1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: Hanyi Wu <hanyi.wu@mediatek.com> 5 * Sascha Hauer <s.hauer@pengutronix.de> 6 * Dawei Chien <dawei.chien@mediatek.com> 7 * Louis Yu <louis.yu@mediatek.com> 8 */ 9 10#include <linux/clk.h> 11#include <linux/delay.h> 12#include <linux/interrupt.h> 13#include <linux/kernel.h> 14#include <linux/module.h> 15#include <linux/nvmem-consumer.h> 16#include <linux/of.h> 17#include <linux/of_address.h> 18#include <linux/of_device.h> 19#include <linux/platform_device.h> 20#include <linux/slab.h> 21#include <linux/io.h> 22#include <linux/thermal.h> 23#include <linux/reset.h> 24#include <linux/types.h> 25 26/* AUXADC Registers */ 27#define AUXADC_CON1_SET_V 0x008 28#define AUXADC_CON1_CLR_V 0x00c 29#define AUXADC_CON2_V 0x010 30#define AUXADC_DATA(channel) (0x14 + (channel) * 4) 31 32#define APMIXED_SYS_TS_CON1 0x604 33 34/* Thermal Controller Registers */ 35#define TEMP_MONCTL0 0x000 36#define TEMP_MONCTL1 0x004 37#define TEMP_MONCTL2 0x008 38#define TEMP_MONIDET0 0x014 39#define TEMP_MONIDET1 0x018 40#define TEMP_MSRCTL0 0x038 41#define TEMP_MSRCTL1 0x03c 42#define TEMP_AHBPOLL 0x040 43#define TEMP_AHBTO 0x044 44#define TEMP_ADCPNP0 0x048 45#define TEMP_ADCPNP1 0x04c 46#define TEMP_ADCPNP2 0x050 47#define TEMP_ADCPNP3 0x0b4 48 49#define TEMP_ADCMUX 0x054 50#define TEMP_ADCEN 0x060 51#define TEMP_PNPMUXADDR 0x064 52#define TEMP_ADCMUXADDR 0x068 53#define TEMP_ADCENADDR 0x074 54#define TEMP_ADCVALIDADDR 0x078 55#define TEMP_ADCVOLTADDR 0x07c 56#define TEMP_RDCTRL 0x080 57#define TEMP_ADCVALIDMASK 0x084 58#define TEMP_ADCVOLTAGESHIFT 0x088 59#define TEMP_ADCWRITECTRL 0x08c 60#define TEMP_MSR0 0x090 61#define TEMP_MSR1 0x094 62#define TEMP_MSR2 0x098 63#define TEMP_MSR3 0x0B8 64 65#define TEMP_SPARE0 0x0f0 66 67#define TEMP_ADCPNP0_1 0x148 68#define TEMP_ADCPNP1_1 0x14c 69#define TEMP_ADCPNP2_1 0x150 70#define TEMP_MSR0_1 0x190 71#define TEMP_MSR1_1 0x194 72#define TEMP_MSR2_1 0x198 73#define TEMP_ADCPNP3_1 0x1b4 74#define TEMP_MSR3_1 0x1B8 75 76#define PTPCORESEL 0x400 77 78#define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff) 79 80#define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16) 81#define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff) 82 83#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x) (x) 84 85#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE BIT(0) 86#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE BIT(1) 87 88#define TEMP_ADCVALIDMASK_VALID_HIGH BIT(5) 89#define TEMP_ADCVALIDMASK_VALID_POS(bit) (bit) 90 91/* MT8173 thermal sensors */ 92#define MT8173_TS1 0 93#define MT8173_TS2 1 94#define MT8173_TS3 2 95#define MT8173_TS4 3 96#define MT8173_TSABB 4 97 98/* AUXADC channel 11 is used for the temperature sensors */ 99#define MT8173_TEMP_AUXADC_CHANNEL 11 100 101/* The total number of temperature sensors in the MT8173 */ 102#define MT8173_NUM_SENSORS 5 103 104/* The number of banks in the MT8173 */ 105#define MT8173_NUM_ZONES 4 106 107/* The number of sensing points per bank */ 108#define MT8173_NUM_SENSORS_PER_ZONE 4 109 110/* The number of controller in the MT8173 */ 111#define MT8173_NUM_CONTROLLER 1 112 113/* The calibration coefficient of sensor */ 114#define MT8173_CALIBRATION 165 115 116/* 117 * Layout of the fuses providing the calibration data 118 * These macros could be used for MT8183, MT8173, MT2701, and MT2712. 119 * MT8183 has 6 sensors and needs 6 VTS calibration data. 120 * MT8173 has 5 sensors and needs 5 VTS calibration data. 121 * MT2701 has 3 sensors and needs 3 VTS calibration data. 122 * MT2712 has 4 sensors and needs 4 VTS calibration data. 123 */ 124#define CALIB_BUF0_VALID_V1 BIT(0) 125#define CALIB_BUF1_ADC_GE_V1(x) (((x) >> 22) & 0x3ff) 126#define CALIB_BUF0_VTS_TS1_V1(x) (((x) >> 17) & 0x1ff) 127#define CALIB_BUF0_VTS_TS2_V1(x) (((x) >> 8) & 0x1ff) 128#define CALIB_BUF1_VTS_TS3_V1(x) (((x) >> 0) & 0x1ff) 129#define CALIB_BUF2_VTS_TS4_V1(x) (((x) >> 23) & 0x1ff) 130#define CALIB_BUF2_VTS_TS5_V1(x) (((x) >> 5) & 0x1ff) 131#define CALIB_BUF2_VTS_TSABB_V1(x) (((x) >> 14) & 0x1ff) 132#define CALIB_BUF0_DEGC_CALI_V1(x) (((x) >> 1) & 0x3f) 133#define CALIB_BUF0_O_SLOPE_V1(x) (((x) >> 26) & 0x3f) 134#define CALIB_BUF0_O_SLOPE_SIGN_V1(x) (((x) >> 7) & 0x1) 135#define CALIB_BUF1_ID_V1(x) (((x) >> 9) & 0x1) 136 137/* 138 * Layout of the fuses providing the calibration data 139 * These macros could be used for MT7622. 140 */ 141#define CALIB_BUF0_ADC_OE_V2(x) (((x) >> 22) & 0x3ff) 142#define CALIB_BUF0_ADC_GE_V2(x) (((x) >> 12) & 0x3ff) 143#define CALIB_BUF0_DEGC_CALI_V2(x) (((x) >> 6) & 0x3f) 144#define CALIB_BUF0_O_SLOPE_V2(x) (((x) >> 0) & 0x3f) 145#define CALIB_BUF1_VTS_TS1_V2(x) (((x) >> 23) & 0x1ff) 146#define CALIB_BUF1_VTS_TS2_V2(x) (((x) >> 14) & 0x1ff) 147#define CALIB_BUF1_VTS_TSABB_V2(x) (((x) >> 5) & 0x1ff) 148#define CALIB_BUF1_VALID_V2(x) (((x) >> 4) & 0x1) 149#define CALIB_BUF1_O_SLOPE_SIGN_V2(x) (((x) >> 3) & 0x1) 150 151enum { 152 VTS1, 153 VTS2, 154 VTS3, 155 VTS4, 156 VTS5, 157 VTSABB, 158 MAX_NUM_VTS, 159}; 160 161enum mtk_thermal_version { 162 MTK_THERMAL_V1 = 1, 163 MTK_THERMAL_V2, 164}; 165 166/* MT2701 thermal sensors */ 167#define MT2701_TS1 0 168#define MT2701_TS2 1 169#define MT2701_TSABB 2 170 171/* AUXADC channel 11 is used for the temperature sensors */ 172#define MT2701_TEMP_AUXADC_CHANNEL 11 173 174/* The total number of temperature sensors in the MT2701 */ 175#define MT2701_NUM_SENSORS 3 176 177/* The number of sensing points per bank */ 178#define MT2701_NUM_SENSORS_PER_ZONE 3 179 180/* The number of controller in the MT2701 */ 181#define MT2701_NUM_CONTROLLER 1 182 183/* The calibration coefficient of sensor */ 184#define MT2701_CALIBRATION 165 185 186/* MT2712 thermal sensors */ 187#define MT2712_TS1 0 188#define MT2712_TS2 1 189#define MT2712_TS3 2 190#define MT2712_TS4 3 191 192/* AUXADC channel 11 is used for the temperature sensors */ 193#define MT2712_TEMP_AUXADC_CHANNEL 11 194 195/* The total number of temperature sensors in the MT2712 */ 196#define MT2712_NUM_SENSORS 4 197 198/* The number of sensing points per bank */ 199#define MT2712_NUM_SENSORS_PER_ZONE 4 200 201/* The number of controller in the MT2712 */ 202#define MT2712_NUM_CONTROLLER 1 203 204/* The calibration coefficient of sensor */ 205#define MT2712_CALIBRATION 165 206 207#define MT7622_TEMP_AUXADC_CHANNEL 11 208#define MT7622_NUM_SENSORS 1 209#define MT7622_NUM_ZONES 1 210#define MT7622_NUM_SENSORS_PER_ZONE 1 211#define MT7622_TS1 0 212#define MT7622_NUM_CONTROLLER 1 213 214/* The maximum number of banks */ 215#define MAX_NUM_ZONES 8 216 217/* The calibration coefficient of sensor */ 218#define MT7622_CALIBRATION 165 219 220/* MT8183 thermal sensors */ 221#define MT8183_TS1 0 222#define MT8183_TS2 1 223#define MT8183_TS3 2 224#define MT8183_TS4 3 225#define MT8183_TS5 4 226#define MT8183_TSABB 5 227 228/* AUXADC channel is used for the temperature sensors */ 229#define MT8183_TEMP_AUXADC_CHANNEL 11 230 231/* The total number of temperature sensors in the MT8183 */ 232#define MT8183_NUM_SENSORS 6 233 234/* The number of banks in the MT8183 */ 235#define MT8183_NUM_ZONES 1 236 237/* The number of sensing points per bank */ 238#define MT8183_NUM_SENSORS_PER_ZONE 6 239 240/* The number of controller in the MT8183 */ 241#define MT8183_NUM_CONTROLLER 2 242 243/* The calibration coefficient of sensor */ 244#define MT8183_CALIBRATION 153 245 246struct mtk_thermal; 247 248struct thermal_bank_cfg { 249 unsigned int num_sensors; 250 const int *sensors; 251}; 252 253struct mtk_thermal_bank { 254 struct mtk_thermal *mt; 255 int id; 256}; 257 258struct mtk_thermal_data { 259 s32 num_banks; 260 s32 num_sensors; 261 s32 auxadc_channel; 262 const int *vts_index; 263 const int *sensor_mux_values; 264 const int *msr; 265 const int *adcpnp; 266 const int cali_val; 267 const int num_controller; 268 const int *controller_offset; 269 bool need_switch_bank; 270 struct thermal_bank_cfg bank_data[MAX_NUM_ZONES]; 271 enum mtk_thermal_version version; 272}; 273 274struct mtk_thermal { 275 struct device *dev; 276 void __iomem *thermal_base; 277 278 struct clk *clk_peri_therm; 279 struct clk *clk_auxadc; 280 /* lock: for getting and putting banks */ 281 struct mutex lock; 282 283 /* Calibration values */ 284 s32 adc_ge; 285 s32 adc_oe; 286 s32 degc_cali; 287 s32 o_slope; 288 s32 o_slope_sign; 289 s32 vts[MAX_NUM_VTS]; 290 291 const struct mtk_thermal_data *conf; 292 struct mtk_thermal_bank banks[MAX_NUM_ZONES]; 293}; 294 295/* MT8183 thermal sensor data */ 296static const int mt8183_bank_data[MT8183_NUM_SENSORS] = { 297 MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB 298}; 299 300static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = { 301 TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1 302}; 303 304static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = { 305 TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1, 306 TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1 307}; 308 309static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 }; 310static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100}; 311 312static const int mt8183_vts_index[MT8183_NUM_SENSORS] = { 313 VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB 314}; 315 316/* MT8173 thermal sensor data */ 317static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = { 318 { MT8173_TS2, MT8173_TS3 }, 319 { MT8173_TS2, MT8173_TS4 }, 320 { MT8173_TS1, MT8173_TS2, MT8173_TSABB }, 321 { MT8173_TS2 }, 322}; 323 324static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = { 325 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 326}; 327 328static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = { 329 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 330}; 331 332static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 }; 333static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, }; 334 335static const int mt8173_vts_index[MT8173_NUM_SENSORS] = { 336 VTS1, VTS2, VTS3, VTS4, VTSABB 337}; 338 339/* MT2701 thermal sensor data */ 340static const int mt2701_bank_data[MT2701_NUM_SENSORS] = { 341 MT2701_TS1, MT2701_TS2, MT2701_TSABB 342}; 343 344static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = { 345 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2 346}; 347 348static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = { 349 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2 350}; 351 352static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 }; 353static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, }; 354 355static const int mt2701_vts_index[MT2701_NUM_SENSORS] = { 356 VTS1, VTS2, VTS3 357}; 358 359/* MT2712 thermal sensor data */ 360static const int mt2712_bank_data[MT2712_NUM_SENSORS] = { 361 MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4 362}; 363 364static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = { 365 TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3 366}; 367 368static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = { 369 TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3 370}; 371 372static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 }; 373static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, }; 374 375static const int mt2712_vts_index[MT2712_NUM_SENSORS] = { 376 VTS1, VTS2, VTS3, VTS4 377}; 378 379/* MT7622 thermal sensor data */ 380static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, }; 381static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, }; 382static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, }; 383static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, }; 384static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 }; 385static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, }; 386 387/* 388 * The MT8173 thermal controller has four banks. Each bank can read up to 389 * four temperature sensors simultaneously. The MT8173 has a total of 5 390 * temperature sensors. We use each bank to measure a certain area of the 391 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple 392 * areas, hence is used in different banks. 393 * 394 * The thermal core only gets the maximum temperature of all banks, so 395 * the bank concept wouldn't be necessary here. However, the SVS (Smart 396 * Voltage Scaling) unit makes its decisions based on the same bank 397 * data, and this indeed needs the temperatures of the individual banks 398 * for making better decisions. 399 */ 400static const struct mtk_thermal_data mt8173_thermal_data = { 401 .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL, 402 .num_banks = MT8173_NUM_ZONES, 403 .num_sensors = MT8173_NUM_SENSORS, 404 .vts_index = mt8173_vts_index, 405 .cali_val = MT8173_CALIBRATION, 406 .num_controller = MT8173_NUM_CONTROLLER, 407 .controller_offset = mt8173_tc_offset, 408 .need_switch_bank = true, 409 .bank_data = { 410 { 411 .num_sensors = 2, 412 .sensors = mt8173_bank_data[0], 413 }, { 414 .num_sensors = 2, 415 .sensors = mt8173_bank_data[1], 416 }, { 417 .num_sensors = 3, 418 .sensors = mt8173_bank_data[2], 419 }, { 420 .num_sensors = 1, 421 .sensors = mt8173_bank_data[3], 422 }, 423 }, 424 .msr = mt8173_msr, 425 .adcpnp = mt8173_adcpnp, 426 .sensor_mux_values = mt8173_mux_values, 427 .version = MTK_THERMAL_V1, 428}; 429 430/* 431 * The MT2701 thermal controller has one bank, which can read up to 432 * three temperature sensors simultaneously. The MT2701 has a total of 3 433 * temperature sensors. 434 * 435 * The thermal core only gets the maximum temperature of this one bank, 436 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 437 * Voltage Scaling) unit makes its decisions based on the same bank 438 * data. 439 */ 440static const struct mtk_thermal_data mt2701_thermal_data = { 441 .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL, 442 .num_banks = 1, 443 .num_sensors = MT2701_NUM_SENSORS, 444 .vts_index = mt2701_vts_index, 445 .cali_val = MT2701_CALIBRATION, 446 .num_controller = MT2701_NUM_CONTROLLER, 447 .controller_offset = mt2701_tc_offset, 448 .need_switch_bank = true, 449 .bank_data = { 450 { 451 .num_sensors = 3, 452 .sensors = mt2701_bank_data, 453 }, 454 }, 455 .msr = mt2701_msr, 456 .adcpnp = mt2701_adcpnp, 457 .sensor_mux_values = mt2701_mux_values, 458 .version = MTK_THERMAL_V1, 459}; 460 461/* 462 * The MT2712 thermal controller has one bank, which can read up to 463 * four temperature sensors simultaneously. The MT2712 has a total of 4 464 * temperature sensors. 465 * 466 * The thermal core only gets the maximum temperature of this one bank, 467 * so the bank concept wouldn't be necessary here. However, the SVS (Smart 468 * Voltage Scaling) unit makes its decisions based on the same bank 469 * data. 470 */ 471static const struct mtk_thermal_data mt2712_thermal_data = { 472 .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL, 473 .num_banks = 1, 474 .num_sensors = MT2712_NUM_SENSORS, 475 .vts_index = mt2712_vts_index, 476 .cali_val = MT2712_CALIBRATION, 477 .num_controller = MT2712_NUM_CONTROLLER, 478 .controller_offset = mt2712_tc_offset, 479 .need_switch_bank = true, 480 .bank_data = { 481 { 482 .num_sensors = 4, 483 .sensors = mt2712_bank_data, 484 }, 485 }, 486 .msr = mt2712_msr, 487 .adcpnp = mt2712_adcpnp, 488 .sensor_mux_values = mt2712_mux_values, 489 .version = MTK_THERMAL_V1, 490}; 491 492/* 493 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data 494 * access. 495 */ 496static const struct mtk_thermal_data mt7622_thermal_data = { 497 .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL, 498 .num_banks = MT7622_NUM_ZONES, 499 .num_sensors = MT7622_NUM_SENSORS, 500 .vts_index = mt7622_vts_index, 501 .cali_val = MT7622_CALIBRATION, 502 .num_controller = MT7622_NUM_CONTROLLER, 503 .controller_offset = mt7622_tc_offset, 504 .need_switch_bank = true, 505 .bank_data = { 506 { 507 .num_sensors = 1, 508 .sensors = mt7622_bank_data, 509 }, 510 }, 511 .msr = mt7622_msr, 512 .adcpnp = mt7622_adcpnp, 513 .sensor_mux_values = mt7622_mux_values, 514 .version = MTK_THERMAL_V2, 515}; 516 517/* 518 * The MT8183 thermal controller has one bank for the current SW framework. 519 * The MT8183 has a total of 6 temperature sensors. 520 * There are two thermal controller to control the six sensor. 521 * The first one bind 2 sensor, and the other bind 4 sensors. 522 * The thermal core only gets the maximum temperature of all sensor, so 523 * the bank concept wouldn't be necessary here. However, the SVS (Smart 524 * Voltage Scaling) unit makes its decisions based on the same bank 525 * data, and this indeed needs the temperatures of the individual banks 526 * for making better decisions. 527 */ 528static const struct mtk_thermal_data mt8183_thermal_data = { 529 .auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL, 530 .num_banks = MT8183_NUM_ZONES, 531 .num_sensors = MT8183_NUM_SENSORS, 532 .vts_index = mt8183_vts_index, 533 .cali_val = MT8183_CALIBRATION, 534 .num_controller = MT8183_NUM_CONTROLLER, 535 .controller_offset = mt8183_tc_offset, 536 .need_switch_bank = false, 537 .bank_data = { 538 { 539 .num_sensors = 6, 540 .sensors = mt8183_bank_data, 541 }, 542 }, 543 544 .msr = mt8183_msr, 545 .adcpnp = mt8183_adcpnp, 546 .sensor_mux_values = mt8183_mux_values, 547 .version = MTK_THERMAL_V1, 548}; 549 550/** 551 * raw_to_mcelsius - convert a raw ADC value to mcelsius 552 * @mt: The thermal controller 553 * @sensno: sensor number 554 * @raw: raw ADC value 555 * 556 * This converts the raw ADC value to mcelsius using the SoC specific 557 * calibration constants 558 */ 559static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw) 560{ 561 s32 tmp; 562 563 raw &= 0xfff; 564 565 tmp = 203450520 << 3; 566 tmp /= mt->conf->cali_val + mt->o_slope; 567 tmp /= 10000 + mt->adc_ge; 568 tmp *= raw - mt->vts[sensno] - 3350; 569 tmp >>= 3; 570 571 return mt->degc_cali * 500 - tmp; 572} 573 574static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw) 575{ 576 s32 format_1 = 0; 577 s32 format_2 = 0; 578 s32 g_oe = 1; 579 s32 g_gain = 1; 580 s32 g_x_roomt = 0; 581 s32 tmp = 0; 582 583 if (raw == 0) 584 return 0; 585 586 raw &= 0xfff; 587 g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12); 588 g_oe = mt->adc_oe - 512; 589 format_1 = mt->vts[VTS2] + 3105 - g_oe; 590 format_2 = (mt->degc_cali * 10) >> 1; 591 g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain; 592 593 tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt; 594 tmp = tmp * 10 * 100 / 11; 595 596 if (mt->o_slope_sign == 0) 597 tmp = tmp / (165 - mt->o_slope); 598 else 599 tmp = tmp / (165 + mt->o_slope); 600 601 return (format_2 - tmp) * 100; 602} 603 604/** 605 * mtk_thermal_get_bank - get bank 606 * @bank: The bank 607 * 608 * The bank registers are banked, we have to select a bank in the 609 * PTPCORESEL register to access it. 610 */ 611static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank) 612{ 613 struct mtk_thermal *mt = bank->mt; 614 u32 val; 615 616 if (mt->conf->need_switch_bank) { 617 mutex_lock(&mt->lock); 618 619 val = readl(mt->thermal_base + PTPCORESEL); 620 val &= ~0xf; 621 val |= bank->id; 622 writel(val, mt->thermal_base + PTPCORESEL); 623 } 624} 625 626/** 627 * mtk_thermal_put_bank - release bank 628 * @bank: The bank 629 * 630 * release a bank previously taken with mtk_thermal_get_bank, 631 */ 632static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank) 633{ 634 struct mtk_thermal *mt = bank->mt; 635 636 if (mt->conf->need_switch_bank) 637 mutex_unlock(&mt->lock); 638} 639 640/** 641 * mtk_thermal_bank_temperature - get the temperature of a bank 642 * @bank: The bank 643 * 644 * The temperature of a bank is considered the maximum temperature of 645 * the sensors associated to the bank. 646 */ 647static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank) 648{ 649 struct mtk_thermal *mt = bank->mt; 650 const struct mtk_thermal_data *conf = mt->conf; 651 int i, temp = INT_MIN, max = INT_MIN; 652 u32 raw; 653 654 for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) { 655 raw = readl(mt->thermal_base + conf->msr[i]); 656 657 if (mt->conf->version == MTK_THERMAL_V1) { 658 temp = raw_to_mcelsius_v1( 659 mt, conf->bank_data[bank->id].sensors[i], raw); 660 } else { 661 temp = raw_to_mcelsius_v2( 662 mt, conf->bank_data[bank->id].sensors[i], raw); 663 } 664 665 /* 666 * The first read of a sensor often contains very high bogus 667 * temperature value. Filter these out so that the system does 668 * not immediately shut down. 669 */ 670 if (temp > 200000) 671 temp = 0; 672 673 if (temp > max) 674 max = temp; 675 } 676 677 return max; 678} 679 680static int mtk_read_temp(void *data, int *temperature) 681{ 682 struct mtk_thermal *mt = data; 683 int i; 684 int tempmax = INT_MIN; 685 686 for (i = 0; i < mt->conf->num_banks; i++) { 687 struct mtk_thermal_bank *bank = &mt->banks[i]; 688 689 mtk_thermal_get_bank(bank); 690 691 tempmax = max(tempmax, mtk_thermal_bank_temperature(bank)); 692 693 mtk_thermal_put_bank(bank); 694 } 695 696 *temperature = tempmax; 697 698 return 0; 699} 700 701static const struct thermal_zone_of_device_ops mtk_thermal_ops = { 702 .get_temp = mtk_read_temp, 703}; 704 705static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num, 706 u32 apmixed_phys_base, u32 auxadc_phys_base, 707 int ctrl_id) 708{ 709 struct mtk_thermal_bank *bank = &mt->banks[num]; 710 const struct mtk_thermal_data *conf = mt->conf; 711 int i; 712 713 int offset = mt->conf->controller_offset[ctrl_id]; 714 void __iomem *controller_base = mt->thermal_base + offset; 715 716 bank->id = num; 717 bank->mt = mt; 718 719 mtk_thermal_get_bank(bank); 720 721 /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */ 722 writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1); 723 724 /* 725 * filt interval is 1 * 46.540us = 46.54us, 726 * sen interval is 429 * 46.540us = 19.96ms 727 */ 728 writel(TEMP_MONCTL2_FILTER_INTERVAL(1) | 729 TEMP_MONCTL2_SENSOR_INTERVAL(429), 730 controller_base + TEMP_MONCTL2); 731 732 /* poll is set to 10u */ 733 writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768), 734 controller_base + TEMP_AHBPOLL); 735 736 /* temperature sampling control, 1 sample */ 737 writel(0x0, controller_base + TEMP_MSRCTL0); 738 739 /* exceed this polling time, IRQ would be inserted */ 740 writel(0xffffffff, controller_base + TEMP_AHBTO); 741 742 /* number of interrupts per event, 1 is enough */ 743 writel(0x0, controller_base + TEMP_MONIDET0); 744 writel(0x0, controller_base + TEMP_MONIDET1); 745 746 /* 747 * The MT8173 thermal controller does not have its own ADC. Instead it 748 * uses AHB bus accesses to control the AUXADC. To do this the thermal 749 * controller has to be programmed with the physical addresses of the 750 * AUXADC registers and with the various bit positions in the AUXADC. 751 * Also the thermal controller controls a mux in the APMIXEDSYS register 752 * space. 753 */ 754 755 /* 756 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0) 757 * automatically by hw 758 */ 759 writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX); 760 761 /* AHB address for auxadc mux selection */ 762 writel(auxadc_phys_base + AUXADC_CON1_CLR_V, 763 controller_base + TEMP_ADCMUXADDR); 764 765 if (mt->conf->version == MTK_THERMAL_V1) { 766 /* AHB address for pnp sensor mux selection */ 767 writel(apmixed_phys_base + APMIXED_SYS_TS_CON1, 768 controller_base + TEMP_PNPMUXADDR); 769 } 770 771 /* AHB value for auxadc enable */ 772 writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN); 773 774 /* AHB address for auxadc enable (channel 0 immediate mode selected) */ 775 writel(auxadc_phys_base + AUXADC_CON1_SET_V, 776 controller_base + TEMP_ADCENADDR); 777 778 /* AHB address for auxadc valid bit */ 779 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), 780 controller_base + TEMP_ADCVALIDADDR); 781 782 /* AHB address for auxadc voltage output */ 783 writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel), 784 controller_base + TEMP_ADCVOLTADDR); 785 786 /* read valid & voltage are at the same register */ 787 writel(0x0, controller_base + TEMP_RDCTRL); 788 789 /* indicate where the valid bit is */ 790 writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12), 791 controller_base + TEMP_ADCVALIDMASK); 792 793 /* no shift */ 794 writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT); 795 796 /* enable auxadc mux write transaction */ 797 writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE, 798 controller_base + TEMP_ADCWRITECTRL); 799 800 for (i = 0; i < conf->bank_data[num].num_sensors; i++) 801 writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]], 802 mt->thermal_base + conf->adcpnp[i]); 803 804 writel((1 << conf->bank_data[num].num_sensors) - 1, 805 controller_base + TEMP_MONCTL0); 806 807 writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE | 808 TEMP_ADCWRITECTRL_ADC_MUX_WRITE, 809 controller_base + TEMP_ADCWRITECTRL); 810 811 mtk_thermal_put_bank(bank); 812} 813 814static u64 of_get_phys_base(struct device_node *np) 815{ 816 u64 size64; 817 const __be32 *regaddr_p; 818 819 regaddr_p = of_get_address(np, 0, &size64, NULL); 820 if (!regaddr_p) 821 return OF_BAD_ADDR; 822 823 return of_translate_address(np, regaddr_p); 824} 825 826static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf) 827{ 828 int i; 829 830 if (!(buf[0] & CALIB_BUF0_VALID_V1)) 831 return -EINVAL; 832 833 mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]); 834 835 for (i = 0; i < mt->conf->num_sensors; i++) { 836 switch (mt->conf->vts_index[i]) { 837 case VTS1: 838 mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]); 839 break; 840 case VTS2: 841 mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]); 842 break; 843 case VTS3: 844 mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]); 845 break; 846 case VTS4: 847 mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]); 848 break; 849 case VTS5: 850 mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]); 851 break; 852 case VTSABB: 853 mt->vts[VTSABB] = 854 CALIB_BUF2_VTS_TSABB_V1(buf[2]); 855 break; 856 default: 857 break; 858 } 859 } 860 861 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]); 862 if (CALIB_BUF1_ID_V1(buf[1]) & 863 CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0])) 864 mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]); 865 else 866 mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]); 867 868 return 0; 869} 870 871static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf) 872{ 873 if (!CALIB_BUF1_VALID_V2(buf[1])) 874 return -EINVAL; 875 876 mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]); 877 mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]); 878 mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]); 879 mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]); 880 mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]); 881 mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]); 882 mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]); 883 mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]); 884 885 return 0; 886} 887 888static int mtk_thermal_get_calibration_data(struct device *dev, 889 struct mtk_thermal *mt) 890{ 891 struct nvmem_cell *cell; 892 u32 *buf; 893 size_t len; 894 int i, ret = 0; 895 896 /* Start with default values */ 897 mt->adc_ge = 512; 898 for (i = 0; i < mt->conf->num_sensors; i++) 899 mt->vts[i] = 260; 900 mt->degc_cali = 40; 901 mt->o_slope = 0; 902 903 cell = nvmem_cell_get(dev, "calibration-data"); 904 if (IS_ERR(cell)) { 905 if (PTR_ERR(cell) == -EPROBE_DEFER) 906 return PTR_ERR(cell); 907 return 0; 908 } 909 910 buf = (u32 *)nvmem_cell_read(cell, &len); 911 912 nvmem_cell_put(cell); 913 914 if (IS_ERR(buf)) 915 return PTR_ERR(buf); 916 917 if (len < 3 * sizeof(u32)) { 918 dev_warn(dev, "invalid calibration data\n"); 919 ret = -EINVAL; 920 goto out; 921 } 922 923 if (mt->conf->version == MTK_THERMAL_V1) 924 ret = mtk_thermal_extract_efuse_v1(mt, buf); 925 else 926 ret = mtk_thermal_extract_efuse_v2(mt, buf); 927 928 if (ret) { 929 dev_info(dev, "Device not calibrated, using default calibration values\n"); 930 ret = 0; 931 } 932 933out: 934 kfree(buf); 935 936 return ret; 937} 938 939static const struct of_device_id mtk_thermal_of_match[] = { 940 { 941 .compatible = "mediatek,mt8173-thermal", 942 .data = (void *)&mt8173_thermal_data, 943 }, 944 { 945 .compatible = "mediatek,mt2701-thermal", 946 .data = (void *)&mt2701_thermal_data, 947 }, 948 { 949 .compatible = "mediatek,mt2712-thermal", 950 .data = (void *)&mt2712_thermal_data, 951 }, 952 { 953 .compatible = "mediatek,mt7622-thermal", 954 .data = (void *)&mt7622_thermal_data, 955 }, 956 { 957 .compatible = "mediatek,mt8183-thermal", 958 .data = (void *)&mt8183_thermal_data, 959 }, { 960 }, 961}; 962MODULE_DEVICE_TABLE(of, mtk_thermal_of_match); 963 964static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base) 965{ 966 int tmp; 967 968 tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1); 969 tmp &= ~(0x37); 970 tmp |= 0x1; 971 writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1); 972 udelay(200); 973} 974 975static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt, 976 void __iomem *auxadc_base) 977{ 978 int tmp; 979 980 writel(0x800, auxadc_base + AUXADC_CON1_SET_V); 981 writel(0x1, mt->thermal_base + TEMP_MONCTL0); 982 tmp = readl(mt->thermal_base + TEMP_MSRCTL1); 983 writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1); 984} 985 986static int mtk_thermal_probe(struct platform_device *pdev) 987{ 988 int ret, i, ctrl_id; 989 struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node; 990 struct mtk_thermal *mt; 991 struct resource *res; 992 u64 auxadc_phys_base, apmixed_phys_base; 993 struct thermal_zone_device *tzdev; 994 void __iomem *apmixed_base, *auxadc_base; 995 996 mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL); 997 if (!mt) 998 return -ENOMEM; 999 1000 mt->conf = of_device_get_match_data(&pdev->dev); 1001 1002 mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm"); 1003 if (IS_ERR(mt->clk_peri_therm)) 1004 return PTR_ERR(mt->clk_peri_therm); 1005 1006 mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc"); 1007 if (IS_ERR(mt->clk_auxadc)) 1008 return PTR_ERR(mt->clk_auxadc); 1009 1010 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1011 mt->thermal_base = devm_ioremap_resource(&pdev->dev, res); 1012 if (IS_ERR(mt->thermal_base)) 1013 return PTR_ERR(mt->thermal_base); 1014 1015 ret = mtk_thermal_get_calibration_data(&pdev->dev, mt); 1016 if (ret) 1017 return ret; 1018 1019 mutex_init(&mt->lock); 1020 1021 mt->dev = &pdev->dev; 1022 1023 auxadc = of_parse_phandle(np, "mediatek,auxadc", 0); 1024 if (!auxadc) { 1025 dev_err(&pdev->dev, "missing auxadc node\n"); 1026 return -ENODEV; 1027 } 1028 1029 auxadc_base = of_iomap(auxadc, 0); 1030 auxadc_phys_base = of_get_phys_base(auxadc); 1031 1032 of_node_put(auxadc); 1033 1034 if (auxadc_phys_base == OF_BAD_ADDR) { 1035 dev_err(&pdev->dev, "Can't get auxadc phys address\n"); 1036 return -EINVAL; 1037 } 1038 1039 apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0); 1040 if (!apmixedsys) { 1041 dev_err(&pdev->dev, "missing apmixedsys node\n"); 1042 return -ENODEV; 1043 } 1044 1045 apmixed_base = of_iomap(apmixedsys, 0); 1046 apmixed_phys_base = of_get_phys_base(apmixedsys); 1047 1048 of_node_put(apmixedsys); 1049 1050 if (apmixed_phys_base == OF_BAD_ADDR) { 1051 dev_err(&pdev->dev, "Can't get auxadc phys address\n"); 1052 return -EINVAL; 1053 } 1054 1055 ret = device_reset(&pdev->dev); 1056 if (ret) 1057 return ret; 1058 1059 ret = clk_prepare_enable(mt->clk_auxadc); 1060 if (ret) { 1061 dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret); 1062 return ret; 1063 } 1064 1065 ret = clk_prepare_enable(mt->clk_peri_therm); 1066 if (ret) { 1067 dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret); 1068 goto err_disable_clk_auxadc; 1069 } 1070 1071 if (mt->conf->version == MTK_THERMAL_V2) { 1072 mtk_thermal_turn_on_buffer(apmixed_base); 1073 mtk_thermal_release_periodic_ts(mt, auxadc_base); 1074 } 1075 1076 for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++) 1077 for (i = 0; i < mt->conf->num_banks; i++) 1078 mtk_thermal_init_bank(mt, i, apmixed_phys_base, 1079 auxadc_phys_base, ctrl_id); 1080 1081 platform_set_drvdata(pdev, mt); 1082 1083 tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt, 1084 &mtk_thermal_ops); 1085 if (IS_ERR(tzdev)) { 1086 ret = PTR_ERR(tzdev); 1087 goto err_disable_clk_peri_therm; 1088 } 1089 1090 return 0; 1091 1092err_disable_clk_peri_therm: 1093 clk_disable_unprepare(mt->clk_peri_therm); 1094err_disable_clk_auxadc: 1095 clk_disable_unprepare(mt->clk_auxadc); 1096 1097 return ret; 1098} 1099 1100static int mtk_thermal_remove(struct platform_device *pdev) 1101{ 1102 struct mtk_thermal *mt = platform_get_drvdata(pdev); 1103 1104 clk_disable_unprepare(mt->clk_peri_therm); 1105 clk_disable_unprepare(mt->clk_auxadc); 1106 1107 return 0; 1108} 1109 1110static struct platform_driver mtk_thermal_driver = { 1111 .probe = mtk_thermal_probe, 1112 .remove = mtk_thermal_remove, 1113 .driver = { 1114 .name = "mtk-thermal", 1115 .of_match_table = mtk_thermal_of_match, 1116 }, 1117}; 1118 1119module_platform_driver(mtk_thermal_driver); 1120 1121MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>"); 1122MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>"); 1123MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>"); 1124MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>"); 1125MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>"); 1126MODULE_DESCRIPTION("Mediatek thermal driver"); 1127MODULE_LICENSE("GPL v2"); 1128