1// SPDX-License-Identifier: GPL-2.0-or-later 2// SPI init/core code 3// 4// Copyright (C) 2005 David Brownell 5// Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7#include <linux/kernel.h> 8#include <linux/device.h> 9#include <linux/init.h> 10#include <linux/cache.h> 11#include <linux/dma-mapping.h> 12#include <linux/dmaengine.h> 13#include <linux/mutex.h> 14#include <linux/of_device.h> 15#include <linux/of_irq.h> 16#include <linux/clk/clk-conf.h> 17#include <linux/slab.h> 18#include <linux/mod_devicetable.h> 19#include <linux/spi/spi.h> 20#include <linux/spi/spi-mem.h> 21#include <linux/of_gpio.h> 22#include <linux/gpio/consumer.h> 23#include <linux/pm_runtime.h> 24#include <linux/pm_domain.h> 25#include <linux/property.h> 26#include <linux/export.h> 27#include <linux/sched/rt.h> 28#include <uapi/linux/sched/types.h> 29#include <linux/delay.h> 30#include <linux/kthread.h> 31#include <linux/ioport.h> 32#include <linux/acpi.h> 33#include <linux/highmem.h> 34#include <linux/idr.h> 35#include <linux/platform_data/x86/apple.h> 36 37#define CREATE_TRACE_POINTS 38#include <trace/events/spi.h> 39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42#include "internals.h" 43 44static DEFINE_IDR(spi_master_idr); 45 46static void spidev_release(struct device *dev) 47{ 48 struct spi_device *spi = to_spi_device(dev); 49 50 spi_controller_put(spi->controller); 51 kfree(spi->driver_override); 52 kfree(spi); 53} 54 55static ssize_t 56modalias_show(struct device *dev, struct device_attribute *a, char *buf) 57{ 58 const struct spi_device *spi = to_spi_device(dev); 59 int len; 60 61 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 62 if (len != -ENODEV) 63 return len; 64 65 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 66} 67static DEVICE_ATTR_RO(modalias); 68 69static ssize_t driver_override_store(struct device *dev, 70 struct device_attribute *a, 71 const char *buf, size_t count) 72{ 73 struct spi_device *spi = to_spi_device(dev); 74 const char *end = memchr(buf, '\n', count); 75 const size_t len = end ? end - buf : count; 76 const char *driver_override, *old; 77 78 /* We need to keep extra room for a newline when displaying value */ 79 if (len >= (PAGE_SIZE - 1)) 80 return -EINVAL; 81 82 driver_override = kstrndup(buf, len, GFP_KERNEL); 83 if (!driver_override) 84 return -ENOMEM; 85 86 device_lock(dev); 87 old = spi->driver_override; 88 if (len) { 89 spi->driver_override = driver_override; 90 } else { 91 /* Empty string, disable driver override */ 92 spi->driver_override = NULL; 93 kfree(driver_override); 94 } 95 device_unlock(dev); 96 kfree(old); 97 98 return count; 99} 100 101static ssize_t driver_override_show(struct device *dev, 102 struct device_attribute *a, char *buf) 103{ 104 const struct spi_device *spi = to_spi_device(dev); 105 ssize_t len; 106 107 device_lock(dev); 108 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 109 device_unlock(dev); 110 return len; 111} 112static DEVICE_ATTR_RW(driver_override); 113 114#define SPI_STATISTICS_ATTRS(field, file) \ 115static ssize_t spi_controller_##field##_show(struct device *dev, \ 116 struct device_attribute *attr, \ 117 char *buf) \ 118{ \ 119 struct spi_controller *ctlr = container_of(dev, \ 120 struct spi_controller, dev); \ 121 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 122} \ 123static struct device_attribute dev_attr_spi_controller_##field = { \ 124 .attr = { .name = file, .mode = 0444 }, \ 125 .show = spi_controller_##field##_show, \ 126}; \ 127static ssize_t spi_device_##field##_show(struct device *dev, \ 128 struct device_attribute *attr, \ 129 char *buf) \ 130{ \ 131 struct spi_device *spi = to_spi_device(dev); \ 132 return spi_statistics_##field##_show(&spi->statistics, buf); \ 133} \ 134static struct device_attribute dev_attr_spi_device_##field = { \ 135 .attr = { .name = file, .mode = 0444 }, \ 136 .show = spi_device_##field##_show, \ 137} 138 139#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 140static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 141 char *buf) \ 142{ \ 143 unsigned long flags; \ 144 ssize_t len; \ 145 spin_lock_irqsave(&stat->lock, flags); \ 146 len = sprintf(buf, format_string, stat->field); \ 147 spin_unlock_irqrestore(&stat->lock, flags); \ 148 return len; \ 149} \ 150SPI_STATISTICS_ATTRS(name, file) 151 152#define SPI_STATISTICS_SHOW(field, format_string) \ 153 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 154 field, format_string) 155 156SPI_STATISTICS_SHOW(messages, "%lu"); 157SPI_STATISTICS_SHOW(transfers, "%lu"); 158SPI_STATISTICS_SHOW(errors, "%lu"); 159SPI_STATISTICS_SHOW(timedout, "%lu"); 160 161SPI_STATISTICS_SHOW(spi_sync, "%lu"); 162SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 163SPI_STATISTICS_SHOW(spi_async, "%lu"); 164 165SPI_STATISTICS_SHOW(bytes, "%llu"); 166SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 167SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 168 169#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 170 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 171 "transfer_bytes_histo_" number, \ 172 transfer_bytes_histo[index], "%lu") 173SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 174SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 175SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 176SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 177SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 178SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 179SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 180SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 181SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 182SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 183SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 184SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 185SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 186SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 187SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 188SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 189SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 190 191SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 192 193static struct attribute *spi_dev_attrs[] = { 194 &dev_attr_modalias.attr, 195 &dev_attr_driver_override.attr, 196 NULL, 197}; 198 199static const struct attribute_group spi_dev_group = { 200 .attrs = spi_dev_attrs, 201}; 202 203static struct attribute *spi_device_statistics_attrs[] = { 204 &dev_attr_spi_device_messages.attr, 205 &dev_attr_spi_device_transfers.attr, 206 &dev_attr_spi_device_errors.attr, 207 &dev_attr_spi_device_timedout.attr, 208 &dev_attr_spi_device_spi_sync.attr, 209 &dev_attr_spi_device_spi_sync_immediate.attr, 210 &dev_attr_spi_device_spi_async.attr, 211 &dev_attr_spi_device_bytes.attr, 212 &dev_attr_spi_device_bytes_rx.attr, 213 &dev_attr_spi_device_bytes_tx.attr, 214 &dev_attr_spi_device_transfer_bytes_histo0.attr, 215 &dev_attr_spi_device_transfer_bytes_histo1.attr, 216 &dev_attr_spi_device_transfer_bytes_histo2.attr, 217 &dev_attr_spi_device_transfer_bytes_histo3.attr, 218 &dev_attr_spi_device_transfer_bytes_histo4.attr, 219 &dev_attr_spi_device_transfer_bytes_histo5.attr, 220 &dev_attr_spi_device_transfer_bytes_histo6.attr, 221 &dev_attr_spi_device_transfer_bytes_histo7.attr, 222 &dev_attr_spi_device_transfer_bytes_histo8.attr, 223 &dev_attr_spi_device_transfer_bytes_histo9.attr, 224 &dev_attr_spi_device_transfer_bytes_histo10.attr, 225 &dev_attr_spi_device_transfer_bytes_histo11.attr, 226 &dev_attr_spi_device_transfer_bytes_histo12.attr, 227 &dev_attr_spi_device_transfer_bytes_histo13.attr, 228 &dev_attr_spi_device_transfer_bytes_histo14.attr, 229 &dev_attr_spi_device_transfer_bytes_histo15.attr, 230 &dev_attr_spi_device_transfer_bytes_histo16.attr, 231 &dev_attr_spi_device_transfers_split_maxsize.attr, 232 NULL, 233}; 234 235static const struct attribute_group spi_device_statistics_group = { 236 .name = "statistics", 237 .attrs = spi_device_statistics_attrs, 238}; 239 240static const struct attribute_group *spi_dev_groups[] = { 241 &spi_dev_group, 242 &spi_device_statistics_group, 243 NULL, 244}; 245 246static struct attribute *spi_controller_statistics_attrs[] = { 247 &dev_attr_spi_controller_messages.attr, 248 &dev_attr_spi_controller_transfers.attr, 249 &dev_attr_spi_controller_errors.attr, 250 &dev_attr_spi_controller_timedout.attr, 251 &dev_attr_spi_controller_spi_sync.attr, 252 &dev_attr_spi_controller_spi_sync_immediate.attr, 253 &dev_attr_spi_controller_spi_async.attr, 254 &dev_attr_spi_controller_bytes.attr, 255 &dev_attr_spi_controller_bytes_rx.attr, 256 &dev_attr_spi_controller_bytes_tx.attr, 257 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 258 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 259 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 260 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 274 &dev_attr_spi_controller_transfers_split_maxsize.attr, 275 NULL, 276}; 277 278static const struct attribute_group spi_controller_statistics_group = { 279 .name = "statistics", 280 .attrs = spi_controller_statistics_attrs, 281}; 282 283static const struct attribute_group *spi_master_groups[] = { 284 &spi_controller_statistics_group, 285 NULL, 286}; 287 288void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 289 struct spi_transfer *xfer, 290 struct spi_controller *ctlr) 291{ 292 unsigned long flags; 293 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 294 295 if (l2len < 0) 296 l2len = 0; 297 298 spin_lock_irqsave(&stats->lock, flags); 299 300 stats->transfers++; 301 stats->transfer_bytes_histo[l2len]++; 302 303 stats->bytes += xfer->len; 304 if ((xfer->tx_buf) && 305 (xfer->tx_buf != ctlr->dummy_tx)) 306 stats->bytes_tx += xfer->len; 307 if ((xfer->rx_buf) && 308 (xfer->rx_buf != ctlr->dummy_rx)) 309 stats->bytes_rx += xfer->len; 310 311 spin_unlock_irqrestore(&stats->lock, flags); 312} 313EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 314 315/* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 316 * and the sysfs version makes coldplug work too. 317 */ 318 319static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 320 const struct spi_device *sdev) 321{ 322 while (id->name[0]) { 323 if (!strcmp(sdev->modalias, id->name)) 324 return id; 325 id++; 326 } 327 return NULL; 328} 329 330const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 331{ 332 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 333 334 return spi_match_id(sdrv->id_table, sdev); 335} 336EXPORT_SYMBOL_GPL(spi_get_device_id); 337 338static int spi_match_device(struct device *dev, struct device_driver *drv) 339{ 340 const struct spi_device *spi = to_spi_device(dev); 341 const struct spi_driver *sdrv = to_spi_driver(drv); 342 343 /* Check override first, and if set, only use the named driver */ 344 if (spi->driver_override) 345 return strcmp(spi->driver_override, drv->name) == 0; 346 347 /* Attempt an OF style match */ 348 if (of_driver_match_device(dev, drv)) 349 return 1; 350 351 /* Then try ACPI */ 352 if (acpi_driver_match_device(dev, drv)) 353 return 1; 354 355 if (sdrv->id_table) 356 return !!spi_match_id(sdrv->id_table, spi); 357 358 return strcmp(spi->modalias, drv->name) == 0; 359} 360 361static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 362{ 363 const struct spi_device *spi = to_spi_device(dev); 364 int rc; 365 366 rc = acpi_device_uevent_modalias(dev, env); 367 if (rc != -ENODEV) 368 return rc; 369 370 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 371} 372 373struct bus_type spi_bus_type = { 374 .name = "spi", 375 .dev_groups = spi_dev_groups, 376 .match = spi_match_device, 377 .uevent = spi_uevent, 378}; 379EXPORT_SYMBOL_GPL(spi_bus_type); 380 381 382static int spi_drv_probe(struct device *dev) 383{ 384 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 385 struct spi_device *spi = to_spi_device(dev); 386 int ret; 387 388 ret = of_clk_set_defaults(dev->of_node, false); 389 if (ret) 390 return ret; 391 392 if (dev->of_node) { 393 spi->irq = of_irq_get(dev->of_node, 0); 394 if (spi->irq == -EPROBE_DEFER) 395 return -EPROBE_DEFER; 396 if (spi->irq < 0) 397 spi->irq = 0; 398 } 399 400 ret = dev_pm_domain_attach(dev, true); 401 if (ret) 402 return ret; 403 404 if (sdrv->probe) { 405 ret = sdrv->probe(spi); 406 if (ret) 407 dev_pm_domain_detach(dev, true); 408 } 409 410 return ret; 411} 412 413static int spi_drv_remove(struct device *dev) 414{ 415 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 416 int ret = 0; 417 418 if (sdrv->remove) 419 ret = sdrv->remove(to_spi_device(dev)); 420 dev_pm_domain_detach(dev, true); 421 422 return ret; 423} 424 425static void spi_drv_shutdown(struct device *dev) 426{ 427 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 428 429 sdrv->shutdown(to_spi_device(dev)); 430} 431 432/** 433 * __spi_register_driver - register a SPI driver 434 * @owner: owner module of the driver to register 435 * @sdrv: the driver to register 436 * Context: can sleep 437 * 438 * Return: zero on success, else a negative error code. 439 */ 440int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 441{ 442 sdrv->driver.owner = owner; 443 sdrv->driver.bus = &spi_bus_type; 444 sdrv->driver.probe = spi_drv_probe; 445 sdrv->driver.remove = spi_drv_remove; 446 if (sdrv->shutdown) 447 sdrv->driver.shutdown = spi_drv_shutdown; 448 return driver_register(&sdrv->driver); 449} 450EXPORT_SYMBOL_GPL(__spi_register_driver); 451 452/*-------------------------------------------------------------------------*/ 453 454/* SPI devices should normally not be created by SPI device drivers; that 455 * would make them board-specific. Similarly with SPI controller drivers. 456 * Device registration normally goes into like arch/.../mach.../board-YYY.c 457 * with other readonly (flashable) information about mainboard devices. 458 */ 459 460struct boardinfo { 461 struct list_head list; 462 struct spi_board_info board_info; 463}; 464 465static LIST_HEAD(board_list); 466static LIST_HEAD(spi_controller_list); 467 468/* 469 * Used to protect add/del operation for board_info list and 470 * spi_controller list, and their matching process 471 * also used to protect object of type struct idr 472 */ 473static DEFINE_MUTEX(board_lock); 474 475/** 476 * spi_alloc_device - Allocate a new SPI device 477 * @ctlr: Controller to which device is connected 478 * Context: can sleep 479 * 480 * Allows a driver to allocate and initialize a spi_device without 481 * registering it immediately. This allows a driver to directly 482 * fill the spi_device with device parameters before calling 483 * spi_add_device() on it. 484 * 485 * Caller is responsible to call spi_add_device() on the returned 486 * spi_device structure to add it to the SPI controller. If the caller 487 * needs to discard the spi_device without adding it, then it should 488 * call spi_dev_put() on it. 489 * 490 * Return: a pointer to the new device, or NULL. 491 */ 492struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 493{ 494 struct spi_device *spi; 495 496 if (!spi_controller_get(ctlr)) 497 return NULL; 498 499 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 500 if (!spi) { 501 spi_controller_put(ctlr); 502 return NULL; 503 } 504 505 spi->master = spi->controller = ctlr; 506 spi->dev.parent = &ctlr->dev; 507 spi->dev.bus = &spi_bus_type; 508 spi->dev.release = spidev_release; 509 spi->cs_gpio = -ENOENT; 510 spi->mode = ctlr->buswidth_override_bits; 511 512 spin_lock_init(&spi->statistics.lock); 513 514 device_initialize(&spi->dev); 515 return spi; 516} 517EXPORT_SYMBOL_GPL(spi_alloc_device); 518 519static void spi_dev_set_name(struct spi_device *spi) 520{ 521 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 522 523 if (adev) { 524 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 525 return; 526 } 527 528 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 529 spi->chip_select); 530} 531 532static int spi_dev_check(struct device *dev, void *data) 533{ 534 struct spi_device *spi = to_spi_device(dev); 535 struct spi_device *new_spi = data; 536 537 if (spi->controller == new_spi->controller && 538 spi->chip_select == new_spi->chip_select) 539 return -EBUSY; 540 return 0; 541} 542 543static void spi_cleanup(struct spi_device *spi) 544{ 545 if (spi->controller->cleanup) 546 spi->controller->cleanup(spi); 547} 548 549/** 550 * spi_add_device - Add spi_device allocated with spi_alloc_device 551 * @spi: spi_device to register 552 * 553 * Companion function to spi_alloc_device. Devices allocated with 554 * spi_alloc_device can be added onto the spi bus with this function. 555 * 556 * Return: 0 on success; negative errno on failure 557 */ 558int spi_add_device(struct spi_device *spi) 559{ 560 struct spi_controller *ctlr = spi->controller; 561 struct device *dev = ctlr->dev.parent; 562 int status; 563 564 /* Chipselects are numbered 0..max; validate. */ 565 if (spi->chip_select >= ctlr->num_chipselect) { 566 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 567 ctlr->num_chipselect); 568 return -EINVAL; 569 } 570 571 /* Set the bus ID string */ 572 spi_dev_set_name(spi); 573 574 /* We need to make sure there's no other device with this 575 * chipselect **BEFORE** we call setup(), else we'll trash 576 * its configuration. Lock against concurrent add() calls. 577 */ 578 mutex_lock(&ctlr->add_lock); 579 580 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 581 if (status) { 582 dev_err(dev, "chipselect %d already in use\n", 583 spi->chip_select); 584 goto done; 585 } 586 587 /* Controller may unregister concurrently */ 588 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 589 !device_is_registered(&ctlr->dev)) { 590 status = -ENODEV; 591 goto done; 592 } 593 594 /* Descriptors take precedence */ 595 if (ctlr->cs_gpiods) 596 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 597 else if (ctlr->cs_gpios) 598 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 599 600 /* Drivers may modify this initial i/o setup, but will 601 * normally rely on the device being setup. Devices 602 * using SPI_CS_HIGH can't coexist well otherwise... 603 */ 604 status = spi_setup(spi); 605 if (status < 0) { 606 dev_err(dev, "can't setup %s, status %d\n", 607 dev_name(&spi->dev), status); 608 goto done; 609 } 610 611 /* Device may be bound to an active driver when this returns */ 612 status = device_add(&spi->dev); 613 if (status < 0) { 614 dev_err(dev, "can't add %s, status %d\n", 615 dev_name(&spi->dev), status); 616 spi_cleanup(spi); 617 } else { 618 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 619 } 620 621done: 622 mutex_unlock(&ctlr->add_lock); 623 return status; 624} 625EXPORT_SYMBOL_GPL(spi_add_device); 626 627/** 628 * spi_new_device - instantiate one new SPI device 629 * @ctlr: Controller to which device is connected 630 * @chip: Describes the SPI device 631 * Context: can sleep 632 * 633 * On typical mainboards, this is purely internal; and it's not needed 634 * after board init creates the hard-wired devices. Some development 635 * platforms may not be able to use spi_register_board_info though, and 636 * this is exported so that for example a USB or parport based adapter 637 * driver could add devices (which it would learn about out-of-band). 638 * 639 * Return: the new device, or NULL. 640 */ 641struct spi_device *spi_new_device(struct spi_controller *ctlr, 642 struct spi_board_info *chip) 643{ 644 struct spi_device *proxy; 645 int status; 646 647 /* NOTE: caller did any chip->bus_num checks necessary. 648 * 649 * Also, unless we change the return value convention to use 650 * error-or-pointer (not NULL-or-pointer), troubleshootability 651 * suggests syslogged diagnostics are best here (ugh). 652 */ 653 654 proxy = spi_alloc_device(ctlr); 655 if (!proxy) 656 return NULL; 657 658 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 659 660 proxy->chip_select = chip->chip_select; 661 proxy->max_speed_hz = chip->max_speed_hz; 662 proxy->mode = chip->mode; 663 proxy->irq = chip->irq; 664 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 665 proxy->dev.platform_data = (void *) chip->platform_data; 666 proxy->controller_data = chip->controller_data; 667 proxy->controller_state = NULL; 668 669 if (chip->properties) { 670 status = device_add_properties(&proxy->dev, chip->properties); 671 if (status) { 672 dev_err(&ctlr->dev, 673 "failed to add properties to '%s': %d\n", 674 chip->modalias, status); 675 goto err_dev_put; 676 } 677 } 678 679 status = spi_add_device(proxy); 680 if (status < 0) 681 goto err_remove_props; 682 683 return proxy; 684 685err_remove_props: 686 if (chip->properties) 687 device_remove_properties(&proxy->dev); 688err_dev_put: 689 spi_dev_put(proxy); 690 return NULL; 691} 692EXPORT_SYMBOL_GPL(spi_new_device); 693 694/** 695 * spi_unregister_device - unregister a single SPI device 696 * @spi: spi_device to unregister 697 * 698 * Start making the passed SPI device vanish. Normally this would be handled 699 * by spi_unregister_controller(). 700 */ 701void spi_unregister_device(struct spi_device *spi) 702{ 703 if (!spi) 704 return; 705 706 if (spi->dev.of_node) { 707 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 708 of_node_put(spi->dev.of_node); 709 } 710 if (ACPI_COMPANION(&spi->dev)) 711 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 712 device_del(&spi->dev); 713 spi_cleanup(spi); 714 put_device(&spi->dev); 715} 716EXPORT_SYMBOL_GPL(spi_unregister_device); 717 718static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 719 struct spi_board_info *bi) 720{ 721 struct spi_device *dev; 722 723 if (ctlr->bus_num != bi->bus_num) 724 return; 725 726 dev = spi_new_device(ctlr, bi); 727 if (!dev) 728 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 729 bi->modalias); 730} 731 732/** 733 * spi_register_board_info - register SPI devices for a given board 734 * @info: array of chip descriptors 735 * @n: how many descriptors are provided 736 * Context: can sleep 737 * 738 * Board-specific early init code calls this (probably during arch_initcall) 739 * with segments of the SPI device table. Any device nodes are created later, 740 * after the relevant parent SPI controller (bus_num) is defined. We keep 741 * this table of devices forever, so that reloading a controller driver will 742 * not make Linux forget about these hard-wired devices. 743 * 744 * Other code can also call this, e.g. a particular add-on board might provide 745 * SPI devices through its expansion connector, so code initializing that board 746 * would naturally declare its SPI devices. 747 * 748 * The board info passed can safely be __initdata ... but be careful of 749 * any embedded pointers (platform_data, etc), they're copied as-is. 750 * Device properties are deep-copied though. 751 * 752 * Return: zero on success, else a negative error code. 753 */ 754int spi_register_board_info(struct spi_board_info const *info, unsigned n) 755{ 756 struct boardinfo *bi; 757 int i; 758 759 if (!n) 760 return 0; 761 762 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 763 if (!bi) 764 return -ENOMEM; 765 766 for (i = 0; i < n; i++, bi++, info++) { 767 struct spi_controller *ctlr; 768 769 memcpy(&bi->board_info, info, sizeof(*info)); 770 if (info->properties) { 771 bi->board_info.properties = 772 property_entries_dup(info->properties); 773 if (IS_ERR(bi->board_info.properties)) 774 return PTR_ERR(bi->board_info.properties); 775 } 776 777 mutex_lock(&board_lock); 778 list_add_tail(&bi->list, &board_list); 779 list_for_each_entry(ctlr, &spi_controller_list, list) 780 spi_match_controller_to_boardinfo(ctlr, 781 &bi->board_info); 782 mutex_unlock(&board_lock); 783 } 784 785 return 0; 786} 787 788/*-------------------------------------------------------------------------*/ 789 790static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 791{ 792 bool enable1 = enable; 793 794 /* 795 * Avoid calling into the driver (or doing delays) if the chip select 796 * isn't actually changing from the last time this was called. 797 */ 798 if (!force && (spi->controller->last_cs_enable == enable) && 799 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 800 return; 801 802 spi->controller->last_cs_enable = enable; 803 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 804 805 if (!spi->controller->set_cs_timing) { 806 if (enable1) 807 spi_delay_exec(&spi->controller->cs_setup, NULL); 808 else 809 spi_delay_exec(&spi->controller->cs_hold, NULL); 810 } 811 812 if (spi->mode & SPI_CS_HIGH) 813 enable = !enable; 814 815 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 816 if (!(spi->mode & SPI_NO_CS)) { 817 if (spi->cs_gpiod) { 818 /* 819 * Historically ACPI has no means of the GPIO polarity and 820 * thus the SPISerialBus() resource defines it on the per-chip 821 * basis. In order to avoid a chain of negations, the GPIO 822 * polarity is considered being Active High. Even for the cases 823 * when _DSD() is involved (in the updated versions of ACPI) 824 * the GPIO CS polarity must be defined Active High to avoid 825 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 826 * into account. 827 */ 828 if (has_acpi_companion(&spi->dev)) 829 gpiod_set_value_cansleep(spi->cs_gpiod, !enable); 830 else 831 /* Polarity handled by GPIO library */ 832 gpiod_set_value_cansleep(spi->cs_gpiod, enable1); 833 } else { 834 /* 835 * invert the enable line, as active low is 836 * default for SPI. 837 */ 838 gpio_set_value_cansleep(spi->cs_gpio, !enable); 839 } 840 } 841 /* Some SPI masters need both GPIO CS & slave_select */ 842 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 843 spi->controller->set_cs) 844 spi->controller->set_cs(spi, !enable); 845 } else if (spi->controller->set_cs) { 846 spi->controller->set_cs(spi, !enable); 847 } 848 849 if (!spi->controller->set_cs_timing) { 850 if (!enable1) 851 spi_delay_exec(&spi->controller->cs_inactive, NULL); 852 } 853} 854 855#ifdef CONFIG_HAS_DMA 856int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 857 struct sg_table *sgt, void *buf, size_t len, 858 enum dma_data_direction dir) 859{ 860 const bool vmalloced_buf = is_vmalloc_addr(buf); 861 unsigned int max_seg_size = dma_get_max_seg_size(dev); 862#ifdef CONFIG_HIGHMEM 863 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 864 (unsigned long)buf < (PKMAP_BASE + 865 (LAST_PKMAP * PAGE_SIZE))); 866#else 867 const bool kmap_buf = false; 868#endif 869 int desc_len; 870 int sgs; 871 struct page *vm_page; 872 struct scatterlist *sg; 873 void *sg_buf; 874 size_t min; 875 int i, ret; 876 877 if (vmalloced_buf || kmap_buf) { 878 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 879 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 880 } else if (virt_addr_valid(buf)) { 881 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 882 sgs = DIV_ROUND_UP(len, desc_len); 883 } else { 884 return -EINVAL; 885 } 886 887 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 888 if (ret != 0) 889 return ret; 890 891 sg = &sgt->sgl[0]; 892 for (i = 0; i < sgs; i++) { 893 894 if (vmalloced_buf || kmap_buf) { 895 /* 896 * Next scatterlist entry size is the minimum between 897 * the desc_len and the remaining buffer length that 898 * fits in a page. 899 */ 900 min = min_t(size_t, desc_len, 901 min_t(size_t, len, 902 PAGE_SIZE - offset_in_page(buf))); 903 if (vmalloced_buf) 904 vm_page = vmalloc_to_page(buf); 905 else 906 vm_page = kmap_to_page(buf); 907 if (!vm_page) { 908 sg_free_table(sgt); 909 return -ENOMEM; 910 } 911 sg_set_page(sg, vm_page, 912 min, offset_in_page(buf)); 913 } else { 914 min = min_t(size_t, len, desc_len); 915 sg_buf = buf; 916 sg_set_buf(sg, sg_buf, min); 917 } 918 919 buf += min; 920 len -= min; 921 sg = sg_next(sg); 922 } 923 924 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 925 if (!ret) 926 ret = -ENOMEM; 927 if (ret < 0) { 928 sg_free_table(sgt); 929 return ret; 930 } 931 932 sgt->nents = ret; 933 934 return 0; 935} 936 937void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 938 struct sg_table *sgt, enum dma_data_direction dir) 939{ 940 if (sgt->orig_nents) { 941 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 942 sg_free_table(sgt); 943 sgt->orig_nents = 0; 944 sgt->nents = 0; 945 } 946} 947 948static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 949{ 950 struct device *tx_dev, *rx_dev; 951 struct spi_transfer *xfer; 952 int ret; 953 954 if (!ctlr->can_dma) 955 return 0; 956 957 if (ctlr->dma_tx) 958 tx_dev = ctlr->dma_tx->device->dev; 959 else 960 tx_dev = ctlr->dev.parent; 961 962 if (ctlr->dma_rx) 963 rx_dev = ctlr->dma_rx->device->dev; 964 else 965 rx_dev = ctlr->dev.parent; 966 967 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 968 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 969 continue; 970 971 if (xfer->tx_buf != NULL) { 972 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 973 (void *)xfer->tx_buf, xfer->len, 974 DMA_TO_DEVICE); 975 if (ret != 0) 976 return ret; 977 } 978 979 if (xfer->rx_buf != NULL) { 980 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 981 xfer->rx_buf, xfer->len, 982 DMA_FROM_DEVICE); 983 if (ret != 0) { 984 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 985 DMA_TO_DEVICE); 986 return ret; 987 } 988 } 989 } 990 991 ctlr->cur_msg_mapped = true; 992 993 return 0; 994} 995 996static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 997{ 998 struct spi_transfer *xfer; 999 struct device *tx_dev, *rx_dev; 1000 1001 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1002 return 0; 1003 1004 if (ctlr->dma_tx) 1005 tx_dev = ctlr->dma_tx->device->dev; 1006 else 1007 tx_dev = ctlr->dev.parent; 1008 1009 if (ctlr->dma_rx) 1010 rx_dev = ctlr->dma_rx->device->dev; 1011 else 1012 rx_dev = ctlr->dev.parent; 1013 1014 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1015 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1016 continue; 1017 1018 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1019 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1020 } 1021 1022 ctlr->cur_msg_mapped = false; 1023 1024 return 0; 1025} 1026#else /* !CONFIG_HAS_DMA */ 1027static inline int __spi_map_msg(struct spi_controller *ctlr, 1028 struct spi_message *msg) 1029{ 1030 return 0; 1031} 1032 1033static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1034 struct spi_message *msg) 1035{ 1036 return 0; 1037} 1038#endif /* !CONFIG_HAS_DMA */ 1039 1040static inline int spi_unmap_msg(struct spi_controller *ctlr, 1041 struct spi_message *msg) 1042{ 1043 struct spi_transfer *xfer; 1044 1045 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1046 /* 1047 * Restore the original value of tx_buf or rx_buf if they are 1048 * NULL. 1049 */ 1050 if (xfer->tx_buf == ctlr->dummy_tx) 1051 xfer->tx_buf = NULL; 1052 if (xfer->rx_buf == ctlr->dummy_rx) 1053 xfer->rx_buf = NULL; 1054 } 1055 1056 return __spi_unmap_msg(ctlr, msg); 1057} 1058 1059static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1060{ 1061 struct spi_transfer *xfer; 1062 void *tmp; 1063 unsigned int max_tx, max_rx; 1064 1065 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1066 && !(msg->spi->mode & SPI_3WIRE)) { 1067 max_tx = 0; 1068 max_rx = 0; 1069 1070 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1071 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1072 !xfer->tx_buf) 1073 max_tx = max(xfer->len, max_tx); 1074 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1075 !xfer->rx_buf) 1076 max_rx = max(xfer->len, max_rx); 1077 } 1078 1079 if (max_tx) { 1080 tmp = krealloc(ctlr->dummy_tx, max_tx, 1081 GFP_KERNEL | GFP_DMA); 1082 if (!tmp) 1083 return -ENOMEM; 1084 ctlr->dummy_tx = tmp; 1085 memset(tmp, 0, max_tx); 1086 } 1087 1088 if (max_rx) { 1089 tmp = krealloc(ctlr->dummy_rx, max_rx, 1090 GFP_KERNEL | GFP_DMA); 1091 if (!tmp) 1092 return -ENOMEM; 1093 ctlr->dummy_rx = tmp; 1094 } 1095 1096 if (max_tx || max_rx) { 1097 list_for_each_entry(xfer, &msg->transfers, 1098 transfer_list) { 1099 if (!xfer->len) 1100 continue; 1101 if (!xfer->tx_buf) 1102 xfer->tx_buf = ctlr->dummy_tx; 1103 if (!xfer->rx_buf) 1104 xfer->rx_buf = ctlr->dummy_rx; 1105 } 1106 } 1107 } 1108 1109 return __spi_map_msg(ctlr, msg); 1110} 1111 1112static int spi_transfer_wait(struct spi_controller *ctlr, 1113 struct spi_message *msg, 1114 struct spi_transfer *xfer) 1115{ 1116 struct spi_statistics *statm = &ctlr->statistics; 1117 struct spi_statistics *stats = &msg->spi->statistics; 1118 u32 speed_hz = xfer->speed_hz; 1119 unsigned long long ms; 1120 1121 if (spi_controller_is_slave(ctlr)) { 1122 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1123 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1124 return -EINTR; 1125 } 1126 } else { 1127 if (!speed_hz) 1128 speed_hz = 100000; 1129 1130 ms = 8LL * 1000LL * xfer->len; 1131 do_div(ms, speed_hz); 1132 ms += ms + 200; /* some tolerance */ 1133 1134 if (ms > UINT_MAX) 1135 ms = UINT_MAX; 1136 1137 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1138 msecs_to_jiffies(ms)); 1139 1140 if (ms == 0) { 1141 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1142 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1143 dev_err(&msg->spi->dev, 1144 "SPI transfer timed out\n"); 1145 return -ETIMEDOUT; 1146 } 1147 } 1148 1149 return 0; 1150} 1151 1152static void _spi_transfer_delay_ns(u32 ns) 1153{ 1154 if (!ns) 1155 return; 1156 if (ns <= 1000) { 1157 ndelay(ns); 1158 } else { 1159 u32 us = DIV_ROUND_UP(ns, 1000); 1160 1161 if (us <= 10) 1162 udelay(us); 1163 else 1164 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1165 } 1166} 1167 1168int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1169{ 1170 u32 delay = _delay->value; 1171 u32 unit = _delay->unit; 1172 u32 hz; 1173 1174 if (!delay) 1175 return 0; 1176 1177 switch (unit) { 1178 case SPI_DELAY_UNIT_USECS: 1179 delay *= 1000; 1180 break; 1181 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1182 break; 1183 case SPI_DELAY_UNIT_SCK: 1184 /* clock cycles need to be obtained from spi_transfer */ 1185 if (!xfer) 1186 return -EINVAL; 1187 /* if there is no effective speed know, then approximate 1188 * by underestimating with half the requested hz 1189 */ 1190 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1191 if (!hz) 1192 return -EINVAL; 1193 delay *= DIV_ROUND_UP(1000000000, hz); 1194 break; 1195 default: 1196 return -EINVAL; 1197 } 1198 1199 return delay; 1200} 1201EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1202 1203int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1204{ 1205 int delay; 1206 1207 might_sleep(); 1208 1209 if (!_delay) 1210 return -EINVAL; 1211 1212 delay = spi_delay_to_ns(_delay, xfer); 1213 if (delay < 0) 1214 return delay; 1215 1216 _spi_transfer_delay_ns(delay); 1217 1218 return 0; 1219} 1220EXPORT_SYMBOL_GPL(spi_delay_exec); 1221 1222static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1223 struct spi_transfer *xfer) 1224{ 1225 u32 delay = xfer->cs_change_delay.value; 1226 u32 unit = xfer->cs_change_delay.unit; 1227 int ret; 1228 1229 /* return early on "fast" mode - for everything but USECS */ 1230 if (!delay) { 1231 if (unit == SPI_DELAY_UNIT_USECS) 1232 _spi_transfer_delay_ns(10000); 1233 return; 1234 } 1235 1236 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1237 if (ret) { 1238 dev_err_once(&msg->spi->dev, 1239 "Use of unsupported delay unit %i, using default of 10us\n", 1240 unit); 1241 _spi_transfer_delay_ns(10000); 1242 } 1243} 1244 1245/* 1246 * spi_transfer_one_message - Default implementation of transfer_one_message() 1247 * 1248 * This is a standard implementation of transfer_one_message() for 1249 * drivers which implement a transfer_one() operation. It provides 1250 * standard handling of delays and chip select management. 1251 */ 1252static int spi_transfer_one_message(struct spi_controller *ctlr, 1253 struct spi_message *msg) 1254{ 1255 struct spi_transfer *xfer; 1256 bool keep_cs = false; 1257 int ret = 0; 1258 struct spi_statistics *statm = &ctlr->statistics; 1259 struct spi_statistics *stats = &msg->spi->statistics; 1260 1261 spi_set_cs(msg->spi, true, false); 1262 1263 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1264 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1265 1266 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1267 trace_spi_transfer_start(msg, xfer); 1268 1269 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1270 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1271 1272 if (!ctlr->ptp_sts_supported) { 1273 xfer->ptp_sts_word_pre = 0; 1274 ptp_read_system_prets(xfer->ptp_sts); 1275 } 1276 1277 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1278 reinit_completion(&ctlr->xfer_completion); 1279 1280fallback_pio: 1281 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1282 if (ret < 0) { 1283 if (ctlr->cur_msg_mapped && 1284 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1285 __spi_unmap_msg(ctlr, msg); 1286 ctlr->fallback = true; 1287 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1288 goto fallback_pio; 1289 } 1290 1291 SPI_STATISTICS_INCREMENT_FIELD(statm, 1292 errors); 1293 SPI_STATISTICS_INCREMENT_FIELD(stats, 1294 errors); 1295 dev_err(&msg->spi->dev, 1296 "SPI transfer failed: %d\n", ret); 1297 goto out; 1298 } 1299 1300 if (ret > 0) { 1301 ret = spi_transfer_wait(ctlr, msg, xfer); 1302 if (ret < 0) 1303 msg->status = ret; 1304 } 1305 } else { 1306 if (xfer->len) 1307 dev_err(&msg->spi->dev, 1308 "Bufferless transfer has length %u\n", 1309 xfer->len); 1310 } 1311 1312 if (!ctlr->ptp_sts_supported) { 1313 ptp_read_system_postts(xfer->ptp_sts); 1314 xfer->ptp_sts_word_post = xfer->len; 1315 } 1316 1317 trace_spi_transfer_stop(msg, xfer); 1318 1319 if (msg->status != -EINPROGRESS) 1320 goto out; 1321 1322 spi_transfer_delay_exec(xfer); 1323 1324 if (xfer->cs_change) { 1325 if (list_is_last(&xfer->transfer_list, 1326 &msg->transfers)) { 1327 keep_cs = true; 1328 } else { 1329 spi_set_cs(msg->spi, false, false); 1330 _spi_transfer_cs_change_delay(msg, xfer); 1331 spi_set_cs(msg->spi, true, false); 1332 } 1333 } 1334 1335 msg->actual_length += xfer->len; 1336 } 1337 1338out: 1339 if (ret != 0 || !keep_cs) 1340 spi_set_cs(msg->spi, false, false); 1341 1342 if (msg->status == -EINPROGRESS) 1343 msg->status = ret; 1344 1345 if (msg->status && ctlr->handle_err) 1346 ctlr->handle_err(ctlr, msg); 1347 1348 spi_finalize_current_message(ctlr); 1349 1350 return ret; 1351} 1352 1353/** 1354 * spi_finalize_current_transfer - report completion of a transfer 1355 * @ctlr: the controller reporting completion 1356 * 1357 * Called by SPI drivers using the core transfer_one_message() 1358 * implementation to notify it that the current interrupt driven 1359 * transfer has finished and the next one may be scheduled. 1360 */ 1361void spi_finalize_current_transfer(struct spi_controller *ctlr) 1362{ 1363 complete(&ctlr->xfer_completion); 1364} 1365EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1366 1367static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1368{ 1369 if (ctlr->auto_runtime_pm) { 1370 pm_runtime_mark_last_busy(ctlr->dev.parent); 1371 pm_runtime_put_autosuspend(ctlr->dev.parent); 1372 } 1373} 1374 1375/** 1376 * __spi_pump_messages - function which processes spi message queue 1377 * @ctlr: controller to process queue for 1378 * @in_kthread: true if we are in the context of the message pump thread 1379 * 1380 * This function checks if there is any spi message in the queue that 1381 * needs processing and if so call out to the driver to initialize hardware 1382 * and transfer each message. 1383 * 1384 * Note that it is called both from the kthread itself and also from 1385 * inside spi_sync(); the queue extraction handling at the top of the 1386 * function should deal with this safely. 1387 */ 1388static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1389{ 1390 struct spi_transfer *xfer; 1391 struct spi_message *msg; 1392 bool was_busy = false; 1393 unsigned long flags; 1394 int ret; 1395 1396 /* Lock queue */ 1397 spin_lock_irqsave(&ctlr->queue_lock, flags); 1398 1399 /* Make sure we are not already running a message */ 1400 if (ctlr->cur_msg) { 1401 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1402 return; 1403 } 1404 1405 /* If another context is idling the device then defer */ 1406 if (ctlr->idling) { 1407 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1408 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1409 return; 1410 } 1411 1412 /* Check if the queue is idle */ 1413 if (list_empty(&ctlr->queue) || !ctlr->running) { 1414 if (!ctlr->busy) { 1415 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1416 return; 1417 } 1418 1419 /* Defer any non-atomic teardown to the thread */ 1420 if (!in_kthread) { 1421 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1422 !ctlr->unprepare_transfer_hardware) { 1423 spi_idle_runtime_pm(ctlr); 1424 ctlr->busy = false; 1425 trace_spi_controller_idle(ctlr); 1426 } else { 1427 kthread_queue_work(ctlr->kworker, 1428 &ctlr->pump_messages); 1429 } 1430 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1431 return; 1432 } 1433 1434 ctlr->busy = false; 1435 ctlr->idling = true; 1436 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1437 1438 kfree(ctlr->dummy_rx); 1439 ctlr->dummy_rx = NULL; 1440 kfree(ctlr->dummy_tx); 1441 ctlr->dummy_tx = NULL; 1442 if (ctlr->unprepare_transfer_hardware && 1443 ctlr->unprepare_transfer_hardware(ctlr)) 1444 dev_err(&ctlr->dev, 1445 "failed to unprepare transfer hardware\n"); 1446 spi_idle_runtime_pm(ctlr); 1447 trace_spi_controller_idle(ctlr); 1448 1449 spin_lock_irqsave(&ctlr->queue_lock, flags); 1450 ctlr->idling = false; 1451 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1452 return; 1453 } 1454 1455 /* Extract head of queue */ 1456 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1457 ctlr->cur_msg = msg; 1458 1459 list_del_init(&msg->queue); 1460 if (ctlr->busy) 1461 was_busy = true; 1462 else 1463 ctlr->busy = true; 1464 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1465 1466 mutex_lock(&ctlr->io_mutex); 1467 1468 if (!was_busy && ctlr->auto_runtime_pm) { 1469 ret = pm_runtime_get_sync(ctlr->dev.parent); 1470 if (ret < 0) { 1471 pm_runtime_put_noidle(ctlr->dev.parent); 1472 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1473 ret); 1474 mutex_unlock(&ctlr->io_mutex); 1475 return; 1476 } 1477 } 1478 1479 if (!was_busy) 1480 trace_spi_controller_busy(ctlr); 1481 1482 if (!was_busy && ctlr->prepare_transfer_hardware) { 1483 ret = ctlr->prepare_transfer_hardware(ctlr); 1484 if (ret) { 1485 dev_err(&ctlr->dev, 1486 "failed to prepare transfer hardware: %d\n", 1487 ret); 1488 1489 if (ctlr->auto_runtime_pm) 1490 pm_runtime_put(ctlr->dev.parent); 1491 1492 msg->status = ret; 1493 spi_finalize_current_message(ctlr); 1494 1495 mutex_unlock(&ctlr->io_mutex); 1496 return; 1497 } 1498 } 1499 1500 trace_spi_message_start(msg); 1501 1502 if (ctlr->prepare_message) { 1503 ret = ctlr->prepare_message(ctlr, msg); 1504 if (ret) { 1505 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1506 ret); 1507 msg->status = ret; 1508 spi_finalize_current_message(ctlr); 1509 goto out; 1510 } 1511 ctlr->cur_msg_prepared = true; 1512 } 1513 1514 ret = spi_map_msg(ctlr, msg); 1515 if (ret) { 1516 msg->status = ret; 1517 spi_finalize_current_message(ctlr); 1518 goto out; 1519 } 1520 1521 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1522 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1523 xfer->ptp_sts_word_pre = 0; 1524 ptp_read_system_prets(xfer->ptp_sts); 1525 } 1526 } 1527 1528 ret = ctlr->transfer_one_message(ctlr, msg); 1529 if (ret) { 1530 dev_err(&ctlr->dev, 1531 "failed to transfer one message from queue\n"); 1532 goto out; 1533 } 1534 1535out: 1536 mutex_unlock(&ctlr->io_mutex); 1537 1538 /* Prod the scheduler in case transfer_one() was busy waiting */ 1539 if (!ret) 1540 cond_resched(); 1541} 1542 1543/** 1544 * spi_pump_messages - kthread work function which processes spi message queue 1545 * @work: pointer to kthread work struct contained in the controller struct 1546 */ 1547static void spi_pump_messages(struct kthread_work *work) 1548{ 1549 struct spi_controller *ctlr = 1550 container_of(work, struct spi_controller, pump_messages); 1551 1552 __spi_pump_messages(ctlr, true); 1553} 1554 1555/** 1556 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1557 * TX timestamp for the requested byte from the SPI 1558 * transfer. The frequency with which this function 1559 * must be called (once per word, once for the whole 1560 * transfer, once per batch of words etc) is arbitrary 1561 * as long as the @tx buffer offset is greater than or 1562 * equal to the requested byte at the time of the 1563 * call. The timestamp is only taken once, at the 1564 * first such call. It is assumed that the driver 1565 * advances its @tx buffer pointer monotonically. 1566 * @ctlr: Pointer to the spi_controller structure of the driver 1567 * @xfer: Pointer to the transfer being timestamped 1568 * @progress: How many words (not bytes) have been transferred so far 1569 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1570 * transfer, for less jitter in time measurement. Only compatible 1571 * with PIO drivers. If true, must follow up with 1572 * spi_take_timestamp_post or otherwise system will crash. 1573 * WARNING: for fully predictable results, the CPU frequency must 1574 * also be under control (governor). 1575 */ 1576void spi_take_timestamp_pre(struct spi_controller *ctlr, 1577 struct spi_transfer *xfer, 1578 size_t progress, bool irqs_off) 1579{ 1580 if (!xfer->ptp_sts) 1581 return; 1582 1583 if (xfer->timestamped) 1584 return; 1585 1586 if (progress > xfer->ptp_sts_word_pre) 1587 return; 1588 1589 /* Capture the resolution of the timestamp */ 1590 xfer->ptp_sts_word_pre = progress; 1591 1592 if (irqs_off) { 1593 local_irq_save(ctlr->irq_flags); 1594 preempt_disable(); 1595 } 1596 1597 ptp_read_system_prets(xfer->ptp_sts); 1598} 1599EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1600 1601/** 1602 * spi_take_timestamp_post - helper for drivers to collect the end of the 1603 * TX timestamp for the requested byte from the SPI 1604 * transfer. Can be called with an arbitrary 1605 * frequency: only the first call where @tx exceeds 1606 * or is equal to the requested word will be 1607 * timestamped. 1608 * @ctlr: Pointer to the spi_controller structure of the driver 1609 * @xfer: Pointer to the transfer being timestamped 1610 * @progress: How many words (not bytes) have been transferred so far 1611 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1612 */ 1613void spi_take_timestamp_post(struct spi_controller *ctlr, 1614 struct spi_transfer *xfer, 1615 size_t progress, bool irqs_off) 1616{ 1617 if (!xfer->ptp_sts) 1618 return; 1619 1620 if (xfer->timestamped) 1621 return; 1622 1623 if (progress < xfer->ptp_sts_word_post) 1624 return; 1625 1626 ptp_read_system_postts(xfer->ptp_sts); 1627 1628 if (irqs_off) { 1629 local_irq_restore(ctlr->irq_flags); 1630 preempt_enable(); 1631 } 1632 1633 /* Capture the resolution of the timestamp */ 1634 xfer->ptp_sts_word_post = progress; 1635 1636 xfer->timestamped = true; 1637} 1638EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1639 1640/** 1641 * spi_set_thread_rt - set the controller to pump at realtime priority 1642 * @ctlr: controller to boost priority of 1643 * 1644 * This can be called because the controller requested realtime priority 1645 * (by setting the ->rt value before calling spi_register_controller()) or 1646 * because a device on the bus said that its transfers needed realtime 1647 * priority. 1648 * 1649 * NOTE: at the moment if any device on a bus says it needs realtime then 1650 * the thread will be at realtime priority for all transfers on that 1651 * controller. If this eventually becomes a problem we may see if we can 1652 * find a way to boost the priority only temporarily during relevant 1653 * transfers. 1654 */ 1655static void spi_set_thread_rt(struct spi_controller *ctlr) 1656{ 1657 dev_info(&ctlr->dev, 1658 "will run message pump with realtime priority\n"); 1659 sched_set_fifo(ctlr->kworker->task); 1660} 1661 1662static int spi_init_queue(struct spi_controller *ctlr) 1663{ 1664 ctlr->running = false; 1665 ctlr->busy = false; 1666 1667 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1668 if (IS_ERR(ctlr->kworker)) { 1669 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1670 return PTR_ERR(ctlr->kworker); 1671 } 1672 1673 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1674 1675 /* 1676 * Controller config will indicate if this controller should run the 1677 * message pump with high (realtime) priority to reduce the transfer 1678 * latency on the bus by minimising the delay between a transfer 1679 * request and the scheduling of the message pump thread. Without this 1680 * setting the message pump thread will remain at default priority. 1681 */ 1682 if (ctlr->rt) 1683 spi_set_thread_rt(ctlr); 1684 1685 return 0; 1686} 1687 1688/** 1689 * spi_get_next_queued_message() - called by driver to check for queued 1690 * messages 1691 * @ctlr: the controller to check for queued messages 1692 * 1693 * If there are more messages in the queue, the next message is returned from 1694 * this call. 1695 * 1696 * Return: the next message in the queue, else NULL if the queue is empty. 1697 */ 1698struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1699{ 1700 struct spi_message *next; 1701 unsigned long flags; 1702 1703 /* get a pointer to the next message, if any */ 1704 spin_lock_irqsave(&ctlr->queue_lock, flags); 1705 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1706 queue); 1707 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1708 1709 return next; 1710} 1711EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1712 1713/** 1714 * spi_finalize_current_message() - the current message is complete 1715 * @ctlr: the controller to return the message to 1716 * 1717 * Called by the driver to notify the core that the message in the front of the 1718 * queue is complete and can be removed from the queue. 1719 */ 1720void spi_finalize_current_message(struct spi_controller *ctlr) 1721{ 1722 struct spi_transfer *xfer; 1723 struct spi_message *mesg; 1724 unsigned long flags; 1725 int ret; 1726 1727 spin_lock_irqsave(&ctlr->queue_lock, flags); 1728 mesg = ctlr->cur_msg; 1729 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1730 1731 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1732 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1733 ptp_read_system_postts(xfer->ptp_sts); 1734 xfer->ptp_sts_word_post = xfer->len; 1735 } 1736 } 1737 1738 if (unlikely(ctlr->ptp_sts_supported)) 1739 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1740 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1741 1742 spi_unmap_msg(ctlr, mesg); 1743 1744 /* In the prepare_messages callback the spi bus has the opportunity to 1745 * split a transfer to smaller chunks. 1746 * Release splited transfers here since spi_map_msg is done on the 1747 * splited transfers. 1748 */ 1749 spi_res_release(ctlr, mesg); 1750 1751 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1752 ret = ctlr->unprepare_message(ctlr, mesg); 1753 if (ret) { 1754 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1755 ret); 1756 } 1757 } 1758 1759 spin_lock_irqsave(&ctlr->queue_lock, flags); 1760 ctlr->cur_msg = NULL; 1761 ctlr->cur_msg_prepared = false; 1762 ctlr->fallback = false; 1763 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1764 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1765 1766 trace_spi_message_done(mesg); 1767 1768 mesg->state = NULL; 1769 if (mesg->complete) 1770 mesg->complete(mesg->context); 1771} 1772EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1773 1774static int spi_start_queue(struct spi_controller *ctlr) 1775{ 1776 unsigned long flags; 1777 1778 spin_lock_irqsave(&ctlr->queue_lock, flags); 1779 1780 if (ctlr->running || ctlr->busy) { 1781 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1782 return -EBUSY; 1783 } 1784 1785 ctlr->running = true; 1786 ctlr->cur_msg = NULL; 1787 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1788 1789 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1790 1791 return 0; 1792} 1793 1794static int spi_stop_queue(struct spi_controller *ctlr) 1795{ 1796 unsigned long flags; 1797 unsigned limit = 500; 1798 int ret = 0; 1799 1800 spin_lock_irqsave(&ctlr->queue_lock, flags); 1801 1802 /* 1803 * This is a bit lame, but is optimized for the common execution path. 1804 * A wait_queue on the ctlr->busy could be used, but then the common 1805 * execution path (pump_messages) would be required to call wake_up or 1806 * friends on every SPI message. Do this instead. 1807 */ 1808 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1809 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1810 usleep_range(10000, 11000); 1811 spin_lock_irqsave(&ctlr->queue_lock, flags); 1812 } 1813 1814 if (!list_empty(&ctlr->queue) || ctlr->busy) 1815 ret = -EBUSY; 1816 else 1817 ctlr->running = false; 1818 1819 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1820 1821 if (ret) { 1822 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1823 return ret; 1824 } 1825 return ret; 1826} 1827 1828static int spi_destroy_queue(struct spi_controller *ctlr) 1829{ 1830 int ret; 1831 1832 ret = spi_stop_queue(ctlr); 1833 1834 /* 1835 * kthread_flush_worker will block until all work is done. 1836 * If the reason that stop_queue timed out is that the work will never 1837 * finish, then it does no good to call flush/stop thread, so 1838 * return anyway. 1839 */ 1840 if (ret) { 1841 dev_err(&ctlr->dev, "problem destroying queue\n"); 1842 return ret; 1843 } 1844 1845 kthread_destroy_worker(ctlr->kworker); 1846 1847 return 0; 1848} 1849 1850static int __spi_queued_transfer(struct spi_device *spi, 1851 struct spi_message *msg, 1852 bool need_pump) 1853{ 1854 struct spi_controller *ctlr = spi->controller; 1855 unsigned long flags; 1856 1857 spin_lock_irqsave(&ctlr->queue_lock, flags); 1858 1859 if (!ctlr->running) { 1860 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1861 return -ESHUTDOWN; 1862 } 1863 msg->actual_length = 0; 1864 msg->status = -EINPROGRESS; 1865 1866 list_add_tail(&msg->queue, &ctlr->queue); 1867 if (!ctlr->busy && need_pump) 1868 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1869 1870 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1871 return 0; 1872} 1873 1874/** 1875 * spi_queued_transfer - transfer function for queued transfers 1876 * @spi: spi device which is requesting transfer 1877 * @msg: spi message which is to handled is queued to driver queue 1878 * 1879 * Return: zero on success, else a negative error code. 1880 */ 1881static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1882{ 1883 return __spi_queued_transfer(spi, msg, true); 1884} 1885 1886static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1887{ 1888 int ret; 1889 1890 ctlr->transfer = spi_queued_transfer; 1891 if (!ctlr->transfer_one_message) 1892 ctlr->transfer_one_message = spi_transfer_one_message; 1893 1894 /* Initialize and start queue */ 1895 ret = spi_init_queue(ctlr); 1896 if (ret) { 1897 dev_err(&ctlr->dev, "problem initializing queue\n"); 1898 goto err_init_queue; 1899 } 1900 ctlr->queued = true; 1901 ret = spi_start_queue(ctlr); 1902 if (ret) { 1903 dev_err(&ctlr->dev, "problem starting queue\n"); 1904 goto err_start_queue; 1905 } 1906 1907 return 0; 1908 1909err_start_queue: 1910 spi_destroy_queue(ctlr); 1911err_init_queue: 1912 return ret; 1913} 1914 1915/** 1916 * spi_flush_queue - Send all pending messages in the queue from the callers' 1917 * context 1918 * @ctlr: controller to process queue for 1919 * 1920 * This should be used when one wants to ensure all pending messages have been 1921 * sent before doing something. Is used by the spi-mem code to make sure SPI 1922 * memory operations do not preempt regular SPI transfers that have been queued 1923 * before the spi-mem operation. 1924 */ 1925void spi_flush_queue(struct spi_controller *ctlr) 1926{ 1927 if (ctlr->transfer == spi_queued_transfer) 1928 __spi_pump_messages(ctlr, false); 1929} 1930 1931/*-------------------------------------------------------------------------*/ 1932 1933#if defined(CONFIG_OF) 1934static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1935 struct device_node *nc) 1936{ 1937 u32 value; 1938 int rc; 1939 1940 /* Mode (clock phase/polarity/etc.) */ 1941 if (of_property_read_bool(nc, "spi-cpha")) 1942 spi->mode |= SPI_CPHA; 1943 if (of_property_read_bool(nc, "spi-cpol")) 1944 spi->mode |= SPI_CPOL; 1945 if (of_property_read_bool(nc, "spi-3wire")) 1946 spi->mode |= SPI_3WIRE; 1947 if (of_property_read_bool(nc, "spi-lsb-first")) 1948 spi->mode |= SPI_LSB_FIRST; 1949 if (of_property_read_bool(nc, "spi-cs-high")) 1950 spi->mode |= SPI_CS_HIGH; 1951 1952 /* Device DUAL/QUAD mode */ 1953 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1954 switch (value) { 1955 case 1: 1956 break; 1957 case 2: 1958 spi->mode |= SPI_TX_DUAL; 1959 break; 1960 case 4: 1961 spi->mode |= SPI_TX_QUAD; 1962 break; 1963 case 8: 1964 spi->mode |= SPI_TX_OCTAL; 1965 break; 1966 default: 1967 dev_warn(&ctlr->dev, 1968 "spi-tx-bus-width %d not supported\n", 1969 value); 1970 break; 1971 } 1972 } 1973 1974 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1975 switch (value) { 1976 case 1: 1977 break; 1978 case 2: 1979 spi->mode |= SPI_RX_DUAL; 1980 break; 1981 case 4: 1982 spi->mode |= SPI_RX_QUAD; 1983 break; 1984 case 8: 1985 spi->mode |= SPI_RX_OCTAL; 1986 break; 1987 default: 1988 dev_warn(&ctlr->dev, 1989 "spi-rx-bus-width %d not supported\n", 1990 value); 1991 break; 1992 } 1993 } 1994 1995 if (spi_controller_is_slave(ctlr)) { 1996 if (!of_node_name_eq(nc, "slave")) { 1997 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1998 nc); 1999 return -EINVAL; 2000 } 2001 return 0; 2002 } 2003 2004 /* Device address */ 2005 rc = of_property_read_u32(nc, "reg", &value); 2006 if (rc) { 2007 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2008 nc, rc); 2009 return rc; 2010 } 2011 spi->chip_select = value; 2012 2013 /* Device speed */ 2014 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2015 spi->max_speed_hz = value; 2016 2017 return 0; 2018} 2019 2020static struct spi_device * 2021of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2022{ 2023 struct spi_device *spi; 2024 int rc; 2025 2026 /* Alloc an spi_device */ 2027 spi = spi_alloc_device(ctlr); 2028 if (!spi) { 2029 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2030 rc = -ENOMEM; 2031 goto err_out; 2032 } 2033 2034 /* Select device driver */ 2035 rc = of_modalias_node(nc, spi->modalias, 2036 sizeof(spi->modalias)); 2037 if (rc < 0) { 2038 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2039 goto err_out; 2040 } 2041 2042 rc = of_spi_parse_dt(ctlr, spi, nc); 2043 if (rc) 2044 goto err_out; 2045 2046 /* Store a pointer to the node in the device structure */ 2047 of_node_get(nc); 2048 spi->dev.of_node = nc; 2049 spi->dev.fwnode = of_fwnode_handle(nc); 2050 2051 /* Register the new device */ 2052 rc = spi_add_device(spi); 2053 if (rc) { 2054 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2055 goto err_of_node_put; 2056 } 2057 2058 return spi; 2059 2060err_of_node_put: 2061 of_node_put(nc); 2062err_out: 2063 spi_dev_put(spi); 2064 return ERR_PTR(rc); 2065} 2066 2067/** 2068 * of_register_spi_devices() - Register child devices onto the SPI bus 2069 * @ctlr: Pointer to spi_controller device 2070 * 2071 * Registers an spi_device for each child node of controller node which 2072 * represents a valid SPI slave. 2073 */ 2074static void of_register_spi_devices(struct spi_controller *ctlr) 2075{ 2076 struct spi_device *spi; 2077 struct device_node *nc; 2078 2079 if (!ctlr->dev.of_node) 2080 return; 2081 2082 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2083 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2084 continue; 2085 spi = of_register_spi_device(ctlr, nc); 2086 if (IS_ERR(spi)) { 2087 dev_warn(&ctlr->dev, 2088 "Failed to create SPI device for %pOF\n", nc); 2089 of_node_clear_flag(nc, OF_POPULATED); 2090 } 2091 } 2092} 2093#else 2094static void of_register_spi_devices(struct spi_controller *ctlr) { } 2095#endif 2096 2097#ifdef CONFIG_ACPI 2098struct acpi_spi_lookup { 2099 struct spi_controller *ctlr; 2100 u32 max_speed_hz; 2101 u32 mode; 2102 int irq; 2103 u8 bits_per_word; 2104 u8 chip_select; 2105}; 2106 2107static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2108 struct acpi_spi_lookup *lookup) 2109{ 2110 const union acpi_object *obj; 2111 2112 if (!x86_apple_machine) 2113 return; 2114 2115 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2116 && obj->buffer.length >= 4) 2117 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2118 2119 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2120 && obj->buffer.length == 8) 2121 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2122 2123 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2124 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2125 lookup->mode |= SPI_LSB_FIRST; 2126 2127 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2128 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2129 lookup->mode |= SPI_CPOL; 2130 2131 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2132 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2133 lookup->mode |= SPI_CPHA; 2134} 2135 2136static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2137{ 2138 struct acpi_spi_lookup *lookup = data; 2139 struct spi_controller *ctlr = lookup->ctlr; 2140 2141 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2142 struct acpi_resource_spi_serialbus *sb; 2143 acpi_handle parent_handle; 2144 acpi_status status; 2145 2146 sb = &ares->data.spi_serial_bus; 2147 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2148 2149 status = acpi_get_handle(NULL, 2150 sb->resource_source.string_ptr, 2151 &parent_handle); 2152 2153 if (ACPI_FAILURE(status) || 2154 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2155 return -ENODEV; 2156 2157 /* 2158 * ACPI DeviceSelection numbering is handled by the 2159 * host controller driver in Windows and can vary 2160 * from driver to driver. In Linux we always expect 2161 * 0 .. max - 1 so we need to ask the driver to 2162 * translate between the two schemes. 2163 */ 2164 if (ctlr->fw_translate_cs) { 2165 int cs = ctlr->fw_translate_cs(ctlr, 2166 sb->device_selection); 2167 if (cs < 0) 2168 return cs; 2169 lookup->chip_select = cs; 2170 } else { 2171 lookup->chip_select = sb->device_selection; 2172 } 2173 2174 lookup->max_speed_hz = sb->connection_speed; 2175 lookup->bits_per_word = sb->data_bit_length; 2176 2177 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2178 lookup->mode |= SPI_CPHA; 2179 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2180 lookup->mode |= SPI_CPOL; 2181 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2182 lookup->mode |= SPI_CS_HIGH; 2183 } 2184 } else if (lookup->irq < 0) { 2185 struct resource r; 2186 2187 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2188 lookup->irq = r.start; 2189 } 2190 2191 /* Always tell the ACPI core to skip this resource */ 2192 return 1; 2193} 2194 2195static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2196 struct acpi_device *adev) 2197{ 2198 acpi_handle parent_handle = NULL; 2199 struct list_head resource_list; 2200 struct acpi_spi_lookup lookup = {}; 2201 struct spi_device *spi; 2202 int ret; 2203 2204 if (acpi_bus_get_status(adev) || !adev->status.present || 2205 acpi_device_enumerated(adev)) 2206 return AE_OK; 2207 2208 lookup.ctlr = ctlr; 2209 lookup.irq = -1; 2210 2211 INIT_LIST_HEAD(&resource_list); 2212 ret = acpi_dev_get_resources(adev, &resource_list, 2213 acpi_spi_add_resource, &lookup); 2214 acpi_dev_free_resource_list(&resource_list); 2215 2216 if (ret < 0) 2217 /* found SPI in _CRS but it points to another controller */ 2218 return AE_OK; 2219 2220 if (!lookup.max_speed_hz && 2221 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 2222 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2223 /* Apple does not use _CRS but nested devices for SPI slaves */ 2224 acpi_spi_parse_apple_properties(adev, &lookup); 2225 } 2226 2227 if (!lookup.max_speed_hz) 2228 return AE_OK; 2229 2230 spi = spi_alloc_device(ctlr); 2231 if (!spi) { 2232 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2233 dev_name(&adev->dev)); 2234 return AE_NO_MEMORY; 2235 } 2236 2237 2238 ACPI_COMPANION_SET(&spi->dev, adev); 2239 spi->max_speed_hz = lookup.max_speed_hz; 2240 spi->mode |= lookup.mode; 2241 spi->irq = lookup.irq; 2242 spi->bits_per_word = lookup.bits_per_word; 2243 spi->chip_select = lookup.chip_select; 2244 2245 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2246 sizeof(spi->modalias)); 2247 2248 if (spi->irq < 0) 2249 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2250 2251 acpi_device_set_enumerated(adev); 2252 2253 adev->power.flags.ignore_parent = true; 2254 if (spi_add_device(spi)) { 2255 adev->power.flags.ignore_parent = false; 2256 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2257 dev_name(&adev->dev)); 2258 spi_dev_put(spi); 2259 } 2260 2261 return AE_OK; 2262} 2263 2264static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2265 void *data, void **return_value) 2266{ 2267 struct spi_controller *ctlr = data; 2268 struct acpi_device *adev; 2269 2270 if (acpi_bus_get_device(handle, &adev)) 2271 return AE_OK; 2272 2273 return acpi_register_spi_device(ctlr, adev); 2274} 2275 2276#define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2277 2278static void acpi_register_spi_devices(struct spi_controller *ctlr) 2279{ 2280 acpi_status status; 2281 acpi_handle handle; 2282 2283 handle = ACPI_HANDLE(ctlr->dev.parent); 2284 if (!handle) 2285 return; 2286 2287 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2288 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2289 acpi_spi_add_device, NULL, ctlr, NULL); 2290 if (ACPI_FAILURE(status)) 2291 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2292} 2293#else 2294static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2295#endif /* CONFIG_ACPI */ 2296 2297static void spi_controller_release(struct device *dev) 2298{ 2299 struct spi_controller *ctlr; 2300 2301 ctlr = container_of(dev, struct spi_controller, dev); 2302 kfree(ctlr); 2303} 2304 2305static struct class spi_master_class = { 2306 .name = "spi_master", 2307 .owner = THIS_MODULE, 2308 .dev_release = spi_controller_release, 2309 .dev_groups = spi_master_groups, 2310}; 2311 2312#ifdef CONFIG_SPI_SLAVE 2313/** 2314 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2315 * controller 2316 * @spi: device used for the current transfer 2317 */ 2318int spi_slave_abort(struct spi_device *spi) 2319{ 2320 struct spi_controller *ctlr = spi->controller; 2321 2322 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2323 return ctlr->slave_abort(ctlr); 2324 2325 return -ENOTSUPP; 2326} 2327EXPORT_SYMBOL_GPL(spi_slave_abort); 2328 2329static int match_true(struct device *dev, void *data) 2330{ 2331 return 1; 2332} 2333 2334static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2335 char *buf) 2336{ 2337 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2338 dev); 2339 struct device *child; 2340 2341 child = device_find_child(&ctlr->dev, NULL, match_true); 2342 return sprintf(buf, "%s\n", 2343 child ? to_spi_device(child)->modalias : NULL); 2344} 2345 2346static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2347 const char *buf, size_t count) 2348{ 2349 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2350 dev); 2351 struct spi_device *spi; 2352 struct device *child; 2353 char name[32]; 2354 int rc; 2355 2356 rc = sscanf(buf, "%31s", name); 2357 if (rc != 1 || !name[0]) 2358 return -EINVAL; 2359 2360 child = device_find_child(&ctlr->dev, NULL, match_true); 2361 if (child) { 2362 /* Remove registered slave */ 2363 device_unregister(child); 2364 put_device(child); 2365 } 2366 2367 if (strcmp(name, "(null)")) { 2368 /* Register new slave */ 2369 spi = spi_alloc_device(ctlr); 2370 if (!spi) 2371 return -ENOMEM; 2372 2373 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2374 2375 rc = spi_add_device(spi); 2376 if (rc) { 2377 spi_dev_put(spi); 2378 return rc; 2379 } 2380 } 2381 2382 return count; 2383} 2384 2385static DEVICE_ATTR_RW(slave); 2386 2387static struct attribute *spi_slave_attrs[] = { 2388 &dev_attr_slave.attr, 2389 NULL, 2390}; 2391 2392static const struct attribute_group spi_slave_group = { 2393 .attrs = spi_slave_attrs, 2394}; 2395 2396static const struct attribute_group *spi_slave_groups[] = { 2397 &spi_controller_statistics_group, 2398 &spi_slave_group, 2399 NULL, 2400}; 2401 2402static struct class spi_slave_class = { 2403 .name = "spi_slave", 2404 .owner = THIS_MODULE, 2405 .dev_release = spi_controller_release, 2406 .dev_groups = spi_slave_groups, 2407}; 2408#else 2409extern struct class spi_slave_class; /* dummy */ 2410#endif 2411 2412/** 2413 * __spi_alloc_controller - allocate an SPI master or slave controller 2414 * @dev: the controller, possibly using the platform_bus 2415 * @size: how much zeroed driver-private data to allocate; the pointer to this 2416 * memory is in the driver_data field of the returned device, accessible 2417 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2418 * drivers granting DMA access to portions of their private data need to 2419 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2420 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2421 * slave (true) controller 2422 * Context: can sleep 2423 * 2424 * This call is used only by SPI controller drivers, which are the 2425 * only ones directly touching chip registers. It's how they allocate 2426 * an spi_controller structure, prior to calling spi_register_controller(). 2427 * 2428 * This must be called from context that can sleep. 2429 * 2430 * The caller is responsible for assigning the bus number and initializing the 2431 * controller's methods before calling spi_register_controller(); and (after 2432 * errors adding the device) calling spi_controller_put() to prevent a memory 2433 * leak. 2434 * 2435 * Return: the SPI controller structure on success, else NULL. 2436 */ 2437struct spi_controller *__spi_alloc_controller(struct device *dev, 2438 unsigned int size, bool slave) 2439{ 2440 struct spi_controller *ctlr; 2441 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2442 2443 if (!dev) 2444 return NULL; 2445 2446 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2447 if (!ctlr) 2448 return NULL; 2449 2450 device_initialize(&ctlr->dev); 2451 ctlr->bus_num = -1; 2452 ctlr->num_chipselect = 1; 2453 ctlr->slave = slave; 2454 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2455 ctlr->dev.class = &spi_slave_class; 2456 else 2457 ctlr->dev.class = &spi_master_class; 2458 ctlr->dev.parent = dev; 2459 pm_suspend_ignore_children(&ctlr->dev, true); 2460 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2461 2462 return ctlr; 2463} 2464EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2465 2466static void devm_spi_release_controller(struct device *dev, void *ctlr) 2467{ 2468 spi_controller_put(*(struct spi_controller **)ctlr); 2469} 2470 2471/** 2472 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2473 * @dev: physical device of SPI controller 2474 * @size: how much zeroed driver-private data to allocate 2475 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2476 * Context: can sleep 2477 * 2478 * Allocate an SPI controller and automatically release a reference on it 2479 * when @dev is unbound from its driver. Drivers are thus relieved from 2480 * having to call spi_controller_put(). 2481 * 2482 * The arguments to this function are identical to __spi_alloc_controller(). 2483 * 2484 * Return: the SPI controller structure on success, else NULL. 2485 */ 2486struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2487 unsigned int size, 2488 bool slave) 2489{ 2490 struct spi_controller **ptr, *ctlr; 2491 2492 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2493 GFP_KERNEL); 2494 if (!ptr) 2495 return NULL; 2496 2497 ctlr = __spi_alloc_controller(dev, size, slave); 2498 if (ctlr) { 2499 ctlr->devm_allocated = true; 2500 *ptr = ctlr; 2501 devres_add(dev, ptr); 2502 } else { 2503 devres_free(ptr); 2504 } 2505 2506 return ctlr; 2507} 2508EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2509 2510#ifdef CONFIG_OF 2511static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2512{ 2513 int nb, i, *cs; 2514 struct device_node *np = ctlr->dev.of_node; 2515 2516 if (!np) 2517 return 0; 2518 2519 nb = of_gpio_named_count(np, "cs-gpios"); 2520 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2521 2522 /* Return error only for an incorrectly formed cs-gpios property */ 2523 if (nb == 0 || nb == -ENOENT) 2524 return 0; 2525 else if (nb < 0) 2526 return nb; 2527 2528 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2529 GFP_KERNEL); 2530 ctlr->cs_gpios = cs; 2531 2532 if (!ctlr->cs_gpios) 2533 return -ENOMEM; 2534 2535 for (i = 0; i < ctlr->num_chipselect; i++) 2536 cs[i] = -ENOENT; 2537 2538 for (i = 0; i < nb; i++) 2539 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2540 2541 return 0; 2542} 2543#else 2544static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2545{ 2546 return 0; 2547} 2548#endif 2549 2550/** 2551 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2552 * @ctlr: The SPI master to grab GPIO descriptors for 2553 */ 2554static int spi_get_gpio_descs(struct spi_controller *ctlr) 2555{ 2556 int nb, i; 2557 struct gpio_desc **cs; 2558 struct device *dev = &ctlr->dev; 2559 unsigned long native_cs_mask = 0; 2560 unsigned int num_cs_gpios = 0; 2561 2562 nb = gpiod_count(dev, "cs"); 2563 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2564 2565 /* No GPIOs at all is fine, else return the error */ 2566 if (nb == 0 || nb == -ENOENT) 2567 return 0; 2568 else if (nb < 0) 2569 return nb; 2570 2571 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2572 GFP_KERNEL); 2573 if (!cs) 2574 return -ENOMEM; 2575 ctlr->cs_gpiods = cs; 2576 2577 for (i = 0; i < nb; i++) { 2578 /* 2579 * Most chipselects are active low, the inverted 2580 * semantics are handled by special quirks in gpiolib, 2581 * so initializing them GPIOD_OUT_LOW here means 2582 * "unasserted", in most cases this will drive the physical 2583 * line high. 2584 */ 2585 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2586 GPIOD_OUT_LOW); 2587 if (IS_ERR(cs[i])) 2588 return PTR_ERR(cs[i]); 2589 2590 if (cs[i]) { 2591 /* 2592 * If we find a CS GPIO, name it after the device and 2593 * chip select line. 2594 */ 2595 char *gpioname; 2596 2597 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2598 dev_name(dev), i); 2599 if (!gpioname) 2600 return -ENOMEM; 2601 gpiod_set_consumer_name(cs[i], gpioname); 2602 num_cs_gpios++; 2603 continue; 2604 } 2605 2606 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2607 dev_err(dev, "Invalid native chip select %d\n", i); 2608 return -EINVAL; 2609 } 2610 native_cs_mask |= BIT(i); 2611 } 2612 2613 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 2614 2615 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios && 2616 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 2617 dev_err(dev, "No unused native chip select available\n"); 2618 return -EINVAL; 2619 } 2620 2621 return 0; 2622} 2623 2624static int spi_controller_check_ops(struct spi_controller *ctlr) 2625{ 2626 /* 2627 * The controller may implement only the high-level SPI-memory like 2628 * operations if it does not support regular SPI transfers, and this is 2629 * valid use case. 2630 * If ->mem_ops is NULL, we request that at least one of the 2631 * ->transfer_xxx() method be implemented. 2632 */ 2633 if (ctlr->mem_ops) { 2634 if (!ctlr->mem_ops->exec_op) 2635 return -EINVAL; 2636 } else if (!ctlr->transfer && !ctlr->transfer_one && 2637 !ctlr->transfer_one_message) { 2638 return -EINVAL; 2639 } 2640 2641 return 0; 2642} 2643 2644/** 2645 * spi_register_controller - register SPI master or slave controller 2646 * @ctlr: initialized master, originally from spi_alloc_master() or 2647 * spi_alloc_slave() 2648 * Context: can sleep 2649 * 2650 * SPI controllers connect to their drivers using some non-SPI bus, 2651 * such as the platform bus. The final stage of probe() in that code 2652 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2653 * 2654 * SPI controllers use board specific (often SOC specific) bus numbers, 2655 * and board-specific addressing for SPI devices combines those numbers 2656 * with chip select numbers. Since SPI does not directly support dynamic 2657 * device identification, boards need configuration tables telling which 2658 * chip is at which address. 2659 * 2660 * This must be called from context that can sleep. It returns zero on 2661 * success, else a negative error code (dropping the controller's refcount). 2662 * After a successful return, the caller is responsible for calling 2663 * spi_unregister_controller(). 2664 * 2665 * Return: zero on success, else a negative error code. 2666 */ 2667int spi_register_controller(struct spi_controller *ctlr) 2668{ 2669 struct device *dev = ctlr->dev.parent; 2670 struct boardinfo *bi; 2671 int status; 2672 int id, first_dynamic; 2673 2674 if (!dev) 2675 return -ENODEV; 2676 2677 /* 2678 * Make sure all necessary hooks are implemented before registering 2679 * the SPI controller. 2680 */ 2681 status = spi_controller_check_ops(ctlr); 2682 if (status) 2683 return status; 2684 2685 if (ctlr->bus_num >= 0) { 2686 /* devices with a fixed bus num must check-in with the num */ 2687 mutex_lock(&board_lock); 2688 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2689 ctlr->bus_num + 1, GFP_KERNEL); 2690 mutex_unlock(&board_lock); 2691 if (WARN(id < 0, "couldn't get idr")) 2692 return id == -ENOSPC ? -EBUSY : id; 2693 ctlr->bus_num = id; 2694 } else if (ctlr->dev.of_node) { 2695 /* allocate dynamic bus number using Linux idr */ 2696 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2697 if (id >= 0) { 2698 ctlr->bus_num = id; 2699 mutex_lock(&board_lock); 2700 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2701 ctlr->bus_num + 1, GFP_KERNEL); 2702 mutex_unlock(&board_lock); 2703 if (WARN(id < 0, "couldn't get idr")) 2704 return id == -ENOSPC ? -EBUSY : id; 2705 } 2706 } 2707 if (ctlr->bus_num < 0) { 2708 first_dynamic = of_alias_get_highest_id("spi"); 2709 if (first_dynamic < 0) 2710 first_dynamic = 0; 2711 else 2712 first_dynamic++; 2713 2714 mutex_lock(&board_lock); 2715 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2716 0, GFP_KERNEL); 2717 mutex_unlock(&board_lock); 2718 if (WARN(id < 0, "couldn't get idr")) 2719 return id; 2720 ctlr->bus_num = id; 2721 } 2722 INIT_LIST_HEAD(&ctlr->queue); 2723 spin_lock_init(&ctlr->queue_lock); 2724 spin_lock_init(&ctlr->bus_lock_spinlock); 2725 mutex_init(&ctlr->bus_lock_mutex); 2726 mutex_init(&ctlr->io_mutex); 2727 mutex_init(&ctlr->add_lock); 2728 ctlr->bus_lock_flag = 0; 2729 init_completion(&ctlr->xfer_completion); 2730 if (!ctlr->max_dma_len) 2731 ctlr->max_dma_len = INT_MAX; 2732 2733 /* register the device, then userspace will see it. 2734 * registration fails if the bus ID is in use. 2735 */ 2736 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2737 2738 if (!spi_controller_is_slave(ctlr)) { 2739 if (ctlr->use_gpio_descriptors) { 2740 status = spi_get_gpio_descs(ctlr); 2741 if (status) 2742 goto free_bus_id; 2743 /* 2744 * A controller using GPIO descriptors always 2745 * supports SPI_CS_HIGH if need be. 2746 */ 2747 ctlr->mode_bits |= SPI_CS_HIGH; 2748 } else { 2749 /* Legacy code path for GPIOs from DT */ 2750 status = of_spi_get_gpio_numbers(ctlr); 2751 if (status) 2752 goto free_bus_id; 2753 } 2754 } 2755 2756 /* 2757 * Even if it's just one always-selected device, there must 2758 * be at least one chipselect. 2759 */ 2760 if (!ctlr->num_chipselect) { 2761 status = -EINVAL; 2762 goto free_bus_id; 2763 } 2764 2765 status = device_add(&ctlr->dev); 2766 if (status < 0) 2767 goto free_bus_id; 2768 dev_dbg(dev, "registered %s %s\n", 2769 spi_controller_is_slave(ctlr) ? "slave" : "master", 2770 dev_name(&ctlr->dev)); 2771 2772 /* 2773 * If we're using a queued driver, start the queue. Note that we don't 2774 * need the queueing logic if the driver is only supporting high-level 2775 * memory operations. 2776 */ 2777 if (ctlr->transfer) { 2778 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2779 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2780 status = spi_controller_initialize_queue(ctlr); 2781 if (status) { 2782 device_del(&ctlr->dev); 2783 goto free_bus_id; 2784 } 2785 } 2786 /* add statistics */ 2787 spin_lock_init(&ctlr->statistics.lock); 2788 2789 mutex_lock(&board_lock); 2790 list_add_tail(&ctlr->list, &spi_controller_list); 2791 list_for_each_entry(bi, &board_list, list) 2792 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2793 mutex_unlock(&board_lock); 2794 2795 /* Register devices from the device tree and ACPI */ 2796 of_register_spi_devices(ctlr); 2797 acpi_register_spi_devices(ctlr); 2798 return status; 2799 2800free_bus_id: 2801 mutex_lock(&board_lock); 2802 idr_remove(&spi_master_idr, ctlr->bus_num); 2803 mutex_unlock(&board_lock); 2804 return status; 2805} 2806EXPORT_SYMBOL_GPL(spi_register_controller); 2807 2808static void devm_spi_unregister(struct device *dev, void *res) 2809{ 2810 spi_unregister_controller(*(struct spi_controller **)res); 2811} 2812 2813/** 2814 * devm_spi_register_controller - register managed SPI master or slave 2815 * controller 2816 * @dev: device managing SPI controller 2817 * @ctlr: initialized controller, originally from spi_alloc_master() or 2818 * spi_alloc_slave() 2819 * Context: can sleep 2820 * 2821 * Register a SPI device as with spi_register_controller() which will 2822 * automatically be unregistered and freed. 2823 * 2824 * Return: zero on success, else a negative error code. 2825 */ 2826int devm_spi_register_controller(struct device *dev, 2827 struct spi_controller *ctlr) 2828{ 2829 struct spi_controller **ptr; 2830 int ret; 2831 2832 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2833 if (!ptr) 2834 return -ENOMEM; 2835 2836 ret = spi_register_controller(ctlr); 2837 if (!ret) { 2838 *ptr = ctlr; 2839 devres_add(dev, ptr); 2840 } else { 2841 devres_free(ptr); 2842 } 2843 2844 return ret; 2845} 2846EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2847 2848static int __unregister(struct device *dev, void *null) 2849{ 2850 spi_unregister_device(to_spi_device(dev)); 2851 return 0; 2852} 2853 2854/** 2855 * spi_unregister_controller - unregister SPI master or slave controller 2856 * @ctlr: the controller being unregistered 2857 * Context: can sleep 2858 * 2859 * This call is used only by SPI controller drivers, which are the 2860 * only ones directly touching chip registers. 2861 * 2862 * This must be called from context that can sleep. 2863 * 2864 * Note that this function also drops a reference to the controller. 2865 */ 2866void spi_unregister_controller(struct spi_controller *ctlr) 2867{ 2868 struct spi_controller *found; 2869 int id = ctlr->bus_num; 2870 2871 /* Prevent addition of new devices, unregister existing ones */ 2872 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2873 mutex_lock(&ctlr->add_lock); 2874 2875 device_for_each_child(&ctlr->dev, NULL, __unregister); 2876 2877 /* First make sure that this controller was ever added */ 2878 mutex_lock(&board_lock); 2879 found = idr_find(&spi_master_idr, id); 2880 mutex_unlock(&board_lock); 2881 if (ctlr->queued) { 2882 if (spi_destroy_queue(ctlr)) 2883 dev_err(&ctlr->dev, "queue remove failed\n"); 2884 } 2885 mutex_lock(&board_lock); 2886 list_del(&ctlr->list); 2887 mutex_unlock(&board_lock); 2888 2889 device_del(&ctlr->dev); 2890 2891 /* Release the last reference on the controller if its driver 2892 * has not yet been converted to devm_spi_alloc_master/slave(). 2893 */ 2894 if (!ctlr->devm_allocated) 2895 put_device(&ctlr->dev); 2896 2897 /* free bus id */ 2898 mutex_lock(&board_lock); 2899 if (found == ctlr) 2900 idr_remove(&spi_master_idr, id); 2901 mutex_unlock(&board_lock); 2902 2903 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2904 mutex_unlock(&ctlr->add_lock); 2905} 2906EXPORT_SYMBOL_GPL(spi_unregister_controller); 2907 2908int spi_controller_suspend(struct spi_controller *ctlr) 2909{ 2910 int ret; 2911 2912 /* Basically no-ops for non-queued controllers */ 2913 if (!ctlr->queued) 2914 return 0; 2915 2916 ret = spi_stop_queue(ctlr); 2917 if (ret) 2918 dev_err(&ctlr->dev, "queue stop failed\n"); 2919 2920 return ret; 2921} 2922EXPORT_SYMBOL_GPL(spi_controller_suspend); 2923 2924int spi_controller_resume(struct spi_controller *ctlr) 2925{ 2926 int ret; 2927 2928 if (!ctlr->queued) 2929 return 0; 2930 2931 ret = spi_start_queue(ctlr); 2932 if (ret) 2933 dev_err(&ctlr->dev, "queue restart failed\n"); 2934 2935 return ret; 2936} 2937EXPORT_SYMBOL_GPL(spi_controller_resume); 2938 2939static int __spi_controller_match(struct device *dev, const void *data) 2940{ 2941 struct spi_controller *ctlr; 2942 const u16 *bus_num = data; 2943 2944 ctlr = container_of(dev, struct spi_controller, dev); 2945 return ctlr->bus_num == *bus_num; 2946} 2947 2948/** 2949 * spi_busnum_to_master - look up master associated with bus_num 2950 * @bus_num: the master's bus number 2951 * Context: can sleep 2952 * 2953 * This call may be used with devices that are registered after 2954 * arch init time. It returns a refcounted pointer to the relevant 2955 * spi_controller (which the caller must release), or NULL if there is 2956 * no such master registered. 2957 * 2958 * Return: the SPI master structure on success, else NULL. 2959 */ 2960struct spi_controller *spi_busnum_to_master(u16 bus_num) 2961{ 2962 struct device *dev; 2963 struct spi_controller *ctlr = NULL; 2964 2965 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2966 __spi_controller_match); 2967 if (dev) 2968 ctlr = container_of(dev, struct spi_controller, dev); 2969 /* reference got in class_find_device */ 2970 return ctlr; 2971} 2972EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2973 2974/*-------------------------------------------------------------------------*/ 2975 2976/* Core methods for SPI resource management */ 2977 2978/** 2979 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2980 * during the processing of a spi_message while using 2981 * spi_transfer_one 2982 * @spi: the spi device for which we allocate memory 2983 * @release: the release code to execute for this resource 2984 * @size: size to alloc and return 2985 * @gfp: GFP allocation flags 2986 * 2987 * Return: the pointer to the allocated data 2988 * 2989 * This may get enhanced in the future to allocate from a memory pool 2990 * of the @spi_device or @spi_controller to avoid repeated allocations. 2991 */ 2992void *spi_res_alloc(struct spi_device *spi, 2993 spi_res_release_t release, 2994 size_t size, gfp_t gfp) 2995{ 2996 struct spi_res *sres; 2997 2998 sres = kzalloc(sizeof(*sres) + size, gfp); 2999 if (!sres) 3000 return NULL; 3001 3002 INIT_LIST_HEAD(&sres->entry); 3003 sres->release = release; 3004 3005 return sres->data; 3006} 3007EXPORT_SYMBOL_GPL(spi_res_alloc); 3008 3009/** 3010 * spi_res_free - free an spi resource 3011 * @res: pointer to the custom data of a resource 3012 * 3013 */ 3014void spi_res_free(void *res) 3015{ 3016 struct spi_res *sres = container_of(res, struct spi_res, data); 3017 3018 if (!res) 3019 return; 3020 3021 WARN_ON(!list_empty(&sres->entry)); 3022 kfree(sres); 3023} 3024EXPORT_SYMBOL_GPL(spi_res_free); 3025 3026/** 3027 * spi_res_add - add a spi_res to the spi_message 3028 * @message: the spi message 3029 * @res: the spi_resource 3030 */ 3031void spi_res_add(struct spi_message *message, void *res) 3032{ 3033 struct spi_res *sres = container_of(res, struct spi_res, data); 3034 3035 WARN_ON(!list_empty(&sres->entry)); 3036 list_add_tail(&sres->entry, &message->resources); 3037} 3038EXPORT_SYMBOL_GPL(spi_res_add); 3039 3040/** 3041 * spi_res_release - release all spi resources for this message 3042 * @ctlr: the @spi_controller 3043 * @message: the @spi_message 3044 */ 3045void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 3046{ 3047 struct spi_res *res, *tmp; 3048 3049 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 3050 if (res->release) 3051 res->release(ctlr, message, res->data); 3052 3053 list_del(&res->entry); 3054 3055 kfree(res); 3056 } 3057} 3058EXPORT_SYMBOL_GPL(spi_res_release); 3059 3060/*-------------------------------------------------------------------------*/ 3061 3062/* Core methods for spi_message alterations */ 3063 3064static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3065 struct spi_message *msg, 3066 void *res) 3067{ 3068 struct spi_replaced_transfers *rxfer = res; 3069 size_t i; 3070 3071 /* call extra callback if requested */ 3072 if (rxfer->release) 3073 rxfer->release(ctlr, msg, res); 3074 3075 /* insert replaced transfers back into the message */ 3076 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3077 3078 /* remove the formerly inserted entries */ 3079 for (i = 0; i < rxfer->inserted; i++) 3080 list_del(&rxfer->inserted_transfers[i].transfer_list); 3081} 3082 3083/** 3084 * spi_replace_transfers - replace transfers with several transfers 3085 * and register change with spi_message.resources 3086 * @msg: the spi_message we work upon 3087 * @xfer_first: the first spi_transfer we want to replace 3088 * @remove: number of transfers to remove 3089 * @insert: the number of transfers we want to insert instead 3090 * @release: extra release code necessary in some circumstances 3091 * @extradatasize: extra data to allocate (with alignment guarantees 3092 * of struct @spi_transfer) 3093 * @gfp: gfp flags 3094 * 3095 * Returns: pointer to @spi_replaced_transfers, 3096 * PTR_ERR(...) in case of errors. 3097 */ 3098struct spi_replaced_transfers *spi_replace_transfers( 3099 struct spi_message *msg, 3100 struct spi_transfer *xfer_first, 3101 size_t remove, 3102 size_t insert, 3103 spi_replaced_release_t release, 3104 size_t extradatasize, 3105 gfp_t gfp) 3106{ 3107 struct spi_replaced_transfers *rxfer; 3108 struct spi_transfer *xfer; 3109 size_t i; 3110 3111 /* allocate the structure using spi_res */ 3112 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3113 struct_size(rxfer, inserted_transfers, insert) 3114 + extradatasize, 3115 gfp); 3116 if (!rxfer) 3117 return ERR_PTR(-ENOMEM); 3118 3119 /* the release code to invoke before running the generic release */ 3120 rxfer->release = release; 3121 3122 /* assign extradata */ 3123 if (extradatasize) 3124 rxfer->extradata = 3125 &rxfer->inserted_transfers[insert]; 3126 3127 /* init the replaced_transfers list */ 3128 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3129 3130 /* assign the list_entry after which we should reinsert 3131 * the @replaced_transfers - it may be spi_message.messages! 3132 */ 3133 rxfer->replaced_after = xfer_first->transfer_list.prev; 3134 3135 /* remove the requested number of transfers */ 3136 for (i = 0; i < remove; i++) { 3137 /* if the entry after replaced_after it is msg->transfers 3138 * then we have been requested to remove more transfers 3139 * than are in the list 3140 */ 3141 if (rxfer->replaced_after->next == &msg->transfers) { 3142 dev_err(&msg->spi->dev, 3143 "requested to remove more spi_transfers than are available\n"); 3144 /* insert replaced transfers back into the message */ 3145 list_splice(&rxfer->replaced_transfers, 3146 rxfer->replaced_after); 3147 3148 /* free the spi_replace_transfer structure */ 3149 spi_res_free(rxfer); 3150 3151 /* and return with an error */ 3152 return ERR_PTR(-EINVAL); 3153 } 3154 3155 /* remove the entry after replaced_after from list of 3156 * transfers and add it to list of replaced_transfers 3157 */ 3158 list_move_tail(rxfer->replaced_after->next, 3159 &rxfer->replaced_transfers); 3160 } 3161 3162 /* create copy of the given xfer with identical settings 3163 * based on the first transfer to get removed 3164 */ 3165 for (i = 0; i < insert; i++) { 3166 /* we need to run in reverse order */ 3167 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3168 3169 /* copy all spi_transfer data */ 3170 memcpy(xfer, xfer_first, sizeof(*xfer)); 3171 3172 /* add to list */ 3173 list_add(&xfer->transfer_list, rxfer->replaced_after); 3174 3175 /* clear cs_change and delay for all but the last */ 3176 if (i) { 3177 xfer->cs_change = false; 3178 xfer->delay_usecs = 0; 3179 xfer->delay.value = 0; 3180 } 3181 } 3182 3183 /* set up inserted */ 3184 rxfer->inserted = insert; 3185 3186 /* and register it with spi_res/spi_message */ 3187 spi_res_add(msg, rxfer); 3188 3189 return rxfer; 3190} 3191EXPORT_SYMBOL_GPL(spi_replace_transfers); 3192 3193static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3194 struct spi_message *msg, 3195 struct spi_transfer **xferp, 3196 size_t maxsize, 3197 gfp_t gfp) 3198{ 3199 struct spi_transfer *xfer = *xferp, *xfers; 3200 struct spi_replaced_transfers *srt; 3201 size_t offset; 3202 size_t count, i; 3203 3204 /* calculate how many we have to replace */ 3205 count = DIV_ROUND_UP(xfer->len, maxsize); 3206 3207 /* create replacement */ 3208 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3209 if (IS_ERR(srt)) 3210 return PTR_ERR(srt); 3211 xfers = srt->inserted_transfers; 3212 3213 /* now handle each of those newly inserted spi_transfers 3214 * note that the replacements spi_transfers all are preset 3215 * to the same values as *xferp, so tx_buf, rx_buf and len 3216 * are all identical (as well as most others) 3217 * so we just have to fix up len and the pointers. 3218 * 3219 * this also includes support for the depreciated 3220 * spi_message.is_dma_mapped interface 3221 */ 3222 3223 /* the first transfer just needs the length modified, so we 3224 * run it outside the loop 3225 */ 3226 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3227 3228 /* all the others need rx_buf/tx_buf also set */ 3229 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3230 /* update rx_buf, tx_buf and dma */ 3231 if (xfers[i].rx_buf) 3232 xfers[i].rx_buf += offset; 3233 if (xfers[i].rx_dma) 3234 xfers[i].rx_dma += offset; 3235 if (xfers[i].tx_buf) 3236 xfers[i].tx_buf += offset; 3237 if (xfers[i].tx_dma) 3238 xfers[i].tx_dma += offset; 3239 3240 /* update length */ 3241 xfers[i].len = min(maxsize, xfers[i].len - offset); 3242 } 3243 3244 /* we set up xferp to the last entry we have inserted, 3245 * so that we skip those already split transfers 3246 */ 3247 *xferp = &xfers[count - 1]; 3248 3249 /* increment statistics counters */ 3250 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3251 transfers_split_maxsize); 3252 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3253 transfers_split_maxsize); 3254 3255 return 0; 3256} 3257 3258/** 3259 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 3260 * when an individual transfer exceeds a 3261 * certain size 3262 * @ctlr: the @spi_controller for this transfer 3263 * @msg: the @spi_message to transform 3264 * @maxsize: the maximum when to apply this 3265 * @gfp: GFP allocation flags 3266 * 3267 * Return: status of transformation 3268 */ 3269int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3270 struct spi_message *msg, 3271 size_t maxsize, 3272 gfp_t gfp) 3273{ 3274 struct spi_transfer *xfer; 3275 int ret; 3276 3277 /* iterate over the transfer_list, 3278 * but note that xfer is advanced to the last transfer inserted 3279 * to avoid checking sizes again unnecessarily (also xfer does 3280 * potentiall belong to a different list by the time the 3281 * replacement has happened 3282 */ 3283 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3284 if (xfer->len > maxsize) { 3285 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3286 maxsize, gfp); 3287 if (ret) 3288 return ret; 3289 } 3290 } 3291 3292 return 0; 3293} 3294EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3295 3296/*-------------------------------------------------------------------------*/ 3297 3298/* Core methods for SPI controller protocol drivers. Some of the 3299 * other core methods are currently defined as inline functions. 3300 */ 3301 3302static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3303 u8 bits_per_word) 3304{ 3305 if (ctlr->bits_per_word_mask) { 3306 /* Only 32 bits fit in the mask */ 3307 if (bits_per_word > 32) 3308 return -EINVAL; 3309 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3310 return -EINVAL; 3311 } 3312 3313 return 0; 3314} 3315 3316/** 3317 * spi_setup - setup SPI mode and clock rate 3318 * @spi: the device whose settings are being modified 3319 * Context: can sleep, and no requests are queued to the device 3320 * 3321 * SPI protocol drivers may need to update the transfer mode if the 3322 * device doesn't work with its default. They may likewise need 3323 * to update clock rates or word sizes from initial values. This function 3324 * changes those settings, and must be called from a context that can sleep. 3325 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3326 * effect the next time the device is selected and data is transferred to 3327 * or from it. When this function returns, the spi device is deselected. 3328 * 3329 * Note that this call will fail if the protocol driver specifies an option 3330 * that the underlying controller or its driver does not support. For 3331 * example, not all hardware supports wire transfers using nine bit words, 3332 * LSB-first wire encoding, or active-high chipselects. 3333 * 3334 * Return: zero on success, else a negative error code. 3335 */ 3336int spi_setup(struct spi_device *spi) 3337{ 3338 unsigned bad_bits, ugly_bits; 3339 int status; 3340 3341 /* check mode to prevent that DUAL and QUAD set at the same time 3342 */ 3343 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3344 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3345 dev_err(&spi->dev, 3346 "setup: can not select dual and quad at the same time\n"); 3347 return -EINVAL; 3348 } 3349 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3350 */ 3351 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3352 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3353 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3354 return -EINVAL; 3355 /* help drivers fail *cleanly* when they need options 3356 * that aren't supported with their current controller 3357 * SPI_CS_WORD has a fallback software implementation, 3358 * so it is ignored here. 3359 */ 3360 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3361 /* nothing prevents from working with active-high CS in case if it 3362 * is driven by GPIO. 3363 */ 3364 if (gpio_is_valid(spi->cs_gpio)) 3365 bad_bits &= ~SPI_CS_HIGH; 3366 ugly_bits = bad_bits & 3367 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3368 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3369 if (ugly_bits) { 3370 dev_warn(&spi->dev, 3371 "setup: ignoring unsupported mode bits %x\n", 3372 ugly_bits); 3373 spi->mode &= ~ugly_bits; 3374 bad_bits &= ~ugly_bits; 3375 } 3376 if (bad_bits) { 3377 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3378 bad_bits); 3379 return -EINVAL; 3380 } 3381 3382 if (!spi->bits_per_word) 3383 spi->bits_per_word = 8; 3384 3385 status = __spi_validate_bits_per_word(spi->controller, 3386 spi->bits_per_word); 3387 if (status) 3388 return status; 3389 3390 if (!spi->max_speed_hz) 3391 spi->max_speed_hz = spi->controller->max_speed_hz; 3392 3393 mutex_lock(&spi->controller->io_mutex); 3394 3395 if (spi->controller->setup) 3396 status = spi->controller->setup(spi); 3397 3398 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3399 status = pm_runtime_get_sync(spi->controller->dev.parent); 3400 if (status < 0) { 3401 mutex_unlock(&spi->controller->io_mutex); 3402 pm_runtime_put_noidle(spi->controller->dev.parent); 3403 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3404 status); 3405 return status; 3406 } 3407 3408 /* 3409 * We do not want to return positive value from pm_runtime_get, 3410 * there are many instances of devices calling spi_setup() and 3411 * checking for a non-zero return value instead of a negative 3412 * return value. 3413 */ 3414 status = 0; 3415 3416 spi_set_cs(spi, false, true); 3417 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3418 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3419 } else { 3420 spi_set_cs(spi, false, true); 3421 } 3422 3423 mutex_unlock(&spi->controller->io_mutex); 3424 3425 if (spi->rt && !spi->controller->rt) { 3426 spi->controller->rt = true; 3427 spi_set_thread_rt(spi->controller); 3428 } 3429 3430 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3431 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3432 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3433 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3434 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3435 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3436 spi->bits_per_word, spi->max_speed_hz, 3437 status); 3438 3439 return status; 3440} 3441EXPORT_SYMBOL_GPL(spi_setup); 3442 3443/** 3444 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3445 * @spi: the device that requires specific CS timing configuration 3446 * @setup: CS setup time specified via @spi_delay 3447 * @hold: CS hold time specified via @spi_delay 3448 * @inactive: CS inactive delay between transfers specified via @spi_delay 3449 * 3450 * Return: zero on success, else a negative error code. 3451 */ 3452int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3453 struct spi_delay *hold, struct spi_delay *inactive) 3454{ 3455 size_t len; 3456 3457 if (spi->controller->set_cs_timing) 3458 return spi->controller->set_cs_timing(spi, setup, hold, 3459 inactive); 3460 3461 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3462 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3463 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3464 dev_err(&spi->dev, 3465 "Clock-cycle delays for CS not supported in SW mode\n"); 3466 return -ENOTSUPP; 3467 } 3468 3469 len = sizeof(struct spi_delay); 3470 3471 /* copy delays to controller */ 3472 if (setup) 3473 memcpy(&spi->controller->cs_setup, setup, len); 3474 else 3475 memset(&spi->controller->cs_setup, 0, len); 3476 3477 if (hold) 3478 memcpy(&spi->controller->cs_hold, hold, len); 3479 else 3480 memset(&spi->controller->cs_hold, 0, len); 3481 3482 if (inactive) 3483 memcpy(&spi->controller->cs_inactive, inactive, len); 3484 else 3485 memset(&spi->controller->cs_inactive, 0, len); 3486 3487 return 0; 3488} 3489EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3490 3491static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3492 struct spi_device *spi) 3493{ 3494 int delay1, delay2; 3495 3496 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3497 if (delay1 < 0) 3498 return delay1; 3499 3500 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3501 if (delay2 < 0) 3502 return delay2; 3503 3504 if (delay1 < delay2) 3505 memcpy(&xfer->word_delay, &spi->word_delay, 3506 sizeof(xfer->word_delay)); 3507 3508 return 0; 3509} 3510 3511static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3512{ 3513 struct spi_controller *ctlr = spi->controller; 3514 struct spi_transfer *xfer; 3515 int w_size; 3516 3517 if (list_empty(&message->transfers)) 3518 return -EINVAL; 3519 3520 /* If an SPI controller does not support toggling the CS line on each 3521 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3522 * for the CS line, we can emulate the CS-per-word hardware function by 3523 * splitting transfers into one-word transfers and ensuring that 3524 * cs_change is set for each transfer. 3525 */ 3526 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3527 spi->cs_gpiod || 3528 gpio_is_valid(spi->cs_gpio))) { 3529 size_t maxsize; 3530 int ret; 3531 3532 maxsize = (spi->bits_per_word + 7) / 8; 3533 3534 /* spi_split_transfers_maxsize() requires message->spi */ 3535 message->spi = spi; 3536 3537 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3538 GFP_KERNEL); 3539 if (ret) 3540 return ret; 3541 3542 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3543 /* don't change cs_change on the last entry in the list */ 3544 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3545 break; 3546 xfer->cs_change = 1; 3547 } 3548 } 3549 3550 /* Half-duplex links include original MicroWire, and ones with 3551 * only one data pin like SPI_3WIRE (switches direction) or where 3552 * either MOSI or MISO is missing. They can also be caused by 3553 * software limitations. 3554 */ 3555 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3556 (spi->mode & SPI_3WIRE)) { 3557 unsigned flags = ctlr->flags; 3558 3559 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3560 if (xfer->rx_buf && xfer->tx_buf) 3561 return -EINVAL; 3562 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3563 return -EINVAL; 3564 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3565 return -EINVAL; 3566 } 3567 } 3568 3569 /** 3570 * Set transfer bits_per_word and max speed as spi device default if 3571 * it is not set for this transfer. 3572 * Set transfer tx_nbits and rx_nbits as single transfer default 3573 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3574 * Ensure transfer word_delay is at least as long as that required by 3575 * device itself. 3576 */ 3577 message->frame_length = 0; 3578 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3579 xfer->effective_speed_hz = 0; 3580 message->frame_length += xfer->len; 3581 if (!xfer->bits_per_word) 3582 xfer->bits_per_word = spi->bits_per_word; 3583 3584 if (!xfer->speed_hz) 3585 xfer->speed_hz = spi->max_speed_hz; 3586 3587 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3588 xfer->speed_hz = ctlr->max_speed_hz; 3589 3590 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3591 return -EINVAL; 3592 3593 /* 3594 * SPI transfer length should be multiple of SPI word size 3595 * where SPI word size should be power-of-two multiple 3596 */ 3597 if (xfer->bits_per_word <= 8) 3598 w_size = 1; 3599 else if (xfer->bits_per_word <= 16) 3600 w_size = 2; 3601 else 3602 w_size = 4; 3603 3604 /* No partial transfers accepted */ 3605 if (xfer->len % w_size) 3606 return -EINVAL; 3607 3608 if (xfer->speed_hz && ctlr->min_speed_hz && 3609 xfer->speed_hz < ctlr->min_speed_hz) 3610 return -EINVAL; 3611 3612 if (xfer->tx_buf && !xfer->tx_nbits) 3613 xfer->tx_nbits = SPI_NBITS_SINGLE; 3614 if (xfer->rx_buf && !xfer->rx_nbits) 3615 xfer->rx_nbits = SPI_NBITS_SINGLE; 3616 /* check transfer tx/rx_nbits: 3617 * 1. check the value matches one of single, dual and quad 3618 * 2. check tx/rx_nbits match the mode in spi_device 3619 */ 3620 if (xfer->tx_buf) { 3621 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3622 xfer->tx_nbits != SPI_NBITS_DUAL && 3623 xfer->tx_nbits != SPI_NBITS_QUAD) 3624 return -EINVAL; 3625 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3626 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3627 return -EINVAL; 3628 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3629 !(spi->mode & SPI_TX_QUAD)) 3630 return -EINVAL; 3631 } 3632 /* check transfer rx_nbits */ 3633 if (xfer->rx_buf) { 3634 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3635 xfer->rx_nbits != SPI_NBITS_DUAL && 3636 xfer->rx_nbits != SPI_NBITS_QUAD) 3637 return -EINVAL; 3638 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3639 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3640 return -EINVAL; 3641 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3642 !(spi->mode & SPI_RX_QUAD)) 3643 return -EINVAL; 3644 } 3645 3646 if (_spi_xfer_word_delay_update(xfer, spi)) 3647 return -EINVAL; 3648 } 3649 3650 message->status = -EINPROGRESS; 3651 3652 return 0; 3653} 3654 3655static int __spi_async(struct spi_device *spi, struct spi_message *message) 3656{ 3657 struct spi_controller *ctlr = spi->controller; 3658 struct spi_transfer *xfer; 3659 3660 /* 3661 * Some controllers do not support doing regular SPI transfers. Return 3662 * ENOTSUPP when this is the case. 3663 */ 3664 if (!ctlr->transfer) 3665 return -ENOTSUPP; 3666 3667 message->spi = spi; 3668 3669 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3670 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3671 3672 trace_spi_message_submit(message); 3673 3674 if (!ctlr->ptp_sts_supported) { 3675 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3676 xfer->ptp_sts_word_pre = 0; 3677 ptp_read_system_prets(xfer->ptp_sts); 3678 } 3679 } 3680 3681 return ctlr->transfer(spi, message); 3682} 3683 3684/** 3685 * spi_async - asynchronous SPI transfer 3686 * @spi: device with which data will be exchanged 3687 * @message: describes the data transfers, including completion callback 3688 * Context: any (irqs may be blocked, etc) 3689 * 3690 * This call may be used in_irq and other contexts which can't sleep, 3691 * as well as from task contexts which can sleep. 3692 * 3693 * The completion callback is invoked in a context which can't sleep. 3694 * Before that invocation, the value of message->status is undefined. 3695 * When the callback is issued, message->status holds either zero (to 3696 * indicate complete success) or a negative error code. After that 3697 * callback returns, the driver which issued the transfer request may 3698 * deallocate the associated memory; it's no longer in use by any SPI 3699 * core or controller driver code. 3700 * 3701 * Note that although all messages to a spi_device are handled in 3702 * FIFO order, messages may go to different devices in other orders. 3703 * Some device might be higher priority, or have various "hard" access 3704 * time requirements, for example. 3705 * 3706 * On detection of any fault during the transfer, processing of 3707 * the entire message is aborted, and the device is deselected. 3708 * Until returning from the associated message completion callback, 3709 * no other spi_message queued to that device will be processed. 3710 * (This rule applies equally to all the synchronous transfer calls, 3711 * which are wrappers around this core asynchronous primitive.) 3712 * 3713 * Return: zero on success, else a negative error code. 3714 */ 3715int spi_async(struct spi_device *spi, struct spi_message *message) 3716{ 3717 struct spi_controller *ctlr = spi->controller; 3718 int ret; 3719 unsigned long flags; 3720 3721 ret = __spi_validate(spi, message); 3722 if (ret != 0) 3723 return ret; 3724 3725 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3726 3727 if (ctlr->bus_lock_flag) 3728 ret = -EBUSY; 3729 else 3730 ret = __spi_async(spi, message); 3731 3732 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3733 3734 return ret; 3735} 3736EXPORT_SYMBOL_GPL(spi_async); 3737 3738/** 3739 * spi_async_locked - version of spi_async with exclusive bus usage 3740 * @spi: device with which data will be exchanged 3741 * @message: describes the data transfers, including completion callback 3742 * Context: any (irqs may be blocked, etc) 3743 * 3744 * This call may be used in_irq and other contexts which can't sleep, 3745 * as well as from task contexts which can sleep. 3746 * 3747 * The completion callback is invoked in a context which can't sleep. 3748 * Before that invocation, the value of message->status is undefined. 3749 * When the callback is issued, message->status holds either zero (to 3750 * indicate complete success) or a negative error code. After that 3751 * callback returns, the driver which issued the transfer request may 3752 * deallocate the associated memory; it's no longer in use by any SPI 3753 * core or controller driver code. 3754 * 3755 * Note that although all messages to a spi_device are handled in 3756 * FIFO order, messages may go to different devices in other orders. 3757 * Some device might be higher priority, or have various "hard" access 3758 * time requirements, for example. 3759 * 3760 * On detection of any fault during the transfer, processing of 3761 * the entire message is aborted, and the device is deselected. 3762 * Until returning from the associated message completion callback, 3763 * no other spi_message queued to that device will be processed. 3764 * (This rule applies equally to all the synchronous transfer calls, 3765 * which are wrappers around this core asynchronous primitive.) 3766 * 3767 * Return: zero on success, else a negative error code. 3768 */ 3769int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3770{ 3771 struct spi_controller *ctlr = spi->controller; 3772 int ret; 3773 unsigned long flags; 3774 3775 ret = __spi_validate(spi, message); 3776 if (ret != 0) 3777 return ret; 3778 3779 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3780 3781 ret = __spi_async(spi, message); 3782 3783 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3784 3785 return ret; 3786 3787} 3788EXPORT_SYMBOL_GPL(spi_async_locked); 3789 3790/*-------------------------------------------------------------------------*/ 3791 3792/* Utility methods for SPI protocol drivers, layered on 3793 * top of the core. Some other utility methods are defined as 3794 * inline functions. 3795 */ 3796 3797static void spi_complete(void *arg) 3798{ 3799 complete(arg); 3800} 3801 3802static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3803{ 3804 DECLARE_COMPLETION_ONSTACK(done); 3805 int status; 3806 struct spi_controller *ctlr = spi->controller; 3807 unsigned long flags; 3808 3809 status = __spi_validate(spi, message); 3810 if (status != 0) 3811 return status; 3812 3813 message->complete = spi_complete; 3814 message->context = &done; 3815 message->spi = spi; 3816 3817 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3818 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3819 3820 /* If we're not using the legacy transfer method then we will 3821 * try to transfer in the calling context so special case. 3822 * This code would be less tricky if we could remove the 3823 * support for driver implemented message queues. 3824 */ 3825 if (ctlr->transfer == spi_queued_transfer) { 3826 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3827 3828 trace_spi_message_submit(message); 3829 3830 status = __spi_queued_transfer(spi, message, false); 3831 3832 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3833 } else { 3834 status = spi_async_locked(spi, message); 3835 } 3836 3837 if (status == 0) { 3838 /* Push out the messages in the calling context if we 3839 * can. 3840 */ 3841 if (ctlr->transfer == spi_queued_transfer) { 3842 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3843 spi_sync_immediate); 3844 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3845 spi_sync_immediate); 3846 __spi_pump_messages(ctlr, false); 3847 } 3848 3849 wait_for_completion(&done); 3850 status = message->status; 3851 } 3852 message->context = NULL; 3853 return status; 3854} 3855 3856/** 3857 * spi_sync - blocking/synchronous SPI data transfers 3858 * @spi: device with which data will be exchanged 3859 * @message: describes the data transfers 3860 * Context: can sleep 3861 * 3862 * This call may only be used from a context that may sleep. The sleep 3863 * is non-interruptible, and has no timeout. Low-overhead controller 3864 * drivers may DMA directly into and out of the message buffers. 3865 * 3866 * Note that the SPI device's chip select is active during the message, 3867 * and then is normally disabled between messages. Drivers for some 3868 * frequently-used devices may want to minimize costs of selecting a chip, 3869 * by leaving it selected in anticipation that the next message will go 3870 * to the same chip. (That may increase power usage.) 3871 * 3872 * Also, the caller is guaranteeing that the memory associated with the 3873 * message will not be freed before this call returns. 3874 * 3875 * Return: zero on success, else a negative error code. 3876 */ 3877int spi_sync(struct spi_device *spi, struct spi_message *message) 3878{ 3879 int ret; 3880 3881 mutex_lock(&spi->controller->bus_lock_mutex); 3882 ret = __spi_sync(spi, message); 3883 mutex_unlock(&spi->controller->bus_lock_mutex); 3884 3885 return ret; 3886} 3887EXPORT_SYMBOL_GPL(spi_sync); 3888 3889/** 3890 * spi_sync_locked - version of spi_sync with exclusive bus usage 3891 * @spi: device with which data will be exchanged 3892 * @message: describes the data transfers 3893 * Context: can sleep 3894 * 3895 * This call may only be used from a context that may sleep. The sleep 3896 * is non-interruptible, and has no timeout. Low-overhead controller 3897 * drivers may DMA directly into and out of the message buffers. 3898 * 3899 * This call should be used by drivers that require exclusive access to the 3900 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3901 * be released by a spi_bus_unlock call when the exclusive access is over. 3902 * 3903 * Return: zero on success, else a negative error code. 3904 */ 3905int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3906{ 3907 return __spi_sync(spi, message); 3908} 3909EXPORT_SYMBOL_GPL(spi_sync_locked); 3910 3911/** 3912 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3913 * @ctlr: SPI bus master that should be locked for exclusive bus access 3914 * Context: can sleep 3915 * 3916 * This call may only be used from a context that may sleep. The sleep 3917 * is non-interruptible, and has no timeout. 3918 * 3919 * This call should be used by drivers that require exclusive access to the 3920 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3921 * exclusive access is over. Data transfer must be done by spi_sync_locked 3922 * and spi_async_locked calls when the SPI bus lock is held. 3923 * 3924 * Return: always zero. 3925 */ 3926int spi_bus_lock(struct spi_controller *ctlr) 3927{ 3928 unsigned long flags; 3929 3930 mutex_lock(&ctlr->bus_lock_mutex); 3931 3932 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3933 ctlr->bus_lock_flag = 1; 3934 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3935 3936 /* mutex remains locked until spi_bus_unlock is called */ 3937 3938 return 0; 3939} 3940EXPORT_SYMBOL_GPL(spi_bus_lock); 3941 3942/** 3943 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3944 * @ctlr: SPI bus master that was locked for exclusive bus access 3945 * Context: can sleep 3946 * 3947 * This call may only be used from a context that may sleep. The sleep 3948 * is non-interruptible, and has no timeout. 3949 * 3950 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3951 * call. 3952 * 3953 * Return: always zero. 3954 */ 3955int spi_bus_unlock(struct spi_controller *ctlr) 3956{ 3957 ctlr->bus_lock_flag = 0; 3958 3959 mutex_unlock(&ctlr->bus_lock_mutex); 3960 3961 return 0; 3962} 3963EXPORT_SYMBOL_GPL(spi_bus_unlock); 3964 3965/* portable code must never pass more than 32 bytes */ 3966#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3967 3968static u8 *buf; 3969 3970/** 3971 * spi_write_then_read - SPI synchronous write followed by read 3972 * @spi: device with which data will be exchanged 3973 * @txbuf: data to be written (need not be dma-safe) 3974 * @n_tx: size of txbuf, in bytes 3975 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3976 * @n_rx: size of rxbuf, in bytes 3977 * Context: can sleep 3978 * 3979 * This performs a half duplex MicroWire style transaction with the 3980 * device, sending txbuf and then reading rxbuf. The return value 3981 * is zero for success, else a negative errno status code. 3982 * This call may only be used from a context that may sleep. 3983 * 3984 * Parameters to this routine are always copied using a small buffer. 3985 * Performance-sensitive or bulk transfer code should instead use 3986 * spi_{async,sync}() calls with dma-safe buffers. 3987 * 3988 * Return: zero on success, else a negative error code. 3989 */ 3990int spi_write_then_read(struct spi_device *spi, 3991 const void *txbuf, unsigned n_tx, 3992 void *rxbuf, unsigned n_rx) 3993{ 3994 static DEFINE_MUTEX(lock); 3995 3996 int status; 3997 struct spi_message message; 3998 struct spi_transfer x[2]; 3999 u8 *local_buf; 4000 4001 /* Use preallocated DMA-safe buffer if we can. We can't avoid 4002 * copying here, (as a pure convenience thing), but we can 4003 * keep heap costs out of the hot path unless someone else is 4004 * using the pre-allocated buffer or the transfer is too large. 4005 */ 4006 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4007 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4008 GFP_KERNEL | GFP_DMA); 4009 if (!local_buf) 4010 return -ENOMEM; 4011 } else { 4012 local_buf = buf; 4013 } 4014 4015 spi_message_init(&message); 4016 memset(x, 0, sizeof(x)); 4017 if (n_tx) { 4018 x[0].len = n_tx; 4019 spi_message_add_tail(&x[0], &message); 4020 } 4021 if (n_rx) { 4022 x[1].len = n_rx; 4023 spi_message_add_tail(&x[1], &message); 4024 } 4025 4026 memcpy(local_buf, txbuf, n_tx); 4027 x[0].tx_buf = local_buf; 4028 x[1].rx_buf = local_buf + n_tx; 4029 4030 /* do the i/o */ 4031 status = spi_sync(spi, &message); 4032 if (status == 0) 4033 memcpy(rxbuf, x[1].rx_buf, n_rx); 4034 4035 if (x[0].tx_buf == buf) 4036 mutex_unlock(&lock); 4037 else 4038 kfree(local_buf); 4039 4040 return status; 4041} 4042EXPORT_SYMBOL_GPL(spi_write_then_read); 4043 4044/*-------------------------------------------------------------------------*/ 4045 4046#if IS_ENABLED(CONFIG_OF) 4047/* must call put_device() when done with returned spi_device device */ 4048struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4049{ 4050 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4051 4052 return dev ? to_spi_device(dev) : NULL; 4053} 4054EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 4055#endif /* IS_ENABLED(CONFIG_OF) */ 4056 4057#if IS_ENABLED(CONFIG_OF_DYNAMIC) 4058/* the spi controllers are not using spi_bus, so we find it with another way */ 4059static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4060{ 4061 struct device *dev; 4062 4063 dev = class_find_device_by_of_node(&spi_master_class, node); 4064 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4065 dev = class_find_device_by_of_node(&spi_slave_class, node); 4066 if (!dev) 4067 return NULL; 4068 4069 /* reference got in class_find_device */ 4070 return container_of(dev, struct spi_controller, dev); 4071} 4072 4073static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4074 void *arg) 4075{ 4076 struct of_reconfig_data *rd = arg; 4077 struct spi_controller *ctlr; 4078 struct spi_device *spi; 4079 4080 switch (of_reconfig_get_state_change(action, arg)) { 4081 case OF_RECONFIG_CHANGE_ADD: 4082 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4083 if (ctlr == NULL) 4084 return NOTIFY_OK; /* not for us */ 4085 4086 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4087 put_device(&ctlr->dev); 4088 return NOTIFY_OK; 4089 } 4090 4091 spi = of_register_spi_device(ctlr, rd->dn); 4092 put_device(&ctlr->dev); 4093 4094 if (IS_ERR(spi)) { 4095 pr_err("%s: failed to create for '%pOF'\n", 4096 __func__, rd->dn); 4097 of_node_clear_flag(rd->dn, OF_POPULATED); 4098 return notifier_from_errno(PTR_ERR(spi)); 4099 } 4100 break; 4101 4102 case OF_RECONFIG_CHANGE_REMOVE: 4103 /* already depopulated? */ 4104 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4105 return NOTIFY_OK; 4106 4107 /* find our device by node */ 4108 spi = of_find_spi_device_by_node(rd->dn); 4109 if (spi == NULL) 4110 return NOTIFY_OK; /* no? not meant for us */ 4111 4112 /* unregister takes one ref away */ 4113 spi_unregister_device(spi); 4114 4115 /* and put the reference of the find */ 4116 put_device(&spi->dev); 4117 break; 4118 } 4119 4120 return NOTIFY_OK; 4121} 4122 4123static struct notifier_block spi_of_notifier = { 4124 .notifier_call = of_spi_notify, 4125}; 4126#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4127extern struct notifier_block spi_of_notifier; 4128#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4129 4130#if IS_ENABLED(CONFIG_ACPI) 4131static int spi_acpi_controller_match(struct device *dev, const void *data) 4132{ 4133 return ACPI_COMPANION(dev->parent) == data; 4134} 4135 4136static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4137{ 4138 struct device *dev; 4139 4140 dev = class_find_device(&spi_master_class, NULL, adev, 4141 spi_acpi_controller_match); 4142 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4143 dev = class_find_device(&spi_slave_class, NULL, adev, 4144 spi_acpi_controller_match); 4145 if (!dev) 4146 return NULL; 4147 4148 return container_of(dev, struct spi_controller, dev); 4149} 4150 4151static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4152{ 4153 struct device *dev; 4154 4155 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4156 return to_spi_device(dev); 4157} 4158 4159static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4160 void *arg) 4161{ 4162 struct acpi_device *adev = arg; 4163 struct spi_controller *ctlr; 4164 struct spi_device *spi; 4165 4166 switch (value) { 4167 case ACPI_RECONFIG_DEVICE_ADD: 4168 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4169 if (!ctlr) 4170 break; 4171 4172 acpi_register_spi_device(ctlr, adev); 4173 put_device(&ctlr->dev); 4174 break; 4175 case ACPI_RECONFIG_DEVICE_REMOVE: 4176 if (!acpi_device_enumerated(adev)) 4177 break; 4178 4179 spi = acpi_spi_find_device_by_adev(adev); 4180 if (!spi) 4181 break; 4182 4183 spi_unregister_device(spi); 4184 put_device(&spi->dev); 4185 break; 4186 } 4187 4188 return NOTIFY_OK; 4189} 4190 4191static struct notifier_block spi_acpi_notifier = { 4192 .notifier_call = acpi_spi_notify, 4193}; 4194#else 4195extern struct notifier_block spi_acpi_notifier; 4196#endif 4197 4198static int __init spi_init(void) 4199{ 4200 int status; 4201 4202 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4203 if (!buf) { 4204 status = -ENOMEM; 4205 goto err0; 4206 } 4207 4208 status = bus_register(&spi_bus_type); 4209 if (status < 0) 4210 goto err1; 4211 4212 status = class_register(&spi_master_class); 4213 if (status < 0) 4214 goto err2; 4215 4216 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4217 status = class_register(&spi_slave_class); 4218 if (status < 0) 4219 goto err3; 4220 } 4221 4222 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4223 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4224 if (IS_ENABLED(CONFIG_ACPI)) 4225 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4226 4227 return 0; 4228 4229err3: 4230 class_unregister(&spi_master_class); 4231err2: 4232 bus_unregister(&spi_bus_type); 4233err1: 4234 kfree(buf); 4235 buf = NULL; 4236err0: 4237 return status; 4238} 4239 4240/* board_info is normally registered in arch_initcall(), 4241 * but even essential drivers wait till later 4242 * 4243 * REVISIT only boardinfo really needs static linking. the rest (device and 4244 * driver registration) _could_ be dynamically linked (modular) ... costs 4245 * include needing to have boardinfo data structures be much more public. 4246 */ 4247postcore_initcall(spi_init); 4248