
8118c2ecf20Sopenharmony_ci * return value must be verified with IS_ERR.
8128c2ecf20Sopenharmony_ci */
8138c2ecf20Sopenharmony_cistatic struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev)
8148c2ecf20Sopenharmony_ci{
8158c2ecf20Sopenharmony_ci	struct device_node *node = pdev->dev.of_node;
8168c2ecf20Sopenharmony_ci	const struct of_device_id *of_id;
8178c2ecf20Sopenharmony_ci	struct ti_bandgap *bgp;
8188c2ecf20Sopenharmony_ci	struct resource *res;
8198c2ecf20Sopenharmony_ci	int i;
8208c2ecf20Sopenharmony_ci
8218c2ecf20Sopenharmony_ci	/* just for the sake */
8228c2ecf20Sopenharmony_ci	if (!node) {
8238c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "no platform information available\n");
8248c2ecf20Sopenharmony_ci		return ERR_PTR(-EINVAL);
8258c2ecf20Sopenharmony_ci	}
8268c2ecf20Sopenharmony_ci
8278c2ecf20Sopenharmony_ci	bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
8288c2ecf20Sopenharmony_ci	if (!bgp)
8298c2ecf20Sopenharmony_ci		return ERR_PTR(-ENOMEM);
8308c2ecf20Sopenharmony_ci
8318c2ecf20Sopenharmony_ci	of_id = of_match_device(of_ti_bandgap_match, &pdev->dev);
8328c2ecf20Sopenharmony_ci	if (of_id)
8338c2ecf20Sopenharmony_ci		bgp->conf = of_id->data;
8348c2ecf20Sopenharmony_ci
8358c2ecf20Sopenharmony_ci	/* register shadow for context save and restore */
8368c2ecf20Sopenharmony_ci	bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count,
8378c2ecf20Sopenharmony_ci				   sizeof(*bgp->regval), GFP_KERNEL);
8388c2ecf20Sopenharmony_ci	if (!bgp->regval)
8398c2ecf20Sopenharmony_ci		return ERR_PTR(-ENOMEM);
8408c2ecf20Sopenharmony_ci
8418c2ecf20Sopenharmony_ci	i = 0;
8428c2ecf20Sopenharmony_ci	do {
8438c2ecf20Sopenharmony_ci		void __iomem *chunk;
8448c2ecf20Sopenharmony_ci
8458c2ecf20Sopenharmony_ci		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
8468c2ecf20Sopenharmony_ci		if (!res)
8478c2ecf20Sopenharmony_ci			break;
8488c2ecf20Sopenharmony_ci		chunk = devm_ioremap_resource(&pdev->dev, res);
8498c2ecf20Sopenharmony_ci		if (i == 0)
8508c2ecf20Sopenharmony_ci			bgp->base = chunk;
8518c2ecf20Sopenharmony_ci		if (IS_ERR(chunk))
8528c2ecf20Sopenharmony_ci			return ERR_CAST(chunk);
8538c2ecf20Sopenharmony_ci
8548c2ecf20Sopenharmony_ci		i++;
8558c2ecf20Sopenharmony_ci	} while (res);
8568c2ecf20Sopenharmony_ci
8578c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
8588c2ecf20Sopenharmony_ci		bgp->tshut_gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_IN);
8598c2ecf20Sopenharmony_ci		if (IS_ERR(bgp->tshut_gpiod)) {
8608c2ecf20Sopenharmony_ci			dev_err(&pdev->dev, "invalid gpio for tshut\n");
8618c2ecf20Sopenharmony_ci			return ERR_CAST(bgp->tshut_gpiod);
8628c2ecf20Sopenharmony_ci		}
8638c2ecf20Sopenharmony_ci	}
8648c2ecf20Sopenharmony_ci
8658c2ecf20Sopenharmony_ci	return bgp;
8668c2ecf20Sopenharmony_ci}
8678c2ecf20Sopenharmony_ci
8688c2ecf20Sopenharmony_ci/*
8698c2ecf20Sopenharmony_ci * List of SoCs on which the CPU PM notifier can cause erros on the DTEMP
8708c2ecf20Sopenharmony_ci * readout.
8718c2ecf20Sopenharmony_ci * Enabled notifier on these machines results in erroneous, random values which
8728c2ecf20Sopenharmony_ci * could trigger unexpected thermal shutdown.
8738c2ecf20Sopenharmony_ci */
8748c2ecf20Sopenharmony_cistatic const struct soc_device_attribute soc_no_cpu_notifier[] = {
8758c2ecf20Sopenharmony_ci	{ .machine = "OMAP4430" },
8768c2ecf20Sopenharmony_ci	{ /* sentinel */ },
8778c2ecf20Sopenharmony_ci};
8788c2ecf20Sopenharmony_ci
8798c2ecf20Sopenharmony_ci/***   Device driver call backs   ***/
8808c2ecf20Sopenharmony_ci
8818c2ecf20Sopenharmony_cistatic
8828c2ecf20Sopenharmony_ciint ti_bandgap_probe(struct platform_device *pdev)
8838c2ecf20Sopenharmony_ci{
8848c2ecf20Sopenharmony_ci	struct ti_bandgap *bgp;
8858c2ecf20Sopenharmony_ci	int clk_rate, ret, i;
8868c2ecf20Sopenharmony_ci
8878c2ecf20Sopenharmony_ci	bgp = ti_bandgap_build(pdev);
8888c2ecf20Sopenharmony_ci	if (IS_ERR(bgp)) {
8898c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "failed to fetch platform data\n");
8908c2ecf20Sopenharmony_ci		return PTR_ERR(bgp);
8918c2ecf20Sopenharmony_ci	}
8928c2ecf20Sopenharmony_ci	bgp->dev = &pdev->dev;
8938c2ecf20Sopenharmony_ci
8948c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, UNRELIABLE))
8958c2ecf20Sopenharmony_ci		dev_warn(&pdev->dev,
8968c2ecf20Sopenharmony_ci			 "This OMAP thermal sensor is unreliable. You've been warned\n");
8978c2ecf20Sopenharmony_ci
8988c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
8998c2ecf20Sopenharmony_ci		ret = ti_bandgap_tshut_init(bgp, pdev);
9008c2ecf20Sopenharmony_ci		if (ret) {
9018c2ecf20Sopenharmony_ci			dev_err(&pdev->dev,
9028c2ecf20Sopenharmony_ci				"failed to initialize system tshut IRQ\n");
9038c2ecf20Sopenharmony_ci			return ret;
9048c2ecf20Sopenharmony_ci		}
9058c2ecf20Sopenharmony_ci	}
9068c2ecf20Sopenharmony_ci
9078c2ecf20Sopenharmony_ci	bgp->fclock = clk_get(NULL, bgp->conf->fclock_name);
9088c2ecf20Sopenharmony_ci	if (IS_ERR(bgp->fclock)) {
9098c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "failed to request fclock reference\n");
9108c2ecf20Sopenharmony_ci		ret = PTR_ERR(bgp->fclock);
9118c2ecf20Sopenharmony_ci		goto free_irqs;
9128c2ecf20Sopenharmony_ci	}
9138c2ecf20Sopenharmony_ci
9148c2ecf20Sopenharmony_ci	bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name);
9158c2ecf20Sopenharmony_ci	if (IS_ERR(bgp->div_clk)) {
9168c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n");
9178c2ecf20Sopenharmony_ci		ret = PTR_ERR(bgp->div_clk);
9188c2ecf20Sopenharmony_ci		goto put_fclock;
9198c2ecf20Sopenharmony_ci	}
9208c2ecf20Sopenharmony_ci
9218c2ecf20Sopenharmony_ci	for (i = 0; i < bgp->conf->sensor_count; i++) {
9228c2ecf20Sopenharmony_ci		struct temp_sensor_registers *tsr;
9238c2ecf20Sopenharmony_ci		u32 val;
9248c2ecf20Sopenharmony_ci
9258c2ecf20Sopenharmony_ci		tsr = bgp->conf->sensors[i].registers;
9268c2ecf20Sopenharmony_ci		/*
9278c2ecf20Sopenharmony_ci		 * check if the efuse has a non-zero value if not
9288c2ecf20Sopenharmony_ci		 * it is an untrimmed sample and the temperatures
9298c2ecf20Sopenharmony_ci		 * may not be accurate
9308c2ecf20Sopenharmony_ci		 */
9318c2ecf20Sopenharmony_ci		val = ti_bandgap_readl(bgp, tsr->bgap_efuse);
9328c2ecf20Sopenharmony_ci		if (!val)
9338c2ecf20Sopenharmony_ci			dev_info(&pdev->dev,
9348c2ecf20Sopenharmony_ci				 "Non-trimmed BGAP, Temp not accurate\n");
9358c2ecf20Sopenharmony_ci	}
9368c2ecf20Sopenharmony_ci
9378c2ecf20Sopenharmony_ci	clk_rate = clk_round_rate(bgp->div_clk,
9388c2ecf20Sopenharmony_ci				  bgp->conf->sensors[0].ts_data->max_freq);
9398c2ecf20Sopenharmony_ci	if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq ||
9408c2ecf20Sopenharmony_ci	    clk_rate <= 0) {
9418c2ecf20Sopenharmony_ci		ret = -ENODEV;
9428c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate);
9438c2ecf20Sopenharmony_ci		goto put_clks;
9448c2ecf20Sopenharmony_ci	}
9458c2ecf20Sopenharmony_ci
9468c2ecf20Sopenharmony_ci	ret = clk_set_rate(bgp->div_clk, clk_rate);
9478c2ecf20Sopenharmony_ci	if (ret)
9488c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n");
9498c2ecf20Sopenharmony_ci
9508c2ecf20Sopenharmony_ci	bgp->clk_rate = clk_rate;
9518c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
9528c2ecf20Sopenharmony_ci		clk_prepare_enable(bgp->fclock);
9538c2ecf20Sopenharmony_ci
9548c2ecf20Sopenharmony_ci
9558c2ecf20Sopenharmony_ci	spin_lock_init(&bgp->lock);
9568c2ecf20Sopenharmony_ci	bgp->dev = &pdev->dev;
9578c2ecf20Sopenharmony_ci	platform_set_drvdata(pdev, bgp);
9588c2ecf20Sopenharmony_ci
9598c2ecf20Sopenharmony_ci	ti_bandgap_power(bgp, true);
9608c2ecf20Sopenharmony_ci
9618c2ecf20Sopenharmony_ci	/* Set default counter to 1 for now */
9628c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, COUNTER))
9638c2ecf20Sopenharmony_ci		for (i = 0; i < bgp->conf->sensor_count; i++)
9648c2ecf20Sopenharmony_ci			RMW_BITS(bgp, i, bgap_counter, counter_mask, 1);
9658c2ecf20Sopenharmony_ci
9668c2ecf20Sopenharmony_ci	/* Set default thresholds for alert and shutdown */
9678c2ecf20Sopenharmony_ci	for (i = 0; i < bgp->conf->sensor_count; i++) {
9688c2ecf20Sopenharmony_ci		struct temp_sensor_data *ts_data;
9698c2ecf20Sopenharmony_ci
9708c2ecf20Sopenharmony_ci		ts_data = bgp->conf->sensors[i].ts_data;
9718c2ecf20Sopenharmony_ci
9728c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, TALERT)) {
9738c2ecf20Sopenharmony_ci			/* Set initial Talert thresholds */
9748c2ecf20Sopenharmony_ci			RMW_BITS(bgp, i, bgap_threshold,
9758c2ecf20Sopenharmony_ci				 threshold_tcold_mask, ts_data->t_cold);
9768c2ecf20Sopenharmony_ci			RMW_BITS(bgp, i, bgap_threshold,
9778c2ecf20Sopenharmony_ci				 threshold_thot_mask, ts_data->t_hot);
9788c2ecf20Sopenharmony_ci			/* Enable the alert events */
9798c2ecf20Sopenharmony_ci			RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1);
9808c2ecf20Sopenharmony_ci			RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1);
9818c2ecf20Sopenharmony_ci		}
9828c2ecf20Sopenharmony_ci
9838c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) {
9848c2ecf20Sopenharmony_ci			/* Set initial Tshut thresholds */
9858c2ecf20Sopenharmony_ci			RMW_BITS(bgp, i, tshut_threshold,
9868c2ecf20Sopenharmony_ci				 tshut_hot_mask, ts_data->tshut_hot);
9878c2ecf20Sopenharmony_ci			RMW_BITS(bgp, i, tshut_threshold,
9888c2ecf20Sopenharmony_ci				 tshut_cold_mask, ts_data->tshut_cold);
9898c2ecf20Sopenharmony_ci		}
9908c2ecf20Sopenharmony_ci	}
9918c2ecf20Sopenharmony_ci
9928c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
9938c2ecf20Sopenharmony_ci		ti_bandgap_set_continuous_mode(bgp);
9948c2ecf20Sopenharmony_ci
9958c2ecf20Sopenharmony_ci	/* Set .250 seconds time as default counter */
9968c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, COUNTER))
9978c2ecf20Sopenharmony_ci		for (i = 0; i < bgp->conf->sensor_count; i++)
9988c2ecf20Sopenharmony_ci			RMW_BITS(bgp, i, bgap_counter, counter_mask,
9998c2ecf20Sopenharmony_ci				 bgp->clk_rate / 4);
10008c2ecf20Sopenharmony_ci
10018c2ecf20Sopenharmony_ci	/* Every thing is good? Then expose the sensors */
10028c2ecf20Sopenharmony_ci	for (i = 0; i < bgp->conf->sensor_count; i++) {
10038c2ecf20Sopenharmony_ci		char *domain;
10048c2ecf20Sopenharmony_ci
10058c2ecf20Sopenharmony_ci		if (bgp->conf->sensors[i].register_cooling) {
10068c2ecf20Sopenharmony_ci			ret = bgp->conf->sensors[i].register_cooling(bgp, i);
10078c2ecf20Sopenharmony_ci			if (ret)
10088c2ecf20Sopenharmony_ci				goto remove_sensors;
10098c2ecf20Sopenharmony_ci		}
10108c2ecf20Sopenharmony_ci
10118c2ecf20Sopenharmony_ci		if (bgp->conf->expose_sensor) {
10128c2ecf20Sopenharmony_ci			domain = bgp->conf->sensors[i].domain;
10138c2ecf20Sopenharmony_ci			ret = bgp->conf->expose_sensor(bgp, i, domain);
10148c2ecf20Sopenharmony_ci			if (ret)
10158c2ecf20Sopenharmony_ci				goto remove_last_cooling;
10168c2ecf20Sopenharmony_ci		}
10178c2ecf20Sopenharmony_ci	}
10188c2ecf20Sopenharmony_ci
10198c2ecf20Sopenharmony_ci	/*
10208c2ecf20Sopenharmony_ci	 * Enable the Interrupts once everything is set. Otherwise irq handler
10218c2ecf20Sopenharmony_ci	 * might be called as soon as it is enabled where as rest of framework
10228c2ecf20Sopenharmony_ci	 * is still getting initialised.
10238c2ecf20Sopenharmony_ci	 */
10248c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, TALERT)) {
10258c2ecf20Sopenharmony_ci		ret = ti_bandgap_talert_init(bgp, pdev);
10268c2ecf20Sopenharmony_ci		if (ret) {
10278c2ecf20Sopenharmony_ci			dev_err(&pdev->dev, "failed to initialize Talert IRQ\n");
10288c2ecf20Sopenharmony_ci			i = bgp->conf->sensor_count;
10298c2ecf20Sopenharmony_ci			goto disable_clk;
10308c2ecf20Sopenharmony_ci		}
10318c2ecf20Sopenharmony_ci	}
10328c2ecf20Sopenharmony_ci
10338c2ecf20Sopenharmony_ci#ifdef CONFIG_PM_SLEEP
10348c2ecf20Sopenharmony_ci	bgp->nb.notifier_call = bandgap_omap_cpu_notifier;
10358c2ecf20Sopenharmony_ci	if (!soc_device_match(soc_no_cpu_notifier))
10368c2ecf20Sopenharmony_ci		cpu_pm_register_notifier(&bgp->nb);
10378c2ecf20Sopenharmony_ci#endif
10388c2ecf20Sopenharmony_ci
10398c2ecf20Sopenharmony_ci	return 0;
10408c2ecf20Sopenharmony_ci
10418c2ecf20Sopenharmony_ciremove_last_cooling:
10428c2ecf20Sopenharmony_ci	if (bgp->conf->sensors[i].unregister_cooling)
10438c2ecf20Sopenharmony_ci		bgp->conf->sensors[i].unregister_cooling(bgp, i);
10448c2ecf20Sopenharmony_ciremove_sensors:
10458c2ecf20Sopenharmony_ci	for (i--; i >= 0; i--) {
10468c2ecf20Sopenharmony_ci		if (bgp->conf->sensors[i].unregister_cooling)
10478c2ecf20Sopenharmony_ci			bgp->conf->sensors[i].unregister_cooling(bgp, i);
10488c2ecf20Sopenharmony_ci		if (bgp->conf->remove_sensor)
10498c2ecf20Sopenharmony_ci			bgp->conf->remove_sensor(bgp, i);
10508c2ecf20Sopenharmony_ci	}
10518c2ecf20Sopenharmony_ci	ti_bandgap_power(bgp, false);
10528c2ecf20Sopenharmony_cidisable_clk:
10538c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
10548c2ecf20Sopenharmony_ci		clk_disable_unprepare(bgp->fclock);
10558c2ecf20Sopenharmony_ciput_clks:
10568c2ecf20Sopenharmony_ci	clk_put(bgp->div_clk);
10578c2ecf20Sopenharmony_ciput_fclock:
10588c2ecf20Sopenharmony_ci	clk_put(bgp->fclock);
10598c2ecf20Sopenharmony_cifree_irqs:
10608c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, TSHUT))
10618c2ecf20Sopenharmony_ci		free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL);
10628c2ecf20Sopenharmony_ci
10638c2ecf20Sopenharmony_ci	return ret;
10648c2ecf20Sopenharmony_ci}
10658c2ecf20Sopenharmony_ci
10668c2ecf20Sopenharmony_cistatic
10678c2ecf20Sopenharmony_ciint ti_bandgap_remove(struct platform_device *pdev)
10688c2ecf20Sopenharmony_ci{
10698c2ecf20Sopenharmony_ci	struct ti_bandgap *bgp = platform_get_drvdata(pdev);
10708c2ecf20Sopenharmony_ci	int i;
10718c2ecf20Sopenharmony_ci
10728c2ecf20Sopenharmony_ci	if (!soc_device_match(soc_no_cpu_notifier))
10738c2ecf20Sopenharmony_ci		cpu_pm_unregister_notifier(&bgp->nb);
10748c2ecf20Sopenharmony_ci
10758c2ecf20Sopenharmony_ci	/* Remove sensor interfaces */
10768c2ecf20Sopenharmony_ci	for (i = 0; i < bgp->conf->sensor_count; i++) {
10778c2ecf20Sopenharmony_ci		if (bgp->conf->sensors[i].unregister_cooling)
10788c2ecf20Sopenharmony_ci			bgp->conf->sensors[i].unregister_cooling(bgp, i);
10798c2ecf20Sopenharmony_ci
10808c2ecf20Sopenharmony_ci		if (bgp->conf->remove_sensor)
10818c2ecf20Sopenharmony_ci			bgp->conf->remove_sensor(bgp, i);
10828c2ecf20Sopenharmony_ci	}
10838c2ecf20Sopenharmony_ci
10848c2ecf20Sopenharmony_ci	ti_bandgap_power(bgp, false);
10858c2ecf20Sopenharmony_ci
10868c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
10878c2ecf20Sopenharmony_ci		clk_disable_unprepare(bgp->fclock);
10888c2ecf20Sopenharmony_ci	clk_put(bgp->fclock);
10898c2ecf20Sopenharmony_ci	clk_put(bgp->div_clk);
10908c2ecf20Sopenharmony_ci
10918c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, TALERT))
10928c2ecf20Sopenharmony_ci		free_irq(bgp->irq, bgp);
10938c2ecf20Sopenharmony_ci
10948c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, TSHUT))
10958c2ecf20Sopenharmony_ci		free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL);
10968c2ecf20Sopenharmony_ci
10978c2ecf20Sopenharmony_ci	return 0;
10988c2ecf20Sopenharmony_ci}
10998c2ecf20Sopenharmony_ci
11008c2ecf20Sopenharmony_ci#ifdef CONFIG_PM_SLEEP
11018c2ecf20Sopenharmony_cistatic int ti_bandgap_save_ctxt(struct ti_bandgap *bgp)
11028c2ecf20Sopenharmony_ci{
11038c2ecf20Sopenharmony_ci	int i;
11048c2ecf20Sopenharmony_ci
11058c2ecf20Sopenharmony_ci	for (i = 0; i < bgp->conf->sensor_count; i++) {
11068c2ecf20Sopenharmony_ci		struct temp_sensor_registers *tsr;
11078c2ecf20Sopenharmony_ci		struct temp_sensor_regval *rval;
11088c2ecf20Sopenharmony_ci
11098c2ecf20Sopenharmony_ci		rval = &bgp->regval[i];
11108c2ecf20Sopenharmony_ci		tsr = bgp->conf->sensors[i].registers;
11118c2ecf20Sopenharmony_ci
11128c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
11138c2ecf20Sopenharmony_ci			rval->bg_mode_ctrl = ti_bandgap_readl(bgp,
11148c2ecf20Sopenharmony_ci							tsr->bgap_mode_ctrl);
11158c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, COUNTER))
11168c2ecf20Sopenharmony_ci			rval->bg_counter = ti_bandgap_readl(bgp,
11178c2ecf20Sopenharmony_ci							tsr->bgap_counter);
11188c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, TALERT)) {
11198c2ecf20Sopenharmony_ci			rval->bg_threshold = ti_bandgap_readl(bgp,
11208c2ecf20Sopenharmony_ci							tsr->bgap_threshold);
11218c2ecf20Sopenharmony_ci			rval->bg_ctrl = ti_bandgap_readl(bgp,
11228c2ecf20Sopenharmony_ci						   tsr->bgap_mask_ctrl);
11238c2ecf20Sopenharmony_ci		}
11248c2ecf20Sopenharmony_ci
11258c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
11268c2ecf20Sopenharmony_ci			rval->tshut_threshold = ti_bandgap_readl(bgp,
11278c2ecf20Sopenharmony_ci						   tsr->tshut_threshold);
11288c2ecf20Sopenharmony_ci	}
11298c2ecf20Sopenharmony_ci
11308c2ecf20Sopenharmony_ci	return 0;
11318c2ecf20Sopenharmony_ci}
11328c2ecf20Sopenharmony_ci
11338c2ecf20Sopenharmony_cistatic int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp)
11348c2ecf20Sopenharmony_ci{
11358c2ecf20Sopenharmony_ci	int i;
11368c2ecf20Sopenharmony_ci
11378c2ecf20Sopenharmony_ci	for (i = 0; i < bgp->conf->sensor_count; i++) {
11388c2ecf20Sopenharmony_ci		struct temp_sensor_registers *tsr;
11398c2ecf20Sopenharmony_ci		struct temp_sensor_regval *rval;
11408c2ecf20Sopenharmony_ci		u32 val = 0;
11418c2ecf20Sopenharmony_ci
11428c2ecf20Sopenharmony_ci		rval = &bgp->regval[i];
11438c2ecf20Sopenharmony_ci		tsr = bgp->conf->sensors[i].registers;
11448c2ecf20Sopenharmony_ci
11458c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, COUNTER))
11468c2ecf20Sopenharmony_ci			val = ti_bandgap_readl(bgp, tsr->bgap_counter);
11478c2ecf20Sopenharmony_ci
11488c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
11498c2ecf20Sopenharmony_ci			ti_bandgap_writel(bgp, rval->tshut_threshold,
11508c2ecf20Sopenharmony_ci					  tsr->tshut_threshold);
11518c2ecf20Sopenharmony_ci		/* Force immediate temperature measurement and update
11528c2ecf20Sopenharmony_ci		 * of the DTEMP field
11538c2ecf20Sopenharmony_ci		 */
11548c2ecf20Sopenharmony_ci		ti_bandgap_force_single_read(bgp, i);
11558c2ecf20Sopenharmony_ci
11568c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, COUNTER))
11578c2ecf20Sopenharmony_ci			ti_bandgap_writel(bgp, rval->bg_counter,
11588c2ecf20Sopenharmony_ci					  tsr->bgap_counter);
11598c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
11608c2ecf20Sopenharmony_ci			ti_bandgap_writel(bgp, rval->bg_mode_ctrl,
11618c2ecf20Sopenharmony_ci					  tsr->bgap_mode_ctrl);
11628c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, TALERT)) {
11638c2ecf20Sopenharmony_ci			ti_bandgap_writel(bgp, rval->bg_threshold,
11648c2ecf20Sopenharmony_ci					  tsr->bgap_threshold);
11658c2ecf20Sopenharmony_ci			ti_bandgap_writel(bgp, rval->bg_ctrl,
11668c2ecf20Sopenharmony_ci					  tsr->bgap_mask_ctrl);
11678c2ecf20Sopenharmony_ci		}
11688c2ecf20Sopenharmony_ci	}
11698c2ecf20Sopenharmony_ci
11708c2ecf20Sopenharmony_ci	return 0;
11718c2ecf20Sopenharmony_ci}
11728c2ecf20Sopenharmony_ci
11738c2ecf20Sopenharmony_cistatic int ti_bandgap_suspend(struct device *dev)
11748c2ecf20Sopenharmony_ci{
11758c2ecf20Sopenharmony_ci	struct ti_bandgap *bgp = dev_get_drvdata(dev);
11768c2ecf20Sopenharmony_ci	int err;
11778c2ecf20Sopenharmony_ci
11788c2ecf20Sopenharmony_ci	err = ti_bandgap_save_ctxt(bgp);
11798c2ecf20Sopenharmony_ci	ti_bandgap_power(bgp, false);
11808c2ecf20Sopenharmony_ci
11818c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
11828c2ecf20Sopenharmony_ci		clk_disable_unprepare(bgp->fclock);
11838c2ecf20Sopenharmony_ci
11848c2ecf20Sopenharmony_ci	bgp->is_suspended = true;
11858c2ecf20Sopenharmony_ci
11868c2ecf20Sopenharmony_ci	return err;
11878c2ecf20Sopenharmony_ci}
11888c2ecf20Sopenharmony_ci
11898c2ecf20Sopenharmony_cistatic int bandgap_omap_cpu_notifier(struct notifier_block *nb,
11908c2ecf20Sopenharmony_ci				  unsigned long cmd, void *v)
11918c2ecf20Sopenharmony_ci{
11928c2ecf20Sopenharmony_ci	struct ti_bandgap *bgp;
11938c2ecf20Sopenharmony_ci
11948c2ecf20Sopenharmony_ci	bgp = container_of(nb, struct ti_bandgap, nb);
11958c2ecf20Sopenharmony_ci
11968c2ecf20Sopenharmony_ci	spin_lock(&bgp->lock);
11978c2ecf20Sopenharmony_ci	switch (cmd) {
11988c2ecf20Sopenharmony_ci	case CPU_CLUSTER_PM_ENTER:
11998c2ecf20Sopenharmony_ci		if (bgp->is_suspended)
12008c2ecf20Sopenharmony_ci			break;
12018c2ecf20Sopenharmony_ci		ti_bandgap_save_ctxt(bgp);
12028c2ecf20Sopenharmony_ci		ti_bandgap_power(bgp, false);
12038c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
12048c2ecf20Sopenharmony_ci			clk_disable(bgp->fclock);
12058c2ecf20Sopenharmony_ci		break;
12068c2ecf20Sopenharmony_ci	case CPU_CLUSTER_PM_ENTER_FAILED:
12078c2ecf20Sopenharmony_ci	case CPU_CLUSTER_PM_EXIT:
12088c2ecf20Sopenharmony_ci		if (bgp->is_suspended)
12098c2ecf20Sopenharmony_ci			break;
12108c2ecf20Sopenharmony_ci		if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
12118c2ecf20Sopenharmony_ci			clk_enable(bgp->fclock);
12128c2ecf20Sopenharmony_ci		ti_bandgap_power(bgp, true);
12138c2ecf20Sopenharmony_ci		ti_bandgap_restore_ctxt(bgp);
12148c2ecf20Sopenharmony_ci		break;
12158c2ecf20Sopenharmony_ci	}
12168c2ecf20Sopenharmony_ci	spin_unlock(&bgp->lock);
12178c2ecf20Sopenharmony_ci
12188c2ecf20Sopenharmony_ci	return NOTIFY_OK;
12198c2ecf20Sopenharmony_ci}
12208c2ecf20Sopenharmony_ci
12218c2ecf20Sopenharmony_cistatic int ti_bandgap_resume(struct device *dev)
12228c2ecf20Sopenharmony_ci{
12238c2ecf20Sopenharmony_ci	struct ti_bandgap *bgp = dev_get_drvdata(dev);
12248c2ecf20Sopenharmony_ci
12258c2ecf20Sopenharmony_ci	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
12268c2ecf20Sopenharmony_ci		clk_prepare_enable(bgp->fclock);
12278c2ecf20Sopenharmony_ci
12288c2ecf20Sopenharmony_ci	ti_bandgap_power(bgp, true);
12298c2ecf20Sopenharmony_ci	bgp->is_suspended = false;
12308c2ecf20Sopenharmony_ci
12318c2ecf20Sopenharmony_ci	return ti_bandgap_restore_ctxt(bgp);
12328c2ecf20Sopenharmony_ci}
12338c2ecf20Sopenharmony_cistatic SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend,
12348c2ecf20Sopenharmony_ci			 ti_bandgap_resume);
12358c2ecf20Sopenharmony_ci
12368c2ecf20Sopenharmony_ci#define DEV_PM_OPS	(&ti_bandgap_dev_pm_ops)
12378c2ecf20Sopenharmony_ci#else
12388c2ecf20Sopenharmony_ci#define DEV_PM_OPS	NULL
12398c2ecf20Sopenharmony_ci#endif
12408c2ecf20Sopenharmony_ci
12418c2ecf20Sopenharmony_cistatic const struct of_device_id of_ti_bandgap_match[] = {
12428c2ecf20Sopenharmony_ci#ifdef CONFIG_OMAP3_THERMAL
12438c2ecf20Sopenharmony_ci	{
12448c2ecf20Sopenharmony_ci		.compatible = "ti,omap34xx-bandgap",
12458c2ecf20Sopenharmony_ci		.data = (void *)&omap34xx_data,
12468c2ecf20Sopenharmony_ci	},
12478c2ecf20Sopenharmony_ci	{
12488c2ecf20Sopenharmony_ci		.compatible = "ti,omap36xx-bandgap",
12498c2ecf20Sopenharmony_ci		.data = (void *)&omap36xx_data,
12508c2ecf20Sopenharmony_ci	},
12518c2ecf20Sopenharmony_ci#endif
12528c2ecf20Sopenharmony_ci#ifdef CONFIG_OMAP4_THERMAL
12538c2ecf20Sopenharmony_ci	{
12548c2ecf20Sopenharmony_ci		.compatible = "ti,omap4430-bandgap",
12558c2ecf20Sopenharmony_ci		.data = (void *)&omap4430_data,
12568c2ecf20Sopenharmony_ci	},
12578c2ecf20Sopenharmony_ci	{
12588c2ecf20Sopenharmony_ci		.compatible = "ti,omap4460-bandgap",
12598c2ecf20Sopenharmony_ci		.data = (void *)&omap4460_data,
12608c2ecf20Sopenharmony_ci	},
12618c2ecf20Sopenharmony_ci	{
12628c2ecf20Sopenharmony_ci		.compatible = "ti,omap4470-bandgap",
12638c2ecf20Sopenharmony_ci		.data = (void *)&omap4470_data,
12648c2ecf20Sopenharmony_ci	},
12658c2ecf20Sopenharmony_ci#endif
12668c2ecf20Sopenharmony_ci#ifdef CONFIG_OMAP5_THERMAL
12678c2ecf20Sopenharmony_ci	{
12688c2ecf20Sopenharmony_ci		.compatible = "ti,omap5430-bandgap",
12698c2ecf20Sopenharmony_ci		.data = (void *)&omap5430_data,
12708c2ecf20Sopenharmony_ci	},
12718c2ecf20Sopenharmony_ci#endif
12728c2ecf20Sopenharmony_ci#ifdef CONFIG_DRA752_THERMAL
12738c2ecf20Sopenharmony_ci	{
12748c2ecf20Sopenharmony_ci		.compatible = "ti,dra752-bandgap",
12758c2ecf20Sopenharmony_ci		.data = (void *)&dra752_data,
12768c2ecf20Sopenharmony_ci	},
12778c2ecf20Sopenharmony_ci#endif
12788c2ecf20Sopenharmony_ci	/* Sentinel */
12798c2ecf20Sopenharmony_ci	{ },
12808c2ecf20Sopenharmony_ci};
12818c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, of_ti_bandgap_match);
12828c2ecf20Sopenharmony_ci
12838c2ecf20Sopenharmony_cistatic struct platform_driver ti_bandgap_sensor_driver = {
12848c2ecf20Sopenharmony_ci	.probe = ti_bandgap_probe,
12858c2ecf20Sopenharmony_ci	.remove = ti_bandgap_remove,
12868c2ecf20Sopenharmony_ci	.driver = {
12878c2ecf20Sopenharmony_ci			.name = "ti-soc-thermal",
12888c2ecf20Sopenharmony_ci			.pm = DEV_PM_OPS,
12898c2ecf20Sopenharmony_ci			.of_match_table	= of_ti_bandgap_match,
12908c2ecf20Sopenharmony_ci	},
12918c2ecf20Sopenharmony_ci};
12928c2ecf20Sopenharmony_ci
12938c2ecf20Sopenharmony_cimodule_platform_driver(ti_bandgap_sensor_driver);
12948c2ecf20Sopenharmony_ci
12958c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver");
12968c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2");
12978c2ecf20Sopenharmony_ciMODULE_ALIAS("platform:ti-soc-thermal");
12988c2ecf20Sopenharmony_ciMODULE_AUTHOR("Texas Instrument Inc.");
1299