xref: /kernel/linux/linux-5.10/drivers/spi/spi-sprd.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2// Copyright (C) 2018 Spreadtrum Communications Inc.
3
4#include <linux/clk.h>
5#include <linux/dmaengine.h>
6#include <linux/dma-mapping.h>
7#include <linux/dma/sprd-dma.h>
8#include <linux/interrupt.h>
9#include <linux/io.h>
10#include <linux/iopoll.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/of.h>
14#include <linux/of_device.h>
15#include <linux/of_dma.h>
16#include <linux/platform_device.h>
17#include <linux/pm_runtime.h>
18#include <linux/spi/spi.h>
19
20#define SPRD_SPI_TXD			0x0
21#define SPRD_SPI_CLKD			0x4
22#define SPRD_SPI_CTL0			0x8
23#define SPRD_SPI_CTL1			0xc
24#define SPRD_SPI_CTL2			0x10
25#define SPRD_SPI_CTL3			0x14
26#define SPRD_SPI_CTL4			0x18
27#define SPRD_SPI_CTL5			0x1c
28#define SPRD_SPI_INT_EN			0x20
29#define SPRD_SPI_INT_CLR		0x24
30#define SPRD_SPI_INT_RAW_STS		0x28
31#define SPRD_SPI_INT_MASK_STS		0x2c
32#define SPRD_SPI_STS1			0x30
33#define SPRD_SPI_STS2			0x34
34#define SPRD_SPI_DSP_WAIT		0x38
35#define SPRD_SPI_STS3			0x3c
36#define SPRD_SPI_CTL6			0x40
37#define SPRD_SPI_STS4			0x44
38#define SPRD_SPI_FIFO_RST		0x48
39#define SPRD_SPI_CTL7			0x4c
40#define SPRD_SPI_STS5			0x50
41#define SPRD_SPI_CTL8			0x54
42#define SPRD_SPI_CTL9			0x58
43#define SPRD_SPI_CTL10			0x5c
44#define SPRD_SPI_CTL11			0x60
45#define SPRD_SPI_CTL12			0x64
46#define SPRD_SPI_STS6			0x68
47#define SPRD_SPI_STS7			0x6c
48#define SPRD_SPI_STS8			0x70
49#define SPRD_SPI_STS9			0x74
50
51/* Bits & mask definition for register CTL0 */
52#define SPRD_SPI_SCK_REV		BIT(13)
53#define SPRD_SPI_NG_TX			BIT(1)
54#define SPRD_SPI_NG_RX			BIT(0)
55#define SPRD_SPI_CHNL_LEN_MASK		GENMASK(4, 0)
56#define SPRD_SPI_CSN_MASK		GENMASK(11, 8)
57#define SPRD_SPI_CS0_VALID		BIT(8)
58
59/* Bits & mask definition for register SPI_INT_EN */
60#define SPRD_SPI_TX_END_INT_EN		BIT(8)
61#define SPRD_SPI_RX_END_INT_EN		BIT(9)
62
63/* Bits & mask definition for register SPI_INT_RAW_STS */
64#define SPRD_SPI_TX_END_RAW		BIT(8)
65#define SPRD_SPI_RX_END_RAW		BIT(9)
66
67/* Bits & mask definition for register SPI_INT_CLR */
68#define SPRD_SPI_TX_END_CLR		BIT(8)
69#define SPRD_SPI_RX_END_CLR		BIT(9)
70
71/* Bits & mask definition for register INT_MASK_STS */
72#define SPRD_SPI_MASK_RX_END		BIT(9)
73#define SPRD_SPI_MASK_TX_END		BIT(8)
74
75/* Bits & mask definition for register STS2 */
76#define SPRD_SPI_TX_BUSY		BIT(8)
77
78/* Bits & mask definition for register CTL1 */
79#define SPRD_SPI_RX_MODE		BIT(12)
80#define SPRD_SPI_TX_MODE		BIT(13)
81#define SPRD_SPI_RTX_MD_MASK		GENMASK(13, 12)
82
83/* Bits & mask definition for register CTL2 */
84#define SPRD_SPI_DMA_EN			BIT(6)
85
86/* Bits & mask definition for register CTL4 */
87#define SPRD_SPI_START_RX		BIT(9)
88#define SPRD_SPI_ONLY_RECV_MASK		GENMASK(8, 0)
89
90/* Bits & mask definition for register SPI_INT_CLR */
91#define SPRD_SPI_RX_END_INT_CLR		BIT(9)
92#define SPRD_SPI_TX_END_INT_CLR		BIT(8)
93
94/* Bits & mask definition for register SPI_INT_RAW */
95#define SPRD_SPI_RX_END_IRQ		BIT(9)
96#define SPRD_SPI_TX_END_IRQ		BIT(8)
97
98/* Bits & mask definition for register CTL12 */
99#define SPRD_SPI_SW_RX_REQ		BIT(0)
100#define SPRD_SPI_SW_TX_REQ		BIT(1)
101
102/* Bits & mask definition for register CTL7 */
103#define SPRD_SPI_DATA_LINE2_EN		BIT(15)
104#define SPRD_SPI_MODE_MASK		GENMASK(5, 3)
105#define SPRD_SPI_MODE_OFFSET		3
106#define SPRD_SPI_3WIRE_MODE		4
107#define SPRD_SPI_4WIRE_MODE		0
108
109/* Bits & mask definition for register CTL8 */
110#define SPRD_SPI_TX_MAX_LEN_MASK	GENMASK(19, 0)
111#define SPRD_SPI_TX_LEN_H_MASK		GENMASK(3, 0)
112#define SPRD_SPI_TX_LEN_H_OFFSET	16
113
114/* Bits & mask definition for register CTL9 */
115#define SPRD_SPI_TX_LEN_L_MASK		GENMASK(15, 0)
116
117/* Bits & mask definition for register CTL10 */
118#define SPRD_SPI_RX_MAX_LEN_MASK	GENMASK(19, 0)
119#define SPRD_SPI_RX_LEN_H_MASK		GENMASK(3, 0)
120#define SPRD_SPI_RX_LEN_H_OFFSET	16
121
122/* Bits & mask definition for register CTL11 */
123#define SPRD_SPI_RX_LEN_L_MASK		GENMASK(15, 0)
124
125/* Default & maximum word delay cycles */
126#define SPRD_SPI_MIN_DELAY_CYCLE	14
127#define SPRD_SPI_MAX_DELAY_CYCLE	130
128
129#define SPRD_SPI_FIFO_SIZE		32
130#define SPRD_SPI_CHIP_CS_NUM		0x4
131#define SPRD_SPI_CHNL_LEN		2
132#define SPRD_SPI_DEFAULT_SOURCE		26000000
133#define SPRD_SPI_MAX_SPEED_HZ		48000000
134#define SPRD_SPI_AUTOSUSPEND_DELAY	100
135#define SPRD_SPI_DMA_STEP		8
136
137enum sprd_spi_dma_channel {
138	SPRD_SPI_RX,
139	SPRD_SPI_TX,
140	SPRD_SPI_MAX,
141};
142
143struct sprd_spi_dma {
144	bool enable;
145	struct dma_chan *dma_chan[SPRD_SPI_MAX];
146	enum dma_slave_buswidth width;
147	u32 fragmens_len;
148	u32 rx_len;
149};
150
151struct sprd_spi {
152	void __iomem *base;
153	phys_addr_t phy_base;
154	struct device *dev;
155	struct clk *clk;
156	int irq;
157	u32 src_clk;
158	u32 hw_mode;
159	u32 trans_len;
160	u32 trans_mode;
161	u32 word_delay;
162	u32 hw_speed_hz;
163	u32 len;
164	int status;
165	struct sprd_spi_dma dma;
166	struct completion xfer_completion;
167	const void *tx_buf;
168	void *rx_buf;
169	int (*read_bufs)(struct sprd_spi *ss, u32 len);
170	int (*write_bufs)(struct sprd_spi *ss, u32 len);
171};
172
173static u32 sprd_spi_transfer_max_timeout(struct sprd_spi *ss,
174					 struct spi_transfer *t)
175{
176	/*
177	 * The time spent on transmission of the full FIFO data is the maximum
178	 * SPI transmission time.
179	 */
180	u32 size = t->bits_per_word * SPRD_SPI_FIFO_SIZE;
181	u32 bit_time_us = DIV_ROUND_UP(USEC_PER_SEC, ss->hw_speed_hz);
182	u32 total_time_us = size * bit_time_us;
183	/*
184	 * There is an interval between data and the data in our SPI hardware,
185	 * so the total transmission time need add the interval time.
186	 */
187	u32 interval_cycle = SPRD_SPI_FIFO_SIZE * ss->word_delay;
188	u32 interval_time_us = DIV_ROUND_UP(interval_cycle * USEC_PER_SEC,
189					    ss->src_clk);
190
191	return total_time_us + interval_time_us;
192}
193
194static int sprd_spi_wait_for_tx_end(struct sprd_spi *ss, struct spi_transfer *t)
195{
196	u32 val, us;
197	int ret;
198
199	us = sprd_spi_transfer_max_timeout(ss, t);
200	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
201					 val & SPRD_SPI_TX_END_IRQ, 0, us);
202	if (ret) {
203		dev_err(ss->dev, "SPI error, spi send timeout!\n");
204		return ret;
205	}
206
207	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_STS2, val,
208					 !(val & SPRD_SPI_TX_BUSY), 0, us);
209	if (ret) {
210		dev_err(ss->dev, "SPI error, spi busy timeout!\n");
211		return ret;
212	}
213
214	writel_relaxed(SPRD_SPI_TX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
215
216	return 0;
217}
218
219static int sprd_spi_wait_for_rx_end(struct sprd_spi *ss, struct spi_transfer *t)
220{
221	u32 val, us;
222	int ret;
223
224	us = sprd_spi_transfer_max_timeout(ss, t);
225	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
226					 val & SPRD_SPI_RX_END_IRQ, 0, us);
227	if (ret) {
228		dev_err(ss->dev, "SPI error, spi rx timeout!\n");
229		return ret;
230	}
231
232	writel_relaxed(SPRD_SPI_RX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
233
234	return 0;
235}
236
237static void sprd_spi_tx_req(struct sprd_spi *ss)
238{
239	writel_relaxed(SPRD_SPI_SW_TX_REQ, ss->base + SPRD_SPI_CTL12);
240}
241
242static void sprd_spi_rx_req(struct sprd_spi *ss)
243{
244	writel_relaxed(SPRD_SPI_SW_RX_REQ, ss->base + SPRD_SPI_CTL12);
245}
246
247static void sprd_spi_enter_idle(struct sprd_spi *ss)
248{
249	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
250
251	val &= ~SPRD_SPI_RTX_MD_MASK;
252	writel_relaxed(val, ss->base + SPRD_SPI_CTL1);
253}
254
255static void sprd_spi_set_transfer_bits(struct sprd_spi *ss, u32 bits)
256{
257	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
258
259	/* Set the valid bits for every transaction */
260	val &= ~(SPRD_SPI_CHNL_LEN_MASK << SPRD_SPI_CHNL_LEN);
261	val |= bits << SPRD_SPI_CHNL_LEN;
262	writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
263}
264
265static void sprd_spi_set_tx_length(struct sprd_spi *ss, u32 length)
266{
267	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL8);
268
269	length &= SPRD_SPI_TX_MAX_LEN_MASK;
270	val &= ~SPRD_SPI_TX_LEN_H_MASK;
271	val |= length >> SPRD_SPI_TX_LEN_H_OFFSET;
272	writel_relaxed(val, ss->base + SPRD_SPI_CTL8);
273
274	val = length & SPRD_SPI_TX_LEN_L_MASK;
275	writel_relaxed(val, ss->base + SPRD_SPI_CTL9);
276}
277
278static void sprd_spi_set_rx_length(struct sprd_spi *ss, u32 length)
279{
280	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL10);
281
282	length &= SPRD_SPI_RX_MAX_LEN_MASK;
283	val &= ~SPRD_SPI_RX_LEN_H_MASK;
284	val |= length >> SPRD_SPI_RX_LEN_H_OFFSET;
285	writel_relaxed(val, ss->base + SPRD_SPI_CTL10);
286
287	val = length & SPRD_SPI_RX_LEN_L_MASK;
288	writel_relaxed(val, ss->base + SPRD_SPI_CTL11);
289}
290
291static void sprd_spi_chipselect(struct spi_device *sdev, bool cs)
292{
293	struct spi_controller *sctlr = sdev->controller;
294	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
295	u32 val;
296
297	val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
298	/*  The SPI controller will pull down CS pin if cs is 0 */
299	if (!cs) {
300		val &= ~SPRD_SPI_CS0_VALID;
301		writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
302	} else {
303		val |= SPRD_SPI_CSN_MASK;
304		writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
305	}
306}
307
308static int sprd_spi_write_only_receive(struct sprd_spi *ss, u32 len)
309{
310	u32 val;
311
312	/* Clear the start receive bit and reset receive data number */
313	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
314	val &= ~(SPRD_SPI_START_RX | SPRD_SPI_ONLY_RECV_MASK);
315	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
316
317	/* Set the receive data length */
318	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
319	val |= len & SPRD_SPI_ONLY_RECV_MASK;
320	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
321
322	/* Trigger to receive data */
323	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
324	val |= SPRD_SPI_START_RX;
325	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
326
327	return len;
328}
329
330static int sprd_spi_write_bufs_u8(struct sprd_spi *ss, u32 len)
331{
332	u8 *tx_p = (u8 *)ss->tx_buf;
333	int i;
334
335	for (i = 0; i < len; i++)
336		writeb_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
337
338	ss->tx_buf += i;
339	return i;
340}
341
342static int sprd_spi_write_bufs_u16(struct sprd_spi *ss, u32 len)
343{
344	u16 *tx_p = (u16 *)ss->tx_buf;
345	int i;
346
347	for (i = 0; i < len; i++)
348		writew_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
349
350	ss->tx_buf += i << 1;
351	return i << 1;
352}
353
354static int sprd_spi_write_bufs_u32(struct sprd_spi *ss, u32 len)
355{
356	u32 *tx_p = (u32 *)ss->tx_buf;
357	int i;
358
359	for (i = 0; i < len; i++)
360		writel_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
361
362	ss->tx_buf += i << 2;
363	return i << 2;
364}
365
366static int sprd_spi_read_bufs_u8(struct sprd_spi *ss, u32 len)
367{
368	u8 *rx_p = (u8 *)ss->rx_buf;
369	int i;
370
371	for (i = 0; i < len; i++)
372		rx_p[i] = readb_relaxed(ss->base + SPRD_SPI_TXD);
373
374	ss->rx_buf += i;
375	return i;
376}
377
378static int sprd_spi_read_bufs_u16(struct sprd_spi *ss, u32 len)
379{
380	u16 *rx_p = (u16 *)ss->rx_buf;
381	int i;
382
383	for (i = 0; i < len; i++)
384		rx_p[i] = readw_relaxed(ss->base + SPRD_SPI_TXD);
385
386	ss->rx_buf += i << 1;
387	return i << 1;
388}
389
390static int sprd_spi_read_bufs_u32(struct sprd_spi *ss, u32 len)
391{
392	u32 *rx_p = (u32 *)ss->rx_buf;
393	int i;
394
395	for (i = 0; i < len; i++)
396		rx_p[i] = readl_relaxed(ss->base + SPRD_SPI_TXD);
397
398	ss->rx_buf += i << 2;
399	return i << 2;
400}
401
402static int sprd_spi_txrx_bufs(struct spi_device *sdev, struct spi_transfer *t)
403{
404	struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
405	u32 trans_len = ss->trans_len, len;
406	int ret, write_size = 0, read_size = 0;
407
408	while (trans_len) {
409		len = trans_len > SPRD_SPI_FIFO_SIZE ? SPRD_SPI_FIFO_SIZE :
410			trans_len;
411		if (ss->trans_mode & SPRD_SPI_TX_MODE) {
412			sprd_spi_set_tx_length(ss, len);
413			write_size += ss->write_bufs(ss, len);
414
415			/*
416			 * For our 3 wires mode or dual TX line mode, we need
417			 * to request the controller to transfer.
418			 */
419			if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
420				sprd_spi_tx_req(ss);
421
422			ret = sprd_spi_wait_for_tx_end(ss, t);
423		} else {
424			sprd_spi_set_rx_length(ss, len);
425
426			/*
427			 * For our 3 wires mode or dual TX line mode, we need
428			 * to request the controller to read.
429			 */
430			if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
431				sprd_spi_rx_req(ss);
432			else
433				write_size += ss->write_bufs(ss, len);
434
435			ret = sprd_spi_wait_for_rx_end(ss, t);
436		}
437
438		if (ret)
439			goto complete;
440
441		if (ss->trans_mode & SPRD_SPI_RX_MODE)
442			read_size += ss->read_bufs(ss, len);
443
444		trans_len -= len;
445	}
446
447	if (ss->trans_mode & SPRD_SPI_TX_MODE)
448		ret = write_size;
449	else
450		ret = read_size;
451complete:
452	sprd_spi_enter_idle(ss);
453
454	return ret;
455}
456
457static void sprd_spi_irq_enable(struct sprd_spi *ss)
458{
459	u32 val;
460
461	/* Clear interrupt status before enabling interrupt. */
462	writel_relaxed(SPRD_SPI_TX_END_CLR | SPRD_SPI_RX_END_CLR,
463		ss->base + SPRD_SPI_INT_CLR);
464	/* Enable SPI interrupt only in DMA mode. */
465	val = readl_relaxed(ss->base + SPRD_SPI_INT_EN);
466	writel_relaxed(val | SPRD_SPI_TX_END_INT_EN |
467		       SPRD_SPI_RX_END_INT_EN,
468		       ss->base + SPRD_SPI_INT_EN);
469}
470
471static void sprd_spi_irq_disable(struct sprd_spi *ss)
472{
473	writel_relaxed(0, ss->base + SPRD_SPI_INT_EN);
474}
475
476static void sprd_spi_dma_enable(struct sprd_spi *ss, bool enable)
477{
478	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL2);
479
480	if (enable)
481		val |= SPRD_SPI_DMA_EN;
482	else
483		val &= ~SPRD_SPI_DMA_EN;
484
485	writel_relaxed(val, ss->base + SPRD_SPI_CTL2);
486}
487
488static int sprd_spi_dma_submit(struct dma_chan *dma_chan,
489			       struct dma_slave_config *c,
490			       struct sg_table *sg,
491			       enum dma_transfer_direction dir)
492{
493	struct dma_async_tx_descriptor *desc;
494	dma_cookie_t cookie;
495	unsigned long flags;
496	int ret;
497
498	ret = dmaengine_slave_config(dma_chan, c);
499	if (ret < 0)
500		return ret;
501
502	flags = SPRD_DMA_FLAGS(SPRD_DMA_CHN_MODE_NONE, SPRD_DMA_NO_TRG,
503			       SPRD_DMA_FRAG_REQ, SPRD_DMA_TRANS_INT);
504	desc = dmaengine_prep_slave_sg(dma_chan, sg->sgl, sg->nents, dir, flags);
505	if (!desc)
506		return  -ENODEV;
507
508	cookie = dmaengine_submit(desc);
509	if (dma_submit_error(cookie))
510		return dma_submit_error(cookie);
511
512	dma_async_issue_pending(dma_chan);
513
514	return 0;
515}
516
517static int sprd_spi_dma_rx_config(struct sprd_spi *ss, struct spi_transfer *t)
518{
519	struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_RX];
520	struct dma_slave_config config = {
521		.src_addr = ss->phy_base,
522		.src_addr_width = ss->dma.width,
523		.dst_addr_width = ss->dma.width,
524		.dst_maxburst = ss->dma.fragmens_len,
525	};
526	int ret;
527
528	ret = sprd_spi_dma_submit(dma_chan, &config, &t->rx_sg, DMA_DEV_TO_MEM);
529	if (ret)
530		return ret;
531
532	return ss->dma.rx_len;
533}
534
535static int sprd_spi_dma_tx_config(struct sprd_spi *ss, struct spi_transfer *t)
536{
537	struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_TX];
538	struct dma_slave_config config = {
539		.dst_addr = ss->phy_base,
540		.src_addr_width = ss->dma.width,
541		.dst_addr_width = ss->dma.width,
542		.src_maxburst = ss->dma.fragmens_len,
543	};
544	int ret;
545
546	ret = sprd_spi_dma_submit(dma_chan, &config, &t->tx_sg, DMA_MEM_TO_DEV);
547	if (ret)
548		return ret;
549
550	return t->len;
551}
552
553static int sprd_spi_dma_request(struct sprd_spi *ss)
554{
555	ss->dma.dma_chan[SPRD_SPI_RX] = dma_request_chan(ss->dev, "rx_chn");
556	if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_RX]))
557		return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]),
558				     "request RX DMA channel failed!\n");
559
560	ss->dma.dma_chan[SPRD_SPI_TX]  = dma_request_chan(ss->dev, "tx_chn");
561	if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_TX])) {
562		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
563		return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]),
564				     "request TX DMA channel failed!\n");
565	}
566
567	return 0;
568}
569
570static void sprd_spi_dma_release(struct sprd_spi *ss)
571{
572	if (ss->dma.dma_chan[SPRD_SPI_RX])
573		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
574
575	if (ss->dma.dma_chan[SPRD_SPI_TX])
576		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_TX]);
577}
578
579static int sprd_spi_dma_txrx_bufs(struct spi_device *sdev,
580				  struct spi_transfer *t)
581{
582	struct sprd_spi *ss = spi_master_get_devdata(sdev->master);
583	u32 trans_len = ss->trans_len;
584	int ret, write_size = 0;
585
586	reinit_completion(&ss->xfer_completion);
587	sprd_spi_irq_enable(ss);
588	if (ss->trans_mode & SPRD_SPI_TX_MODE) {
589		write_size = sprd_spi_dma_tx_config(ss, t);
590		sprd_spi_set_tx_length(ss, trans_len);
591
592		/*
593		 * For our 3 wires mode or dual TX line mode, we need
594		 * to request the controller to transfer.
595		 */
596		if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
597			sprd_spi_tx_req(ss);
598	} else {
599		sprd_spi_set_rx_length(ss, trans_len);
600
601		/*
602		 * For our 3 wires mode or dual TX line mode, we need
603		 * to request the controller to read.
604		 */
605		if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
606			sprd_spi_rx_req(ss);
607		else
608			write_size = ss->write_bufs(ss, trans_len);
609	}
610
611	if (write_size < 0) {
612		ret = write_size;
613		dev_err(ss->dev, "failed to write, ret = %d\n", ret);
614		goto trans_complete;
615	}
616
617	if (ss->trans_mode & SPRD_SPI_RX_MODE) {
618		/*
619		 * Set up the DMA receive data length, which must be an
620		 * integral multiple of fragment length. But when the length
621		 * of received data is less than fragment length, DMA can be
622		 * configured to receive data according to the actual length
623		 * of received data.
624		 */
625		ss->dma.rx_len = t->len > ss->dma.fragmens_len ?
626			(t->len - t->len % ss->dma.fragmens_len) :
627			 t->len;
628		ret = sprd_spi_dma_rx_config(ss, t);
629		if (ret < 0) {
630			dev_err(&sdev->dev,
631				"failed to configure rx DMA, ret = %d\n", ret);
632			goto trans_complete;
633		}
634	}
635
636	sprd_spi_dma_enable(ss, true);
637	wait_for_completion(&(ss->xfer_completion));
638
639	if (ss->trans_mode & SPRD_SPI_TX_MODE)
640		ret = write_size;
641	else
642		ret = ss->dma.rx_len;
643
644trans_complete:
645	sprd_spi_dma_enable(ss, false);
646	sprd_spi_enter_idle(ss);
647	sprd_spi_irq_disable(ss);
648
649	return ret;
650}
651
652static void sprd_spi_set_speed(struct sprd_spi *ss, u32 speed_hz)
653{
654	/*
655	 * From SPI datasheet, the prescale calculation formula:
656	 * prescale = SPI source clock / (2 * SPI_freq) - 1;
657	 */
658	u32 clk_div = DIV_ROUND_UP(ss->src_clk, speed_hz << 1) - 1;
659
660	/* Save the real hardware speed */
661	ss->hw_speed_hz = (ss->src_clk >> 1) / (clk_div + 1);
662	writel_relaxed(clk_div, ss->base + SPRD_SPI_CLKD);
663}
664
665static int sprd_spi_init_hw(struct sprd_spi *ss, struct spi_transfer *t)
666{
667	struct spi_delay *d = &t->word_delay;
668	u16 word_delay, interval;
669	u32 val;
670
671	if (d->unit != SPI_DELAY_UNIT_SCK)
672		return -EINVAL;
673
674	val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
675	val &= ~(SPRD_SPI_SCK_REV | SPRD_SPI_NG_TX | SPRD_SPI_NG_RX);
676	/* Set default chip selection, clock phase and clock polarity */
677	val |= ss->hw_mode & SPI_CPHA ? SPRD_SPI_NG_RX : SPRD_SPI_NG_TX;
678	val |= ss->hw_mode & SPI_CPOL ? SPRD_SPI_SCK_REV : 0;
679	writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
680
681	/*
682	 * Set the intervals of two SPI frames, and the inteval calculation
683	 * formula as below per datasheet:
684	 * interval time (source clock cycles) = interval * 4 + 10.
685	 */
686	word_delay = clamp_t(u16, d->value, SPRD_SPI_MIN_DELAY_CYCLE,
687			     SPRD_SPI_MAX_DELAY_CYCLE);
688	interval = DIV_ROUND_UP(word_delay - 10, 4);
689	ss->word_delay = interval * 4 + 10;
690	writel_relaxed(interval, ss->base + SPRD_SPI_CTL5);
691
692	/* Reset SPI fifo */
693	writel_relaxed(1, ss->base + SPRD_SPI_FIFO_RST);
694	writel_relaxed(0, ss->base + SPRD_SPI_FIFO_RST);
695
696	/* Set SPI work mode */
697	val = readl_relaxed(ss->base + SPRD_SPI_CTL7);
698	val &= ~SPRD_SPI_MODE_MASK;
699
700	if (ss->hw_mode & SPI_3WIRE)
701		val |= SPRD_SPI_3WIRE_MODE << SPRD_SPI_MODE_OFFSET;
702	else
703		val |= SPRD_SPI_4WIRE_MODE << SPRD_SPI_MODE_OFFSET;
704
705	if (ss->hw_mode & SPI_TX_DUAL)
706		val |= SPRD_SPI_DATA_LINE2_EN;
707	else
708		val &= ~SPRD_SPI_DATA_LINE2_EN;
709
710	writel_relaxed(val, ss->base + SPRD_SPI_CTL7);
711
712	return 0;
713}
714
715static int sprd_spi_setup_transfer(struct spi_device *sdev,
716				   struct spi_transfer *t)
717{
718	struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
719	u8 bits_per_word = t->bits_per_word;
720	u32 val, mode = 0;
721	int ret;
722
723	ss->len = t->len;
724	ss->tx_buf = t->tx_buf;
725	ss->rx_buf = t->rx_buf;
726
727	ss->hw_mode = sdev->mode;
728	ret = sprd_spi_init_hw(ss, t);
729	if (ret)
730		return ret;
731
732	/* Set tansfer speed and valid bits */
733	sprd_spi_set_speed(ss, t->speed_hz);
734	sprd_spi_set_transfer_bits(ss, bits_per_word);
735
736	if (bits_per_word > 16)
737		bits_per_word = round_up(bits_per_word, 16);
738	else
739		bits_per_word = round_up(bits_per_word, 8);
740
741	switch (bits_per_word) {
742	case 8:
743		ss->trans_len = t->len;
744		ss->read_bufs = sprd_spi_read_bufs_u8;
745		ss->write_bufs = sprd_spi_write_bufs_u8;
746		ss->dma.width = DMA_SLAVE_BUSWIDTH_1_BYTE;
747		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP;
748		break;
749	case 16:
750		ss->trans_len = t->len >> 1;
751		ss->read_bufs = sprd_spi_read_bufs_u16;
752		ss->write_bufs = sprd_spi_write_bufs_u16;
753		ss->dma.width = DMA_SLAVE_BUSWIDTH_2_BYTES;
754		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 1;
755		break;
756	case 32:
757		ss->trans_len = t->len >> 2;
758		ss->read_bufs = sprd_spi_read_bufs_u32;
759		ss->write_bufs = sprd_spi_write_bufs_u32;
760		ss->dma.width = DMA_SLAVE_BUSWIDTH_4_BYTES;
761		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 2;
762		break;
763	default:
764		return -EINVAL;
765	}
766
767	/* Set transfer read or write mode */
768	val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
769	val &= ~SPRD_SPI_RTX_MD_MASK;
770	if (t->tx_buf)
771		mode |= SPRD_SPI_TX_MODE;
772	if (t->rx_buf)
773		mode |= SPRD_SPI_RX_MODE;
774
775	writel_relaxed(val | mode, ss->base + SPRD_SPI_CTL1);
776
777	ss->trans_mode = mode;
778
779	/*
780	 * If in only receive mode, we need to trigger the SPI controller to
781	 * receive data automatically.
782	 */
783	if (ss->trans_mode == SPRD_SPI_RX_MODE)
784		ss->write_bufs = sprd_spi_write_only_receive;
785
786	return 0;
787}
788
789static int sprd_spi_transfer_one(struct spi_controller *sctlr,
790				 struct spi_device *sdev,
791				 struct spi_transfer *t)
792{
793	int ret;
794
795	ret = sprd_spi_setup_transfer(sdev, t);
796	if (ret)
797		goto setup_err;
798
799	if (sctlr->can_dma(sctlr, sdev, t))
800		ret = sprd_spi_dma_txrx_bufs(sdev, t);
801	else
802		ret = sprd_spi_txrx_bufs(sdev, t);
803
804	if (ret == t->len)
805		ret = 0;
806	else if (ret >= 0)
807		ret = -EREMOTEIO;
808
809setup_err:
810	spi_finalize_current_transfer(sctlr);
811
812	return ret;
813}
814
815static irqreturn_t sprd_spi_handle_irq(int irq, void *data)
816{
817	struct sprd_spi *ss = (struct sprd_spi *)data;
818	u32 val = readl_relaxed(ss->base + SPRD_SPI_INT_MASK_STS);
819
820	if (val & SPRD_SPI_MASK_TX_END) {
821		writel_relaxed(SPRD_SPI_TX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
822		if (!(ss->trans_mode & SPRD_SPI_RX_MODE))
823			complete(&ss->xfer_completion);
824
825		return IRQ_HANDLED;
826	}
827
828	if (val & SPRD_SPI_MASK_RX_END) {
829		writel_relaxed(SPRD_SPI_RX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
830		if (ss->dma.rx_len < ss->len) {
831			ss->rx_buf += ss->dma.rx_len;
832			ss->dma.rx_len +=
833				ss->read_bufs(ss, ss->len - ss->dma.rx_len);
834		}
835		complete(&ss->xfer_completion);
836
837		return IRQ_HANDLED;
838	}
839
840	return IRQ_NONE;
841}
842
843static int sprd_spi_irq_init(struct platform_device *pdev, struct sprd_spi *ss)
844{
845	int ret;
846
847	ss->irq = platform_get_irq(pdev, 0);
848	if (ss->irq < 0)
849		return ss->irq;
850
851	ret = devm_request_irq(&pdev->dev, ss->irq, sprd_spi_handle_irq,
852				0, pdev->name, ss);
853	if (ret)
854		dev_err(&pdev->dev, "failed to request spi irq %d, ret = %d\n",
855			ss->irq, ret);
856
857	return ret;
858}
859
860static int sprd_spi_clk_init(struct platform_device *pdev, struct sprd_spi *ss)
861{
862	struct clk *clk_spi, *clk_parent;
863
864	clk_spi = devm_clk_get(&pdev->dev, "spi");
865	if (IS_ERR(clk_spi)) {
866		dev_warn(&pdev->dev, "can't get the spi clock\n");
867		clk_spi = NULL;
868	}
869
870	clk_parent = devm_clk_get(&pdev->dev, "source");
871	if (IS_ERR(clk_parent)) {
872		dev_warn(&pdev->dev, "can't get the source clock\n");
873		clk_parent = NULL;
874	}
875
876	ss->clk = devm_clk_get(&pdev->dev, "enable");
877	if (IS_ERR(ss->clk)) {
878		dev_err(&pdev->dev, "can't get the enable clock\n");
879		return PTR_ERR(ss->clk);
880	}
881
882	if (!clk_set_parent(clk_spi, clk_parent))
883		ss->src_clk = clk_get_rate(clk_spi);
884	else
885		ss->src_clk = SPRD_SPI_DEFAULT_SOURCE;
886
887	return 0;
888}
889
890static bool sprd_spi_can_dma(struct spi_controller *sctlr,
891			     struct spi_device *spi, struct spi_transfer *t)
892{
893	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
894
895	return ss->dma.enable && (t->len > SPRD_SPI_FIFO_SIZE);
896}
897
898static int sprd_spi_dma_init(struct platform_device *pdev, struct sprd_spi *ss)
899{
900	int ret;
901
902	ret = sprd_spi_dma_request(ss);
903	if (ret) {
904		if (ret == -EPROBE_DEFER)
905			return ret;
906
907		dev_warn(&pdev->dev,
908			 "failed to request dma, enter no dma mode, ret = %d\n",
909			 ret);
910
911		return 0;
912	}
913
914	ss->dma.enable = true;
915
916	return 0;
917}
918
919static int sprd_spi_probe(struct platform_device *pdev)
920{
921	struct spi_controller *sctlr;
922	struct resource *res;
923	struct sprd_spi *ss;
924	int ret;
925
926	pdev->id = of_alias_get_id(pdev->dev.of_node, "spi");
927	sctlr = spi_alloc_master(&pdev->dev, sizeof(*ss));
928	if (!sctlr)
929		return -ENOMEM;
930
931	ss = spi_controller_get_devdata(sctlr);
932	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
933	ss->base = devm_ioremap_resource(&pdev->dev, res);
934	if (IS_ERR(ss->base)) {
935		ret = PTR_ERR(ss->base);
936		goto free_controller;
937	}
938
939	ss->phy_base = res->start;
940	ss->dev = &pdev->dev;
941	sctlr->dev.of_node = pdev->dev.of_node;
942	sctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE | SPI_TX_DUAL;
943	sctlr->bus_num = pdev->id;
944	sctlr->set_cs = sprd_spi_chipselect;
945	sctlr->transfer_one = sprd_spi_transfer_one;
946	sctlr->can_dma = sprd_spi_can_dma;
947	sctlr->auto_runtime_pm = true;
948	sctlr->max_speed_hz = min_t(u32, ss->src_clk >> 1,
949				    SPRD_SPI_MAX_SPEED_HZ);
950
951	init_completion(&ss->xfer_completion);
952	platform_set_drvdata(pdev, sctlr);
953	ret = sprd_spi_clk_init(pdev, ss);
954	if (ret)
955		goto free_controller;
956
957	ret = sprd_spi_irq_init(pdev, ss);
958	if (ret)
959		goto free_controller;
960
961	ret = sprd_spi_dma_init(pdev, ss);
962	if (ret)
963		goto free_controller;
964
965	ret = clk_prepare_enable(ss->clk);
966	if (ret)
967		goto release_dma;
968
969	ret = pm_runtime_set_active(&pdev->dev);
970	if (ret < 0)
971		goto disable_clk;
972
973	pm_runtime_set_autosuspend_delay(&pdev->dev,
974					 SPRD_SPI_AUTOSUSPEND_DELAY);
975	pm_runtime_use_autosuspend(&pdev->dev);
976	pm_runtime_enable(&pdev->dev);
977	ret = pm_runtime_get_sync(&pdev->dev);
978	if (ret < 0) {
979		dev_err(&pdev->dev, "failed to resume SPI controller\n");
980		goto err_rpm_put;
981	}
982
983	ret = devm_spi_register_controller(&pdev->dev, sctlr);
984	if (ret)
985		goto err_rpm_put;
986
987	pm_runtime_mark_last_busy(&pdev->dev);
988	pm_runtime_put_autosuspend(&pdev->dev);
989
990	return 0;
991
992err_rpm_put:
993	pm_runtime_put_noidle(&pdev->dev);
994	pm_runtime_disable(&pdev->dev);
995disable_clk:
996	clk_disable_unprepare(ss->clk);
997release_dma:
998	sprd_spi_dma_release(ss);
999free_controller:
1000	spi_controller_put(sctlr);
1001
1002	return ret;
1003}
1004
1005static int sprd_spi_remove(struct platform_device *pdev)
1006{
1007	struct spi_controller *sctlr = platform_get_drvdata(pdev);
1008	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1009	int ret;
1010
1011	ret = pm_runtime_get_sync(ss->dev);
1012	if (ret < 0) {
1013		pm_runtime_put_noidle(ss->dev);
1014		dev_err(ss->dev, "failed to resume SPI controller\n");
1015		return ret;
1016	}
1017
1018	spi_controller_suspend(sctlr);
1019
1020	if (ss->dma.enable)
1021		sprd_spi_dma_release(ss);
1022	clk_disable_unprepare(ss->clk);
1023	pm_runtime_put_noidle(&pdev->dev);
1024	pm_runtime_disable(&pdev->dev);
1025
1026	return 0;
1027}
1028
1029static int __maybe_unused sprd_spi_runtime_suspend(struct device *dev)
1030{
1031	struct spi_controller *sctlr = dev_get_drvdata(dev);
1032	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1033
1034	if (ss->dma.enable)
1035		sprd_spi_dma_release(ss);
1036
1037	clk_disable_unprepare(ss->clk);
1038
1039	return 0;
1040}
1041
1042static int __maybe_unused sprd_spi_runtime_resume(struct device *dev)
1043{
1044	struct spi_controller *sctlr = dev_get_drvdata(dev);
1045	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1046	int ret;
1047
1048	ret = clk_prepare_enable(ss->clk);
1049	if (ret)
1050		return ret;
1051
1052	if (!ss->dma.enable)
1053		return 0;
1054
1055	ret = sprd_spi_dma_request(ss);
1056	if (ret)
1057		clk_disable_unprepare(ss->clk);
1058
1059	return ret;
1060}
1061
1062static const struct dev_pm_ops sprd_spi_pm_ops = {
1063	SET_RUNTIME_PM_OPS(sprd_spi_runtime_suspend,
1064			   sprd_spi_runtime_resume, NULL)
1065};
1066
1067static const struct of_device_id sprd_spi_of_match[] = {
1068	{ .compatible = "sprd,sc9860-spi", },
1069	{ /* sentinel */ }
1070};
1071MODULE_DEVICE_TABLE(of, sprd_spi_of_match);
1072
1073static struct platform_driver sprd_spi_driver = {
1074	.driver = {
1075		.name = "sprd-spi",
1076		.of_match_table = sprd_spi_of_match,
1077		.pm = &sprd_spi_pm_ops,
1078	},
1079	.probe = sprd_spi_probe,
1080	.remove  = sprd_spi_remove,
1081};
1082
1083module_platform_driver(sprd_spi_driver);
1084
1085MODULE_DESCRIPTION("Spreadtrum SPI Controller driver");
1086MODULE_AUTHOR("Lanqing Liu <lanqing.liu@spreadtrum.com>");
1087MODULE_LICENSE("GPL v2");
1088