1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
4 *
5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6 */
7
8#include <linux/delay.h>
9#include <linux/pci.h>
10#include <linux/wait.h>
11#include <linux/spi/spi.h>
12#include <linux/interrupt.h>
13#include <linux/sched.h>
14#include <linux/spi/spidev.h>
15#include <linux/module.h>
16#include <linux/device.h>
17#include <linux/platform_device.h>
18
19#include <linux/dmaengine.h>
20#include <linux/pch_dma.h>
21
22/* Register offsets */
23#define PCH_SPCR		0x00	/* SPI control register */
24#define PCH_SPBRR		0x04	/* SPI baud rate register */
25#define PCH_SPSR		0x08	/* SPI status register */
26#define PCH_SPDWR		0x0C	/* SPI write data register */
27#define PCH_SPDRR		0x10	/* SPI read data register */
28#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
29#define PCH_SRST		0x1C	/* SPI reset register */
30#define PCH_ADDRESS_SIZE	0x20
31
32#define PCH_SPSR_TFD		0x000007C0
33#define PCH_SPSR_RFD		0x0000F800
34
35#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
36#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
37
38#define PCH_RX_THOLD		7
39#define PCH_RX_THOLD_MAX	15
40
41#define PCH_TX_THOLD		2
42
43#define PCH_MAX_BAUDRATE	5000000
44#define PCH_MAX_FIFO_DEPTH	16
45
46#define STATUS_RUNNING		1
47#define STATUS_EXITING		2
48#define PCH_SLEEP_TIME		10
49
50#define SSN_LOW			0x02U
51#define SSN_HIGH		0x03U
52#define SSN_NO_CONTROL		0x00U
53#define PCH_MAX_CS		0xFF
54#define PCI_DEVICE_ID_GE_SPI	0x8816
55
56#define SPCR_SPE_BIT		(1 << 0)
57#define SPCR_MSTR_BIT		(1 << 1)
58#define SPCR_LSBF_BIT		(1 << 4)
59#define SPCR_CPHA_BIT		(1 << 5)
60#define SPCR_CPOL_BIT		(1 << 6)
61#define SPCR_TFIE_BIT		(1 << 8)
62#define SPCR_RFIE_BIT		(1 << 9)
63#define SPCR_FIE_BIT		(1 << 10)
64#define SPCR_ORIE_BIT		(1 << 11)
65#define SPCR_MDFIE_BIT		(1 << 12)
66#define SPCR_FICLR_BIT		(1 << 24)
67#define SPSR_TFI_BIT		(1 << 0)
68#define SPSR_RFI_BIT		(1 << 1)
69#define SPSR_FI_BIT		(1 << 2)
70#define SPSR_ORF_BIT		(1 << 3)
71#define SPBRR_SIZE_BIT		(1 << 10)
72
73#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
74				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
75
76#define SPCR_RFIC_FIELD		20
77#define SPCR_TFIC_FIELD		16
78
79#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
80#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
81#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
82
83#define PCH_CLOCK_HZ		50000000
84#define PCH_MAX_SPBR		1023
85
86/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
87#define PCI_DEVICE_ID_ML7213_SPI	0x802c
88#define PCI_DEVICE_ID_ML7223_SPI	0x800F
89#define PCI_DEVICE_ID_ML7831_SPI	0x8816
90
91/*
92 * Set the number of SPI instance max
93 * Intel EG20T PCH :		1ch
94 * LAPIS Semiconductor ML7213 IOH :	2ch
95 * LAPIS Semiconductor ML7223 IOH :	1ch
96 * LAPIS Semiconductor ML7831 IOH :	1ch
97*/
98#define PCH_SPI_MAX_DEV			2
99
100#define PCH_BUF_SIZE		4096
101#define PCH_DMA_TRANS_SIZE	12
102
103static int use_dma = 1;
104
105struct pch_spi_dma_ctrl {
106	struct dma_async_tx_descriptor	*desc_tx;
107	struct dma_async_tx_descriptor	*desc_rx;
108	struct pch_dma_slave		param_tx;
109	struct pch_dma_slave		param_rx;
110	struct dma_chan		*chan_tx;
111	struct dma_chan		*chan_rx;
112	struct scatterlist		*sg_tx_p;
113	struct scatterlist		*sg_rx_p;
114	struct scatterlist		sg_tx;
115	struct scatterlist		sg_rx;
116	int				nent;
117	void				*tx_buf_virt;
118	void				*rx_buf_virt;
119	dma_addr_t			tx_buf_dma;
120	dma_addr_t			rx_buf_dma;
121};
122/**
123 * struct pch_spi_data - Holds the SPI channel specific details
124 * @io_remap_addr:		The remapped PCI base address
125 * @io_base_addr:		Base address
126 * @master:			Pointer to the SPI master structure
127 * @work:			Reference to work queue handler
128 * @wait:			Wait queue for waking up upon receiving an
129 *				interrupt.
130 * @transfer_complete:		Status of SPI Transfer
131 * @bcurrent_msg_processing:	Status flag for message processing
132 * @lock:			Lock for protecting this structure
133 * @queue:			SPI Message queue
134 * @status:			Status of the SPI driver
135 * @bpw_len:			Length of data to be transferred in bits per
136 *				word
137 * @transfer_active:		Flag showing active transfer
138 * @tx_index:			Transmit data count; for bookkeeping during
139 *				transfer
140 * @rx_index:			Receive data count; for bookkeeping during
141 *				transfer
142 * @pkt_tx_buff:		Buffer for data to be transmitted
143 * @pkt_rx_buff:		Buffer for received data
144 * @n_curnt_chip:		The chip number that this SPI driver currently
145 *				operates on
146 * @current_chip:		Reference to the current chip that this SPI
147 *				driver currently operates on
148 * @current_msg:		The current message that this SPI driver is
149 *				handling
150 * @cur_trans:			The current transfer that this SPI driver is
151 *				handling
152 * @board_dat:			Reference to the SPI device data structure
153 * @plat_dev:			platform_device structure
154 * @ch:				SPI channel number
155 * @dma:			Local DMA information
156 * @use_dma:			True if DMA is to be used
157 * @irq_reg_sts:		Status of IRQ registration
158 * @save_total_len:		Save length while data is being transferred
159 */
160struct pch_spi_data {
161	void __iomem *io_remap_addr;
162	unsigned long io_base_addr;
163	struct spi_master *master;
164	struct work_struct work;
165	wait_queue_head_t wait;
166	u8 transfer_complete;
167	u8 bcurrent_msg_processing;
168	spinlock_t lock;
169	struct list_head queue;
170	u8 status;
171	u32 bpw_len;
172	u8 transfer_active;
173	u32 tx_index;
174	u32 rx_index;
175	u16 *pkt_tx_buff;
176	u16 *pkt_rx_buff;
177	u8 n_curnt_chip;
178	struct spi_device *current_chip;
179	struct spi_message *current_msg;
180	struct spi_transfer *cur_trans;
181	struct pch_spi_board_data *board_dat;
182	struct platform_device	*plat_dev;
183	int ch;
184	struct pch_spi_dma_ctrl dma;
185	int use_dma;
186	u8 irq_reg_sts;
187	int save_total_len;
188};
189
190/**
191 * struct pch_spi_board_data - Holds the SPI device specific details
192 * @pdev:		Pointer to the PCI device
193 * @suspend_sts:	Status of suspend
194 * @num:		The number of SPI device instance
195 */
196struct pch_spi_board_data {
197	struct pci_dev *pdev;
198	u8 suspend_sts;
199	int num;
200};
201
202struct pch_pd_dev_save {
203	int num;
204	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
205	struct pch_spi_board_data *board_dat;
206};
207
208static const struct pci_device_id pch_spi_pcidev_id[] = {
209	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
210	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
211	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
212	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
213	{ }
214};
215
216/**
217 * pch_spi_writereg() - Performs  register writes
218 * @master:	Pointer to struct spi_master.
219 * @idx:	Register offset.
220 * @val:	Value to be written to register.
221 */
222static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
223{
224	struct pch_spi_data *data = spi_master_get_devdata(master);
225	iowrite32(val, (data->io_remap_addr + idx));
226}
227
228/**
229 * pch_spi_readreg() - Performs register reads
230 * @master:	Pointer to struct spi_master.
231 * @idx:	Register offset.
232 */
233static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
234{
235	struct pch_spi_data *data = spi_master_get_devdata(master);
236	return ioread32(data->io_remap_addr + idx);
237}
238
239static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
240				      u32 set, u32 clr)
241{
242	u32 tmp = pch_spi_readreg(master, idx);
243	tmp = (tmp & ~clr) | set;
244	pch_spi_writereg(master, idx, tmp);
245}
246
247static void pch_spi_set_master_mode(struct spi_master *master)
248{
249	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
250}
251
252/**
253 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
254 * @master:	Pointer to struct spi_master.
255 */
256static void pch_spi_clear_fifo(struct spi_master *master)
257{
258	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
259	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
260}
261
262static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
263				void __iomem *io_remap_addr)
264{
265	u32 n_read, tx_index, rx_index, bpw_len;
266	u16 *pkt_rx_buffer, *pkt_tx_buff;
267	int read_cnt;
268	u32 reg_spcr_val;
269	void __iomem *spsr;
270	void __iomem *spdrr;
271	void __iomem *spdwr;
272
273	spsr = io_remap_addr + PCH_SPSR;
274	iowrite32(reg_spsr_val, spsr);
275
276	if (data->transfer_active) {
277		rx_index = data->rx_index;
278		tx_index = data->tx_index;
279		bpw_len = data->bpw_len;
280		pkt_rx_buffer = data->pkt_rx_buff;
281		pkt_tx_buff = data->pkt_tx_buff;
282
283		spdrr = io_remap_addr + PCH_SPDRR;
284		spdwr = io_remap_addr + PCH_SPDWR;
285
286		n_read = PCH_READABLE(reg_spsr_val);
287
288		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
289			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
290			if (tx_index < bpw_len)
291				iowrite32(pkt_tx_buff[tx_index++], spdwr);
292		}
293
294		/* disable RFI if not needed */
295		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
296			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
297			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
298
299			/* reset rx threshold */
300			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
301			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
302
303			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
304		}
305
306		/* update counts */
307		data->tx_index = tx_index;
308		data->rx_index = rx_index;
309
310		/* if transfer complete interrupt */
311		if (reg_spsr_val & SPSR_FI_BIT) {
312			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
313				/* disable interrupts */
314				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
315						   PCH_ALL);
316
317				/* transfer is completed;
318				   inform pch_spi_process_messages */
319				data->transfer_complete = true;
320				data->transfer_active = false;
321				wake_up(&data->wait);
322			} else {
323				dev_vdbg(&data->master->dev,
324					"%s : Transfer is not completed",
325					__func__);
326			}
327		}
328	}
329}
330
331/**
332 * pch_spi_handler() - Interrupt handler
333 * @irq:	The interrupt number.
334 * @dev_id:	Pointer to struct pch_spi_board_data.
335 */
336static irqreturn_t pch_spi_handler(int irq, void *dev_id)
337{
338	u32 reg_spsr_val;
339	void __iomem *spsr;
340	void __iomem *io_remap_addr;
341	irqreturn_t ret = IRQ_NONE;
342	struct pch_spi_data *data = dev_id;
343	struct pch_spi_board_data *board_dat = data->board_dat;
344
345	if (board_dat->suspend_sts) {
346		dev_dbg(&board_dat->pdev->dev,
347			"%s returning due to suspend\n", __func__);
348		return IRQ_NONE;
349	}
350
351	io_remap_addr = data->io_remap_addr;
352	spsr = io_remap_addr + PCH_SPSR;
353
354	reg_spsr_val = ioread32(spsr);
355
356	if (reg_spsr_val & SPSR_ORF_BIT) {
357		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
358		if (data->current_msg->complete) {
359			data->transfer_complete = true;
360			data->current_msg->status = -EIO;
361			data->current_msg->complete(data->current_msg->context);
362			data->bcurrent_msg_processing = false;
363			data->current_msg = NULL;
364			data->cur_trans = NULL;
365		}
366	}
367
368	if (data->use_dma)
369		return IRQ_NONE;
370
371	/* Check if the interrupt is for SPI device */
372	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
373		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
374		ret = IRQ_HANDLED;
375	}
376
377	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
378		__func__, ret);
379
380	return ret;
381}
382
383/**
384 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
385 * @master:	Pointer to struct spi_master.
386 * @speed_hz:	Baud rate.
387 */
388static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
389{
390	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
391
392	/* if baud rate is less than we can support limit it */
393	if (n_spbr > PCH_MAX_SPBR)
394		n_spbr = PCH_MAX_SPBR;
395
396	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
397}
398
399/**
400 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
401 * @master:		Pointer to struct spi_master.
402 * @bits_per_word:	Bits per word for SPI transfer.
403 */
404static void pch_spi_set_bits_per_word(struct spi_master *master,
405				      u8 bits_per_word)
406{
407	if (bits_per_word == 8)
408		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
409	else
410		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
411}
412
413/**
414 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
415 * @spi:	Pointer to struct spi_device.
416 */
417static void pch_spi_setup_transfer(struct spi_device *spi)
418{
419	u32 flags = 0;
420
421	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
422		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
423		spi->max_speed_hz);
424	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
425
426	/* set bits per word */
427	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
428
429	if (!(spi->mode & SPI_LSB_FIRST))
430		flags |= SPCR_LSBF_BIT;
431	if (spi->mode & SPI_CPOL)
432		flags |= SPCR_CPOL_BIT;
433	if (spi->mode & SPI_CPHA)
434		flags |= SPCR_CPHA_BIT;
435	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
436			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
437
438	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
439	pch_spi_clear_fifo(spi->master);
440}
441
442/**
443 * pch_spi_reset() - Clears SPI registers
444 * @master:	Pointer to struct spi_master.
445 */
446static void pch_spi_reset(struct spi_master *master)
447{
448	/* write 1 to reset SPI */
449	pch_spi_writereg(master, PCH_SRST, 0x1);
450
451	/* clear reset */
452	pch_spi_writereg(master, PCH_SRST, 0x0);
453}
454
455static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
456{
457
458	struct spi_transfer *transfer;
459	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
460	int retval;
461	unsigned long flags;
462
463	spin_lock_irqsave(&data->lock, flags);
464	/* validate Tx/Rx buffers and Transfer length */
465	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
466		if (!transfer->tx_buf && !transfer->rx_buf) {
467			dev_err(&pspi->dev,
468				"%s Tx and Rx buffer NULL\n", __func__);
469			retval = -EINVAL;
470			goto err_return_spinlock;
471		}
472
473		if (!transfer->len) {
474			dev_err(&pspi->dev, "%s Transfer length invalid\n",
475				__func__);
476			retval = -EINVAL;
477			goto err_return_spinlock;
478		}
479
480		dev_dbg(&pspi->dev,
481			"%s Tx/Rx buffer valid. Transfer length valid\n",
482			__func__);
483	}
484	spin_unlock_irqrestore(&data->lock, flags);
485
486	/* We won't process any messages if we have been asked to terminate */
487	if (data->status == STATUS_EXITING) {
488		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
489		retval = -ESHUTDOWN;
490		goto err_out;
491	}
492
493	/* If suspended ,return -EINVAL */
494	if (data->board_dat->suspend_sts) {
495		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
496		retval = -EINVAL;
497		goto err_out;
498	}
499
500	/* set status of message */
501	pmsg->actual_length = 0;
502	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
503
504	pmsg->status = -EINPROGRESS;
505	spin_lock_irqsave(&data->lock, flags);
506	/* add message to queue */
507	list_add_tail(&pmsg->queue, &data->queue);
508	spin_unlock_irqrestore(&data->lock, flags);
509
510	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
511
512	schedule_work(&data->work);
513	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
514
515	retval = 0;
516
517err_out:
518	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
519	return retval;
520err_return_spinlock:
521	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
522	spin_unlock_irqrestore(&data->lock, flags);
523	return retval;
524}
525
526static inline void pch_spi_select_chip(struct pch_spi_data *data,
527				       struct spi_device *pspi)
528{
529	if (data->current_chip != NULL) {
530		if (pspi->chip_select != data->n_curnt_chip) {
531			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
532			data->current_chip = NULL;
533		}
534	}
535
536	data->current_chip = pspi;
537
538	data->n_curnt_chip = data->current_chip->chip_select;
539
540	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
541	pch_spi_setup_transfer(pspi);
542}
543
544static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
545{
546	int size;
547	u32 n_writes;
548	int j;
549	struct spi_message *pmsg, *tmp;
550	const u8 *tx_buf;
551	const u16 *tx_sbuf;
552
553	/* set baud rate if needed */
554	if (data->cur_trans->speed_hz) {
555		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
556		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
557	}
558
559	/* set bits per word if needed */
560	if (data->cur_trans->bits_per_word &&
561	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
562		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
563		pch_spi_set_bits_per_word(data->master,
564					  data->cur_trans->bits_per_word);
565		*bpw = data->cur_trans->bits_per_word;
566	} else {
567		*bpw = data->current_msg->spi->bits_per_word;
568	}
569
570	/* reset Tx/Rx index */
571	data->tx_index = 0;
572	data->rx_index = 0;
573
574	data->bpw_len = data->cur_trans->len / (*bpw / 8);
575
576	/* find alloc size */
577	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
578
579	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
580	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
581	if (data->pkt_tx_buff != NULL) {
582		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
583		if (!data->pkt_rx_buff) {
584			kfree(data->pkt_tx_buff);
585			data->pkt_tx_buff = NULL;
586		}
587	}
588
589	if (!data->pkt_rx_buff) {
590		/* flush queue and set status of all transfers to -ENOMEM */
591		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
592			pmsg->status = -ENOMEM;
593
594			if (pmsg->complete)
595				pmsg->complete(pmsg->context);
596
597			/* delete from queue */
598			list_del_init(&pmsg->queue);
599		}
600		return;
601	}
602
603	/* copy Tx Data */
604	if (data->cur_trans->tx_buf != NULL) {
605		if (*bpw == 8) {
606			tx_buf = data->cur_trans->tx_buf;
607			for (j = 0; j < data->bpw_len; j++)
608				data->pkt_tx_buff[j] = *tx_buf++;
609		} else {
610			tx_sbuf = data->cur_trans->tx_buf;
611			for (j = 0; j < data->bpw_len; j++)
612				data->pkt_tx_buff[j] = *tx_sbuf++;
613		}
614	}
615
616	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
617	n_writes = data->bpw_len;
618	if (n_writes > PCH_MAX_FIFO_DEPTH)
619		n_writes = PCH_MAX_FIFO_DEPTH;
620
621	dev_dbg(&data->master->dev,
622		"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
623		__func__);
624	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
625
626	for (j = 0; j < n_writes; j++)
627		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
628
629	/* update tx_index */
630	data->tx_index = j;
631
632	/* reset transfer complete flag */
633	data->transfer_complete = false;
634	data->transfer_active = true;
635}
636
637static void pch_spi_nomore_transfer(struct pch_spi_data *data)
638{
639	struct spi_message *pmsg, *tmp;
640	dev_dbg(&data->master->dev, "%s called\n", __func__);
641	/* Invoke complete callback
642	 * [To the spi core..indicating end of transfer] */
643	data->current_msg->status = 0;
644
645	if (data->current_msg->complete) {
646		dev_dbg(&data->master->dev,
647			"%s:Invoking callback of SPI core\n", __func__);
648		data->current_msg->complete(data->current_msg->context);
649	}
650
651	/* update status in global variable */
652	data->bcurrent_msg_processing = false;
653
654	dev_dbg(&data->master->dev,
655		"%s:data->bcurrent_msg_processing = false\n", __func__);
656
657	data->current_msg = NULL;
658	data->cur_trans = NULL;
659
660	/* check if we have items in list and not suspending
661	 * return 1 if list empty */
662	if ((list_empty(&data->queue) == 0) &&
663	    (!data->board_dat->suspend_sts) &&
664	    (data->status != STATUS_EXITING)) {
665		/* We have some more work to do (either there is more tranint
666		 * bpw;sfer requests in the current message or there are
667		 *more messages)
668		 */
669		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
670		schedule_work(&data->work);
671	} else if (data->board_dat->suspend_sts ||
672		   data->status == STATUS_EXITING) {
673		dev_dbg(&data->master->dev,
674			"%s suspend/remove initiated, flushing queue\n",
675			__func__);
676		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
677			pmsg->status = -EIO;
678
679			if (pmsg->complete)
680				pmsg->complete(pmsg->context);
681
682			/* delete from queue */
683			list_del_init(&pmsg->queue);
684		}
685	}
686}
687
688static void pch_spi_set_ir(struct pch_spi_data *data)
689{
690	/* enable interrupts, set threshold, enable SPI */
691	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
692		/* set receive threshold to PCH_RX_THOLD */
693		pch_spi_setclr_reg(data->master, PCH_SPCR,
694				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
695				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
696				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
697				   MASK_RFIC_SPCR_BITS | PCH_ALL);
698	else
699		/* set receive threshold to maximum */
700		pch_spi_setclr_reg(data->master, PCH_SPCR,
701				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
702				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
703				   SPCR_SPE_BIT,
704				   MASK_RFIC_SPCR_BITS | PCH_ALL);
705
706	/* Wait until the transfer completes; go to sleep after
707				 initiating the transfer. */
708	dev_dbg(&data->master->dev,
709		"%s:waiting for transfer to get over\n", __func__);
710
711	wait_event_interruptible(data->wait, data->transfer_complete);
712
713	/* clear all interrupts */
714	pch_spi_writereg(data->master, PCH_SPSR,
715			 pch_spi_readreg(data->master, PCH_SPSR));
716	/* Disable interrupts and SPI transfer */
717	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
718	/* clear FIFO */
719	pch_spi_clear_fifo(data->master);
720}
721
722static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
723{
724	int j;
725	u8 *rx_buf;
726	u16 *rx_sbuf;
727
728	/* copy Rx Data */
729	if (!data->cur_trans->rx_buf)
730		return;
731
732	if (bpw == 8) {
733		rx_buf = data->cur_trans->rx_buf;
734		for (j = 0; j < data->bpw_len; j++)
735			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
736	} else {
737		rx_sbuf = data->cur_trans->rx_buf;
738		for (j = 0; j < data->bpw_len; j++)
739			*rx_sbuf++ = data->pkt_rx_buff[j];
740	}
741}
742
743static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
744{
745	int j;
746	u8 *rx_buf;
747	u16 *rx_sbuf;
748	const u8 *rx_dma_buf;
749	const u16 *rx_dma_sbuf;
750
751	/* copy Rx Data */
752	if (!data->cur_trans->rx_buf)
753		return;
754
755	if (bpw == 8) {
756		rx_buf = data->cur_trans->rx_buf;
757		rx_dma_buf = data->dma.rx_buf_virt;
758		for (j = 0; j < data->bpw_len; j++)
759			*rx_buf++ = *rx_dma_buf++ & 0xFF;
760		data->cur_trans->rx_buf = rx_buf;
761	} else {
762		rx_sbuf = data->cur_trans->rx_buf;
763		rx_dma_sbuf = data->dma.rx_buf_virt;
764		for (j = 0; j < data->bpw_len; j++)
765			*rx_sbuf++ = *rx_dma_sbuf++;
766		data->cur_trans->rx_buf = rx_sbuf;
767	}
768}
769
770static int pch_spi_start_transfer(struct pch_spi_data *data)
771{
772	struct pch_spi_dma_ctrl *dma;
773	unsigned long flags;
774	int rtn;
775
776	dma = &data->dma;
777
778	spin_lock_irqsave(&data->lock, flags);
779
780	/* disable interrupts, SPI set enable */
781	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
782
783	spin_unlock_irqrestore(&data->lock, flags);
784
785	/* Wait until the transfer completes; go to sleep after
786				 initiating the transfer. */
787	dev_dbg(&data->master->dev,
788		"%s:waiting for transfer to get over\n", __func__);
789	rtn = wait_event_interruptible_timeout(data->wait,
790					       data->transfer_complete,
791					       msecs_to_jiffies(2 * HZ));
792	if (!rtn)
793		dev_err(&data->master->dev,
794			"%s wait-event timeout\n", __func__);
795
796	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
797			    DMA_FROM_DEVICE);
798
799	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
800			    DMA_FROM_DEVICE);
801	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
802
803	async_tx_ack(dma->desc_rx);
804	async_tx_ack(dma->desc_tx);
805	kfree(dma->sg_tx_p);
806	kfree(dma->sg_rx_p);
807
808	spin_lock_irqsave(&data->lock, flags);
809
810	/* clear fifo threshold, disable interrupts, disable SPI transfer */
811	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
812			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
813			   SPCR_SPE_BIT);
814	/* clear all interrupts */
815	pch_spi_writereg(data->master, PCH_SPSR,
816			 pch_spi_readreg(data->master, PCH_SPSR));
817	/* clear FIFO */
818	pch_spi_clear_fifo(data->master);
819
820	spin_unlock_irqrestore(&data->lock, flags);
821
822	return rtn;
823}
824
825static void pch_dma_rx_complete(void *arg)
826{
827	struct pch_spi_data *data = arg;
828
829	/* transfer is completed;inform pch_spi_process_messages_dma */
830	data->transfer_complete = true;
831	wake_up_interruptible(&data->wait);
832}
833
834static bool pch_spi_filter(struct dma_chan *chan, void *slave)
835{
836	struct pch_dma_slave *param = slave;
837
838	if ((chan->chan_id == param->chan_id) &&
839	    (param->dma_dev == chan->device->dev)) {
840		chan->private = param;
841		return true;
842	} else {
843		return false;
844	}
845}
846
847static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
848{
849	dma_cap_mask_t mask;
850	struct dma_chan *chan;
851	struct pci_dev *dma_dev;
852	struct pch_dma_slave *param;
853	struct pch_spi_dma_ctrl *dma;
854	unsigned int width;
855
856	if (bpw == 8)
857		width = PCH_DMA_WIDTH_1_BYTE;
858	else
859		width = PCH_DMA_WIDTH_2_BYTES;
860
861	dma = &data->dma;
862	dma_cap_zero(mask);
863	dma_cap_set(DMA_SLAVE, mask);
864
865	/* Get DMA's dev information */
866	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
867			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
868
869	/* Set Tx DMA */
870	param = &dma->param_tx;
871	param->dma_dev = &dma_dev->dev;
872	param->chan_id = data->ch * 2; /* Tx = 0, 2 */
873	param->tx_reg = data->io_base_addr + PCH_SPDWR;
874	param->width = width;
875	chan = dma_request_channel(mask, pch_spi_filter, param);
876	if (!chan) {
877		dev_err(&data->master->dev,
878			"ERROR: dma_request_channel FAILS(Tx)\n");
879		data->use_dma = 0;
880		return;
881	}
882	dma->chan_tx = chan;
883
884	/* Set Rx DMA */
885	param = &dma->param_rx;
886	param->dma_dev = &dma_dev->dev;
887	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
888	param->rx_reg = data->io_base_addr + PCH_SPDRR;
889	param->width = width;
890	chan = dma_request_channel(mask, pch_spi_filter, param);
891	if (!chan) {
892		dev_err(&data->master->dev,
893			"ERROR: dma_request_channel FAILS(Rx)\n");
894		dma_release_channel(dma->chan_tx);
895		dma->chan_tx = NULL;
896		data->use_dma = 0;
897		return;
898	}
899	dma->chan_rx = chan;
900}
901
902static void pch_spi_release_dma(struct pch_spi_data *data)
903{
904	struct pch_spi_dma_ctrl *dma;
905
906	dma = &data->dma;
907	if (dma->chan_tx) {
908		dma_release_channel(dma->chan_tx);
909		dma->chan_tx = NULL;
910	}
911	if (dma->chan_rx) {
912		dma_release_channel(dma->chan_rx);
913		dma->chan_rx = NULL;
914	}
915}
916
917static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
918{
919	const u8 *tx_buf;
920	const u16 *tx_sbuf;
921	u8 *tx_dma_buf;
922	u16 *tx_dma_sbuf;
923	struct scatterlist *sg;
924	struct dma_async_tx_descriptor *desc_tx;
925	struct dma_async_tx_descriptor *desc_rx;
926	int num;
927	int i;
928	int size;
929	int rem;
930	int head;
931	unsigned long flags;
932	struct pch_spi_dma_ctrl *dma;
933
934	dma = &data->dma;
935
936	/* set baud rate if needed */
937	if (data->cur_trans->speed_hz) {
938		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
939		spin_lock_irqsave(&data->lock, flags);
940		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
941		spin_unlock_irqrestore(&data->lock, flags);
942	}
943
944	/* set bits per word if needed */
945	if (data->cur_trans->bits_per_word &&
946	    (data->current_msg->spi->bits_per_word !=
947	     data->cur_trans->bits_per_word)) {
948		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
949		spin_lock_irqsave(&data->lock, flags);
950		pch_spi_set_bits_per_word(data->master,
951					  data->cur_trans->bits_per_word);
952		spin_unlock_irqrestore(&data->lock, flags);
953		*bpw = data->cur_trans->bits_per_word;
954	} else {
955		*bpw = data->current_msg->spi->bits_per_word;
956	}
957	data->bpw_len = data->cur_trans->len / (*bpw / 8);
958
959	if (data->bpw_len > PCH_BUF_SIZE) {
960		data->bpw_len = PCH_BUF_SIZE;
961		data->cur_trans->len -= PCH_BUF_SIZE;
962	}
963
964	/* copy Tx Data */
965	if (data->cur_trans->tx_buf != NULL) {
966		if (*bpw == 8) {
967			tx_buf = data->cur_trans->tx_buf;
968			tx_dma_buf = dma->tx_buf_virt;
969			for (i = 0; i < data->bpw_len; i++)
970				*tx_dma_buf++ = *tx_buf++;
971		} else {
972			tx_sbuf = data->cur_trans->tx_buf;
973			tx_dma_sbuf = dma->tx_buf_virt;
974			for (i = 0; i < data->bpw_len; i++)
975				*tx_dma_sbuf++ = *tx_sbuf++;
976		}
977	}
978
979	/* Calculate Rx parameter for DMA transmitting */
980	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
981		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
982			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
983			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
984		} else {
985			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
986			rem = PCH_DMA_TRANS_SIZE;
987		}
988		size = PCH_DMA_TRANS_SIZE;
989	} else {
990		num = 1;
991		size = data->bpw_len;
992		rem = data->bpw_len;
993	}
994	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
995		__func__, num, size, rem);
996	spin_lock_irqsave(&data->lock, flags);
997
998	/* set receive fifo threshold and transmit fifo threshold */
999	pch_spi_setclr_reg(data->master, PCH_SPCR,
1000			   ((size - 1) << SPCR_RFIC_FIELD) |
1001			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1002			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1003
1004	spin_unlock_irqrestore(&data->lock, flags);
1005
1006	/* RX */
1007	dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1008	if (!dma->sg_rx_p)
1009		return;
1010
1011	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1012	/* offset, length setting */
1013	sg = dma->sg_rx_p;
1014	for (i = 0; i < num; i++, sg++) {
1015		if (i == (num - 2)) {
1016			sg->offset = size * i;
1017			sg->offset = sg->offset * (*bpw / 8);
1018			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1019				    sg->offset);
1020			sg_dma_len(sg) = rem;
1021		} else if (i == (num - 1)) {
1022			sg->offset = size * (i - 1) + rem;
1023			sg->offset = sg->offset * (*bpw / 8);
1024			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1025				    sg->offset);
1026			sg_dma_len(sg) = size;
1027		} else {
1028			sg->offset = size * i;
1029			sg->offset = sg->offset * (*bpw / 8);
1030			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1031				    sg->offset);
1032			sg_dma_len(sg) = size;
1033		}
1034		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1035	}
1036	sg = dma->sg_rx_p;
1037	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1038					num, DMA_DEV_TO_MEM,
1039					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1040	if (!desc_rx) {
1041		dev_err(&data->master->dev,
1042			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1043		return;
1044	}
1045	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1046	desc_rx->callback = pch_dma_rx_complete;
1047	desc_rx->callback_param = data;
1048	dma->nent = num;
1049	dma->desc_rx = desc_rx;
1050
1051	/* Calculate Tx parameter for DMA transmitting */
1052	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1053		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1054		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1055			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1056			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1057		} else {
1058			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1059			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1060			      PCH_DMA_TRANS_SIZE - head;
1061		}
1062		size = PCH_DMA_TRANS_SIZE;
1063	} else {
1064		num = 1;
1065		size = data->bpw_len;
1066		rem = data->bpw_len;
1067		head = 0;
1068	}
1069
1070	dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1071	if (!dma->sg_tx_p)
1072		return;
1073
1074	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1075	/* offset, length setting */
1076	sg = dma->sg_tx_p;
1077	for (i = 0; i < num; i++, sg++) {
1078		if (i == 0) {
1079			sg->offset = 0;
1080			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1081				    sg->offset);
1082			sg_dma_len(sg) = size + head;
1083		} else if (i == (num - 1)) {
1084			sg->offset = head + size * i;
1085			sg->offset = sg->offset * (*bpw / 8);
1086			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1087				    sg->offset);
1088			sg_dma_len(sg) = rem;
1089		} else {
1090			sg->offset = head + size * i;
1091			sg->offset = sg->offset * (*bpw / 8);
1092			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1093				    sg->offset);
1094			sg_dma_len(sg) = size;
1095		}
1096		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1097	}
1098	sg = dma->sg_tx_p;
1099	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1100					sg, num, DMA_MEM_TO_DEV,
1101					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1102	if (!desc_tx) {
1103		dev_err(&data->master->dev,
1104			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1105		return;
1106	}
1107	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1108	desc_tx->callback = NULL;
1109	desc_tx->callback_param = data;
1110	dma->nent = num;
1111	dma->desc_tx = desc_tx;
1112
1113	dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1114
1115	spin_lock_irqsave(&data->lock, flags);
1116	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1117	desc_rx->tx_submit(desc_rx);
1118	desc_tx->tx_submit(desc_tx);
1119	spin_unlock_irqrestore(&data->lock, flags);
1120
1121	/* reset transfer complete flag */
1122	data->transfer_complete = false;
1123}
1124
1125static void pch_spi_process_messages(struct work_struct *pwork)
1126{
1127	struct spi_message *pmsg, *tmp;
1128	struct pch_spi_data *data;
1129	int bpw;
1130
1131	data = container_of(pwork, struct pch_spi_data, work);
1132	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1133
1134	spin_lock(&data->lock);
1135	/* check if suspend has been initiated;if yes flush queue */
1136	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1137		dev_dbg(&data->master->dev,
1138			"%s suspend/remove initiated, flushing queue\n", __func__);
1139		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1140			pmsg->status = -EIO;
1141
1142			if (pmsg->complete) {
1143				spin_unlock(&data->lock);
1144				pmsg->complete(pmsg->context);
1145				spin_lock(&data->lock);
1146			}
1147
1148			/* delete from queue */
1149			list_del_init(&pmsg->queue);
1150		}
1151
1152		spin_unlock(&data->lock);
1153		return;
1154	}
1155
1156	data->bcurrent_msg_processing = true;
1157	dev_dbg(&data->master->dev,
1158		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1159
1160	/* Get the message from the queue and delete it from there. */
1161	data->current_msg = list_entry(data->queue.next, struct spi_message,
1162					queue);
1163
1164	list_del_init(&data->current_msg->queue);
1165
1166	data->current_msg->status = 0;
1167
1168	pch_spi_select_chip(data, data->current_msg->spi);
1169
1170	spin_unlock(&data->lock);
1171
1172	if (data->use_dma)
1173		pch_spi_request_dma(data,
1174				    data->current_msg->spi->bits_per_word);
1175	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1176	do {
1177		int cnt;
1178		/* If we are already processing a message get the next
1179		transfer structure from the message otherwise retrieve
1180		the 1st transfer request from the message. */
1181		spin_lock(&data->lock);
1182		if (data->cur_trans == NULL) {
1183			data->cur_trans =
1184				list_entry(data->current_msg->transfers.next,
1185					   struct spi_transfer, transfer_list);
1186			dev_dbg(&data->master->dev,
1187				"%s :Getting 1st transfer message\n",
1188				__func__);
1189		} else {
1190			data->cur_trans =
1191				list_entry(data->cur_trans->transfer_list.next,
1192					   struct spi_transfer, transfer_list);
1193			dev_dbg(&data->master->dev,
1194				"%s :Getting next transfer message\n",
1195				__func__);
1196		}
1197		spin_unlock(&data->lock);
1198
1199		if (!data->cur_trans->len)
1200			goto out;
1201		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1202		data->save_total_len = data->cur_trans->len;
1203		if (data->use_dma) {
1204			int i;
1205			char *save_rx_buf = data->cur_trans->rx_buf;
1206			for (i = 0; i < cnt; i ++) {
1207				pch_spi_handle_dma(data, &bpw);
1208				if (!pch_spi_start_transfer(data)) {
1209					data->transfer_complete = true;
1210					data->current_msg->status = -EIO;
1211					data->current_msg->complete
1212						   (data->current_msg->context);
1213					data->bcurrent_msg_processing = false;
1214					data->current_msg = NULL;
1215					data->cur_trans = NULL;
1216					goto out;
1217				}
1218				pch_spi_copy_rx_data_for_dma(data, bpw);
1219			}
1220			data->cur_trans->rx_buf = save_rx_buf;
1221		} else {
1222			pch_spi_set_tx(data, &bpw);
1223			pch_spi_set_ir(data);
1224			pch_spi_copy_rx_data(data, bpw);
1225			kfree(data->pkt_rx_buff);
1226			data->pkt_rx_buff = NULL;
1227			kfree(data->pkt_tx_buff);
1228			data->pkt_tx_buff = NULL;
1229		}
1230		/* increment message count */
1231		data->cur_trans->len = data->save_total_len;
1232		data->current_msg->actual_length += data->cur_trans->len;
1233
1234		dev_dbg(&data->master->dev,
1235			"%s:data->current_msg->actual_length=%d\n",
1236			__func__, data->current_msg->actual_length);
1237
1238		spi_transfer_delay_exec(data->cur_trans);
1239
1240		spin_lock(&data->lock);
1241
1242		/* No more transfer in this message. */
1243		if ((data->cur_trans->transfer_list.next) ==
1244		    &(data->current_msg->transfers)) {
1245			pch_spi_nomore_transfer(data);
1246		}
1247
1248		spin_unlock(&data->lock);
1249
1250	} while (data->cur_trans != NULL);
1251
1252out:
1253	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1254	if (data->use_dma)
1255		pch_spi_release_dma(data);
1256}
1257
1258static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1259				   struct pch_spi_data *data)
1260{
1261	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1262
1263	flush_work(&data->work);
1264}
1265
1266static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1267				 struct pch_spi_data *data)
1268{
1269	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1270
1271	/* reset PCH SPI h/w */
1272	pch_spi_reset(data->master);
1273	dev_dbg(&board_dat->pdev->dev,
1274		"%s pch_spi_reset invoked successfully\n", __func__);
1275
1276	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1277
1278	return 0;
1279}
1280
1281static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1282			     struct pch_spi_data *data)
1283{
1284	struct pch_spi_dma_ctrl *dma;
1285
1286	dma = &data->dma;
1287	if (dma->tx_buf_dma)
1288		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1289				  dma->tx_buf_virt, dma->tx_buf_dma);
1290	if (dma->rx_buf_dma)
1291		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1292				  dma->rx_buf_virt, dma->rx_buf_dma);
1293}
1294
1295static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1296			      struct pch_spi_data *data)
1297{
1298	struct pch_spi_dma_ctrl *dma;
1299	int ret;
1300
1301	dma = &data->dma;
1302	ret = 0;
1303	/* Get Consistent memory for Tx DMA */
1304	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1305				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1306	if (!dma->tx_buf_virt)
1307		ret = -ENOMEM;
1308
1309	/* Get Consistent memory for Rx DMA */
1310	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1311				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1312	if (!dma->rx_buf_virt)
1313		ret = -ENOMEM;
1314
1315	return ret;
1316}
1317
1318static int pch_spi_pd_probe(struct platform_device *plat_dev)
1319{
1320	int ret;
1321	struct spi_master *master;
1322	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1323	struct pch_spi_data *data;
1324
1325	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1326
1327	master = spi_alloc_master(&board_dat->pdev->dev,
1328				  sizeof(struct pch_spi_data));
1329	if (!master) {
1330		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1331			plat_dev->id);
1332		return -ENOMEM;
1333	}
1334
1335	data = spi_master_get_devdata(master);
1336	data->master = master;
1337
1338	platform_set_drvdata(plat_dev, data);
1339
1340	/* baseaddress + address offset) */
1341	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1342					 PCH_ADDRESS_SIZE * plat_dev->id;
1343	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1344	if (!data->io_remap_addr) {
1345		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1346		ret = -ENOMEM;
1347		goto err_pci_iomap;
1348	}
1349	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1350
1351	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1352		plat_dev->id, data->io_remap_addr);
1353
1354	/* initialize members of SPI master */
1355	master->num_chipselect = PCH_MAX_CS;
1356	master->transfer = pch_spi_transfer;
1357	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1358	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1359	master->max_speed_hz = PCH_MAX_BAUDRATE;
1360
1361	data->board_dat = board_dat;
1362	data->plat_dev = plat_dev;
1363	data->n_curnt_chip = 255;
1364	data->status = STATUS_RUNNING;
1365	data->ch = plat_dev->id;
1366	data->use_dma = use_dma;
1367
1368	INIT_LIST_HEAD(&data->queue);
1369	spin_lock_init(&data->lock);
1370	INIT_WORK(&data->work, pch_spi_process_messages);
1371	init_waitqueue_head(&data->wait);
1372
1373	ret = pch_spi_get_resources(board_dat, data);
1374	if (ret) {
1375		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1376		goto err_spi_get_resources;
1377	}
1378
1379	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1380			  IRQF_SHARED, KBUILD_MODNAME, data);
1381	if (ret) {
1382		dev_err(&plat_dev->dev,
1383			"%s request_irq failed\n", __func__);
1384		goto err_request_irq;
1385	}
1386	data->irq_reg_sts = true;
1387
1388	pch_spi_set_master_mode(master);
1389
1390	if (use_dma) {
1391		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1392		ret = pch_alloc_dma_buf(board_dat, data);
1393		if (ret)
1394			goto err_spi_register_master;
1395	}
1396
1397	ret = spi_register_master(master);
1398	if (ret != 0) {
1399		dev_err(&plat_dev->dev,
1400			"%s spi_register_master FAILED\n", __func__);
1401		goto err_spi_register_master;
1402	}
1403
1404	return 0;
1405
1406err_spi_register_master:
1407	pch_free_dma_buf(board_dat, data);
1408	free_irq(board_dat->pdev->irq, data);
1409err_request_irq:
1410	pch_spi_free_resources(board_dat, data);
1411err_spi_get_resources:
1412	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1413err_pci_iomap:
1414	spi_master_put(master);
1415
1416	return ret;
1417}
1418
1419static int pch_spi_pd_remove(struct platform_device *plat_dev)
1420{
1421	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1422	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1423	int count;
1424	unsigned long flags;
1425
1426	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1427		__func__, plat_dev->id, board_dat->pdev->irq);
1428
1429	if (use_dma)
1430		pch_free_dma_buf(board_dat, data);
1431
1432	/* check for any pending messages; no action is taken if the queue
1433	 * is still full; but at least we tried.  Unload anyway */
1434	count = 500;
1435	spin_lock_irqsave(&data->lock, flags);
1436	data->status = STATUS_EXITING;
1437	while ((list_empty(&data->queue) == 0) && --count) {
1438		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1439			__func__);
1440		spin_unlock_irqrestore(&data->lock, flags);
1441		msleep(PCH_SLEEP_TIME);
1442		spin_lock_irqsave(&data->lock, flags);
1443	}
1444	spin_unlock_irqrestore(&data->lock, flags);
1445
1446	pch_spi_free_resources(board_dat, data);
1447	/* disable interrupts & free IRQ */
1448	if (data->irq_reg_sts) {
1449		/* disable interrupts */
1450		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1451		data->irq_reg_sts = false;
1452		free_irq(board_dat->pdev->irq, data);
1453	}
1454
1455	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1456	spi_unregister_master(data->master);
1457
1458	return 0;
1459}
1460#ifdef CONFIG_PM
1461static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1462			      pm_message_t state)
1463{
1464	u8 count;
1465	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1466	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1467
1468	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1469
1470	if (!board_dat) {
1471		dev_err(&pd_dev->dev,
1472			"%s pci_get_drvdata returned NULL\n", __func__);
1473		return -EFAULT;
1474	}
1475
1476	/* check if the current message is processed:
1477	   Only after thats done the transfer will be suspended */
1478	count = 255;
1479	while ((--count) > 0) {
1480		if (!(data->bcurrent_msg_processing))
1481			break;
1482		msleep(PCH_SLEEP_TIME);
1483	}
1484
1485	/* Free IRQ */
1486	if (data->irq_reg_sts) {
1487		/* disable all interrupts */
1488		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1489		pch_spi_reset(data->master);
1490		free_irq(board_dat->pdev->irq, data);
1491
1492		data->irq_reg_sts = false;
1493		dev_dbg(&pd_dev->dev,
1494			"%s free_irq invoked successfully.\n", __func__);
1495	}
1496
1497	return 0;
1498}
1499
1500static int pch_spi_pd_resume(struct platform_device *pd_dev)
1501{
1502	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1503	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1504	int retval;
1505
1506	if (!board_dat) {
1507		dev_err(&pd_dev->dev,
1508			"%s pci_get_drvdata returned NULL\n", __func__);
1509		return -EFAULT;
1510	}
1511
1512	if (!data->irq_reg_sts) {
1513		/* register IRQ */
1514		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1515				     IRQF_SHARED, KBUILD_MODNAME, data);
1516		if (retval < 0) {
1517			dev_err(&pd_dev->dev,
1518				"%s request_irq failed\n", __func__);
1519			return retval;
1520		}
1521
1522		/* reset PCH SPI h/w */
1523		pch_spi_reset(data->master);
1524		pch_spi_set_master_mode(data->master);
1525		data->irq_reg_sts = true;
1526	}
1527	return 0;
1528}
1529#else
1530#define pch_spi_pd_suspend NULL
1531#define pch_spi_pd_resume NULL
1532#endif
1533
1534static struct platform_driver pch_spi_pd_driver = {
1535	.driver = {
1536		.name = "pch-spi",
1537	},
1538	.probe = pch_spi_pd_probe,
1539	.remove = pch_spi_pd_remove,
1540	.suspend = pch_spi_pd_suspend,
1541	.resume = pch_spi_pd_resume
1542};
1543
1544static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1545{
1546	struct pch_spi_board_data *board_dat;
1547	struct platform_device *pd_dev = NULL;
1548	int retval;
1549	int i;
1550	struct pch_pd_dev_save *pd_dev_save;
1551
1552	pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1553	if (!pd_dev_save)
1554		return -ENOMEM;
1555
1556	board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1557	if (!board_dat) {
1558		retval = -ENOMEM;
1559		goto err_no_mem;
1560	}
1561
1562	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1563	if (retval) {
1564		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1565		goto pci_request_regions;
1566	}
1567
1568	board_dat->pdev = pdev;
1569	board_dat->num = id->driver_data;
1570	pd_dev_save->num = id->driver_data;
1571	pd_dev_save->board_dat = board_dat;
1572
1573	retval = pci_enable_device(pdev);
1574	if (retval) {
1575		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1576		goto pci_enable_device;
1577	}
1578
1579	for (i = 0; i < board_dat->num; i++) {
1580		pd_dev = platform_device_alloc("pch-spi", i);
1581		if (!pd_dev) {
1582			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1583			retval = -ENOMEM;
1584			goto err_platform_device;
1585		}
1586		pd_dev_save->pd_save[i] = pd_dev;
1587		pd_dev->dev.parent = &pdev->dev;
1588
1589		retval = platform_device_add_data(pd_dev, board_dat,
1590						  sizeof(*board_dat));
1591		if (retval) {
1592			dev_err(&pdev->dev,
1593				"platform_device_add_data failed\n");
1594			platform_device_put(pd_dev);
1595			goto err_platform_device;
1596		}
1597
1598		retval = platform_device_add(pd_dev);
1599		if (retval) {
1600			dev_err(&pdev->dev, "platform_device_add failed\n");
1601			platform_device_put(pd_dev);
1602			goto err_platform_device;
1603		}
1604	}
1605
1606	pci_set_drvdata(pdev, pd_dev_save);
1607
1608	return 0;
1609
1610err_platform_device:
1611	while (--i >= 0)
1612		platform_device_unregister(pd_dev_save->pd_save[i]);
1613	pci_disable_device(pdev);
1614pci_enable_device:
1615	pci_release_regions(pdev);
1616pci_request_regions:
1617	kfree(board_dat);
1618err_no_mem:
1619	kfree(pd_dev_save);
1620
1621	return retval;
1622}
1623
1624static void pch_spi_remove(struct pci_dev *pdev)
1625{
1626	int i;
1627	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1628
1629	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1630
1631	for (i = 0; i < pd_dev_save->num; i++)
1632		platform_device_unregister(pd_dev_save->pd_save[i]);
1633
1634	pci_disable_device(pdev);
1635	pci_release_regions(pdev);
1636	kfree(pd_dev_save->board_dat);
1637	kfree(pd_dev_save);
1638}
1639
1640static int __maybe_unused pch_spi_suspend(struct device *dev)
1641{
1642	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1643
1644	dev_dbg(dev, "%s ENTRY\n", __func__);
1645
1646	pd_dev_save->board_dat->suspend_sts = true;
1647
1648	return 0;
1649}
1650
1651static int __maybe_unused pch_spi_resume(struct device *dev)
1652{
1653	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1654
1655	dev_dbg(dev, "%s ENTRY\n", __func__);
1656
1657	/* set suspend status to false */
1658	pd_dev_save->board_dat->suspend_sts = false;
1659
1660	return 0;
1661}
1662
1663static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1664
1665static struct pci_driver pch_spi_pcidev_driver = {
1666	.name = "pch_spi",
1667	.id_table = pch_spi_pcidev_id,
1668	.probe = pch_spi_probe,
1669	.remove = pch_spi_remove,
1670	.driver.pm = &pch_spi_pm_ops,
1671};
1672
1673static int __init pch_spi_init(void)
1674{
1675	int ret;
1676	ret = platform_driver_register(&pch_spi_pd_driver);
1677	if (ret)
1678		return ret;
1679
1680	ret = pci_register_driver(&pch_spi_pcidev_driver);
1681	if (ret) {
1682		platform_driver_unregister(&pch_spi_pd_driver);
1683		return ret;
1684	}
1685
1686	return 0;
1687}
1688module_init(pch_spi_init);
1689
1690static void __exit pch_spi_exit(void)
1691{
1692	pci_unregister_driver(&pch_spi_pcidev_driver);
1693	platform_driver_unregister(&pch_spi_pd_driver);
1694}
1695module_exit(pch_spi_exit);
1696
1697module_param(use_dma, int, 0644);
1698MODULE_PARM_DESC(use_dma,
1699		 "to use DMA for data transfers pass 1 else 0; default 1");
1700
1701MODULE_LICENSE("GPL");
1702MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1703MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1704
1705