1// SPDX-License-Identifier: GPL-2.0
2/*
3 * devfreq_cooling: Thermal cooling device implementation for devices using
4 *                  devfreq
5 *
6 * Copyright (C) 2014-2015 ARM Limited
7 *
8 * TODO:
9 *    - If OPPs are added or removed after devfreq cooling has
10 *      registered, the devfreq cooling won't react to it.
11 */
12
13#include <linux/devfreq.h>
14#include <linux/devfreq_cooling.h>
15#include <linux/export.h>
16#include <linux/idr.h>
17#include <linux/slab.h>
18#include <linux/pm_opp.h>
19#include <linux/pm_qos.h>
20#include <linux/thermal.h>
21
22#include <trace/events/thermal.h>
23
24#define HZ_PER_KHZ		1000
25#define SCALE_ERROR_MITIGATION	100
26
27static DEFINE_IDA(devfreq_ida);
28
29/**
30 * struct devfreq_cooling_device - Devfreq cooling device
31 * @id:		unique integer value corresponding to each
32 *		devfreq_cooling_device registered.
33 * @cdev:	Pointer to associated thermal cooling device.
34 * @devfreq:	Pointer to associated devfreq device.
35 * @cooling_state:	Current cooling state.
36 * @power_table:	Pointer to table with maximum power draw for each
37 *			cooling state. State is the index into the table, and
38 *			the power is in mW.
39 * @freq_table:	Pointer to a table with the frequencies sorted in descending
40 *		order.  You can index the table by cooling device state
41 * @freq_table_size:	Size of the @freq_table and @power_table
42 * @power_ops:	Pointer to devfreq_cooling_power, used to generate the
43 *		@power_table.
44 * @res_util:	Resource utilization scaling factor for the power.
45 *		It is multiplied by 100 to minimize the error. It is used
46 *		for estimation of the power budget instead of using
47 *		'utilization' (which is	'busy_time / 'total_time').
48 *		The 'res_util' range is from 100 to (power_table[state] * 100)
49 *		for the corresponding 'state'.
50 * @capped_state:	index to cooling state with in dynamic power budget
51 * @req_max_freq:	PM QoS request for limiting the maximum frequency
52 *			of the devfreq device.
53 */
54struct devfreq_cooling_device {
55	int id;
56	struct thermal_cooling_device *cdev;
57	struct devfreq *devfreq;
58	unsigned long cooling_state;
59	u32 *power_table;
60	u32 *freq_table;
61	size_t freq_table_size;
62	struct devfreq_cooling_power *power_ops;
63	u32 res_util;
64	int capped_state;
65	struct dev_pm_qos_request req_max_freq;
66};
67
68static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
69					 unsigned long *state)
70{
71	struct devfreq_cooling_device *dfc = cdev->devdata;
72
73	*state = dfc->freq_table_size - 1;
74
75	return 0;
76}
77
78static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
79					 unsigned long *state)
80{
81	struct devfreq_cooling_device *dfc = cdev->devdata;
82
83	*state = dfc->cooling_state;
84
85	return 0;
86}
87
88static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
89					 unsigned long state)
90{
91	struct devfreq_cooling_device *dfc = cdev->devdata;
92	struct devfreq *df = dfc->devfreq;
93	struct device *dev = df->dev.parent;
94	unsigned long freq;
95
96	if (state == dfc->cooling_state)
97		return 0;
98
99	dev_dbg(dev, "Setting cooling state %lu\n", state);
100
101	if (state >= dfc->freq_table_size)
102		return -EINVAL;
103
104	freq = dfc->freq_table[state];
105
106	dev_pm_qos_update_request(&dfc->req_max_freq,
107				  DIV_ROUND_UP(freq, HZ_PER_KHZ));
108
109	dfc->cooling_state = state;
110
111	return 0;
112}
113
114/**
115 * freq_get_state() - get the cooling state corresponding to a frequency
116 * @dfc:	Pointer to devfreq cooling device
117 * @freq:	frequency in Hz
118 *
119 * Return: the cooling state associated with the @freq, or
120 * THERMAL_CSTATE_INVALID if it wasn't found.
121 */
122static unsigned long
123freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
124{
125	int i;
126
127	for (i = 0; i < dfc->freq_table_size; i++) {
128		if (dfc->freq_table[i] == freq)
129			return i;
130	}
131
132	return THERMAL_CSTATE_INVALID;
133}
134
135static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
136{
137	struct device *dev = df->dev.parent;
138	unsigned long voltage;
139	struct dev_pm_opp *opp;
140
141	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
142	if (PTR_ERR(opp) == -ERANGE)
143		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
144
145	if (IS_ERR(opp)) {
146		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
147				    freq, PTR_ERR(opp));
148		return 0;
149	}
150
151	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
152	dev_pm_opp_put(opp);
153
154	if (voltage == 0) {
155		dev_err_ratelimited(dev,
156				    "Failed to get voltage for frequency %lu\n",
157				    freq);
158	}
159
160	return voltage;
161}
162
163/**
164 * get_static_power() - calculate the static power
165 * @dfc:	Pointer to devfreq cooling device
166 * @freq:	Frequency in Hz
167 *
168 * Calculate the static power in milliwatts using the supplied
169 * get_static_power().  The current voltage is calculated using the
170 * OPP library.  If no get_static_power() was supplied, assume the
171 * static power is negligible.
172 */
173static unsigned long
174get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
175{
176	struct devfreq *df = dfc->devfreq;
177	unsigned long voltage;
178
179	if (!dfc->power_ops->get_static_power)
180		return 0;
181
182	voltage = get_voltage(df, freq);
183
184	if (voltage == 0)
185		return 0;
186
187	return dfc->power_ops->get_static_power(df, voltage);
188}
189
190/**
191 * get_dynamic_power - calculate the dynamic power
192 * @dfc:	Pointer to devfreq cooling device
193 * @freq:	Frequency in Hz
194 * @voltage:	Voltage in millivolts
195 *
196 * Calculate the dynamic power in milliwatts consumed by the device at
197 * frequency @freq and voltage @voltage.  If the get_dynamic_power()
198 * was supplied as part of the devfreq_cooling_power struct, then that
199 * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
200 * Voltage^2 * Frequency) is used.
201 */
202static unsigned long
203get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
204		  unsigned long voltage)
205{
206	u64 power;
207	u32 freq_mhz;
208	struct devfreq_cooling_power *dfc_power = dfc->power_ops;
209
210	if (dfc_power->get_dynamic_power)
211		return dfc_power->get_dynamic_power(dfc->devfreq, freq,
212						    voltage);
213
214	freq_mhz = freq / 1000000;
215	power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
216	do_div(power, 1000000000);
217
218	return power;
219}
220
221
222static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
223					    unsigned long freq,
224					    unsigned long voltage)
225{
226	return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
227							       voltage);
228}
229
230
231static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
232					       u32 *power)
233{
234	struct devfreq_cooling_device *dfc = cdev->devdata;
235	struct devfreq *df = dfc->devfreq;
236	struct devfreq_dev_status *status = &df->last_status;
237	unsigned long state;
238	unsigned long freq = status->current_frequency;
239	unsigned long voltage;
240	u32 dyn_power = 0;
241	u32 static_power = 0;
242	int res;
243
244	state = freq_get_state(dfc, freq);
245	if (state == THERMAL_CSTATE_INVALID) {
246		res = -EAGAIN;
247		goto fail;
248	}
249
250	if (dfc->power_ops->get_real_power) {
251		voltage = get_voltage(df, freq);
252		if (voltage == 0) {
253			res = -EINVAL;
254			goto fail;
255		}
256
257		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
258		if (!res) {
259			state = dfc->capped_state;
260			dfc->res_util = dfc->power_table[state];
261			dfc->res_util *= SCALE_ERROR_MITIGATION;
262
263			if (*power > 1)
264				dfc->res_util /= *power;
265		} else {
266			goto fail;
267		}
268	} else {
269		dyn_power = dfc->power_table[state];
270
271		/* Scale dynamic power for utilization */
272		dyn_power *= status->busy_time;
273		dyn_power /= status->total_time;
274		/* Get static power */
275		static_power = get_static_power(dfc, freq);
276
277		*power = dyn_power + static_power;
278	}
279
280	trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
281					      static_power, *power);
282
283	return 0;
284fail:
285	/* It is safe to set max in this case */
286	dfc->res_util = SCALE_ERROR_MITIGATION;
287	return res;
288}
289
290static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
291				       unsigned long state,
292				       u32 *power)
293{
294	struct devfreq_cooling_device *dfc = cdev->devdata;
295	unsigned long freq;
296	u32 static_power;
297
298	if (state >= dfc->freq_table_size)
299		return -EINVAL;
300
301	freq = dfc->freq_table[state];
302	static_power = get_static_power(dfc, freq);
303
304	*power = dfc->power_table[state] + static_power;
305	return 0;
306}
307
308static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
309				       u32 power, unsigned long *state)
310{
311	struct devfreq_cooling_device *dfc = cdev->devdata;
312	struct devfreq *df = dfc->devfreq;
313	struct devfreq_dev_status *status = &df->last_status;
314	unsigned long freq = status->current_frequency;
315	unsigned long busy_time;
316	s32 dyn_power;
317	u32 static_power;
318	s32 est_power;
319	int i;
320
321	if (dfc->power_ops->get_real_power) {
322		/* Scale for resource utilization */
323		est_power = power * dfc->res_util;
324		est_power /= SCALE_ERROR_MITIGATION;
325	} else {
326		static_power = get_static_power(dfc, freq);
327
328		dyn_power = power - static_power;
329		dyn_power = dyn_power > 0 ? dyn_power : 0;
330
331		/* Scale dynamic power for utilization */
332		busy_time = status->busy_time ?: 1;
333		est_power = (dyn_power * status->total_time) / busy_time;
334	}
335
336	/*
337	 * Find the first cooling state that is within the power
338	 * budget for dynamic power.
339	 */
340	for (i = 0; i < dfc->freq_table_size - 1; i++)
341		if (est_power >= dfc->power_table[i])
342			break;
343
344	*state = i;
345	dfc->capped_state = i;
346	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
347	return 0;
348}
349
350static struct thermal_cooling_device_ops devfreq_cooling_ops = {
351	.get_max_state = devfreq_cooling_get_max_state,
352	.get_cur_state = devfreq_cooling_get_cur_state,
353	.set_cur_state = devfreq_cooling_set_cur_state,
354};
355
356/**
357 * devfreq_cooling_gen_tables() - Generate power and freq tables.
358 * @dfc: Pointer to devfreq cooling device.
359 *
360 * Generate power and frequency tables: the power table hold the
361 * device's maximum power usage at each cooling state (OPP).  The
362 * static and dynamic power using the appropriate voltage and
363 * frequency for the state, is acquired from the struct
364 * devfreq_cooling_power, and summed to make the maximum power draw.
365 *
366 * The frequency table holds the frequencies in descending order.
367 * That way its indexed by cooling device state.
368 *
369 * The tables are malloced, and pointers put in dfc.  They must be
370 * freed when unregistering the devfreq cooling device.
371 *
372 * Return: 0 on success, negative error code on failure.
373 */
374static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
375{
376	struct devfreq *df = dfc->devfreq;
377	struct device *dev = df->dev.parent;
378	int ret, num_opps;
379	unsigned long freq;
380	u32 *power_table = NULL;
381	u32 *freq_table;
382	int i;
383
384	num_opps = dev_pm_opp_get_opp_count(dev);
385
386	if (dfc->power_ops) {
387		power_table = kcalloc(num_opps, sizeof(*power_table),
388				      GFP_KERNEL);
389		if (!power_table)
390			return -ENOMEM;
391	}
392
393	freq_table = kcalloc(num_opps, sizeof(*freq_table),
394			     GFP_KERNEL);
395	if (!freq_table) {
396		ret = -ENOMEM;
397		goto free_power_table;
398	}
399
400	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
401		unsigned long power, voltage;
402		struct dev_pm_opp *opp;
403
404		opp = dev_pm_opp_find_freq_floor(dev, &freq);
405		if (IS_ERR(opp)) {
406			ret = PTR_ERR(opp);
407			goto free_tables;
408		}
409
410		voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
411		dev_pm_opp_put(opp);
412
413		if (dfc->power_ops) {
414			if (dfc->power_ops->get_real_power)
415				power = get_total_power(dfc, freq, voltage);
416			else
417				power = get_dynamic_power(dfc, freq, voltage);
418
419			dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
420				freq / 1000000, voltage, power, power);
421
422			power_table[i] = power;
423		}
424
425		freq_table[i] = freq;
426	}
427
428	if (dfc->power_ops)
429		dfc->power_table = power_table;
430
431	dfc->freq_table = freq_table;
432	dfc->freq_table_size = num_opps;
433
434	return 0;
435
436free_tables:
437	kfree(freq_table);
438free_power_table:
439	kfree(power_table);
440
441	return ret;
442}
443
444/**
445 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
446 *                                      with OF and power information.
447 * @np:	Pointer to OF device_node.
448 * @df:	Pointer to devfreq device.
449 * @dfc_power:	Pointer to devfreq_cooling_power.
450 *
451 * Register a devfreq cooling device.  The available OPPs must be
452 * registered on the device.
453 *
454 * If @dfc_power is provided, the cooling device is registered with the
455 * power extensions.  For the power extensions to work correctly,
456 * devfreq should use the simple_ondemand governor, other governors
457 * are not currently supported.
458 */
459struct thermal_cooling_device *
460of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
461				  struct devfreq_cooling_power *dfc_power)
462{
463	struct thermal_cooling_device *cdev;
464	struct devfreq_cooling_device *dfc;
465	char dev_name[THERMAL_NAME_LENGTH];
466	int err;
467
468	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
469	if (!dfc)
470		return ERR_PTR(-ENOMEM);
471
472	dfc->devfreq = df;
473
474	if (dfc_power) {
475		dfc->power_ops = dfc_power;
476
477		devfreq_cooling_ops.get_requested_power =
478			devfreq_cooling_get_requested_power;
479		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
480		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
481	}
482
483	err = devfreq_cooling_gen_tables(dfc);
484	if (err)
485		goto free_dfc;
486
487	err = dev_pm_qos_add_request(df->dev.parent, &dfc->req_max_freq,
488				     DEV_PM_QOS_MAX_FREQUENCY,
489				     PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
490	if (err < 0)
491		goto free_tables;
492
493	err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
494	if (err < 0)
495		goto remove_qos_req;
496	dfc->id = err;
497
498	snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
499
500	cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
501						  &devfreq_cooling_ops);
502	if (IS_ERR(cdev)) {
503		err = PTR_ERR(cdev);
504		dev_err(df->dev.parent,
505			"Failed to register devfreq cooling device (%d)\n",
506			err);
507		goto release_ida;
508	}
509
510	dfc->cdev = cdev;
511
512	return cdev;
513
514release_ida:
515	ida_simple_remove(&devfreq_ida, dfc->id);
516
517remove_qos_req:
518	dev_pm_qos_remove_request(&dfc->req_max_freq);
519
520free_tables:
521	kfree(dfc->power_table);
522	kfree(dfc->freq_table);
523free_dfc:
524	kfree(dfc);
525
526	return ERR_PTR(err);
527}
528EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
529
530/**
531 * of_devfreq_cooling_register() - Register devfreq cooling device,
532 *                                with OF information.
533 * @np: Pointer to OF device_node.
534 * @df: Pointer to devfreq device.
535 */
536struct thermal_cooling_device *
537of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
538{
539	return of_devfreq_cooling_register_power(np, df, NULL);
540}
541EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
542
543/**
544 * devfreq_cooling_register() - Register devfreq cooling device.
545 * @df: Pointer to devfreq device.
546 */
547struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
548{
549	return of_devfreq_cooling_register(NULL, df);
550}
551EXPORT_SYMBOL_GPL(devfreq_cooling_register);
552
553/**
554 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
555 * @cdev: Pointer to devfreq cooling device to unregister.
556 */
557void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
558{
559	struct devfreq_cooling_device *dfc;
560
561	if (!cdev)
562		return;
563
564	dfc = cdev->devdata;
565
566	thermal_cooling_device_unregister(dfc->cdev);
567	ida_simple_remove(&devfreq_ida, dfc->id);
568	dev_pm_qos_remove_request(&dfc->req_max_freq);
569	kfree(dfc->power_table);
570	kfree(dfc->freq_table);
571
572	kfree(dfc);
573}
574EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
575