1// SPDX-License-Identifier: GPL-2.0
2//
3// STMicroelectronics STM32 SPI Controller driver (master mode only)
4//
5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8#include <linux/debugfs.h>
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dmaengine.h>
12#include <linux/interrupt.h>
13#include <linux/iopoll.h>
14#include <linux/module.h>
15#include <linux/of_platform.h>
16#include <linux/pinctrl/consumer.h>
17#include <linux/pm_runtime.h>
18#include <linux/reset.h>
19#include <linux/spi/spi.h>
20
21#define DRIVER_NAME "spi_stm32"
22
23/* STM32F4 SPI registers */
24#define STM32F4_SPI_CR1			0x00
25#define STM32F4_SPI_CR2			0x04
26#define STM32F4_SPI_SR			0x08
27#define STM32F4_SPI_DR			0x0C
28#define STM32F4_SPI_I2SCFGR		0x1C
29
30/* STM32F4_SPI_CR1 bit fields */
31#define STM32F4_SPI_CR1_CPHA		BIT(0)
32#define STM32F4_SPI_CR1_CPOL		BIT(1)
33#define STM32F4_SPI_CR1_MSTR		BIT(2)
34#define STM32F4_SPI_CR1_BR_SHIFT	3
35#define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
36#define STM32F4_SPI_CR1_SPE		BIT(6)
37#define STM32F4_SPI_CR1_LSBFRST		BIT(7)
38#define STM32F4_SPI_CR1_SSI		BIT(8)
39#define STM32F4_SPI_CR1_SSM		BIT(9)
40#define STM32F4_SPI_CR1_RXONLY		BIT(10)
41#define STM32F4_SPI_CR1_DFF		BIT(11)
42#define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
43#define STM32F4_SPI_CR1_CRCEN		BIT(13)
44#define STM32F4_SPI_CR1_BIDIOE		BIT(14)
45#define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
46#define STM32F4_SPI_CR1_BR_MIN		0
47#define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)
48
49/* STM32F4_SPI_CR2 bit fields */
50#define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
51#define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
52#define STM32F4_SPI_CR2_SSOE		BIT(2)
53#define STM32F4_SPI_CR2_FRF		BIT(4)
54#define STM32F4_SPI_CR2_ERRIE		BIT(5)
55#define STM32F4_SPI_CR2_RXNEIE		BIT(6)
56#define STM32F4_SPI_CR2_TXEIE		BIT(7)
57
58/* STM32F4_SPI_SR bit fields */
59#define STM32F4_SPI_SR_RXNE		BIT(0)
60#define STM32F4_SPI_SR_TXE		BIT(1)
61#define STM32F4_SPI_SR_CHSIDE		BIT(2)
62#define STM32F4_SPI_SR_UDR		BIT(3)
63#define STM32F4_SPI_SR_CRCERR		BIT(4)
64#define STM32F4_SPI_SR_MODF		BIT(5)
65#define STM32F4_SPI_SR_OVR		BIT(6)
66#define STM32F4_SPI_SR_BSY		BIT(7)
67#define STM32F4_SPI_SR_FRE		BIT(8)
68
69/* STM32F4_SPI_I2SCFGR bit fields */
70#define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)
71
72/* STM32F4 SPI Baud Rate min/max divisor */
73#define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
74#define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)
75
76/* STM32H7 SPI registers */
77#define STM32H7_SPI_CR1			0x00
78#define STM32H7_SPI_CR2			0x04
79#define STM32H7_SPI_CFG1		0x08
80#define STM32H7_SPI_CFG2		0x0C
81#define STM32H7_SPI_IER			0x10
82#define STM32H7_SPI_SR			0x14
83#define STM32H7_SPI_IFCR		0x18
84#define STM32H7_SPI_TXDR		0x20
85#define STM32H7_SPI_RXDR		0x30
86#define STM32H7_SPI_I2SCFGR		0x50
87
88/* STM32H7_SPI_CR1 bit fields */
89#define STM32H7_SPI_CR1_SPE		BIT(0)
90#define STM32H7_SPI_CR1_MASRX		BIT(8)
91#define STM32H7_SPI_CR1_CSTART		BIT(9)
92#define STM32H7_SPI_CR1_CSUSP		BIT(10)
93#define STM32H7_SPI_CR1_HDDIR		BIT(11)
94#define STM32H7_SPI_CR1_SSI		BIT(12)
95
96/* STM32H7_SPI_CR2 bit fields */
97#define STM32H7_SPI_CR2_TSIZE_SHIFT	0
98#define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)
99
100/* STM32H7_SPI_CFG1 bit fields */
101#define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
102#define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
103#define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
104#define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
105#define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
106#define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
107#define STM32H7_SPI_CFG1_MBR_SHIFT	28
108#define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
109#define STM32H7_SPI_CFG1_MBR_MIN	0
110#define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)
111
112/* STM32H7_SPI_CFG2 bit fields */
113#define STM32H7_SPI_CFG2_MIDI_SHIFT	4
114#define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
115#define STM32H7_SPI_CFG2_COMM_SHIFT	17
116#define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
117#define STM32H7_SPI_CFG2_SP_SHIFT	19
118#define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
119#define STM32H7_SPI_CFG2_MASTER		BIT(22)
120#define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
121#define STM32H7_SPI_CFG2_CPHA		BIT(24)
122#define STM32H7_SPI_CFG2_CPOL		BIT(25)
123#define STM32H7_SPI_CFG2_SSM		BIT(26)
124#define STM32H7_SPI_CFG2_AFCNTR		BIT(31)
125
126/* STM32H7_SPI_IER bit fields */
127#define STM32H7_SPI_IER_RXPIE		BIT(0)
128#define STM32H7_SPI_IER_TXPIE		BIT(1)
129#define STM32H7_SPI_IER_DXPIE		BIT(2)
130#define STM32H7_SPI_IER_EOTIE		BIT(3)
131#define STM32H7_SPI_IER_TXTFIE		BIT(4)
132#define STM32H7_SPI_IER_OVRIE		BIT(6)
133#define STM32H7_SPI_IER_MODFIE		BIT(9)
134#define STM32H7_SPI_IER_ALL		GENMASK(10, 0)
135
136/* STM32H7_SPI_SR bit fields */
137#define STM32H7_SPI_SR_RXP		BIT(0)
138#define STM32H7_SPI_SR_TXP		BIT(1)
139#define STM32H7_SPI_SR_EOT		BIT(3)
140#define STM32H7_SPI_SR_OVR		BIT(6)
141#define STM32H7_SPI_SR_MODF		BIT(9)
142#define STM32H7_SPI_SR_SUSP		BIT(11)
143#define STM32H7_SPI_SR_RXPLVL_SHIFT	13
144#define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
145#define STM32H7_SPI_SR_RXWNE		BIT(15)
146
147/* STM32H7_SPI_IFCR bit fields */
148#define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)
149
150/* STM32H7_SPI_I2SCFGR bit fields */
151#define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)
152
153/* STM32H7 SPI Master Baud Rate min/max divisor */
154#define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
155#define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)
156
157/* STM32H7 SPI Communication mode */
158#define STM32H7_SPI_FULL_DUPLEX		0
159#define STM32H7_SPI_SIMPLEX_TX		1
160#define STM32H7_SPI_SIMPLEX_RX		2
161#define STM32H7_SPI_HALF_DUPLEX		3
162
163/* SPI Communication type */
164#define SPI_FULL_DUPLEX		0
165#define SPI_SIMPLEX_TX		1
166#define SPI_SIMPLEX_RX		2
167#define SPI_3WIRE_TX		3
168#define SPI_3WIRE_RX		4
169
170#define SPI_1HZ_NS		1000000000
171
172/*
173 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174 * without fifo buffers.
175 */
176#define SPI_DMA_MIN_BYTES	16
177
178/**
179 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180 * @reg:		register offset
181 * @mask:		bitfield mask
182 * @shift:		left shift
183 */
184struct stm32_spi_reg {
185	int reg;
186	int mask;
187	int shift;
188};
189
190/**
191 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192 * @en: enable register and SPI enable bit
193 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195 * @cpol: clock polarity register and polarity bit
196 * @cpha: clock phase register and phase bit
197 * @lsb_first: LSB transmitted first register and bit
198 * @br: baud rate register and bitfields
199 * @rx: SPI RX data register
200 * @tx: SPI TX data register
201 */
202struct stm32_spi_regspec {
203	const struct stm32_spi_reg en;
204	const struct stm32_spi_reg dma_rx_en;
205	const struct stm32_spi_reg dma_tx_en;
206	const struct stm32_spi_reg cpol;
207	const struct stm32_spi_reg cpha;
208	const struct stm32_spi_reg lsb_first;
209	const struct stm32_spi_reg br;
210	const struct stm32_spi_reg rx;
211	const struct stm32_spi_reg tx;
212};
213
214struct stm32_spi;
215
216/**
217 * struct stm32_spi_cfg - stm32 compatible configuration data
218 * @regs: registers descriptions
219 * @get_fifo_size: routine to get fifo size
220 * @get_bpw_mask: routine to get bits per word mask
221 * @disable: routine to disable controller
222 * @config: routine to configure controller as SPI Master
223 * @set_bpw: routine to configure registers to for bits per word
224 * @set_mode: routine to configure registers to desired mode
225 * @set_data_idleness: optional routine to configure registers to desired idle
226 * time between frames (if driver has this functionality)
227 * @set_number_of_data: optional routine to configure registers to desired
228 * number of data (if driver has this functionality)
229 * @can_dma: routine to determine if the transfer is eligible for DMA use
230 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231 * using DMA
232 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
233 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234 * @transfer_one_irq: routine to configure interrupts for driver
235 * @irq_handler_event: Interrupt handler for SPI controller events
236 * @irq_handler_thread: thread of interrupt handler for SPI controller
237 * @baud_rate_div_min: minimum baud rate divisor
238 * @baud_rate_div_max: maximum baud rate divisor
239 * @has_fifo: boolean to know if fifo is used for driver
240 * @has_startbit: boolean to know if start bit is used to start transfer
241 */
242struct stm32_spi_cfg {
243	const struct stm32_spi_regspec *regs;
244	int (*get_fifo_size)(struct stm32_spi *spi);
245	int (*get_bpw_mask)(struct stm32_spi *spi);
246	void (*disable)(struct stm32_spi *spi);
247	int (*config)(struct stm32_spi *spi);
248	void (*set_bpw)(struct stm32_spi *spi);
249	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252	void (*transfer_one_dma_start)(struct stm32_spi *spi);
253	void (*dma_rx_cb)(void *data);
254	void (*dma_tx_cb)(void *data);
255	int (*transfer_one_irq)(struct stm32_spi *spi);
256	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258	unsigned int baud_rate_div_min;
259	unsigned int baud_rate_div_max;
260	bool has_fifo;
261};
262
263/**
264 * struct stm32_spi - private data of the SPI controller
265 * @dev: driver model representation of the controller
266 * @master: controller master interface
267 * @cfg: compatible configuration data
268 * @base: virtual memory area
269 * @clk: hw kernel clock feeding the SPI clock generator
270 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271 * @rst: SPI controller reset line
272 * @lock: prevent I/O concurrent access
273 * @irq: SPI controller interrupt line
274 * @fifo_size: size of the embedded fifo in bytes
275 * @cur_midi: master inter-data idleness in ns
276 * @cur_speed: speed configured in Hz
277 * @cur_bpw: number of bits in a single SPI data frame
278 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279 * @cur_comm: SPI communication mode
280 * @cur_xferlen: current transfer length in bytes
281 * @cur_usedma: boolean to know if dma is used in current transfer
282 * @tx_buf: data to be written, or NULL
283 * @rx_buf: data to be read, or NULL
284 * @tx_len: number of data to be written in bytes
285 * @rx_len: number of data to be read in bytes
286 * @dma_tx: dma channel for TX transfer
287 * @dma_rx: dma channel for RX transfer
288 * @phys_addr: SPI registers physical base address
289 */
290struct stm32_spi {
291	struct device *dev;
292	struct spi_master *master;
293	const struct stm32_spi_cfg *cfg;
294	void __iomem *base;
295	struct clk *clk;
296	u32 clk_rate;
297	struct reset_control *rst;
298	spinlock_t lock; /* prevent I/O concurrent access */
299	int irq;
300	unsigned int fifo_size;
301
302	unsigned int cur_midi;
303	unsigned int cur_speed;
304	unsigned int cur_bpw;
305	unsigned int cur_fthlv;
306	unsigned int cur_comm;
307	unsigned int cur_xferlen;
308	bool cur_usedma;
309
310	const void *tx_buf;
311	void *rx_buf;
312	int tx_len;
313	int rx_len;
314	struct dma_chan *dma_tx;
315	struct dma_chan *dma_rx;
316	dma_addr_t phys_addr;
317};
318
319static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321
322	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324
325	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329
330	.rx = { STM32F4_SPI_DR },
331	.tx = { STM32F4_SPI_DR },
332};
333
334static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335	/* SPI data transfer is enabled but spi_ker_ck is idle.
336	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
337	 */
338	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339
340	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342
343	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347		STM32H7_SPI_CFG1_MBR_SHIFT },
348
349	.rx = { STM32H7_SPI_RXDR },
350	.tx = { STM32H7_SPI_TXDR },
351};
352
353static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354				      u32 offset, u32 bits)
355{
356	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357		       spi->base + offset);
358}
359
360static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361				      u32 offset, u32 bits)
362{
363	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364		       spi->base + offset);
365}
366
367/**
368 * stm32h7_spi_get_fifo_size - Return fifo size
369 * @spi: pointer to the spi controller data structure
370 */
371static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372{
373	unsigned long flags;
374	u32 count = 0;
375
376	spin_lock_irqsave(&spi->lock, flags);
377
378	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379
380	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382
383	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384
385	spin_unlock_irqrestore(&spi->lock, flags);
386
387	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388
389	return count;
390}
391
392/**
393 * stm32f4_spi_get_bpw_mask - Return bits per word mask
394 * @spi: pointer to the spi controller data structure
395 */
396static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397{
398	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
400}
401
402/**
403 * stm32h7_spi_get_bpw_mask - Return bits per word mask
404 * @spi: pointer to the spi controller data structure
405 */
406static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407{
408	unsigned long flags;
409	u32 cfg1, max_bpw;
410
411	spin_lock_irqsave(&spi->lock, flags);
412
413	/*
414	 * The most significant bit at DSIZE bit field is reserved when the
415	 * maximum data size of periperal instances is limited to 16-bit
416	 */
417	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418
419	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
422	max_bpw += 1;
423
424	spin_unlock_irqrestore(&spi->lock, flags);
425
426	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427
428	return SPI_BPW_RANGE_MASK(4, max_bpw);
429}
430
431/**
432 * stm32_spi_prepare_mbr - Determine baud rate divisor value
433 * @spi: pointer to the spi controller data structure
434 * @speed_hz: requested speed
435 * @min_div: minimum baud rate divisor
436 * @max_div: maximum baud rate divisor
437 *
438 * Return baud rate divisor value in case of success or -EINVAL
439 */
440static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441				 u32 min_div, u32 max_div)
442{
443	u32 div, mbrdiv;
444
445	/* Ensure spi->clk_rate is even */
446	div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
447
448	/*
449	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
450	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
451	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
452	 * no need to check it there.
453	 * However, we need to ensure the following calculations.
454	 */
455	if ((div < min_div) || (div > max_div))
456		return -EINVAL;
457
458	/* Determine the first power of 2 greater than or equal to div */
459	if (div & (div - 1))
460		mbrdiv = fls(div);
461	else
462		mbrdiv = fls(div) - 1;
463
464	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
465
466	return mbrdiv - 1;
467}
468
469/**
470 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471 * @spi: pointer to the spi controller data structure
472 * @xfer_len: length of the message to be transferred
473 */
474static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475{
476	u32 fthlv, half_fifo, packet;
477
478	/* data packet should not exceed 1/2 of fifo space */
479	half_fifo = (spi->fifo_size / 2);
480
481	/* data_packet should not exceed transfer length */
482	if (half_fifo > xfer_len)
483		packet = xfer_len;
484	else
485		packet = half_fifo;
486
487	if (spi->cur_bpw <= 8)
488		fthlv = packet;
489	else if (spi->cur_bpw <= 16)
490		fthlv = packet / 2;
491	else
492		fthlv = packet / 4;
493
494	/* align packet size with data registers access */
495	if (spi->cur_bpw > 8)
496		fthlv += (fthlv % 2) ? 1 : 0;
497	else
498		fthlv += (fthlv % 4) ? (4 - (fthlv % 4)) : 0;
499
500	if (!fthlv)
501		fthlv = 1;
502
503	return fthlv;
504}
505
506/**
507 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
508 * @spi: pointer to the spi controller data structure
509 *
510 * Read from tx_buf depends on remaining bytes to avoid to read beyond
511 * tx_buf end.
512 */
513static void stm32f4_spi_write_tx(struct stm32_spi *spi)
514{
515	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
516				  STM32F4_SPI_SR_TXE)) {
517		u32 offs = spi->cur_xferlen - spi->tx_len;
518
519		if (spi->cur_bpw == 16) {
520			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
521
522			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
523			spi->tx_len -= sizeof(u16);
524		} else {
525			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
526
527			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
528			spi->tx_len -= sizeof(u8);
529		}
530	}
531
532	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
533}
534
535/**
536 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537 * @spi: pointer to the spi controller data structure
538 *
539 * Read from tx_buf depends on remaining bytes to avoid to read beyond
540 * tx_buf end.
541 */
542static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543{
544	while ((spi->tx_len > 0) &&
545		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
546			STM32H7_SPI_SR_TXP)) {
547		u32 offs = spi->cur_xferlen - spi->tx_len;
548
549		if (spi->tx_len >= sizeof(u32)) {
550			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
551
552			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553			spi->tx_len -= sizeof(u32);
554		} else if (spi->tx_len >= sizeof(u16)) {
555			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
556
557			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558			spi->tx_len -= sizeof(u16);
559		} else {
560			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
561
562			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563			spi->tx_len -= sizeof(u8);
564		}
565	}
566
567	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
568}
569
570/**
571 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
572 * @spi: pointer to the spi controller data structure
573 *
574 * Write in rx_buf depends on remaining bytes to avoid to write beyond
575 * rx_buf end.
576 */
577static void stm32f4_spi_read_rx(struct stm32_spi *spi)
578{
579	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
580				  STM32F4_SPI_SR_RXNE)) {
581		u32 offs = spi->cur_xferlen - spi->rx_len;
582
583		if (spi->cur_bpw == 16) {
584			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
585
586			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
587			spi->rx_len -= sizeof(u16);
588		} else {
589			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
590
591			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
592			spi->rx_len -= sizeof(u8);
593		}
594	}
595
596	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
597}
598
599/**
600 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601 * @spi: pointer to the spi controller data structure
602 * @flush: boolean indicating that FIFO should be flushed
603 *
604 * Write in rx_buf depends on remaining bytes to avoid to write beyond
605 * rx_buf end.
606 */
607static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608{
609	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
610	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
611		     STM32H7_SPI_SR_RXPLVL_SHIFT;
612
613	while ((spi->rx_len > 0) &&
614	       ((sr & STM32H7_SPI_SR_RXP) ||
615		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616		u32 offs = spi->cur_xferlen - spi->rx_len;
617
618		if ((spi->rx_len >= sizeof(u32)) ||
619		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
621
622			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623			spi->rx_len -= sizeof(u32);
624		} else if ((spi->rx_len >= sizeof(u16)) ||
625			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
626			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
627
628			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629			spi->rx_len -= sizeof(u16);
630		} else {
631			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
632
633			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634			spi->rx_len -= sizeof(u8);
635		}
636
637		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
638		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
639			 STM32H7_SPI_SR_RXPLVL_SHIFT;
640	}
641
642	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
643		flush ? "(flush)" : "", spi->rx_len);
644}
645
646/**
647 * stm32_spi_enable - Enable SPI controller
648 * @spi: pointer to the spi controller data structure
649 */
650static void stm32_spi_enable(struct stm32_spi *spi)
651{
652	dev_dbg(spi->dev, "enable controller\n");
653
654	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
655			   spi->cfg->regs->en.mask);
656}
657
658/**
659 * stm32f4_spi_disable - Disable SPI controller
660 * @spi: pointer to the spi controller data structure
661 */
662static void stm32f4_spi_disable(struct stm32_spi *spi)
663{
664	unsigned long flags;
665	u32 sr;
666
667	dev_dbg(spi->dev, "disable controller\n");
668
669	spin_lock_irqsave(&spi->lock, flags);
670
671	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
672	      STM32F4_SPI_CR1_SPE)) {
673		spin_unlock_irqrestore(&spi->lock, flags);
674		return;
675	}
676
677	/* Disable interrupts */
678	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
679						 STM32F4_SPI_CR2_RXNEIE |
680						 STM32F4_SPI_CR2_ERRIE);
681
682	/* Wait until BSY = 0 */
683	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
684					      sr, !(sr & STM32F4_SPI_SR_BSY),
685					      10, 100000) < 0) {
686		dev_warn(spi->dev, "disabling condition timeout\n");
687	}
688
689	if (spi->cur_usedma && spi->dma_tx)
690		dmaengine_terminate_all(spi->dma_tx);
691	if (spi->cur_usedma && spi->dma_rx)
692		dmaengine_terminate_all(spi->dma_rx);
693
694	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
695
696	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
697						 STM32F4_SPI_CR2_RXDMAEN);
698
699	/* Sequence to clear OVR flag */
700	readl_relaxed(spi->base + STM32F4_SPI_DR);
701	readl_relaxed(spi->base + STM32F4_SPI_SR);
702
703	spin_unlock_irqrestore(&spi->lock, flags);
704}
705
706/**
707 * stm32h7_spi_disable - Disable SPI controller
708 * @spi: pointer to the spi controller data structure
709 *
710 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712 * RX-Fifo.
713 * Normally, if TSIZE has been configured, we should relax the hardware at the
714 * reception of the EOT interrupt. But in case of error, EOT will not be
715 * raised. So the subsystem unprepare_message call allows us to properly
716 * complete the transfer from an hardware point of view.
717 */
718static void stm32h7_spi_disable(struct stm32_spi *spi)
719{
720	unsigned long flags;
721	u32 cr1, sr;
722
723	dev_dbg(spi->dev, "disable controller\n");
724
725	spin_lock_irqsave(&spi->lock, flags);
726
727	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728
729	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730		spin_unlock_irqrestore(&spi->lock, flags);
731		return;
732	}
733
734	/* Wait on EOT or suspend the flow */
735	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
736					      sr, !(sr & STM32H7_SPI_SR_EOT),
737					      10, 100000) < 0) {
738		if (cr1 & STM32H7_SPI_CR1_CSTART) {
739			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
740				       spi->base + STM32H7_SPI_CR1);
741			if (readl_relaxed_poll_timeout_atomic(
742						spi->base + STM32H7_SPI_SR,
743						sr, !(sr & STM32H7_SPI_SR_SUSP),
744						10, 100000) < 0)
745				dev_warn(spi->dev,
746					 "Suspend request timeout\n");
747		}
748	}
749
750	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751		stm32h7_spi_read_rxfifo(spi, true);
752
753	if (spi->cur_usedma && spi->dma_tx)
754		dmaengine_terminate_all(spi->dma_tx);
755	if (spi->cur_usedma && spi->dma_rx)
756		dmaengine_terminate_all(spi->dma_rx);
757
758	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759
760	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
761						STM32H7_SPI_CFG1_RXDMAEN);
762
763	/* Disable interrupts and clear status flags */
764	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
765	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766
767	spin_unlock_irqrestore(&spi->lock, flags);
768}
769
770/**
771 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772 * @master: controller master interface
773 * @spi_dev: pointer to the spi device
774 * @transfer: pointer to spi transfer
775 *
776 * If driver has fifo and the current transfer size is greater than fifo size,
777 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778 */
779static bool stm32_spi_can_dma(struct spi_master *master,
780			      struct spi_device *spi_dev,
781			      struct spi_transfer *transfer)
782{
783	unsigned int dma_size;
784	struct stm32_spi *spi = spi_master_get_devdata(master);
785
786	if (spi->cfg->has_fifo)
787		dma_size = spi->fifo_size;
788	else
789		dma_size = SPI_DMA_MIN_BYTES;
790
791	dev_dbg(spi->dev, "%s: %s\n", __func__,
792		(transfer->len > dma_size) ? "true" : "false");
793
794	return (transfer->len > dma_size);
795}
796
797/**
798 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
799 * @irq: interrupt line
800 * @dev_id: SPI controller master interface
801 */
802static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
803{
804	struct spi_master *master = dev_id;
805	struct stm32_spi *spi = spi_master_get_devdata(master);
806	u32 sr, mask = 0;
807	bool end = false;
808
809	spin_lock(&spi->lock);
810
811	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
812	/*
813	 * BSY flag is not handled in interrupt but it is normal behavior when
814	 * this flag is set.
815	 */
816	sr &= ~STM32F4_SPI_SR_BSY;
817
818	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
819				 spi->cur_comm == SPI_3WIRE_TX)) {
820		/* OVR flag shouldn't be handled for TX only mode */
821		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
822		mask |= STM32F4_SPI_SR_TXE;
823	}
824
825	if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
826				spi->cur_comm == SPI_SIMPLEX_RX ||
827				spi->cur_comm == SPI_3WIRE_RX)) {
828		/* TXE flag is set and is handled when RXNE flag occurs */
829		sr &= ~STM32F4_SPI_SR_TXE;
830		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
831	}
832
833	if (!(sr & mask)) {
834		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
835		spin_unlock(&spi->lock);
836		return IRQ_NONE;
837	}
838
839	if (sr & STM32F4_SPI_SR_OVR) {
840		dev_warn(spi->dev, "Overrun: received value discarded\n");
841
842		/* Sequence to clear OVR flag */
843		readl_relaxed(spi->base + STM32F4_SPI_DR);
844		readl_relaxed(spi->base + STM32F4_SPI_SR);
845
846		/*
847		 * If overrun is detected, it means that something went wrong,
848		 * so stop the current transfer. Transfer can wait for next
849		 * RXNE but DR is already read and end never happens.
850		 */
851		end = true;
852		goto end_irq;
853	}
854
855	if (sr & STM32F4_SPI_SR_TXE) {
856		if (spi->tx_buf)
857			stm32f4_spi_write_tx(spi);
858		if (spi->tx_len == 0)
859			end = true;
860	}
861
862	if (sr & STM32F4_SPI_SR_RXNE) {
863		stm32f4_spi_read_rx(spi);
864		if (spi->rx_len == 0)
865			end = true;
866		else if (spi->tx_buf)/* Load data for discontinuous mode */
867			stm32f4_spi_write_tx(spi);
868	}
869
870end_irq:
871	if (end) {
872		/* Immediately disable interrupts to do not generate new one */
873		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
874					STM32F4_SPI_CR2_TXEIE |
875					STM32F4_SPI_CR2_RXNEIE |
876					STM32F4_SPI_CR2_ERRIE);
877		spin_unlock(&spi->lock);
878		return IRQ_WAKE_THREAD;
879	}
880
881	spin_unlock(&spi->lock);
882	return IRQ_HANDLED;
883}
884
885/**
886 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
887 * @irq: interrupt line
888 * @dev_id: SPI controller master interface
889 */
890static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
891{
892	struct spi_master *master = dev_id;
893	struct stm32_spi *spi = spi_master_get_devdata(master);
894
895	spi_finalize_current_transfer(master);
896	stm32f4_spi_disable(spi);
897
898	return IRQ_HANDLED;
899}
900
901/**
902 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
903 * @irq: interrupt line
904 * @dev_id: SPI controller master interface
905 */
906static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
907{
908	struct spi_master *master = dev_id;
909	struct stm32_spi *spi = spi_master_get_devdata(master);
910	u32 sr, ier, mask;
911	unsigned long flags;
912	bool end = false;
913
914	spin_lock_irqsave(&spi->lock, flags);
915
916	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
917	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
918
919	mask = ier;
920	/*
921	 * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
922	 * SUSP to acknowledge it later. TXC is automatically cleared
923	 */
924
925	mask |= STM32H7_SPI_SR_SUSP;
926	/*
927	 * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
928	 * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
929	 */
930	if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
931		mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
932
933	if (!(sr & mask)) {
934		dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
935			 sr, ier);
936		spin_unlock_irqrestore(&spi->lock, flags);
937		return IRQ_NONE;
938	}
939
940	if (sr & STM32H7_SPI_SR_SUSP) {
941		static DEFINE_RATELIMIT_STATE(rs,
942					      DEFAULT_RATELIMIT_INTERVAL * 10,
943					      1);
944		ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
945		if (__ratelimit(&rs))
946			dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
947		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
948			stm32h7_spi_read_rxfifo(spi, false);
949		/*
950		 * If communication is suspended while using DMA, it means
951		 * that something went wrong, so stop the current transfer
952		 */
953		if (spi->cur_usedma)
954			end = true;
955	}
956
957	if (sr & STM32H7_SPI_SR_MODF) {
958		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
959		end = true;
960	}
961
962	if (sr & STM32H7_SPI_SR_OVR) {
963		dev_err(spi->dev, "Overrun: RX data lost\n");
964		end = true;
965	}
966
967	if (sr & STM32H7_SPI_SR_EOT) {
968		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
969			stm32h7_spi_read_rxfifo(spi, true);
970		end = true;
971	}
972
973	if (sr & STM32H7_SPI_SR_TXP)
974		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
975			stm32h7_spi_write_txfifo(spi);
976
977	if (sr & STM32H7_SPI_SR_RXP)
978		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
979			stm32h7_spi_read_rxfifo(spi, false);
980
981	writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
982
983	spin_unlock_irqrestore(&spi->lock, flags);
984
985	if (end) {
986		stm32h7_spi_disable(spi);
987		spi_finalize_current_transfer(master);
988	}
989
990	return IRQ_HANDLED;
991}
992
993/**
994 * stm32_spi_prepare_msg - set up the controller to transfer a single message
995 * @master: controller master interface
996 * @msg: pointer to spi message
997 */
998static int stm32_spi_prepare_msg(struct spi_master *master,
999				 struct spi_message *msg)
1000{
1001	struct stm32_spi *spi = spi_master_get_devdata(master);
1002	struct spi_device *spi_dev = msg->spi;
1003	struct device_node *np = spi_dev->dev.of_node;
1004	unsigned long flags;
1005	u32 clrb = 0, setb = 0;
1006
1007	/* SPI slave device may need time between data frames */
1008	spi->cur_midi = 0;
1009	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1010		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1011
1012	if (spi_dev->mode & SPI_CPOL)
1013		setb |= spi->cfg->regs->cpol.mask;
1014	else
1015		clrb |= spi->cfg->regs->cpol.mask;
1016
1017	if (spi_dev->mode & SPI_CPHA)
1018		setb |= spi->cfg->regs->cpha.mask;
1019	else
1020		clrb |= spi->cfg->regs->cpha.mask;
1021
1022	if (spi_dev->mode & SPI_LSB_FIRST)
1023		setb |= spi->cfg->regs->lsb_first.mask;
1024	else
1025		clrb |= spi->cfg->regs->lsb_first.mask;
1026
1027	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1028		spi_dev->mode & SPI_CPOL,
1029		spi_dev->mode & SPI_CPHA,
1030		spi_dev->mode & SPI_LSB_FIRST,
1031		spi_dev->mode & SPI_CS_HIGH);
1032
1033	spin_lock_irqsave(&spi->lock, flags);
1034
1035	/* CPOL, CPHA and LSB FIRST bits have common register */
1036	if (clrb || setb)
1037		writel_relaxed(
1038			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1039			 ~clrb) | setb,
1040			spi->base + spi->cfg->regs->cpol.reg);
1041
1042	spin_unlock_irqrestore(&spi->lock, flags);
1043
1044	return 0;
1045}
1046
1047/**
1048 * stm32f4_spi_dma_tx_cb - dma callback
1049 * @data: pointer to the spi controller data structure
1050 *
1051 * DMA callback is called when the transfer is complete for DMA TX channel.
1052 */
1053static void stm32f4_spi_dma_tx_cb(void *data)
1054{
1055	struct stm32_spi *spi = data;
1056
1057	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1058		spi_finalize_current_transfer(spi->master);
1059		stm32f4_spi_disable(spi);
1060	}
1061}
1062
1063/**
1064 * stm32f4_spi_dma_rx_cb - dma callback
1065 * @data: pointer to the spi controller data structure
1066 *
1067 * DMA callback is called when the transfer is complete for DMA RX channel.
1068 */
1069static void stm32f4_spi_dma_rx_cb(void *data)
1070{
1071	struct stm32_spi *spi = data;
1072
1073	spi_finalize_current_transfer(spi->master);
1074	stm32f4_spi_disable(spi);
1075}
1076
1077/**
1078 * stm32h7_spi_dma_cb - dma callback
1079 * @data: pointer to the spi controller data structure
1080 *
1081 * DMA callback is called when the transfer is complete or when an error
1082 * occurs. If the transfer is complete, EOT flag is raised.
1083 */
1084static void stm32h7_spi_dma_cb(void *data)
1085{
1086	struct stm32_spi *spi = data;
1087	unsigned long flags;
1088	u32 sr;
1089
1090	spin_lock_irqsave(&spi->lock, flags);
1091
1092	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1093
1094	spin_unlock_irqrestore(&spi->lock, flags);
1095
1096	if (!(sr & STM32H7_SPI_SR_EOT))
1097		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1098
1099	/* Now wait for EOT, or SUSP or OVR in case of error */
1100}
1101
1102/**
1103 * stm32_spi_dma_config - configure dma slave channel depending on current
1104 *			  transfer bits_per_word.
1105 * @spi: pointer to the spi controller data structure
1106 * @dma_conf: pointer to the dma_slave_config structure
1107 * @dir: direction of the dma transfer
1108 */
1109static void stm32_spi_dma_config(struct stm32_spi *spi,
1110				 struct dma_slave_config *dma_conf,
1111				 enum dma_transfer_direction dir)
1112{
1113	enum dma_slave_buswidth buswidth;
1114	u32 maxburst;
1115
1116	if (spi->cur_bpw <= 8)
1117		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118	else if (spi->cur_bpw <= 16)
1119		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1120	else
1121		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1122
1123	if (spi->cfg->has_fifo) {
1124		/* Valid for DMA Half or Full Fifo threshold */
1125		if (spi->cur_fthlv == 2)
1126			maxburst = 1;
1127		else
1128			maxburst = spi->cur_fthlv;
1129	} else {
1130		maxburst = 1;
1131	}
1132
1133	memset(dma_conf, 0, sizeof(struct dma_slave_config));
1134	dma_conf->direction = dir;
1135	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1136		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1137		dma_conf->src_addr_width = buswidth;
1138		dma_conf->src_maxburst = maxburst;
1139
1140		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1141			buswidth, maxburst);
1142	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1143		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1144		dma_conf->dst_addr_width = buswidth;
1145		dma_conf->dst_maxburst = maxburst;
1146
1147		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1148			buswidth, maxburst);
1149	}
1150}
1151
1152/**
1153 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1154 *				  interrupts
1155 * @spi: pointer to the spi controller data structure
1156 *
1157 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1158 * in progress.
1159 */
1160static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1161{
1162	unsigned long flags;
1163	u32 cr2 = 0;
1164
1165	/* Enable the interrupts relative to the current communication mode */
1166	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1167		cr2 |= STM32F4_SPI_CR2_TXEIE;
1168	} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1169				spi->cur_comm == SPI_SIMPLEX_RX ||
1170				spi->cur_comm == SPI_3WIRE_RX) {
1171		/* In transmit-only mode, the OVR flag is set in the SR register
1172		 * since the received data are never read. Therefore set OVR
1173		 * interrupt only when rx buffer is available.
1174		 */
1175		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1176	} else {
1177		return -EINVAL;
1178	}
1179
1180	spin_lock_irqsave(&spi->lock, flags);
1181
1182	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1183
1184	stm32_spi_enable(spi);
1185
1186	/* starting data transfer when buffer is loaded */
1187	if (spi->tx_buf)
1188		stm32f4_spi_write_tx(spi);
1189
1190	spin_unlock_irqrestore(&spi->lock, flags);
1191
1192	return 1;
1193}
1194
1195/**
1196 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1197 *				  interrupts
1198 * @spi: pointer to the spi controller data structure
1199 *
1200 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1201 * in progress.
1202 */
1203static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1204{
1205	unsigned long flags;
1206	u32 ier = 0;
1207
1208	/* Enable the interrupts relative to the current communication mode */
1209	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
1210		ier |= STM32H7_SPI_IER_DXPIE;
1211	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
1212		ier |= STM32H7_SPI_IER_TXPIE;
1213	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
1214		ier |= STM32H7_SPI_IER_RXPIE;
1215
1216	/* Enable the interrupts relative to the end of transfer */
1217	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1218	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1219
1220	spin_lock_irqsave(&spi->lock, flags);
1221
1222	stm32_spi_enable(spi);
1223
1224	/* Be sure to have data in fifo before starting data transfer */
1225	if (spi->tx_buf)
1226		stm32h7_spi_write_txfifo(spi);
1227
1228	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1229
1230	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1231
1232	spin_unlock_irqrestore(&spi->lock, flags);
1233
1234	return 1;
1235}
1236
1237/**
1238 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1239 *					transfer using DMA
1240 * @spi: pointer to the spi controller data structure
1241 */
1242static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1243{
1244	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1245	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1246	    spi->cur_comm == SPI_FULL_DUPLEX) {
1247		/*
1248		 * In transmit-only mode, the OVR flag is set in the SR register
1249		 * since the received data are never read. Therefore set OVR
1250		 * interrupt only when rx buffer is available.
1251		 */
1252		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1253	}
1254
1255	stm32_spi_enable(spi);
1256}
1257
1258/**
1259 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1260 *					transfer using DMA
1261 * @spi: pointer to the spi controller data structure
1262 */
1263static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1264{
1265	/* Enable the interrupts relative to the end of transfer */
1266	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1267						 STM32H7_SPI_IER_TXTFIE |
1268						 STM32H7_SPI_IER_OVRIE |
1269						 STM32H7_SPI_IER_MODFIE);
1270
1271	stm32_spi_enable(spi);
1272
1273	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1274}
1275
1276/**
1277 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1278 * @spi: pointer to the spi controller data structure
1279 * @xfer: pointer to the spi_transfer structure
1280 *
1281 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1282 * in progress.
1283 */
1284static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1285				      struct spi_transfer *xfer)
1286{
1287	struct dma_slave_config tx_dma_conf, rx_dma_conf;
1288	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1289	unsigned long flags;
1290
1291	spin_lock_irqsave(&spi->lock, flags);
1292
1293	rx_dma_desc = NULL;
1294	if (spi->rx_buf && spi->dma_rx) {
1295		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1296		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1297
1298		/* Enable Rx DMA request */
1299		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1300				   spi->cfg->regs->dma_rx_en.mask);
1301
1302		rx_dma_desc = dmaengine_prep_slave_sg(
1303					spi->dma_rx, xfer->rx_sg.sgl,
1304					xfer->rx_sg.nents,
1305					rx_dma_conf.direction,
1306					DMA_PREP_INTERRUPT);
1307	}
1308
1309	tx_dma_desc = NULL;
1310	if (spi->tx_buf && spi->dma_tx) {
1311		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1312		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1313
1314		tx_dma_desc = dmaengine_prep_slave_sg(
1315					spi->dma_tx, xfer->tx_sg.sgl,
1316					xfer->tx_sg.nents,
1317					tx_dma_conf.direction,
1318					DMA_PREP_INTERRUPT);
1319	}
1320
1321	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1322	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1323		goto dma_desc_error;
1324
1325	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1326		goto dma_desc_error;
1327
1328	if (rx_dma_desc) {
1329		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1330		rx_dma_desc->callback_param = spi;
1331
1332		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1333			dev_err(spi->dev, "Rx DMA submit failed\n");
1334			goto dma_desc_error;
1335		}
1336		/* Enable Rx DMA channel */
1337		dma_async_issue_pending(spi->dma_rx);
1338	}
1339
1340	if (tx_dma_desc) {
1341		if (spi->cur_comm == SPI_SIMPLEX_TX ||
1342		    spi->cur_comm == SPI_3WIRE_TX) {
1343			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1344			tx_dma_desc->callback_param = spi;
1345		}
1346
1347		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1348			dev_err(spi->dev, "Tx DMA submit failed\n");
1349			goto dma_submit_error;
1350		}
1351		/* Enable Tx DMA channel */
1352		dma_async_issue_pending(spi->dma_tx);
1353
1354		/* Enable Tx DMA request */
1355		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1356				   spi->cfg->regs->dma_tx_en.mask);
1357	}
1358
1359	spi->cfg->transfer_one_dma_start(spi);
1360
1361	spin_unlock_irqrestore(&spi->lock, flags);
1362
1363	return 1;
1364
1365dma_submit_error:
1366	if (spi->dma_rx)
1367		dmaengine_terminate_all(spi->dma_rx);
1368
1369dma_desc_error:
1370	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1371			   spi->cfg->regs->dma_rx_en.mask);
1372
1373	spin_unlock_irqrestore(&spi->lock, flags);
1374
1375	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1376
1377	spi->cur_usedma = false;
1378	return spi->cfg->transfer_one_irq(spi);
1379}
1380
1381/**
1382 * stm32f4_spi_set_bpw - Configure bits per word
1383 * @spi: pointer to the spi controller data structure
1384 */
1385static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1386{
1387	if (spi->cur_bpw == 16)
1388		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1389	else
1390		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1391}
1392
1393/**
1394 * stm32h7_spi_set_bpw - configure bits per word
1395 * @spi: pointer to the spi controller data structure
1396 */
1397static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1398{
1399	u32 bpw, fthlv;
1400	u32 cfg1_clrb = 0, cfg1_setb = 0;
1401
1402	bpw = spi->cur_bpw - 1;
1403
1404	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1405	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1406		     STM32H7_SPI_CFG1_DSIZE;
1407
1408	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1409	fthlv = spi->cur_fthlv - 1;
1410
1411	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1412	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1413		     STM32H7_SPI_CFG1_FTHLV;
1414
1415	writel_relaxed(
1416		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1417		 ~cfg1_clrb) | cfg1_setb,
1418		spi->base + STM32H7_SPI_CFG1);
1419}
1420
1421/**
1422 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1423 * @spi: pointer to the spi controller data structure
1424 * @mbrdiv: baud rate divisor value
1425 */
1426static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1427{
1428	u32 clrb = 0, setb = 0;
1429
1430	clrb |= spi->cfg->regs->br.mask;
1431	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1432		spi->cfg->regs->br.mask;
1433
1434	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1435			~clrb) | setb,
1436		       spi->base + spi->cfg->regs->br.reg);
1437}
1438
1439/**
1440 * stm32_spi_communication_type - return transfer communication type
1441 * @spi_dev: pointer to the spi device
1442 * @transfer: pointer to spi transfer
1443 */
1444static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1445						 struct spi_transfer *transfer)
1446{
1447	unsigned int type = SPI_FULL_DUPLEX;
1448
1449	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1450		/*
1451		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1452		 * is forbidden and unvalidated by SPI subsystem so depending
1453		 * on the valid buffer, we can determine the direction of the
1454		 * transfer.
1455		 */
1456		if (!transfer->tx_buf)
1457			type = SPI_3WIRE_RX;
1458		else
1459			type = SPI_3WIRE_TX;
1460	} else {
1461		if (!transfer->tx_buf)
1462			type = SPI_SIMPLEX_RX;
1463		else if (!transfer->rx_buf)
1464			type = SPI_SIMPLEX_TX;
1465	}
1466
1467	return type;
1468}
1469
1470/**
1471 * stm32f4_spi_set_mode - configure communication mode
1472 * @spi: pointer to the spi controller data structure
1473 * @comm_type: type of communication to configure
1474 */
1475static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1476{
1477	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1478		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1479					STM32F4_SPI_CR1_BIDIMODE |
1480					STM32F4_SPI_CR1_BIDIOE);
1481	} else if (comm_type == SPI_FULL_DUPLEX ||
1482				comm_type == SPI_SIMPLEX_RX) {
1483		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1484					STM32F4_SPI_CR1_BIDIMODE |
1485					STM32F4_SPI_CR1_BIDIOE);
1486	} else if (comm_type == SPI_3WIRE_RX) {
1487		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1488					STM32F4_SPI_CR1_BIDIMODE);
1489		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1490					STM32F4_SPI_CR1_BIDIOE);
1491	} else {
1492		return -EINVAL;
1493	}
1494
1495	return 0;
1496}
1497
1498/**
1499 * stm32h7_spi_set_mode - configure communication mode
1500 * @spi: pointer to the spi controller data structure
1501 * @comm_type: type of communication to configure
1502 */
1503static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1504{
1505	u32 mode;
1506	u32 cfg2_clrb = 0, cfg2_setb = 0;
1507
1508	if (comm_type == SPI_3WIRE_RX) {
1509		mode = STM32H7_SPI_HALF_DUPLEX;
1510		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1511	} else if (comm_type == SPI_3WIRE_TX) {
1512		mode = STM32H7_SPI_HALF_DUPLEX;
1513		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1514	} else if (comm_type == SPI_SIMPLEX_RX) {
1515		mode = STM32H7_SPI_SIMPLEX_RX;
1516	} else if (comm_type == SPI_SIMPLEX_TX) {
1517		mode = STM32H7_SPI_SIMPLEX_TX;
1518	} else {
1519		mode = STM32H7_SPI_FULL_DUPLEX;
1520	}
1521
1522	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1523	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1524		     STM32H7_SPI_CFG2_COMM;
1525
1526	writel_relaxed(
1527		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1528		 ~cfg2_clrb) | cfg2_setb,
1529		spi->base + STM32H7_SPI_CFG2);
1530
1531	return 0;
1532}
1533
1534/**
1535 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1536 *			       consecutive data frames in master mode
1537 * @spi: pointer to the spi controller data structure
1538 * @len: transfer len
1539 */
1540static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1541{
1542	u32 cfg2_clrb = 0, cfg2_setb = 0;
1543
1544	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1545	if ((len > 1) && (spi->cur_midi > 0)) {
1546		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1547		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1548			       (u32)STM32H7_SPI_CFG2_MIDI >>
1549			       STM32H7_SPI_CFG2_MIDI_SHIFT);
1550
1551		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1552			sck_period_ns, midi, midi * sck_period_ns);
1553		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1554			     STM32H7_SPI_CFG2_MIDI;
1555	}
1556
1557	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1558			~cfg2_clrb) | cfg2_setb,
1559		       spi->base + STM32H7_SPI_CFG2);
1560}
1561
1562/**
1563 * stm32h7_spi_number_of_data - configure number of data at current transfer
1564 * @spi: pointer to the spi controller data structure
1565 * @nb_words: transfer length (in words)
1566 */
1567static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1568{
1569	u32 cr2_clrb = 0, cr2_setb = 0;
1570
1571	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1572			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1573		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1574		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1575		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1576				~cr2_clrb) | cr2_setb,
1577			       spi->base + STM32H7_SPI_CR2);
1578	} else {
1579		return -EMSGSIZE;
1580	}
1581
1582	return 0;
1583}
1584
1585/**
1586 * stm32_spi_transfer_one_setup - common setup to transfer a single
1587 *				  spi_transfer either using DMA or
1588 *				  interrupts.
1589 * @spi: pointer to the spi controller data structure
1590 * @spi_dev: pointer to the spi device
1591 * @transfer: pointer to spi transfer
1592 */
1593static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1594					struct spi_device *spi_dev,
1595					struct spi_transfer *transfer)
1596{
1597	unsigned long flags;
1598	unsigned int comm_type;
1599	int nb_words, ret = 0;
1600	int mbr;
1601
1602	spin_lock_irqsave(&spi->lock, flags);
1603
1604	spi->cur_xferlen = transfer->len;
1605
1606	spi->cur_bpw = transfer->bits_per_word;
1607	spi->cfg->set_bpw(spi);
1608
1609	/* Update spi->cur_speed with real clock speed */
1610	mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1611				    spi->cfg->baud_rate_div_min,
1612				    spi->cfg->baud_rate_div_max);
1613	if (mbr < 0) {
1614		ret = mbr;
1615		goto out;
1616	}
1617
1618	transfer->speed_hz = spi->cur_speed;
1619	stm32_spi_set_mbr(spi, mbr);
1620
1621	comm_type = stm32_spi_communication_type(spi_dev, transfer);
1622	ret = spi->cfg->set_mode(spi, comm_type);
1623	if (ret < 0)
1624		goto out;
1625
1626	spi->cur_comm = comm_type;
1627
1628	if (spi->cfg->set_data_idleness)
1629		spi->cfg->set_data_idleness(spi, transfer->len);
1630
1631	if (spi->cur_bpw <= 8)
1632		nb_words = transfer->len;
1633	else if (spi->cur_bpw <= 16)
1634		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1635	else
1636		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1637
1638	if (spi->cfg->set_number_of_data) {
1639		ret = spi->cfg->set_number_of_data(spi, nb_words);
1640		if (ret < 0)
1641			goto out;
1642	}
1643
1644	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1645		spi->cur_comm);
1646	dev_dbg(spi->dev,
1647		"data frame of %d-bit, data packet of %d data frames\n",
1648		spi->cur_bpw, spi->cur_fthlv);
1649	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1650	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1651		spi->cur_xferlen, nb_words);
1652	dev_dbg(spi->dev, "dma %s\n",
1653		(spi->cur_usedma) ? "enabled" : "disabled");
1654
1655out:
1656	spin_unlock_irqrestore(&spi->lock, flags);
1657
1658	return ret;
1659}
1660
1661/**
1662 * stm32_spi_transfer_one - transfer a single spi_transfer
1663 * @master: controller master interface
1664 * @spi_dev: pointer to the spi device
1665 * @transfer: pointer to spi transfer
1666 *
1667 * It must return 0 if the transfer is finished or 1 if the transfer is still
1668 * in progress.
1669 */
1670static int stm32_spi_transfer_one(struct spi_master *master,
1671				  struct spi_device *spi_dev,
1672				  struct spi_transfer *transfer)
1673{
1674	struct stm32_spi *spi = spi_master_get_devdata(master);
1675	int ret;
1676
1677	/* Don't do anything on 0 bytes transfers */
1678	if (transfer->len == 0)
1679		return 0;
1680
1681	spi->tx_buf = transfer->tx_buf;
1682	spi->rx_buf = transfer->rx_buf;
1683	spi->tx_len = spi->tx_buf ? transfer->len : 0;
1684	spi->rx_len = spi->rx_buf ? transfer->len : 0;
1685
1686	spi->cur_usedma = (master->can_dma &&
1687			   master->can_dma(master, spi_dev, transfer));
1688
1689	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1690	if (ret) {
1691		dev_err(spi->dev, "SPI transfer setup failed\n");
1692		return ret;
1693	}
1694
1695	if (spi->cur_usedma)
1696		return stm32_spi_transfer_one_dma(spi, transfer);
1697	else
1698		return spi->cfg->transfer_one_irq(spi);
1699}
1700
1701/**
1702 * stm32_spi_unprepare_msg - relax the hardware
1703 * @master: controller master interface
1704 * @msg: pointer to the spi message
1705 */
1706static int stm32_spi_unprepare_msg(struct spi_master *master,
1707				   struct spi_message *msg)
1708{
1709	struct stm32_spi *spi = spi_master_get_devdata(master);
1710
1711	spi->cfg->disable(spi);
1712
1713	return 0;
1714}
1715
1716/**
1717 * stm32f4_spi_config - Configure SPI controller as SPI master
1718 * @spi: pointer to the spi controller data structure
1719 */
1720static int stm32f4_spi_config(struct stm32_spi *spi)
1721{
1722	unsigned long flags;
1723
1724	spin_lock_irqsave(&spi->lock, flags);
1725
1726	/* Ensure I2SMOD bit is kept cleared */
1727	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1728			   STM32F4_SPI_I2SCFGR_I2SMOD);
1729
1730	/*
1731	 * - SS input value high
1732	 * - transmitter half duplex direction
1733	 * - Set the master mode (default Motorola mode)
1734	 * - Consider 1 master/n slaves configuration and
1735	 *   SS input value is determined by the SSI bit
1736	 */
1737	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1738						 STM32F4_SPI_CR1_BIDIOE |
1739						 STM32F4_SPI_CR1_MSTR |
1740						 STM32F4_SPI_CR1_SSM);
1741
1742	spin_unlock_irqrestore(&spi->lock, flags);
1743
1744	return 0;
1745}
1746
1747/**
1748 * stm32h7_spi_config - Configure SPI controller as SPI master
1749 * @spi: pointer to the spi controller data structure
1750 */
1751static int stm32h7_spi_config(struct stm32_spi *spi)
1752{
1753	unsigned long flags;
1754
1755	spin_lock_irqsave(&spi->lock, flags);
1756
1757	/* Ensure I2SMOD bit is kept cleared */
1758	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1759			   STM32H7_SPI_I2SCFGR_I2SMOD);
1760
1761	/*
1762	 * - SS input value high
1763	 * - transmitter half duplex direction
1764	 * - automatic communication suspend when RX-Fifo is full
1765	 */
1766	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1767						 STM32H7_SPI_CR1_HDDIR |
1768						 STM32H7_SPI_CR1_MASRX);
1769
1770	/*
1771	 * - Set the master mode (default Motorola mode)
1772	 * - Consider 1 master/n slaves configuration and
1773	 *   SS input value is determined by the SSI bit
1774	 * - keep control of all associated GPIOs
1775	 */
1776	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1777						  STM32H7_SPI_CFG2_SSM |
1778						  STM32H7_SPI_CFG2_AFCNTR);
1779
1780	spin_unlock_irqrestore(&spi->lock, flags);
1781
1782	return 0;
1783}
1784
1785static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1786	.regs = &stm32f4_spi_regspec,
1787	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
1788	.disable = stm32f4_spi_disable,
1789	.config = stm32f4_spi_config,
1790	.set_bpw = stm32f4_spi_set_bpw,
1791	.set_mode = stm32f4_spi_set_mode,
1792	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1793	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
1794	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
1795	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
1796	.irq_handler_event = stm32f4_spi_irq_event,
1797	.irq_handler_thread = stm32f4_spi_irq_thread,
1798	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1799	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1800	.has_fifo = false,
1801};
1802
1803static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1804	.regs = &stm32h7_spi_regspec,
1805	.get_fifo_size = stm32h7_spi_get_fifo_size,
1806	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
1807	.disable = stm32h7_spi_disable,
1808	.config = stm32h7_spi_config,
1809	.set_bpw = stm32h7_spi_set_bpw,
1810	.set_mode = stm32h7_spi_set_mode,
1811	.set_data_idleness = stm32h7_spi_data_idleness,
1812	.set_number_of_data = stm32h7_spi_number_of_data,
1813	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1814	.dma_rx_cb = stm32h7_spi_dma_cb,
1815	.dma_tx_cb = stm32h7_spi_dma_cb,
1816	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
1817	.irq_handler_thread = stm32h7_spi_irq_thread,
1818	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1819	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1820	.has_fifo = true,
1821};
1822
1823static const struct of_device_id stm32_spi_of_match[] = {
1824	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1825	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1826	{},
1827};
1828MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1829
1830static int stm32_spi_probe(struct platform_device *pdev)
1831{
1832	struct spi_master *master;
1833	struct stm32_spi *spi;
1834	struct resource *res;
1835	int ret;
1836
1837	master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1838	if (!master) {
1839		dev_err(&pdev->dev, "spi master allocation failed\n");
1840		return -ENOMEM;
1841	}
1842	platform_set_drvdata(pdev, master);
1843
1844	spi = spi_master_get_devdata(master);
1845	spi->dev = &pdev->dev;
1846	spi->master = master;
1847	spin_lock_init(&spi->lock);
1848
1849	spi->cfg = (const struct stm32_spi_cfg *)
1850		of_match_device(pdev->dev.driver->of_match_table,
1851				&pdev->dev)->data;
1852
1853	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1854	spi->base = devm_ioremap_resource(&pdev->dev, res);
1855	if (IS_ERR(spi->base))
1856		return PTR_ERR(spi->base);
1857
1858	spi->phys_addr = (dma_addr_t)res->start;
1859
1860	spi->irq = platform_get_irq(pdev, 0);
1861	if (spi->irq <= 0)
1862		return dev_err_probe(&pdev->dev, spi->irq,
1863				     "failed to get irq\n");
1864
1865	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1866					spi->cfg->irq_handler_event,
1867					spi->cfg->irq_handler_thread,
1868					IRQF_ONESHOT, pdev->name, master);
1869	if (ret) {
1870		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1871			ret);
1872		return ret;
1873	}
1874
1875	spi->clk = devm_clk_get(&pdev->dev, NULL);
1876	if (IS_ERR(spi->clk)) {
1877		ret = PTR_ERR(spi->clk);
1878		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1879		return ret;
1880	}
1881
1882	ret = clk_prepare_enable(spi->clk);
1883	if (ret) {
1884		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1885		return ret;
1886	}
1887	spi->clk_rate = clk_get_rate(spi->clk);
1888	if (!spi->clk_rate) {
1889		dev_err(&pdev->dev, "clk rate = 0\n");
1890		ret = -EINVAL;
1891		goto err_clk_disable;
1892	}
1893
1894	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1895	if (!IS_ERR(spi->rst)) {
1896		reset_control_assert(spi->rst);
1897		udelay(2);
1898		reset_control_deassert(spi->rst);
1899	}
1900
1901	if (spi->cfg->has_fifo)
1902		spi->fifo_size = spi->cfg->get_fifo_size(spi);
1903
1904	ret = spi->cfg->config(spi);
1905	if (ret) {
1906		dev_err(&pdev->dev, "controller configuration failed: %d\n",
1907			ret);
1908		goto err_clk_disable;
1909	}
1910
1911	master->dev.of_node = pdev->dev.of_node;
1912	master->auto_runtime_pm = true;
1913	master->bus_num = pdev->id;
1914	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1915			    SPI_3WIRE;
1916	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1917	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1918	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1919	master->use_gpio_descriptors = true;
1920	master->prepare_message = stm32_spi_prepare_msg;
1921	master->transfer_one = stm32_spi_transfer_one;
1922	master->unprepare_message = stm32_spi_unprepare_msg;
1923	master->flags = SPI_MASTER_MUST_TX;
1924
1925	spi->dma_tx = dma_request_chan(spi->dev, "tx");
1926	if (IS_ERR(spi->dma_tx)) {
1927		ret = PTR_ERR(spi->dma_tx);
1928		spi->dma_tx = NULL;
1929		if (ret == -EPROBE_DEFER)
1930			goto err_clk_disable;
1931
1932		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1933	} else {
1934		master->dma_tx = spi->dma_tx;
1935	}
1936
1937	spi->dma_rx = dma_request_chan(spi->dev, "rx");
1938	if (IS_ERR(spi->dma_rx)) {
1939		ret = PTR_ERR(spi->dma_rx);
1940		spi->dma_rx = NULL;
1941		if (ret == -EPROBE_DEFER)
1942			goto err_dma_release;
1943
1944		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1945	} else {
1946		master->dma_rx = spi->dma_rx;
1947	}
1948
1949	if (spi->dma_tx || spi->dma_rx)
1950		master->can_dma = stm32_spi_can_dma;
1951
1952	pm_runtime_set_active(&pdev->dev);
1953	pm_runtime_get_noresume(&pdev->dev);
1954	pm_runtime_enable(&pdev->dev);
1955
1956	ret = spi_register_master(master);
1957	if (ret) {
1958		dev_err(&pdev->dev, "spi master registration failed: %d\n",
1959			ret);
1960		goto err_pm_disable;
1961	}
1962
1963	if (!master->cs_gpiods) {
1964		dev_err(&pdev->dev, "no CS gpios available\n");
1965		ret = -EINVAL;
1966		goto err_pm_disable;
1967	}
1968
1969	dev_info(&pdev->dev, "driver initialized\n");
1970
1971	return 0;
1972
1973err_pm_disable:
1974	pm_runtime_disable(&pdev->dev);
1975	pm_runtime_put_noidle(&pdev->dev);
1976	pm_runtime_set_suspended(&pdev->dev);
1977err_dma_release:
1978	if (spi->dma_tx)
1979		dma_release_channel(spi->dma_tx);
1980	if (spi->dma_rx)
1981		dma_release_channel(spi->dma_rx);
1982err_clk_disable:
1983	clk_disable_unprepare(spi->clk);
1984
1985	return ret;
1986}
1987
1988static int stm32_spi_remove(struct platform_device *pdev)
1989{
1990	struct spi_master *master = platform_get_drvdata(pdev);
1991	struct stm32_spi *spi = spi_master_get_devdata(master);
1992
1993	pm_runtime_get_sync(&pdev->dev);
1994
1995	spi_unregister_master(master);
1996	spi->cfg->disable(spi);
1997
1998	pm_runtime_disable(&pdev->dev);
1999	pm_runtime_put_noidle(&pdev->dev);
2000	pm_runtime_set_suspended(&pdev->dev);
2001	if (master->dma_tx)
2002		dma_release_channel(master->dma_tx);
2003	if (master->dma_rx)
2004		dma_release_channel(master->dma_rx);
2005
2006	clk_disable_unprepare(spi->clk);
2007
2008
2009	pinctrl_pm_select_sleep_state(&pdev->dev);
2010
2011	return 0;
2012}
2013
2014#ifdef CONFIG_PM
2015static int stm32_spi_runtime_suspend(struct device *dev)
2016{
2017	struct spi_master *master = dev_get_drvdata(dev);
2018	struct stm32_spi *spi = spi_master_get_devdata(master);
2019
2020	clk_disable_unprepare(spi->clk);
2021
2022	return pinctrl_pm_select_sleep_state(dev);
2023}
2024
2025static int stm32_spi_runtime_resume(struct device *dev)
2026{
2027	struct spi_master *master = dev_get_drvdata(dev);
2028	struct stm32_spi *spi = spi_master_get_devdata(master);
2029	int ret;
2030
2031	ret = pinctrl_pm_select_default_state(dev);
2032	if (ret)
2033		return ret;
2034
2035	return clk_prepare_enable(spi->clk);
2036}
2037#endif
2038
2039#ifdef CONFIG_PM_SLEEP
2040static int stm32_spi_suspend(struct device *dev)
2041{
2042	struct spi_master *master = dev_get_drvdata(dev);
2043	int ret;
2044
2045	ret = spi_master_suspend(master);
2046	if (ret)
2047		return ret;
2048
2049	return pm_runtime_force_suspend(dev);
2050}
2051
2052static int stm32_spi_resume(struct device *dev)
2053{
2054	struct spi_master *master = dev_get_drvdata(dev);
2055	struct stm32_spi *spi = spi_master_get_devdata(master);
2056	int ret;
2057
2058	ret = pm_runtime_force_resume(dev);
2059	if (ret)
2060		return ret;
2061
2062	ret = spi_master_resume(master);
2063	if (ret) {
2064		clk_disable_unprepare(spi->clk);
2065		return ret;
2066	}
2067
2068	ret = pm_runtime_get_sync(dev);
2069	if (ret < 0) {
2070		pm_runtime_put_noidle(dev);
2071		dev_err(dev, "Unable to power device:%d\n", ret);
2072		return ret;
2073	}
2074
2075	spi->cfg->config(spi);
2076
2077	pm_runtime_mark_last_busy(dev);
2078	pm_runtime_put_autosuspend(dev);
2079
2080	return 0;
2081}
2082#endif
2083
2084static const struct dev_pm_ops stm32_spi_pm_ops = {
2085	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2086	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2087			   stm32_spi_runtime_resume, NULL)
2088};
2089
2090static struct platform_driver stm32_spi_driver = {
2091	.probe = stm32_spi_probe,
2092	.remove = stm32_spi_remove,
2093	.driver = {
2094		.name = DRIVER_NAME,
2095		.pm = &stm32_spi_pm_ops,
2096		.of_match_table = stm32_spi_of_match,
2097	},
2098};
2099
2100module_platform_driver(stm32_spi_driver);
2101
2102MODULE_ALIAS("platform:" DRIVER_NAME);
2103MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2104MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2105MODULE_LICENSE("GPL v2");
2106