1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION.  All rights reserved.
4 *
5 * Author:
6 *	Mikko Perttunen <mperttunen@nvidia.com>
7 *
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 */
18
19#include <linux/debugfs.h>
20#include <linux/bitops.h>
21#include <linux/clk.h>
22#include <linux/delay.h>
23#include <linux/err.h>
24#include <linux/interrupt.h>
25#include <linux/io.h>
26#include <linux/irq.h>
27#include <linux/irqdomain.h>
28#include <linux/module.h>
29#include <linux/of.h>
30#include <linux/platform_device.h>
31#include <linux/reset.h>
32#include <linux/thermal.h>
33
34#include <dt-bindings/thermal/tegra124-soctherm.h>
35
36#include "../thermal_core.h"
37#include "soctherm.h"
38
39#define SENSOR_CONFIG0				0
40#define SENSOR_CONFIG0_STOP			BIT(0)
41#define SENSOR_CONFIG0_CPTR_OVER		BIT(2)
42#define SENSOR_CONFIG0_OVER			BIT(3)
43#define SENSOR_CONFIG0_TCALC_OVER		BIT(4)
44#define SENSOR_CONFIG0_TALL_MASK		(0xfffff << 8)
45#define SENSOR_CONFIG0_TALL_SHIFT		8
46
47#define SENSOR_CONFIG1				4
48#define SENSOR_CONFIG1_TSAMPLE_MASK		0x3ff
49#define SENSOR_CONFIG1_TSAMPLE_SHIFT		0
50#define SENSOR_CONFIG1_TIDDQ_EN_MASK		(0x3f << 15)
51#define SENSOR_CONFIG1_TIDDQ_EN_SHIFT		15
52#define SENSOR_CONFIG1_TEN_COUNT_MASK		(0x3f << 24)
53#define SENSOR_CONFIG1_TEN_COUNT_SHIFT		24
54#define SENSOR_CONFIG1_TEMP_ENABLE		BIT(31)
55
56/*
57 * SENSOR_CONFIG2 is defined in soctherm.h
58 * because, it will be used by tegra_soctherm_fuse.c
59 */
60
61#define SENSOR_STATUS0				0xc
62#define SENSOR_STATUS0_VALID_MASK		BIT(31)
63#define SENSOR_STATUS0_CAPTURE_MASK		0xffff
64
65#define SENSOR_STATUS1				0x10
66#define SENSOR_STATUS1_TEMP_VALID_MASK		BIT(31)
67#define SENSOR_STATUS1_TEMP_MASK		0xffff
68
69#define READBACK_VALUE_MASK			0xff00
70#define READBACK_VALUE_SHIFT			8
71#define READBACK_ADD_HALF			BIT(7)
72#define READBACK_NEGATE				BIT(0)
73
74/*
75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
76 * because it will be used by tegraxxx_soctherm.c
77 */
78#define THERMCTL_LVL0_CPU0_EN_MASK		BIT(8)
79#define THERMCTL_LVL0_CPU0_CPU_THROT_MASK	(0x3 << 5)
80#define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT	0x1
81#define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY	0x2
82#define THERMCTL_LVL0_CPU0_GPU_THROT_MASK	(0x3 << 3)
83#define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT	0x1
84#define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY	0x2
85#define THERMCTL_LVL0_CPU0_MEM_THROT_MASK	BIT(2)
86#define THERMCTL_LVL0_CPU0_STATUS_MASK		0x3
87
88#define THERMCTL_LVL0_UP_STATS			0x10
89#define THERMCTL_LVL0_DN_STATS			0x14
90
91#define THERMCTL_INTR_STATUS			0x84
92
93#define TH_INTR_MD0_MASK			BIT(25)
94#define TH_INTR_MU0_MASK			BIT(24)
95#define TH_INTR_GD0_MASK			BIT(17)
96#define TH_INTR_GU0_MASK			BIT(16)
97#define TH_INTR_CD0_MASK			BIT(9)
98#define TH_INTR_CU0_MASK			BIT(8)
99#define TH_INTR_PD0_MASK			BIT(1)
100#define TH_INTR_PU0_MASK			BIT(0)
101#define TH_INTR_IGNORE_MASK			0xFCFCFCFC
102
103#define THERMCTL_STATS_CTL			0x94
104#define STATS_CTL_CLR_DN			0x8
105#define STATS_CTL_EN_DN				0x4
106#define STATS_CTL_CLR_UP			0x2
107#define STATS_CTL_EN_UP				0x1
108
109#define OC1_CFG					0x310
110#define OC1_CFG_LONG_LATENCY_MASK		BIT(6)
111#define OC1_CFG_HW_RESTORE_MASK			BIT(5)
112#define OC1_CFG_PWR_GOOD_MASK_MASK		BIT(4)
113#define OC1_CFG_THROTTLE_MODE_MASK		(0x3 << 2)
114#define OC1_CFG_ALARM_POLARITY_MASK		BIT(1)
115#define OC1_CFG_EN_THROTTLE_MASK		BIT(0)
116
117#define OC1_CNT_THRESHOLD			0x314
118#define OC1_THROTTLE_PERIOD			0x318
119#define OC1_ALARM_COUNT				0x31c
120#define OC1_FILTER				0x320
121#define OC1_STATS				0x3a8
122
123#define OC_INTR_STATUS				0x39c
124#define OC_INTR_ENABLE				0x3a0
125#define OC_INTR_DISABLE				0x3a4
126#define OC_STATS_CTL				0x3c4
127#define OC_STATS_CTL_CLR_ALL			0x2
128#define OC_STATS_CTL_EN_ALL			0x1
129
130#define OC_INTR_OC1_MASK			BIT(0)
131#define OC_INTR_OC2_MASK			BIT(1)
132#define OC_INTR_OC3_MASK			BIT(2)
133#define OC_INTR_OC4_MASK			BIT(3)
134#define OC_INTR_OC5_MASK			BIT(4)
135
136#define THROT_GLOBAL_CFG			0x400
137#define THROT_GLOBAL_ENB_MASK			BIT(0)
138
139#define CPU_PSKIP_STATUS			0x418
140#define XPU_PSKIP_STATUS_M_MASK			(0xff << 12)
141#define XPU_PSKIP_STATUS_N_MASK			(0xff << 4)
142#define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK	BIT(1)
143#define XPU_PSKIP_STATUS_ENABLED_MASK		BIT(0)
144
145#define THROT_PRIORITY_LOCK			0x424
146#define THROT_PRIORITY_LOCK_PRIORITY_MASK	0xff
147
148#define THROT_STATUS				0x428
149#define THROT_STATUS_BREACH_MASK		BIT(12)
150#define THROT_STATUS_STATE_MASK			(0xff << 4)
151#define THROT_STATUS_ENABLED_MASK		BIT(0)
152
153#define THROT_PSKIP_CTRL_LITE_CPU		0x430
154#define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
155#define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
156#define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
157#define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
158#define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
159#define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
160
161#define THROT_VECT_NONE				0x0 /* 3'b000 */
162#define THROT_VECT_LOW				0x1 /* 3'b001 */
163#define THROT_VECT_MED				0x3 /* 3'b011 */
164#define THROT_VECT_HIGH				0x7 /* 3'b111 */
165
166#define THROT_PSKIP_RAMP_LITE_CPU		0x434
167#define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
168#define THROT_PSKIP_RAMP_DURATION_MASK		(0xffff << 8)
169#define THROT_PSKIP_RAMP_STEP_MASK		0xff
170
171#define THROT_PRIORITY_LITE			0x444
172#define THROT_PRIORITY_LITE_PRIO_MASK		0xff
173
174#define THROT_DELAY_LITE			0x448
175#define THROT_DELAY_LITE_DELAY_MASK		0xff
176
177/* car register offsets needed for enabling HW throttling */
178#define CAR_SUPER_CCLKG_DIVIDER			0x36c
179#define CDIVG_USE_THERM_CONTROLS_MASK		BIT(30)
180
181/* ccroc register offsets needed for enabling HW throttling for Tegra132 */
182#define CCROC_SUPER_CCLKG_DIVIDER		0x024
183
184#define CCROC_GLOBAL_CFG			0x148
185
186#define CCROC_THROT_PSKIP_RAMP_CPU		0x150
187#define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
188#define CCROC_THROT_PSKIP_RAMP_DURATION_MASK	(0xffff << 8)
189#define CCROC_THROT_PSKIP_RAMP_STEP_MASK	0xff
190
191#define CCROC_THROT_PSKIP_CTRL_CPU		0x154
192#define CCROC_THROT_PSKIP_CTRL_ENB_MASK		BIT(31)
193#define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK	(0xff << 8)
194#define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK	0xff
195
196/* get val from register(r) mask bits(m) */
197#define REG_GET_MASK(r, m)	(((r) & (m)) >> (ffs(m) - 1))
198/* set val(v) to mask bits(m) of register(r) */
199#define REG_SET_MASK(r, m, v)	(((r) & ~(m)) | \
200				 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
201
202/* get dividend from the depth */
203#define THROT_DEPTH_DIVIDEND(depth)	((256 * (100 - (depth)) / 100) - 1)
204
205/* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
206 * level	vector
207 * NONE		3'b000
208 * LOW		3'b001
209 * MED		3'b011
210 * HIGH		3'b111
211 */
212#define THROT_LEVEL_TO_DEPTH(level)	((0x1 << (level)) - 1)
213
214/* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
215#define THROT_OFFSET			0x30
216#define THROT_PSKIP_CTRL(throt, dev)	(THROT_PSKIP_CTRL_LITE_CPU + \
217					(THROT_OFFSET * throt) + (8 * dev))
218#define THROT_PSKIP_RAMP(throt, dev)	(THROT_PSKIP_RAMP_LITE_CPU + \
219					(THROT_OFFSET * throt) + (8 * dev))
220
221/* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
222#define THROT_PRIORITY_CTRL(throt)	(THROT_PRIORITY_LITE + \
223					(THROT_OFFSET * throt))
224#define THROT_DELAY_CTRL(throt)		(THROT_DELAY_LITE + \
225					(THROT_OFFSET * throt))
226
227#define ALARM_OFFSET			0x14
228#define ALARM_CFG(throt)		(OC1_CFG + \
229					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
230
231#define ALARM_CNT_THRESHOLD(throt)	(OC1_CNT_THRESHOLD + \
232					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
233
234#define ALARM_THROTTLE_PERIOD(throt)	(OC1_THROTTLE_PERIOD + \
235					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
236
237#define ALARM_ALARM_COUNT(throt)	(OC1_ALARM_COUNT + \
238					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
239
240#define ALARM_FILTER(throt)		(OC1_FILTER + \
241					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
242
243#define ALARM_STATS(throt)		(OC1_STATS + \
244					(4 * (throt - THROTTLE_OC1)))
245
246/* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
247#define CCROC_THROT_OFFSET			0x0c
248#define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
249						(CCROC_THROT_OFFSET * vect))
250#define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
251						(CCROC_THROT_OFFSET * vect))
252
253/* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
254#define THERMCTL_LVL_REGS_SIZE		0x20
255#define THERMCTL_LVL_REG(rg, lv)	((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
256
257#define OC_THROTTLE_MODE_DISABLED	0
258#define OC_THROTTLE_MODE_BRIEF		2
259
260static const int min_low_temp = -127000;
261static const int max_high_temp = 127000;
262
263enum soctherm_throttle_id {
264	THROTTLE_LIGHT = 0,
265	THROTTLE_HEAVY,
266	THROTTLE_OC1,
267	THROTTLE_OC2,
268	THROTTLE_OC3,
269	THROTTLE_OC4,
270	THROTTLE_OC5, /* OC5 is reserved */
271	THROTTLE_SIZE,
272};
273
274enum soctherm_oc_irq_id {
275	TEGRA_SOC_OC_IRQ_1,
276	TEGRA_SOC_OC_IRQ_2,
277	TEGRA_SOC_OC_IRQ_3,
278	TEGRA_SOC_OC_IRQ_4,
279	TEGRA_SOC_OC_IRQ_5,
280	TEGRA_SOC_OC_IRQ_MAX,
281};
282
283enum soctherm_throttle_dev_id {
284	THROTTLE_DEV_CPU = 0,
285	THROTTLE_DEV_GPU,
286	THROTTLE_DEV_SIZE,
287};
288
289static const char *const throt_names[] = {
290	[THROTTLE_LIGHT] = "light",
291	[THROTTLE_HEAVY] = "heavy",
292	[THROTTLE_OC1]   = "oc1",
293	[THROTTLE_OC2]   = "oc2",
294	[THROTTLE_OC3]   = "oc3",
295	[THROTTLE_OC4]   = "oc4",
296	[THROTTLE_OC5]   = "oc5",
297};
298
299struct tegra_soctherm;
300struct tegra_thermctl_zone {
301	void __iomem *reg;
302	struct device *dev;
303	struct tegra_soctherm *ts;
304	struct thermal_zone_device *tz;
305	const struct tegra_tsensor_group *sg;
306};
307
308struct soctherm_oc_cfg {
309	u32 active_low;
310	u32 throt_period;
311	u32 alarm_cnt_thresh;
312	u32 alarm_filter;
313	u32 mode;
314	bool intr_en;
315};
316
317struct soctherm_throt_cfg {
318	const char *name;
319	unsigned int id;
320	u8 priority;
321	u8 cpu_throt_level;
322	u32 cpu_throt_depth;
323	u32 gpu_throt_level;
324	struct soctherm_oc_cfg oc_cfg;
325	struct thermal_cooling_device *cdev;
326	bool init;
327};
328
329struct tegra_soctherm {
330	struct reset_control *reset;
331	struct clk *clock_tsensor;
332	struct clk *clock_soctherm;
333	void __iomem *regs;
334	void __iomem *clk_regs;
335	void __iomem *ccroc_regs;
336
337	int thermal_irq;
338	int edp_irq;
339
340	u32 *calib;
341	struct thermal_zone_device **thermctl_tzs;
342	struct tegra_soctherm_soc *soc;
343
344	struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
345
346	struct dentry *debugfs_dir;
347
348	struct mutex thermctl_lock;
349};
350
351struct soctherm_oc_irq_chip_data {
352	struct mutex		irq_lock; /* serialize OC IRQs */
353	struct irq_chip		irq_chip;
354	struct irq_domain	*domain;
355	int			irq_enable;
356};
357
358static struct soctherm_oc_irq_chip_data soc_irq_cdata;
359
360/**
361 * ccroc_writel() - writes a value to a CCROC register
362 * @ts: pointer to a struct tegra_soctherm
363 * @value: the value to write
364 * @reg: the register offset
365 *
366 * Writes @v to @reg.  No return value.
367 */
368static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
369{
370	writel(value, (ts->ccroc_regs + reg));
371}
372
373/**
374 * ccroc_readl() - reads specified register from CCROC IP block
375 * @ts: pointer to a struct tegra_soctherm
376 * @reg: register address to be read
377 *
378 * Return: the value of the register
379 */
380static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
381{
382	return readl(ts->ccroc_regs + reg);
383}
384
385static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
386{
387	const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
388	void __iomem *base = tegra->regs + sensor->base;
389	unsigned int val;
390
391	val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
392	writel(val, base + SENSOR_CONFIG0);
393
394	val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
395	val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
396	val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
397	val |= SENSOR_CONFIG1_TEMP_ENABLE;
398	writel(val, base + SENSOR_CONFIG1);
399
400	writel(tegra->calib[i], base + SENSOR_CONFIG2);
401}
402
403/*
404 * Translate from soctherm readback format to millicelsius.
405 * The soctherm readback format in bits is as follows:
406 *   TTTTTTTT H______N
407 * where T's contain the temperature in Celsius,
408 * H denotes an addition of 0.5 Celsius and N denotes negation
409 * of the final value.
410 */
411static int translate_temp(u16 val)
412{
413	int t;
414
415	t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
416	if (val & READBACK_ADD_HALF)
417		t += 500;
418	if (val & READBACK_NEGATE)
419		t *= -1;
420
421	return t;
422}
423
424static int tegra_thermctl_get_temp(void *data, int *out_temp)
425{
426	struct tegra_thermctl_zone *zone = data;
427	u32 val;
428
429	val = readl(zone->reg);
430	val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
431	*out_temp = translate_temp(val);
432
433	return 0;
434}
435
436/**
437 * enforce_temp_range() - check and enforce temperature range [min, max]
438 * @dev: struct device * of the SOC_THERM instance
439 * @trip_temp: the trip temperature to check
440 *
441 * Checks and enforces the permitted temperature range that SOC_THERM
442 * HW can support This is
443 * done while taking care of precision.
444 *
445 * Return: The precision adjusted capped temperature in millicelsius.
446 */
447static int enforce_temp_range(struct device *dev, int trip_temp)
448{
449	int temp;
450
451	temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
452	if (temp != trip_temp)
453		dev_info(dev, "soctherm: trip temperature %d forced to %d\n",
454			 trip_temp, temp);
455	return temp;
456}
457
458/**
459 * thermtrip_program() - Configures the hardware to shut down the
460 * system if a given sensor group reaches a given temperature
461 * @dev: ptr to the struct device for the SOC_THERM IP block
462 * @sg: pointer to the sensor group to set the thermtrip temperature for
463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
464 *
465 * Sets the thermal trip threshold of the given sensor group to be the
466 * @trip_temp.  If this threshold is crossed, the hardware will shut
467 * down.
468 *
469 * Note that, although @trip_temp is specified in millicelsius, the
470 * hardware is programmed in degrees Celsius.
471 *
472 * Return: 0 upon success, or %-EINVAL upon failure.
473 */
474static int thermtrip_program(struct device *dev,
475			     const struct tegra_tsensor_group *sg,
476			     int trip_temp)
477{
478	struct tegra_soctherm *ts = dev_get_drvdata(dev);
479	int temp;
480	u32 r;
481
482	if (!sg || !sg->thermtrip_threshold_mask)
483		return -EINVAL;
484
485	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
486
487	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
488	r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
489	r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
490	r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
491	writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
492
493	return 0;
494}
495
496/**
497 * throttrip_program() - Configures the hardware to throttle the
498 * pulse if a given sensor group reaches a given temperature
499 * @dev: ptr to the struct device for the SOC_THERM IP block
500 * @sg: pointer to the sensor group to set the thermtrip temperature for
501 * @stc: pointer to the throttle need to be triggered
502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
503 *
504 * Sets the thermal trip threshold and throttle event of the given sensor
505 * group. If this threshold is crossed, the hardware will trigger the
506 * throttle.
507 *
508 * Note that, although @trip_temp is specified in millicelsius, the
509 * hardware is programmed in degrees Celsius.
510 *
511 * Return: 0 upon success, or %-EINVAL upon failure.
512 */
513static int throttrip_program(struct device *dev,
514			     const struct tegra_tsensor_group *sg,
515			     struct soctherm_throt_cfg *stc,
516			     int trip_temp)
517{
518	struct tegra_soctherm *ts = dev_get_drvdata(dev);
519	int temp, cpu_throt, gpu_throt;
520	unsigned int throt;
521	u32 r, reg_off;
522
523	if (!sg || !stc || !stc->init)
524		return -EINVAL;
525
526	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
527
528	/* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
529	throt = stc->id;
530	reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
531
532	if (throt == THROTTLE_LIGHT) {
533		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
534		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
535	} else {
536		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
537		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
538		if (throt != THROTTLE_HEAVY)
539			dev_warn(dev,
540				 "invalid throt id %d - assuming HEAVY",
541				 throt);
542	}
543
544	r = readl(ts->regs + reg_off);
545	r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
546	r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
547	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
548	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
549	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
550	writel(r, ts->regs + reg_off);
551
552	return 0;
553}
554
555static struct soctherm_throt_cfg *
556find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
557{
558	unsigned int i;
559
560	for (i = 0; ts->throt_cfgs[i].name; i++)
561		if (!strcmp(ts->throt_cfgs[i].name, name))
562			return &ts->throt_cfgs[i];
563
564	return NULL;
565}
566
567static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
568{
569	int i, temp = min_low_temp;
570	struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
571
572	if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
573		return temp;
574
575	if (tt) {
576		for (i = 0; i < ts->soc->num_ttgs; i++) {
577			if (tt[i].id == id)
578				return tt[i].temp;
579		}
580	}
581
582	return temp;
583}
584
585static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
586{
587	struct tegra_thermctl_zone *zone = data;
588	struct thermal_zone_device *tz = zone->tz;
589	struct tegra_soctherm *ts = zone->ts;
590	const struct tegra_tsensor_group *sg = zone->sg;
591	struct device *dev = zone->dev;
592	enum thermal_trip_type type;
593	int ret;
594
595	if (!tz)
596		return -EINVAL;
597
598	ret = tz->ops->get_trip_type(tz, trip, &type);
599	if (ret)
600		return ret;
601
602	if (type == THERMAL_TRIP_CRITICAL) {
603		/*
604		 * If thermtrips property is set in DT,
605		 * doesn't need to program critical type trip to HW,
606		 * if not, program critical trip to HW.
607		 */
608		if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
609			return thermtrip_program(dev, sg, temp);
610		else
611			return 0;
612
613	} else if (type == THERMAL_TRIP_HOT) {
614		int i;
615
616		for (i = 0; i < THROTTLE_SIZE; i++) {
617			struct thermal_cooling_device *cdev;
618			struct soctherm_throt_cfg *stc;
619
620			if (!ts->throt_cfgs[i].init)
621				continue;
622
623			cdev = ts->throt_cfgs[i].cdev;
624			if (get_thermal_instance(tz, cdev, trip))
625				stc = find_throttle_cfg_by_name(ts, cdev->type);
626			else
627				continue;
628
629			return throttrip_program(dev, sg, stc, temp);
630		}
631	}
632
633	return 0;
634}
635
636static int tegra_thermctl_get_trend(void *data, int trip,
637				    enum thermal_trend *trend)
638{
639	struct tegra_thermctl_zone *zone = data;
640	struct thermal_zone_device *tz = zone->tz;
641	int trip_temp, temp, last_temp, ret;
642
643	if (!tz)
644		return -EINVAL;
645
646	ret = tz->ops->get_trip_temp(zone->tz, trip, &trip_temp);
647	if (ret)
648		return ret;
649
650	temp = READ_ONCE(tz->temperature);
651	last_temp = READ_ONCE(tz->last_temperature);
652
653	if (temp > trip_temp) {
654		if (temp >= last_temp)
655			*trend = THERMAL_TREND_RAISING;
656		else
657			*trend = THERMAL_TREND_STABLE;
658	} else if (temp < trip_temp) {
659		*trend = THERMAL_TREND_DROPPING;
660	} else {
661		*trend = THERMAL_TREND_STABLE;
662	}
663
664	return 0;
665}
666
667static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
668{
669	u32 r;
670
671	/* multiple zones could be handling and setting trips at once */
672	mutex_lock(&zn->ts->thermctl_lock);
673	r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
674	r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
675	writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
676	mutex_unlock(&zn->ts->thermctl_lock);
677}
678
679static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
680{
681	u32 r;
682
683	/* multiple zones could be handling and setting trips at once */
684	mutex_lock(&zn->ts->thermctl_lock);
685	r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
686	r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
687	writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
688	mutex_unlock(&zn->ts->thermctl_lock);
689}
690
691static int tegra_thermctl_set_trips(void *data, int lo, int hi)
692{
693	struct tegra_thermctl_zone *zone = data;
694	u32 r;
695
696	thermal_irq_disable(zone);
697
698	r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
699	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
700	writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
701
702	lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
703	hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
704	dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
705
706	r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
707	r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
708	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
709	writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
710
711	thermal_irq_enable(zone);
712
713	return 0;
714}
715
716static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
717	.get_temp = tegra_thermctl_get_temp,
718	.set_trip_temp = tegra_thermctl_set_trip_temp,
719	.get_trend = tegra_thermctl_get_trend,
720	.set_trips = tegra_thermctl_set_trips,
721};
722
723static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
724{
725	int ntrips, i, ret;
726	enum thermal_trip_type type;
727
728	ntrips = of_thermal_get_ntrips(tz);
729	if (ntrips <= 0)
730		return -EINVAL;
731
732	for (i = 0; i < ntrips; i++) {
733		ret = tz->ops->get_trip_type(tz, i, &type);
734		if (ret)
735			return -EINVAL;
736		if (type == THERMAL_TRIP_HOT) {
737			ret = tz->ops->get_trip_temp(tz, i, temp);
738			if (!ret)
739				*trip = i;
740
741			return ret;
742		}
743	}
744
745	return -EINVAL;
746}
747
748/**
749 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
750 * @dev: struct device * of the SOC_THERM instance
751 * @sg: pointer to the sensor group to set the thermtrip temperature for
752 * @tz: struct thermal_zone_device *
753 *
754 * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
755 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
756 * type trip_temp
757 * from thermal zone.
758 * After they have been configured, THERMTRIP or THROTTLE will take
759 * action when the configured SoC thermal sensor group reaches a
760 * certain temperature.
761 *
762 * Return: 0 upon success, or a negative error code on failure.
763 * "Success" does not mean that trips was enabled; it could also
764 * mean that no node was found in DT.
765 * THERMTRIP has been enabled successfully when a message similar to
766 * this one appears on the serial console:
767 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
768 * THROTTLE has been enabled successfully when a message similar to
769 * this one appears on the serial console:
770 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
771 */
772static int tegra_soctherm_set_hwtrips(struct device *dev,
773				      const struct tegra_tsensor_group *sg,
774				      struct thermal_zone_device *tz)
775{
776	struct tegra_soctherm *ts = dev_get_drvdata(dev);
777	struct soctherm_throt_cfg *stc;
778	int i, trip, temperature, ret;
779
780	/* Get thermtrips. If missing, try to get critical trips. */
781	temperature = tsensor_group_thermtrip_get(ts, sg->id);
782	if (min_low_temp == temperature)
783		if (tz->ops->get_crit_temp(tz, &temperature))
784			temperature = max_high_temp;
785
786	ret = thermtrip_program(dev, sg, temperature);
787	if (ret) {
788		dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
789		return ret;
790	}
791
792	dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
793		 sg->name, temperature);
794
795	ret = get_hot_temp(tz, &trip, &temperature);
796	if (ret) {
797		dev_info(dev, "throttrip: %s: missing hot temperature\n",
798			 sg->name);
799		return 0;
800	}
801
802	for (i = 0; i < THROTTLE_OC1; i++) {
803		struct thermal_cooling_device *cdev;
804
805		if (!ts->throt_cfgs[i].init)
806			continue;
807
808		cdev = ts->throt_cfgs[i].cdev;
809		if (get_thermal_instance(tz, cdev, trip))
810			stc = find_throttle_cfg_by_name(ts, cdev->type);
811		else
812			continue;
813
814		ret = throttrip_program(dev, sg, stc, temperature);
815		if (ret) {
816			dev_err(dev, "throttrip: %s: error during enable\n",
817				sg->name);
818			return ret;
819		}
820
821		dev_info(dev,
822			 "throttrip: will throttle when %s reaches %d mC\n",
823			 sg->name, temperature);
824		break;
825	}
826
827	if (i == THROTTLE_SIZE)
828		dev_info(dev, "throttrip: %s: missing throttle cdev\n",
829			 sg->name);
830
831	return 0;
832}
833
834static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
835{
836	struct tegra_soctherm *ts = dev_id;
837	u32 r;
838
839	/* Case for no lock:
840	 * Although interrupts are enabled in set_trips, there is still no need
841	 * to lock here because the interrupts are disabled before programming
842	 * new trip points. Hence there cant be a interrupt on the same sensor.
843	 * An interrupt can however occur on a sensor while trips are being
844	 * programmed on a different one. This beign a LEVEL interrupt won't
845	 * cause a new interrupt but this is taken care of by the re-reading of
846	 * the STATUS register in the thread function.
847	 */
848	r = readl(ts->regs + THERMCTL_INTR_STATUS);
849	writel(r, ts->regs + THERMCTL_INTR_DISABLE);
850
851	return IRQ_WAKE_THREAD;
852}
853
854/**
855 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
856 * @irq:       The interrupt number being requested; not used
857 * @dev_id:    Opaque pointer to tegra_soctherm;
858 *
859 * Clears the interrupt status register if there are expected
860 * interrupt bits set.
861 * The interrupt(s) are then handled by updating the corresponding
862 * thermal zones.
863 *
864 * An error is logged if any unexpected interrupt bits are set.
865 *
866 * Disabled interrupts are re-enabled.
867 *
868 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
869 * is needed.
870 */
871static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
872{
873	struct tegra_soctherm *ts = dev_id;
874	struct thermal_zone_device *tz;
875	u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
876
877	st = readl(ts->regs + THERMCTL_INTR_STATUS);
878
879	/* deliberately clear expected interrupts handled in SW */
880	cp |= st & TH_INTR_CD0_MASK;
881	cp |= st & TH_INTR_CU0_MASK;
882
883	gp |= st & TH_INTR_GD0_MASK;
884	gp |= st & TH_INTR_GU0_MASK;
885
886	pl |= st & TH_INTR_PD0_MASK;
887	pl |= st & TH_INTR_PU0_MASK;
888
889	me |= st & TH_INTR_MD0_MASK;
890	me |= st & TH_INTR_MU0_MASK;
891
892	ex |= cp | gp | pl | me;
893	if (ex) {
894		writel(ex, ts->regs + THERMCTL_INTR_STATUS);
895		st &= ~ex;
896
897		if (cp) {
898			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
899			thermal_zone_device_update(tz,
900						   THERMAL_EVENT_UNSPECIFIED);
901		}
902
903		if (gp) {
904			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
905			thermal_zone_device_update(tz,
906						   THERMAL_EVENT_UNSPECIFIED);
907		}
908
909		if (pl) {
910			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
911			thermal_zone_device_update(tz,
912						   THERMAL_EVENT_UNSPECIFIED);
913		}
914
915		if (me) {
916			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
917			thermal_zone_device_update(tz,
918						   THERMAL_EVENT_UNSPECIFIED);
919		}
920	}
921
922	/* deliberately ignore expected interrupts NOT handled in SW */
923	ex |= TH_INTR_IGNORE_MASK;
924	st &= ~ex;
925
926	if (st) {
927		/* Whine about any other unexpected INTR bits still set */
928		pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
929		writel(st, ts->regs + THERMCTL_INTR_STATUS);
930	}
931
932	return IRQ_HANDLED;
933}
934
935/**
936 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
937 * @ts:		pointer to a struct tegra_soctherm
938 * @alarm:		The soctherm throttle id
939 * @enable:		Flag indicating enable the soctherm over-current
940 *			interrupt or disable it
941 *
942 * Enables a specific over-current pins @alarm to raise an interrupt if the flag
943 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
944 */
945static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
946				    enum soctherm_throttle_id alarm,
947				    bool enable)
948{
949	u32 r;
950
951	if (!enable)
952		return;
953
954	r = readl(ts->regs + OC_INTR_ENABLE);
955	switch (alarm) {
956	case THROTTLE_OC1:
957		r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
958		break;
959	case THROTTLE_OC2:
960		r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
961		break;
962	case THROTTLE_OC3:
963		r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
964		break;
965	case THROTTLE_OC4:
966		r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
967		break;
968	default:
969		r = 0;
970		break;
971	}
972	writel(r, ts->regs + OC_INTR_ENABLE);
973}
974
975/**
976 * soctherm_handle_alarm() - Handles soctherm alarms
977 * @alarm:		The soctherm throttle id
978 *
979 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
980 * a warning or informative message.
981 *
982 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
983 */
984static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
985{
986	int rv = -EINVAL;
987
988	switch (alarm) {
989	case THROTTLE_OC1:
990		pr_debug("soctherm: Successfully handled OC1 alarm\n");
991		rv = 0;
992		break;
993
994	case THROTTLE_OC2:
995		pr_debug("soctherm: Successfully handled OC2 alarm\n");
996		rv = 0;
997		break;
998
999	case THROTTLE_OC3:
1000		pr_debug("soctherm: Successfully handled OC3 alarm\n");
1001		rv = 0;
1002		break;
1003
1004	case THROTTLE_OC4:
1005		pr_debug("soctherm: Successfully handled OC4 alarm\n");
1006		rv = 0;
1007		break;
1008
1009	default:
1010		break;
1011	}
1012
1013	if (rv)
1014		pr_err("soctherm: ERROR in handling %s alarm\n",
1015		       throt_names[alarm]);
1016
1017	return rv;
1018}
1019
1020/**
1021 * soctherm_edp_isr_thread() - log an over-current interrupt request
1022 * @irq:	OC irq number. Currently not being used. See description
1023 * @arg:	a void pointer for callback, currently not being used
1024 *
1025 * Over-current events are handled in hardware. This function is called to log
1026 * and handle any OC events that happened. Additionally, it checks every
1027 * over-current interrupt registers for registers are set but
1028 * was not expected (i.e. any discrepancy in interrupt status) by the function,
1029 * the discrepancy will logged.
1030 *
1031 * Return: %IRQ_HANDLED
1032 */
1033static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
1034{
1035	struct tegra_soctherm *ts = arg;
1036	u32 st, ex, oc1, oc2, oc3, oc4;
1037
1038	st = readl(ts->regs + OC_INTR_STATUS);
1039
1040	/* deliberately clear expected interrupts handled in SW */
1041	oc1 = st & OC_INTR_OC1_MASK;
1042	oc2 = st & OC_INTR_OC2_MASK;
1043	oc3 = st & OC_INTR_OC3_MASK;
1044	oc4 = st & OC_INTR_OC4_MASK;
1045	ex = oc1 | oc2 | oc3 | oc4;
1046
1047	pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1048	if (ex) {
1049		writel(st, ts->regs + OC_INTR_STATUS);
1050		st &= ~ex;
1051
1052		if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1053			soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1054
1055		if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1056			soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1057
1058		if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1059			soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1060
1061		if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1062			soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1063
1064		if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1065			handle_nested_irq(
1066				irq_find_mapping(soc_irq_cdata.domain, 0));
1067
1068		if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1069			handle_nested_irq(
1070				irq_find_mapping(soc_irq_cdata.domain, 1));
1071
1072		if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1073			handle_nested_irq(
1074				irq_find_mapping(soc_irq_cdata.domain, 2));
1075
1076		if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1077			handle_nested_irq(
1078				irq_find_mapping(soc_irq_cdata.domain, 3));
1079	}
1080
1081	if (st) {
1082		pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1083		writel(st, ts->regs + OC_INTR_STATUS);
1084	}
1085
1086	return IRQ_HANDLED;
1087}
1088
1089/**
1090 * soctherm_edp_isr() - Disables any active interrupts
1091 * @irq:	The interrupt request number
1092 * @arg:	Opaque pointer to an argument
1093 *
1094 * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1095 * masking any asserted interrupts. Doing this prevents the same interrupts
1096 * from triggering this isr repeatedly. The thread woken by this isr will
1097 * handle asserted interrupts and subsequently unmask/re-enable them.
1098 *
1099 * The OC_INTR_DISABLE register indicates which OC interrupts
1100 * have been disabled.
1101 *
1102 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1103 */
1104static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1105{
1106	struct tegra_soctherm *ts = arg;
1107	u32 r;
1108
1109	if (!ts)
1110		return IRQ_NONE;
1111
1112	r = readl(ts->regs + OC_INTR_STATUS);
1113	writel(r, ts->regs + OC_INTR_DISABLE);
1114
1115	return IRQ_WAKE_THREAD;
1116}
1117
1118/**
1119 * soctherm_oc_irq_lock() - locks the over-current interrupt request
1120 * @data:	Interrupt request data
1121 *
1122 * Looks up the chip data from @data and locks the mutex associated with
1123 * a particular over-current interrupt request.
1124 */
1125static void soctherm_oc_irq_lock(struct irq_data *data)
1126{
1127	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1128
1129	mutex_lock(&d->irq_lock);
1130}
1131
1132/**
1133 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1134 * @data:		Interrupt request data
1135 *
1136 * Looks up the interrupt request data @data and unlocks the mutex associated
1137 * with a particular over-current interrupt request.
1138 */
1139static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1140{
1141	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1142
1143	mutex_unlock(&d->irq_lock);
1144}
1145
1146/**
1147 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1148 * @data:       irq_data structure of the chip
1149 *
1150 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1151 * to respond to over-current interrupts.
1152 *
1153 */
1154static void soctherm_oc_irq_enable(struct irq_data *data)
1155{
1156	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1157
1158	d->irq_enable |= BIT(data->hwirq);
1159}
1160
1161/**
1162 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1163 * @data:	The interrupt request information
1164 *
1165 * Clears the interrupt request enable bit of the overcurrent
1166 * interrupt request chip data.
1167 *
1168 * Return: Nothing is returned (void)
1169 */
1170static void soctherm_oc_irq_disable(struct irq_data *data)
1171{
1172	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1173
1174	d->irq_enable &= ~BIT(data->hwirq);
1175}
1176
1177static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1178{
1179	return 0;
1180}
1181
1182/**
1183 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1184 * @h:		Interrupt request domain
1185 * @virq:	Virtual interrupt request number
1186 * @hw:		Hardware interrupt request number
1187 *
1188 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1189 * interrupt request is called, the irq_domain takes the request's virtual
1190 * request number (much like a virtual memory address) and maps it to a
1191 * physical hardware request number.
1192 *
1193 * When a mapping doesn't already exist for a virtual request number, the
1194 * irq_domain calls this function to associate the virtual request number with
1195 * a hardware request number.
1196 *
1197 * Return: 0
1198 */
1199static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1200		irq_hw_number_t hw)
1201{
1202	struct soctherm_oc_irq_chip_data *data = h->host_data;
1203
1204	irq_set_chip_data(virq, data);
1205	irq_set_chip(virq, &data->irq_chip);
1206	irq_set_nested_thread(virq, 1);
1207	return 0;
1208}
1209
1210/**
1211 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1212 * @d:      Interrupt request domain
1213 * @ctrlr:      Controller device tree node
1214 * @intspec:    Array of u32s from DTs "interrupt" property
1215 * @intsize:    Number of values inside the intspec array
1216 * @out_hwirq:  HW IRQ value associated with this interrupt
1217 * @out_type:   The IRQ SENSE type for this interrupt.
1218 *
1219 * This Device Tree IRQ specifier translation function will translate a
1220 * specific "interrupt" as defined by 2 DT values where the cell values map
1221 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1222 * number, this function will subtract 1 from the value listed in DT.
1223 *
1224 * Return: 0
1225 */
1226static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1227	struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1228	irq_hw_number_t *out_hwirq, unsigned int *out_type)
1229{
1230	if (WARN_ON(intsize < 2))
1231		return -EINVAL;
1232
1233	/*
1234	 * The HW value is 1 index less than the DT IRQ values.
1235	 * i.e. OC4 goes to HW index 3.
1236	 */
1237	*out_hwirq = intspec[0] - 1;
1238	*out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1239	return 0;
1240}
1241
1242static const struct irq_domain_ops soctherm_oc_domain_ops = {
1243	.map	= soctherm_oc_irq_map,
1244	.xlate	= soctherm_irq_domain_xlate_twocell,
1245};
1246
1247/**
1248 * soctherm_oc_int_init() - Initial enabling of the over
1249 * current interrupts
1250 * @np:	The devicetree node for soctherm
1251 * @num_irqs:	The number of new interrupt requests
1252 *
1253 * Sets the over current interrupt request chip data
1254 *
1255 * Return: 0 on success or if overcurrent interrupts are not enabled,
1256 * -ENOMEM (out of memory), or irq_base if the function failed to
1257 * allocate the irqs
1258 */
1259static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1260{
1261	if (!num_irqs) {
1262		pr_info("%s(): OC interrupts are not enabled\n", __func__);
1263		return 0;
1264	}
1265
1266	mutex_init(&soc_irq_cdata.irq_lock);
1267	soc_irq_cdata.irq_enable = 0;
1268
1269	soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1270	soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1271	soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1272		soctherm_oc_irq_sync_unlock;
1273	soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1274	soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1275	soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1276	soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1277
1278	soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1279						     &soctherm_oc_domain_ops,
1280						     &soc_irq_cdata);
1281
1282	if (!soc_irq_cdata.domain) {
1283		pr_err("%s: Failed to create IRQ domain\n", __func__);
1284		return -ENOMEM;
1285	}
1286
1287	pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1288	return 0;
1289}
1290
1291#ifdef CONFIG_DEBUG_FS
1292static int regs_show(struct seq_file *s, void *data)
1293{
1294	struct platform_device *pdev = s->private;
1295	struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1296	const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1297	const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1298	u32 r, state;
1299	int i, level;
1300
1301	seq_puts(s, "-----TSENSE (convert HW)-----\n");
1302
1303	for (i = 0; i < ts->soc->num_tsensors; i++) {
1304		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1305		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1306
1307		seq_printf(s, "%s: ", tsensors[i].name);
1308		seq_printf(s, "En(%d) ", state);
1309
1310		if (!state) {
1311			seq_puts(s, "\n");
1312			continue;
1313		}
1314
1315		state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1316		seq_printf(s, "tiddq(%d) ", state);
1317		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1318		seq_printf(s, "ten_count(%d) ", state);
1319		state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1320		seq_printf(s, "tsample(%d) ", state + 1);
1321
1322		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1323		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1324		seq_printf(s, "Temp(%d/", state);
1325		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1326		seq_printf(s, "%d) ", translate_temp(state));
1327
1328		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1329		state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1330		seq_printf(s, "Capture(%d/", state);
1331		state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1332		seq_printf(s, "%d) ", state);
1333
1334		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1335		state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1336		seq_printf(s, "Stop(%d) ", state);
1337		state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1338		seq_printf(s, "Tall(%d) ", state);
1339		state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1340		seq_printf(s, "Over(%d/", state);
1341		state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1342		seq_printf(s, "%d/", state);
1343		state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1344		seq_printf(s, "%d) ", state);
1345
1346		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1347		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1348		seq_printf(s, "Therm_A/B(%d/", state);
1349		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1350		seq_printf(s, "%d)\n", (s16)state);
1351	}
1352
1353	r = readl(ts->regs + SENSOR_PDIV);
1354	seq_printf(s, "PDIV: 0x%x\n", r);
1355
1356	r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1357	seq_printf(s, "HOTSPOT: 0x%x\n", r);
1358
1359	seq_puts(s, "\n");
1360	seq_puts(s, "-----SOC_THERM-----\n");
1361
1362	r = readl(ts->regs + SENSOR_TEMP1);
1363	state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1364	seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1365	state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1366	seq_printf(s, " GPU(%d) ", translate_temp(state));
1367	r = readl(ts->regs + SENSOR_TEMP2);
1368	state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1369	seq_printf(s, " PLLX(%d) ", translate_temp(state));
1370	state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1371	seq_printf(s, " MEM(%d)\n", translate_temp(state));
1372
1373	for (i = 0; i < ts->soc->num_ttgs; i++) {
1374		seq_printf(s, "%s:\n", ttgs[i]->name);
1375		for (level = 0; level < 4; level++) {
1376			s32 v;
1377			u32 mask;
1378			u16 off = ttgs[i]->thermctl_lvl0_offset;
1379
1380			r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1381
1382			mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1383			state = REG_GET_MASK(r, mask);
1384			v = sign_extend32(state, ts->soc->bptt - 1);
1385			v *= ts->soc->thresh_grain;
1386			seq_printf(s, "   %d: Up/Dn(%d /", level, v);
1387
1388			mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1389			state = REG_GET_MASK(r, mask);
1390			v = sign_extend32(state, ts->soc->bptt - 1);
1391			v *= ts->soc->thresh_grain;
1392			seq_printf(s, "%d ) ", v);
1393
1394			mask = THERMCTL_LVL0_CPU0_EN_MASK;
1395			state = REG_GET_MASK(r, mask);
1396			seq_printf(s, "En(%d) ", state);
1397
1398			mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1399			state = REG_GET_MASK(r, mask);
1400			seq_puts(s, "CPU Throt");
1401			if (!state)
1402				seq_printf(s, "(%s) ", "none");
1403			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1404				seq_printf(s, "(%s) ", "L");
1405			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1406				seq_printf(s, "(%s) ", "H");
1407			else
1408				seq_printf(s, "(%s) ", "H+L");
1409
1410			mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1411			state = REG_GET_MASK(r, mask);
1412			seq_puts(s, "GPU Throt");
1413			if (!state)
1414				seq_printf(s, "(%s) ", "none");
1415			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1416				seq_printf(s, "(%s) ", "L");
1417			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1418				seq_printf(s, "(%s) ", "H");
1419			else
1420				seq_printf(s, "(%s) ", "H+L");
1421
1422			mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1423			state = REG_GET_MASK(r, mask);
1424			seq_printf(s, "Status(%s)\n",
1425				   state == 0 ? "LO" :
1426				   state == 1 ? "In" :
1427				   state == 2 ? "Res" : "HI");
1428		}
1429	}
1430
1431	r = readl(ts->regs + THERMCTL_STATS_CTL);
1432	seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1433		   r & STATS_CTL_EN_UP ? "En" : "--",
1434		   r & STATS_CTL_EN_DN ? "En" : "--");
1435
1436	for (level = 0; level < 4; level++) {
1437		u16 off;
1438
1439		off = THERMCTL_LVL0_UP_STATS;
1440		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1441		seq_printf(s, "  Level_%d Up(%d) ", level, r);
1442
1443		off = THERMCTL_LVL0_DN_STATS;
1444		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1445		seq_printf(s, "Dn(%d)\n", r);
1446	}
1447
1448	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1449	state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1450	seq_printf(s, "Thermtrip Any En(%d)\n", state);
1451	for (i = 0; i < ts->soc->num_ttgs; i++) {
1452		state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1453		seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
1454		state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1455		state *= ts->soc->thresh_grain;
1456		seq_printf(s, "Thresh(%d)\n", state);
1457	}
1458
1459	r = readl(ts->regs + THROT_GLOBAL_CFG);
1460	seq_puts(s, "\n");
1461	seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1462
1463	seq_puts(s, "---------------------------------------------------\n");
1464	r = readl(ts->regs + THROT_STATUS);
1465	state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1466	seq_printf(s, "THROT STATUS: breach(%d) ", state);
1467	state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1468	seq_printf(s, "state(%d) ", state);
1469	state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1470	seq_printf(s, "enabled(%d)\n", state);
1471
1472	r = readl(ts->regs + CPU_PSKIP_STATUS);
1473	if (ts->soc->use_ccroc) {
1474		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1475		seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1476	} else {
1477		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1478		seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1479		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1480		seq_printf(s, "N(%d) ", state);
1481		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1482		seq_printf(s, "enabled(%d)\n", state);
1483	}
1484
1485	return 0;
1486}
1487
1488DEFINE_SHOW_ATTRIBUTE(regs);
1489
1490static void soctherm_debug_init(struct platform_device *pdev)
1491{
1492	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1493	struct dentry *root;
1494
1495	root = debugfs_create_dir("soctherm", NULL);
1496
1497	tegra->debugfs_dir = root;
1498
1499	debugfs_create_file("reg_contents", 0644, root, pdev, &regs_fops);
1500}
1501#else
1502static inline void soctherm_debug_init(struct platform_device *pdev) {}
1503#endif
1504
1505static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1506{
1507	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1508	int err;
1509
1510	if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1511		return -EINVAL;
1512
1513	reset_control_assert(tegra->reset);
1514
1515	if (enable) {
1516		err = clk_prepare_enable(tegra->clock_soctherm);
1517		if (err) {
1518			reset_control_deassert(tegra->reset);
1519			return err;
1520		}
1521
1522		err = clk_prepare_enable(tegra->clock_tsensor);
1523		if (err) {
1524			clk_disable_unprepare(tegra->clock_soctherm);
1525			reset_control_deassert(tegra->reset);
1526			return err;
1527		}
1528	} else {
1529		clk_disable_unprepare(tegra->clock_tsensor);
1530		clk_disable_unprepare(tegra->clock_soctherm);
1531	}
1532
1533	reset_control_deassert(tegra->reset);
1534
1535	return 0;
1536}
1537
1538static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1539				    unsigned long *max_state)
1540{
1541	*max_state = 1;
1542	return 0;
1543}
1544
1545static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1546				    unsigned long *cur_state)
1547{
1548	struct tegra_soctherm *ts = cdev->devdata;
1549	u32 r;
1550
1551	r = readl(ts->regs + THROT_STATUS);
1552	if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1553		*cur_state = 1;
1554	else
1555		*cur_state = 0;
1556
1557	return 0;
1558}
1559
1560static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1561				unsigned long cur_state)
1562{
1563	return 0;
1564}
1565
1566static const struct thermal_cooling_device_ops throt_cooling_ops = {
1567	.get_max_state = throt_get_cdev_max_state,
1568	.get_cur_state = throt_get_cdev_cur_state,
1569	.set_cur_state = throt_set_cdev_state,
1570};
1571
1572static int soctherm_thermtrips_parse(struct platform_device *pdev)
1573{
1574	struct device *dev = &pdev->dev;
1575	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1576	struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1577	const int max_num_prop = ts->soc->num_ttgs * 2;
1578	u32 *tlb;
1579	int i, j, n, ret;
1580
1581	if (!tt)
1582		return -ENOMEM;
1583
1584	n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1585	if (n <= 0) {
1586		dev_info(dev,
1587			 "missing thermtrips, will use critical trips as shut down temp\n");
1588		return n;
1589	}
1590
1591	n = min(max_num_prop, n);
1592
1593	tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1594	if (!tlb)
1595		return -ENOMEM;
1596	ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1597					 tlb, n);
1598	if (ret) {
1599		dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1600		return ret;
1601	}
1602
1603	i = 0;
1604	for (j = 0; j < n; j = j + 2) {
1605		if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1606			continue;
1607
1608		tt[i].id = tlb[j];
1609		tt[i].temp = tlb[j + 1];
1610		i++;
1611	}
1612
1613	return 0;
1614}
1615
1616static void soctherm_oc_cfg_parse(struct device *dev,
1617				struct device_node *np_oc,
1618				struct soctherm_throt_cfg *stc)
1619{
1620	u32 val;
1621
1622	if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1623		stc->oc_cfg.active_low = 1;
1624	else
1625		stc->oc_cfg.active_low = 0;
1626
1627	if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1628		stc->oc_cfg.intr_en = 1;
1629		stc->oc_cfg.alarm_cnt_thresh = val;
1630	}
1631
1632	if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1633		stc->oc_cfg.throt_period = val;
1634
1635	if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1636		stc->oc_cfg.alarm_filter = val;
1637
1638	/* BRIEF throttling by default, do not support STICKY */
1639	stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1640}
1641
1642static int soctherm_throt_cfg_parse(struct device *dev,
1643				    struct device_node *np,
1644				    struct soctherm_throt_cfg *stc)
1645{
1646	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1647	int ret;
1648	u32 val;
1649
1650	ret = of_property_read_u32(np, "nvidia,priority", &val);
1651	if (ret) {
1652		dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1653		return -EINVAL;
1654	}
1655	stc->priority = val;
1656
1657	ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1658				   "nvidia,cpu-throt-level" :
1659				   "nvidia,cpu-throt-percent", &val);
1660	if (!ret) {
1661		if (ts->soc->use_ccroc &&
1662		    val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1663			stc->cpu_throt_level = val;
1664		else if (!ts->soc->use_ccroc && val <= 100)
1665			stc->cpu_throt_depth = val;
1666		else
1667			goto err;
1668	} else {
1669		goto err;
1670	}
1671
1672	ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1673	if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1674		stc->gpu_throt_level = val;
1675	else
1676		goto err;
1677
1678	return 0;
1679
1680err:
1681	dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1682		stc->name);
1683	return -EINVAL;
1684}
1685
1686/**
1687 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1688 * and register them as cooling devices.
1689 * @pdev: Pointer to platform_device struct
1690 */
1691static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1692{
1693	struct device *dev = &pdev->dev;
1694	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1695	struct device_node *np_stc, *np_stcc;
1696	const char *name;
1697	int i;
1698
1699	for (i = 0; i < THROTTLE_SIZE; i++) {
1700		ts->throt_cfgs[i].name = throt_names[i];
1701		ts->throt_cfgs[i].id = i;
1702		ts->throt_cfgs[i].init = false;
1703	}
1704
1705	np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1706	if (!np_stc) {
1707		dev_info(dev,
1708			 "throttle-cfg: no throttle-cfgs - not enabling\n");
1709		return;
1710	}
1711
1712	for_each_child_of_node(np_stc, np_stcc) {
1713		struct soctherm_throt_cfg *stc;
1714		struct thermal_cooling_device *tcd;
1715		int err;
1716
1717		name = np_stcc->name;
1718		stc = find_throttle_cfg_by_name(ts, name);
1719		if (!stc) {
1720			dev_err(dev,
1721				"throttle-cfg: could not find %s\n", name);
1722			continue;
1723		}
1724
1725		if (stc->init) {
1726			dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1727			of_node_put(np_stcc);
1728			break;
1729		}
1730
1731		err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1732		if (err)
1733			continue;
1734
1735		if (stc->id >= THROTTLE_OC1) {
1736			soctherm_oc_cfg_parse(dev, np_stcc, stc);
1737			stc->init = true;
1738		} else {
1739
1740			tcd = thermal_of_cooling_device_register(np_stcc,
1741							 (char *)name, ts,
1742							 &throt_cooling_ops);
1743			if (IS_ERR_OR_NULL(tcd)) {
1744				dev_err(dev,
1745					"throttle-cfg: %s: failed to register cooling device\n",
1746					name);
1747				continue;
1748			}
1749			stc->cdev = tcd;
1750			stc->init = true;
1751		}
1752
1753	}
1754
1755	of_node_put(np_stc);
1756}
1757
1758/**
1759 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1760 * @ts: pointer to a struct tegra_soctherm
1761 * @level: describing the level LOW/MED/HIGH of throttling
1762 *
1763 * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1764 * the M/N values desired for each level. This function does this.
1765 *
1766 * This function pre-programs the CCROC NV_THERM levels in terms of
1767 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1768 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1769 */
1770static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1771{
1772	u8 depth, dividend;
1773	u32 r;
1774
1775	switch (level) {
1776	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1777		depth = 50;
1778		break;
1779	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1780		depth = 75;
1781		break;
1782	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1783		depth = 80;
1784		break;
1785	case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1786		return;
1787	default:
1788		return;
1789	}
1790
1791	dividend = THROT_DEPTH_DIVIDEND(depth);
1792
1793	/* setup PSKIP in ccroc nv_therm registers */
1794	r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1795	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1796	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1797	ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1798
1799	r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1800	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1801	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1802	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1803	ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1804}
1805
1806/**
1807 * throttlectl_cpu_level_select() - program CPU pulse skipper config
1808 * @ts: pointer to a struct tegra_soctherm
1809 * @throt: the LIGHT/HEAVY of throttle event id
1810 *
1811 * Pulse skippers are used to throttle clock frequencies.  This
1812 * function programs the pulse skippers based on @throt and platform
1813 * data.  This function is used on SoCs which have CPU-local pulse
1814 * skipper control, such as T13x. It programs soctherm's interface to
1815 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1816 * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1817 */
1818static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1819					 enum soctherm_throttle_id throt)
1820{
1821	u32 r, throt_vect;
1822
1823	/* Denver:CCROC NV_THERM interface N:3 Mapping */
1824	switch (ts->throt_cfgs[throt].cpu_throt_level) {
1825	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1826		throt_vect = THROT_VECT_LOW;
1827		break;
1828	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1829		throt_vect = THROT_VECT_MED;
1830		break;
1831	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1832		throt_vect = THROT_VECT_HIGH;
1833		break;
1834	default:
1835		throt_vect = THROT_VECT_NONE;
1836		break;
1837	}
1838
1839	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1840	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1841	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1842	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1843	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1844
1845	/* bypass sequencer in soc_therm as it is programmed in ccroc */
1846	r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1847	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1848}
1849
1850/**
1851 * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1852 * @ts: pointer to a struct tegra_soctherm
1853 * @throt: the LIGHT/HEAVY of throttle event id
1854 *
1855 * Pulse skippers are used to throttle clock frequencies.  This
1856 * function programs the pulse skippers based on @throt and platform
1857 * data.  This function is used for CPUs that have "remote" pulse
1858 * skipper control, e.g., the CPU pulse skipper is controlled by the
1859 * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1860 * complex.)
1861 */
1862static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1863			       enum soctherm_throttle_id throt)
1864{
1865	u32 r;
1866	int depth;
1867	u8 dividend;
1868
1869	depth = ts->throt_cfgs[throt].cpu_throt_depth;
1870	dividend = THROT_DEPTH_DIVIDEND(depth);
1871
1872	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1873	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1874	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1875	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1876	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1877
1878	r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1879	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1880	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1881	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1882}
1883
1884/**
1885 * throttlectl_gpu_level_select() - selects throttling level for GPU
1886 * @ts: pointer to a struct tegra_soctherm
1887 * @throt: the LIGHT/HEAVY of throttle event id
1888 *
1889 * This function programs soctherm's interface to GK20a NV_THERM to select
1890 * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1891 *
1892 * Return: boolean true if HW was programmed
1893 */
1894static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1895					 enum soctherm_throttle_id throt)
1896{
1897	u32 r, level, throt_vect;
1898
1899	level = ts->throt_cfgs[throt].gpu_throt_level;
1900	throt_vect = THROT_LEVEL_TO_DEPTH(level);
1901	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1902	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1903	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1904	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1905}
1906
1907static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1908				      enum soctherm_throttle_id throt)
1909{
1910	u32 r;
1911	struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1912
1913	if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1914		return -EINVAL;
1915
1916	r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1917	r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1918	r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1919	r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1920	writel(r, ts->regs + ALARM_CFG(throt));
1921	writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1922	writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1923	writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1924	soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1925
1926	return 0;
1927}
1928
1929/**
1930 * soctherm_throttle_program() - programs pulse skippers' configuration
1931 * @ts: pointer to a struct tegra_soctherm
1932 * @throt: the LIGHT/HEAVY of the throttle event id.
1933 *
1934 * Pulse skippers are used to throttle clock frequencies.
1935 * This function programs the pulse skippers.
1936 */
1937static void soctherm_throttle_program(struct tegra_soctherm *ts,
1938				      enum soctherm_throttle_id throt)
1939{
1940	u32 r;
1941	struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1942
1943	if (!stc.init)
1944		return;
1945
1946	if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1947		return;
1948
1949	/* Setup PSKIP parameters */
1950	if (ts->soc->use_ccroc)
1951		throttlectl_cpu_level_select(ts, throt);
1952	else
1953		throttlectl_cpu_mn(ts, throt);
1954
1955	throttlectl_gpu_level_select(ts, throt);
1956
1957	r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1958	writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1959
1960	r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1961	writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1962
1963	r = readl(ts->regs + THROT_PRIORITY_LOCK);
1964	r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1965	if (r >= stc.priority)
1966		return;
1967	r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1968			 stc.priority);
1969	writel(r, ts->regs + THROT_PRIORITY_LOCK);
1970}
1971
1972static void tegra_soctherm_throttle(struct device *dev)
1973{
1974	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1975	u32 v;
1976	int i;
1977
1978	/* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1979	if (ts->soc->use_ccroc) {
1980		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1981		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1982		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1983	}
1984
1985	/* Thermal HW throttle programming */
1986	for (i = 0; i < THROTTLE_SIZE; i++)
1987		soctherm_throttle_program(ts, i);
1988
1989	v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1990	if (ts->soc->use_ccroc) {
1991		ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1992
1993		v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1994		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1995		ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1996	} else {
1997		writel(v, ts->regs + THROT_GLOBAL_CFG);
1998
1999		v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
2000		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
2001		writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
2002	}
2003
2004	/* initialize stats collection */
2005	v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
2006	    STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
2007	writel(v, ts->regs + THERMCTL_STATS_CTL);
2008}
2009
2010static int soctherm_interrupts_init(struct platform_device *pdev,
2011				    struct tegra_soctherm *tegra)
2012{
2013	struct device_node *np = pdev->dev.of_node;
2014	int ret;
2015
2016	ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
2017	if (ret < 0) {
2018		dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
2019		return ret;
2020	}
2021
2022	tegra->thermal_irq = platform_get_irq(pdev, 0);
2023	if (tegra->thermal_irq < 0) {
2024		dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
2025		return 0;
2026	}
2027
2028	tegra->edp_irq = platform_get_irq(pdev, 1);
2029	if (tegra->edp_irq < 0) {
2030		dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
2031		return 0;
2032	}
2033
2034	ret = devm_request_threaded_irq(&pdev->dev,
2035					tegra->thermal_irq,
2036					soctherm_thermal_isr,
2037					soctherm_thermal_isr_thread,
2038					IRQF_ONESHOT,
2039					dev_name(&pdev->dev),
2040					tegra);
2041	if (ret < 0) {
2042		dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2043		return ret;
2044	}
2045
2046	ret = devm_request_threaded_irq(&pdev->dev,
2047					tegra->edp_irq,
2048					soctherm_edp_isr,
2049					soctherm_edp_isr_thread,
2050					IRQF_ONESHOT,
2051					"soctherm_edp",
2052					tegra);
2053	if (ret < 0) {
2054		dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2055		return ret;
2056	}
2057
2058	return 0;
2059}
2060
2061static void soctherm_init(struct platform_device *pdev)
2062{
2063	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2064	const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2065	int i;
2066	u32 pdiv, hotspot;
2067
2068	/* Initialize raw sensors */
2069	for (i = 0; i < tegra->soc->num_tsensors; ++i)
2070		enable_tsensor(tegra, i);
2071
2072	/* program pdiv and hotspot offsets per THERM */
2073	pdiv = readl(tegra->regs + SENSOR_PDIV);
2074	hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2075	for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2076		pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2077				    ttgs[i]->pdiv);
2078		/* hotspot offset from PLLX, doesn't need to configure PLLX */
2079		if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2080			continue;
2081		hotspot =  REG_SET_MASK(hotspot,
2082					ttgs[i]->pllx_hotspot_mask,
2083					ttgs[i]->pllx_hotspot_diff);
2084	}
2085	writel(pdiv, tegra->regs + SENSOR_PDIV);
2086	writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2087
2088	/* Configure hw throttle */
2089	tegra_soctherm_throttle(&pdev->dev);
2090}
2091
2092static const struct of_device_id tegra_soctherm_of_match[] = {
2093#ifdef CONFIG_ARCH_TEGRA_124_SOC
2094	{
2095		.compatible = "nvidia,tegra124-soctherm",
2096		.data = &tegra124_soctherm,
2097	},
2098#endif
2099#ifdef CONFIG_ARCH_TEGRA_132_SOC
2100	{
2101		.compatible = "nvidia,tegra132-soctherm",
2102		.data = &tegra132_soctherm,
2103	},
2104#endif
2105#ifdef CONFIG_ARCH_TEGRA_210_SOC
2106	{
2107		.compatible = "nvidia,tegra210-soctherm",
2108		.data = &tegra210_soctherm,
2109	},
2110#endif
2111	{ },
2112};
2113MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2114
2115static int tegra_soctherm_probe(struct platform_device *pdev)
2116{
2117	const struct of_device_id *match;
2118	struct tegra_soctherm *tegra;
2119	struct thermal_zone_device *z;
2120	struct tsensor_shared_calib shared_calib;
2121	struct resource *res;
2122	struct tegra_soctherm_soc *soc;
2123	unsigned int i;
2124	int err;
2125
2126	match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2127	if (!match)
2128		return -ENODEV;
2129
2130	soc = (struct tegra_soctherm_soc *)match->data;
2131	if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2132		return -EINVAL;
2133
2134	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2135	if (!tegra)
2136		return -ENOMEM;
2137
2138	mutex_init(&tegra->thermctl_lock);
2139	dev_set_drvdata(&pdev->dev, tegra);
2140
2141	tegra->soc = soc;
2142
2143	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2144					   "soctherm-reg");
2145	tegra->regs = devm_ioremap_resource(&pdev->dev, res);
2146	if (IS_ERR(tegra->regs)) {
2147		dev_err(&pdev->dev, "can't get soctherm registers");
2148		return PTR_ERR(tegra->regs);
2149	}
2150
2151	if (!tegra->soc->use_ccroc) {
2152		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2153						   "car-reg");
2154		tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res);
2155		if (IS_ERR(tegra->clk_regs)) {
2156			dev_err(&pdev->dev, "can't get car clk registers");
2157			return PTR_ERR(tegra->clk_regs);
2158		}
2159	} else {
2160		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2161						   "ccroc-reg");
2162		tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res);
2163		if (IS_ERR(tegra->ccroc_regs)) {
2164			dev_err(&pdev->dev, "can't get ccroc registers");
2165			return PTR_ERR(tegra->ccroc_regs);
2166		}
2167	}
2168
2169	tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2170	if (IS_ERR(tegra->reset)) {
2171		dev_err(&pdev->dev, "can't get soctherm reset\n");
2172		return PTR_ERR(tegra->reset);
2173	}
2174
2175	tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2176	if (IS_ERR(tegra->clock_tsensor)) {
2177		dev_err(&pdev->dev, "can't get tsensor clock\n");
2178		return PTR_ERR(tegra->clock_tsensor);
2179	}
2180
2181	tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2182	if (IS_ERR(tegra->clock_soctherm)) {
2183		dev_err(&pdev->dev, "can't get soctherm clock\n");
2184		return PTR_ERR(tegra->clock_soctherm);
2185	}
2186
2187	tegra->calib = devm_kcalloc(&pdev->dev,
2188				    soc->num_tsensors, sizeof(u32),
2189				    GFP_KERNEL);
2190	if (!tegra->calib)
2191		return -ENOMEM;
2192
2193	/* calculate shared calibration data */
2194	err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2195	if (err)
2196		return err;
2197
2198	/* calculate tsensor calibaration data */
2199	for (i = 0; i < soc->num_tsensors; ++i) {
2200		err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2201					       &shared_calib,
2202					       &tegra->calib[i]);
2203		if (err)
2204			return err;
2205	}
2206
2207	tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2208					   soc->num_ttgs, sizeof(z),
2209					   GFP_KERNEL);
2210	if (!tegra->thermctl_tzs)
2211		return -ENOMEM;
2212
2213	err = soctherm_clk_enable(pdev, true);
2214	if (err)
2215		return err;
2216
2217	soctherm_thermtrips_parse(pdev);
2218
2219	soctherm_init_hw_throt_cdev(pdev);
2220
2221	soctherm_init(pdev);
2222
2223	for (i = 0; i < soc->num_ttgs; ++i) {
2224		struct tegra_thermctl_zone *zone =
2225			devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2226		if (!zone) {
2227			err = -ENOMEM;
2228			goto disable_clocks;
2229		}
2230
2231		zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2232		zone->dev = &pdev->dev;
2233		zone->sg = soc->ttgs[i];
2234		zone->ts = tegra;
2235
2236		z = devm_thermal_zone_of_sensor_register(&pdev->dev,
2237							 soc->ttgs[i]->id, zone,
2238							 &tegra_of_thermal_ops);
2239		if (IS_ERR(z)) {
2240			err = PTR_ERR(z);
2241			dev_err(&pdev->dev, "failed to register sensor: %d\n",
2242				err);
2243			goto disable_clocks;
2244		}
2245
2246		zone->tz = z;
2247		tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2248
2249		/* Configure hw trip points */
2250		err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2251		if (err)
2252			goto disable_clocks;
2253	}
2254
2255	err = soctherm_interrupts_init(pdev, tegra);
2256
2257	soctherm_debug_init(pdev);
2258
2259	return 0;
2260
2261disable_clocks:
2262	soctherm_clk_enable(pdev, false);
2263
2264	return err;
2265}
2266
2267static int tegra_soctherm_remove(struct platform_device *pdev)
2268{
2269	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2270
2271	debugfs_remove_recursive(tegra->debugfs_dir);
2272
2273	soctherm_clk_enable(pdev, false);
2274
2275	return 0;
2276}
2277
2278static int __maybe_unused soctherm_suspend(struct device *dev)
2279{
2280	struct platform_device *pdev = to_platform_device(dev);
2281
2282	soctherm_clk_enable(pdev, false);
2283
2284	return 0;
2285}
2286
2287static int __maybe_unused soctherm_resume(struct device *dev)
2288{
2289	struct platform_device *pdev = to_platform_device(dev);
2290	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2291	struct tegra_soctherm_soc *soc = tegra->soc;
2292	int err, i;
2293
2294	err = soctherm_clk_enable(pdev, true);
2295	if (err) {
2296		dev_err(&pdev->dev,
2297			"Resume failed: enable clocks failed\n");
2298		return err;
2299	}
2300
2301	soctherm_init(pdev);
2302
2303	for (i = 0; i < soc->num_ttgs; ++i) {
2304		struct thermal_zone_device *tz;
2305
2306		tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2307		err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2308		if (err) {
2309			dev_err(&pdev->dev,
2310				"Resume failed: set hwtrips failed\n");
2311			return err;
2312		}
2313	}
2314
2315	return 0;
2316}
2317
2318static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2319
2320static struct platform_driver tegra_soctherm_driver = {
2321	.probe = tegra_soctherm_probe,
2322	.remove = tegra_soctherm_remove,
2323	.driver = {
2324		.name = "tegra_soctherm",
2325		.pm = &tegra_soctherm_pm,
2326		.of_match_table = tegra_soctherm_of_match,
2327	},
2328};
2329module_platform_driver(tegra_soctherm_driver);
2330
2331MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2332MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2333MODULE_LICENSE("GPL v2");
2334