xref: /kernel/linux/linux-5.10/drivers/spi/spi-sirf.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SPI bus driver for CSR SiRFprimaII
4 *
5 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
6 */
7
8#include <linux/module.h>
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/clk.h>
12#include <linux/completion.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/of.h>
16#include <linux/bitops.h>
17#include <linux/err.h>
18#include <linux/platform_device.h>
19#include <linux/of_gpio.h>
20#include <linux/spi/spi.h>
21#include <linux/spi/spi_bitbang.h>
22#include <linux/dmaengine.h>
23#include <linux/dma-direction.h>
24#include <linux/dma-mapping.h>
25#include <linux/reset.h>
26
27#define DRIVER_NAME "sirfsoc_spi"
28/* SPI CTRL register defines */
29#define SIRFSOC_SPI_SLV_MODE		BIT(16)
30#define SIRFSOC_SPI_CMD_MODE		BIT(17)
31#define SIRFSOC_SPI_CS_IO_OUT		BIT(18)
32#define SIRFSOC_SPI_CS_IO_MODE		BIT(19)
33#define SIRFSOC_SPI_CLK_IDLE_STAT	BIT(20)
34#define SIRFSOC_SPI_CS_IDLE_STAT	BIT(21)
35#define SIRFSOC_SPI_TRAN_MSB		BIT(22)
36#define SIRFSOC_SPI_DRV_POS_EDGE	BIT(23)
37#define SIRFSOC_SPI_CS_HOLD_TIME	BIT(24)
38#define SIRFSOC_SPI_CLK_SAMPLE_MODE	BIT(25)
39#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8	(0 << 26)
40#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12	(1 << 26)
41#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16	(2 << 26)
42#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32	(3 << 26)
43#define SIRFSOC_SPI_CMD_BYTE_NUM(x)	((x & 3) << 28)
44#define SIRFSOC_SPI_ENA_AUTO_CLR	BIT(30)
45#define SIRFSOC_SPI_MUL_DAT_MODE	BIT(31)
46
47/* Interrupt Enable */
48#define SIRFSOC_SPI_RX_DONE_INT_EN	BIT(0)
49#define SIRFSOC_SPI_TX_DONE_INT_EN	BIT(1)
50#define SIRFSOC_SPI_RX_OFLOW_INT_EN	BIT(2)
51#define SIRFSOC_SPI_TX_UFLOW_INT_EN	BIT(3)
52#define SIRFSOC_SPI_RX_IO_DMA_INT_EN	BIT(4)
53#define SIRFSOC_SPI_TX_IO_DMA_INT_EN	BIT(5)
54#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN	BIT(6)
55#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN	BIT(7)
56#define SIRFSOC_SPI_RXFIFO_THD_INT_EN	BIT(8)
57#define SIRFSOC_SPI_TXFIFO_THD_INT_EN	BIT(9)
58#define SIRFSOC_SPI_FRM_END_INT_EN	BIT(10)
59
60/* Interrupt status */
61#define SIRFSOC_SPI_RX_DONE		BIT(0)
62#define SIRFSOC_SPI_TX_DONE		BIT(1)
63#define SIRFSOC_SPI_RX_OFLOW		BIT(2)
64#define SIRFSOC_SPI_TX_UFLOW		BIT(3)
65#define SIRFSOC_SPI_RX_IO_DMA		BIT(4)
66#define SIRFSOC_SPI_RX_FIFO_FULL	BIT(6)
67#define SIRFSOC_SPI_TXFIFO_EMPTY	BIT(7)
68#define SIRFSOC_SPI_RXFIFO_THD_REACH	BIT(8)
69#define SIRFSOC_SPI_TXFIFO_THD_REACH	BIT(9)
70#define SIRFSOC_SPI_FRM_END		BIT(10)
71
72/* TX RX enable */
73#define SIRFSOC_SPI_RX_EN		BIT(0)
74#define SIRFSOC_SPI_TX_EN		BIT(1)
75#define SIRFSOC_SPI_CMD_TX_EN		BIT(2)
76
77#define SIRFSOC_SPI_IO_MODE_SEL		BIT(0)
78#define SIRFSOC_SPI_RX_DMA_FLUSH	BIT(2)
79
80/* FIFO OPs */
81#define SIRFSOC_SPI_FIFO_RESET		BIT(0)
82#define SIRFSOC_SPI_FIFO_START		BIT(1)
83
84/* FIFO CTRL */
85#define SIRFSOC_SPI_FIFO_WIDTH_BYTE	(0 << 0)
86#define SIRFSOC_SPI_FIFO_WIDTH_WORD	(1 << 0)
87#define SIRFSOC_SPI_FIFO_WIDTH_DWORD	(2 << 0)
88/* USP related */
89#define SIRFSOC_USP_SYNC_MODE		BIT(0)
90#define SIRFSOC_USP_SLV_MODE		BIT(1)
91#define SIRFSOC_USP_LSB			BIT(4)
92#define SIRFSOC_USP_EN			BIT(5)
93#define SIRFSOC_USP_RXD_FALLING_EDGE	BIT(6)
94#define SIRFSOC_USP_TXD_FALLING_EDGE	BIT(7)
95#define SIRFSOC_USP_CS_HIGH_VALID	BIT(9)
96#define SIRFSOC_USP_SCLK_IDLE_STAT	BIT(11)
97#define SIRFSOC_USP_TFS_IO_MODE		BIT(14)
98#define SIRFSOC_USP_TFS_IO_INPUT	BIT(19)
99
100#define SIRFSOC_USP_RXD_DELAY_LEN_MASK	0xFF
101#define SIRFSOC_USP_TXD_DELAY_LEN_MASK	0xFF
102#define SIRFSOC_USP_RXD_DELAY_OFFSET	0
103#define SIRFSOC_USP_TXD_DELAY_OFFSET	8
104#define SIRFSOC_USP_RXD_DELAY_LEN	1
105#define SIRFSOC_USP_TXD_DELAY_LEN	1
106#define SIRFSOC_USP_CLK_DIVISOR_OFFSET	21
107#define SIRFSOC_USP_CLK_DIVISOR_MASK	0x3FF
108#define SIRFSOC_USP_CLK_10_11_MASK	0x3
109#define SIRFSOC_USP_CLK_10_11_OFFSET	30
110#define SIRFSOC_USP_CLK_12_15_MASK	0xF
111#define SIRFSOC_USP_CLK_12_15_OFFSET	24
112
113#define SIRFSOC_USP_TX_DATA_OFFSET	0
114#define SIRFSOC_USP_TX_SYNC_OFFSET	8
115#define SIRFSOC_USP_TX_FRAME_OFFSET	16
116#define SIRFSOC_USP_TX_SHIFTER_OFFSET	24
117
118#define SIRFSOC_USP_TX_DATA_MASK	0xFF
119#define SIRFSOC_USP_TX_SYNC_MASK	0xFF
120#define SIRFSOC_USP_TX_FRAME_MASK	0xFF
121#define SIRFSOC_USP_TX_SHIFTER_MASK	0x1F
122
123#define SIRFSOC_USP_RX_DATA_OFFSET	0
124#define SIRFSOC_USP_RX_FRAME_OFFSET	8
125#define SIRFSOC_USP_RX_SHIFTER_OFFSET	16
126
127#define SIRFSOC_USP_RX_DATA_MASK	0xFF
128#define SIRFSOC_USP_RX_FRAME_MASK	0xFF
129#define SIRFSOC_USP_RX_SHIFTER_MASK	0x1F
130#define SIRFSOC_USP_CS_HIGH_VALUE	BIT(1)
131
132#define SIRFSOC_SPI_FIFO_SC_OFFSET	0
133#define SIRFSOC_SPI_FIFO_LC_OFFSET	10
134#define SIRFSOC_SPI_FIFO_HC_OFFSET	20
135
136#define SIRFSOC_SPI_FIFO_FULL_MASK(s)	(1 << ((s)->fifo_full_offset))
137#define SIRFSOC_SPI_FIFO_EMPTY_MASK(s)	(1 << ((s)->fifo_full_offset + 1))
138#define SIRFSOC_SPI_FIFO_THD_MASK(s)	((s)->fifo_size - 1)
139#define SIRFSOC_SPI_FIFO_THD_OFFSET	2
140#define SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(s, val)	\
141	((val) & (s)->fifo_level_chk_mask)
142
143enum sirf_spi_type {
144	SIRF_REAL_SPI,
145	SIRF_USP_SPI_P2,
146	SIRF_USP_SPI_A7,
147};
148
149/*
150 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
151 * due to the limitation of dma controller
152 */
153
154#define ALIGNED(x) (!((u32)x & 0x3))
155#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
156	ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))
157
158#define SIRFSOC_MAX_CMD_BYTES	4
159#define SIRFSOC_SPI_DEFAULT_FRQ 1000000
160
161struct sirf_spi_register {
162	/*SPI and USP-SPI common*/
163	u32 tx_rx_en;
164	u32 int_en;
165	u32 int_st;
166	u32 tx_dma_io_ctrl;
167	u32 tx_dma_io_len;
168	u32 txfifo_ctrl;
169	u32 txfifo_level_chk;
170	u32 txfifo_op;
171	u32 txfifo_st;
172	u32 txfifo_data;
173	u32 rx_dma_io_ctrl;
174	u32 rx_dma_io_len;
175	u32 rxfifo_ctrl;
176	u32 rxfifo_level_chk;
177	u32 rxfifo_op;
178	u32 rxfifo_st;
179	u32 rxfifo_data;
180	/*SPI self*/
181	u32 spi_ctrl;
182	u32 spi_cmd;
183	u32 spi_dummy_delay_ctrl;
184	/*USP-SPI self*/
185	u32 usp_mode1;
186	u32 usp_mode2;
187	u32 usp_tx_frame_ctrl;
188	u32 usp_rx_frame_ctrl;
189	u32 usp_pin_io_data;
190	u32 usp_risc_dsp_mode;
191	u32 usp_async_param_reg;
192	u32 usp_irda_x_mode_div;
193	u32 usp_sm_cfg;
194	u32 usp_int_en_clr;
195};
196
197static const struct sirf_spi_register real_spi_register = {
198	.tx_rx_en		= 0x8,
199	.int_en		= 0xc,
200	.int_st		= 0x10,
201	.tx_dma_io_ctrl	= 0x100,
202	.tx_dma_io_len	= 0x104,
203	.txfifo_ctrl	= 0x108,
204	.txfifo_level_chk	= 0x10c,
205	.txfifo_op		= 0x110,
206	.txfifo_st		= 0x114,
207	.txfifo_data	= 0x118,
208	.rx_dma_io_ctrl	= 0x120,
209	.rx_dma_io_len	= 0x124,
210	.rxfifo_ctrl	= 0x128,
211	.rxfifo_level_chk	= 0x12c,
212	.rxfifo_op		= 0x130,
213	.rxfifo_st		= 0x134,
214	.rxfifo_data	= 0x138,
215	.spi_ctrl		= 0x0,
216	.spi_cmd		= 0x4,
217	.spi_dummy_delay_ctrl	= 0x144,
218};
219
220static const struct sirf_spi_register usp_spi_register = {
221	.tx_rx_en		= 0x10,
222	.int_en		= 0x14,
223	.int_st		= 0x18,
224	.tx_dma_io_ctrl	= 0x100,
225	.tx_dma_io_len	= 0x104,
226	.txfifo_ctrl	= 0x108,
227	.txfifo_level_chk	= 0x10c,
228	.txfifo_op		= 0x110,
229	.txfifo_st		= 0x114,
230	.txfifo_data	= 0x118,
231	.rx_dma_io_ctrl	= 0x120,
232	.rx_dma_io_len	= 0x124,
233	.rxfifo_ctrl	= 0x128,
234	.rxfifo_level_chk	= 0x12c,
235	.rxfifo_op		= 0x130,
236	.rxfifo_st		= 0x134,
237	.rxfifo_data	= 0x138,
238	.usp_mode1		= 0x0,
239	.usp_mode2		= 0x4,
240	.usp_tx_frame_ctrl	= 0x8,
241	.usp_rx_frame_ctrl	= 0xc,
242	.usp_pin_io_data	= 0x1c,
243	.usp_risc_dsp_mode	= 0x20,
244	.usp_async_param_reg	= 0x24,
245	.usp_irda_x_mode_div	= 0x28,
246	.usp_sm_cfg		= 0x2c,
247	.usp_int_en_clr		= 0x140,
248};
249
250struct sirfsoc_spi {
251	struct spi_bitbang bitbang;
252	struct completion rx_done;
253	struct completion tx_done;
254
255	void __iomem *base;
256	u32 ctrl_freq;  /* SPI controller clock speed */
257	struct clk *clk;
258
259	/* rx & tx bufs from the spi_transfer */
260	const void *tx;
261	void *rx;
262
263	/* place received word into rx buffer */
264	void (*rx_word) (struct sirfsoc_spi *);
265	/* get word from tx buffer for sending */
266	void (*tx_word) (struct sirfsoc_spi *);
267
268	/* number of words left to be tranmitted/received */
269	unsigned int left_tx_word;
270	unsigned int left_rx_word;
271
272	/* rx & tx DMA channels */
273	struct dma_chan *rx_chan;
274	struct dma_chan *tx_chan;
275	dma_addr_t src_start;
276	dma_addr_t dst_start;
277	int word_width; /* in bytes */
278
279	/*
280	 * if tx size is not more than 4 and rx size is NULL, use
281	 * command model
282	 */
283	bool	tx_by_cmd;
284	bool	hw_cs;
285	enum sirf_spi_type type;
286	const struct sirf_spi_register *regs;
287	unsigned int fifo_size;
288	/* fifo empty offset is (fifo full offset + 1)*/
289	unsigned int fifo_full_offset;
290	/* fifo_level_chk_mask is (fifo_size/4 - 1) */
291	unsigned int fifo_level_chk_mask;
292	unsigned int dat_max_frm_len;
293};
294
295struct sirf_spi_comp_data {
296	const struct sirf_spi_register *regs;
297	enum sirf_spi_type type;
298	unsigned int dat_max_frm_len;
299	unsigned int fifo_size;
300	void (*hwinit)(struct sirfsoc_spi *sspi);
301};
302
303static void sirfsoc_usp_hwinit(struct sirfsoc_spi *sspi)
304{
305	/* reset USP and let USP can operate */
306	writel(readl(sspi->base + sspi->regs->usp_mode1) &
307		~SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
308	writel(readl(sspi->base + sspi->regs->usp_mode1) |
309		SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
310}
311
312static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
313{
314	u32 data;
315	u8 *rx = sspi->rx;
316
317	data = readl(sspi->base + sspi->regs->rxfifo_data);
318
319	if (rx) {
320		*rx++ = (u8) data;
321		sspi->rx = rx;
322	}
323
324	sspi->left_rx_word--;
325}
326
327static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
328{
329	u32 data = 0;
330	const u8 *tx = sspi->tx;
331
332	if (tx) {
333		data = *tx++;
334		sspi->tx = tx;
335	}
336	writel(data, sspi->base + sspi->regs->txfifo_data);
337	sspi->left_tx_word--;
338}
339
340static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
341{
342	u32 data;
343	u16 *rx = sspi->rx;
344
345	data = readl(sspi->base + sspi->regs->rxfifo_data);
346
347	if (rx) {
348		*rx++ = (u16) data;
349		sspi->rx = rx;
350	}
351
352	sspi->left_rx_word--;
353}
354
355static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
356{
357	u32 data = 0;
358	const u16 *tx = sspi->tx;
359
360	if (tx) {
361		data = *tx++;
362		sspi->tx = tx;
363	}
364
365	writel(data, sspi->base + sspi->regs->txfifo_data);
366	sspi->left_tx_word--;
367}
368
369static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
370{
371	u32 data;
372	u32 *rx = sspi->rx;
373
374	data = readl(sspi->base + sspi->regs->rxfifo_data);
375
376	if (rx) {
377		*rx++ = (u32) data;
378		sspi->rx = rx;
379	}
380
381	sspi->left_rx_word--;
382
383}
384
385static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
386{
387	u32 data = 0;
388	const u32 *tx = sspi->tx;
389
390	if (tx) {
391		data = *tx++;
392		sspi->tx = tx;
393	}
394
395	writel(data, sspi->base + sspi->regs->txfifo_data);
396	sspi->left_tx_word--;
397}
398
399static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
400{
401	struct sirfsoc_spi *sspi = dev_id;
402	u32 spi_stat;
403
404	spi_stat = readl(sspi->base + sspi->regs->int_st);
405	if (sspi->tx_by_cmd && sspi->type == SIRF_REAL_SPI
406		&& (spi_stat & SIRFSOC_SPI_FRM_END)) {
407		complete(&sspi->tx_done);
408		writel(0x0, sspi->base + sspi->regs->int_en);
409		writel(readl(sspi->base + sspi->regs->int_st),
410				sspi->base + sspi->regs->int_st);
411		return IRQ_HANDLED;
412	}
413	/* Error Conditions */
414	if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
415			spi_stat & SIRFSOC_SPI_TX_UFLOW) {
416		complete(&sspi->tx_done);
417		complete(&sspi->rx_done);
418		switch (sspi->type) {
419		case SIRF_REAL_SPI:
420		case SIRF_USP_SPI_P2:
421			writel(0x0, sspi->base + sspi->regs->int_en);
422			break;
423		case SIRF_USP_SPI_A7:
424			writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
425			break;
426		}
427		writel(readl(sspi->base + sspi->regs->int_st),
428				sspi->base + sspi->regs->int_st);
429		return IRQ_HANDLED;
430	}
431	if (spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
432		complete(&sspi->tx_done);
433	while (!(readl(sspi->base + sspi->regs->int_st) &
434		SIRFSOC_SPI_RX_IO_DMA))
435		cpu_relax();
436	complete(&sspi->rx_done);
437	switch (sspi->type) {
438	case SIRF_REAL_SPI:
439	case SIRF_USP_SPI_P2:
440		writel(0x0, sspi->base + sspi->regs->int_en);
441		break;
442	case SIRF_USP_SPI_A7:
443		writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
444		break;
445	}
446	writel(readl(sspi->base + sspi->regs->int_st),
447			sspi->base + sspi->regs->int_st);
448
449	return IRQ_HANDLED;
450}
451
452static void spi_sirfsoc_dma_fini_callback(void *data)
453{
454	struct completion *dma_complete = data;
455
456	complete(dma_complete);
457}
458
459static void spi_sirfsoc_cmd_transfer(struct spi_device *spi,
460	struct spi_transfer *t)
461{
462	struct sirfsoc_spi *sspi;
463	int timeout = t->len * 10;
464	u32 cmd;
465
466	sspi = spi_master_get_devdata(spi->master);
467	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
468	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
469	memcpy(&cmd, sspi->tx, t->len);
470	if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
471		cmd = cpu_to_be32(cmd) >>
472			((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
473	if (sspi->word_width == 2 && t->len == 4 &&
474			(!(spi->mode & SPI_LSB_FIRST)))
475		cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
476	writel(cmd, sspi->base + sspi->regs->spi_cmd);
477	writel(SIRFSOC_SPI_FRM_END_INT_EN,
478		sspi->base + sspi->regs->int_en);
479	writel(SIRFSOC_SPI_CMD_TX_EN,
480		sspi->base + sspi->regs->tx_rx_en);
481	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
482		dev_err(&spi->dev, "cmd transfer timeout\n");
483		return;
484	}
485	sspi->left_rx_word -= t->len;
486}
487
488static void spi_sirfsoc_dma_transfer(struct spi_device *spi,
489	struct spi_transfer *t)
490{
491	struct sirfsoc_spi *sspi;
492	struct dma_async_tx_descriptor *rx_desc, *tx_desc;
493	int timeout = t->len * 10;
494
495	sspi = spi_master_get_devdata(spi->master);
496	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
497	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
498	switch (sspi->type) {
499	case SIRF_REAL_SPI:
500		writel(SIRFSOC_SPI_FIFO_START,
501			sspi->base + sspi->regs->rxfifo_op);
502		writel(SIRFSOC_SPI_FIFO_START,
503			sspi->base + sspi->regs->txfifo_op);
504		writel(0, sspi->base + sspi->regs->int_en);
505		break;
506	case SIRF_USP_SPI_P2:
507		writel(0x0, sspi->base + sspi->regs->rxfifo_op);
508		writel(0x0, sspi->base + sspi->regs->txfifo_op);
509		writel(0, sspi->base + sspi->regs->int_en);
510		break;
511	case SIRF_USP_SPI_A7:
512		writel(0x0, sspi->base + sspi->regs->rxfifo_op);
513		writel(0x0, sspi->base + sspi->regs->txfifo_op);
514		writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
515		break;
516	}
517	writel(readl(sspi->base + sspi->regs->int_st),
518		sspi->base + sspi->regs->int_st);
519	if (sspi->left_tx_word < sspi->dat_max_frm_len) {
520		switch (sspi->type) {
521		case SIRF_REAL_SPI:
522			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
523				SIRFSOC_SPI_ENA_AUTO_CLR |
524				SIRFSOC_SPI_MUL_DAT_MODE,
525				sspi->base + sspi->regs->spi_ctrl);
526			writel(sspi->left_tx_word - 1,
527				sspi->base + sspi->regs->tx_dma_io_len);
528			writel(sspi->left_tx_word - 1,
529				sspi->base + sspi->regs->rx_dma_io_len);
530			break;
531		case SIRF_USP_SPI_P2:
532		case SIRF_USP_SPI_A7:
533			/*USP simulate SPI, tx/rx_dma_io_len indicates bytes*/
534			writel(sspi->left_tx_word * sspi->word_width,
535				sspi->base + sspi->regs->tx_dma_io_len);
536			writel(sspi->left_tx_word * sspi->word_width,
537				sspi->base + sspi->regs->rx_dma_io_len);
538			break;
539		}
540	} else {
541		if (sspi->type == SIRF_REAL_SPI)
542			writel(readl(sspi->base + sspi->regs->spi_ctrl),
543				sspi->base + sspi->regs->spi_ctrl);
544		writel(0, sspi->base + sspi->regs->tx_dma_io_len);
545		writel(0, sspi->base + sspi->regs->rx_dma_io_len);
546	}
547	sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len,
548					(t->tx_buf != t->rx_buf) ?
549					DMA_FROM_DEVICE : DMA_BIDIRECTIONAL);
550	rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
551		sspi->dst_start, t->len, DMA_DEV_TO_MEM,
552		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
553	rx_desc->callback = spi_sirfsoc_dma_fini_callback;
554	rx_desc->callback_param = &sspi->rx_done;
555
556	sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len,
557					(t->tx_buf != t->rx_buf) ?
558					DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
559	tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
560		sspi->src_start, t->len, DMA_MEM_TO_DEV,
561		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
562	tx_desc->callback = spi_sirfsoc_dma_fini_callback;
563	tx_desc->callback_param = &sspi->tx_done;
564
565	dmaengine_submit(tx_desc);
566	dmaengine_submit(rx_desc);
567	dma_async_issue_pending(sspi->tx_chan);
568	dma_async_issue_pending(sspi->rx_chan);
569	writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
570			sspi->base + sspi->regs->tx_rx_en);
571	if (sspi->type == SIRF_USP_SPI_P2 ||
572		sspi->type == SIRF_USP_SPI_A7) {
573		writel(SIRFSOC_SPI_FIFO_START,
574			sspi->base + sspi->regs->rxfifo_op);
575		writel(SIRFSOC_SPI_FIFO_START,
576			sspi->base + sspi->regs->txfifo_op);
577	}
578	if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
579		dev_err(&spi->dev, "transfer timeout\n");
580		dmaengine_terminate_all(sspi->rx_chan);
581	} else
582		sspi->left_rx_word = 0;
583	/*
584	 * we only wait tx-done event if transferring by DMA. for PIO,
585	 * we get rx data by writing tx data, so if rx is done, tx has
586	 * done earlier
587	 */
588	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
589		dev_err(&spi->dev, "transfer timeout\n");
590		if (sspi->type == SIRF_USP_SPI_P2 ||
591			sspi->type == SIRF_USP_SPI_A7)
592			writel(0, sspi->base + sspi->regs->tx_rx_en);
593		dmaengine_terminate_all(sspi->tx_chan);
594	}
595	dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
596	dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
597	/* TX, RX FIFO stop */
598	writel(0, sspi->base + sspi->regs->rxfifo_op);
599	writel(0, sspi->base + sspi->regs->txfifo_op);
600	if (sspi->left_tx_word >= sspi->dat_max_frm_len)
601		writel(0, sspi->base + sspi->regs->tx_rx_en);
602	if (sspi->type == SIRF_USP_SPI_P2 ||
603		sspi->type == SIRF_USP_SPI_A7)
604		writel(0, sspi->base + sspi->regs->tx_rx_en);
605}
606
607static void spi_sirfsoc_pio_transfer(struct spi_device *spi,
608		struct spi_transfer *t)
609{
610	struct sirfsoc_spi *sspi;
611	int timeout = t->len * 10;
612	unsigned int data_units;
613
614	sspi = spi_master_get_devdata(spi->master);
615	do {
616		writel(SIRFSOC_SPI_FIFO_RESET,
617			sspi->base + sspi->regs->rxfifo_op);
618		writel(SIRFSOC_SPI_FIFO_RESET,
619			sspi->base + sspi->regs->txfifo_op);
620		switch (sspi->type) {
621		case SIRF_USP_SPI_P2:
622			writel(0x0, sspi->base + sspi->regs->rxfifo_op);
623			writel(0x0, sspi->base + sspi->regs->txfifo_op);
624			writel(0, sspi->base + sspi->regs->int_en);
625			writel(readl(sspi->base + sspi->regs->int_st),
626				sspi->base + sspi->regs->int_st);
627			writel(min((sspi->left_tx_word * sspi->word_width),
628				sspi->fifo_size),
629				sspi->base + sspi->regs->tx_dma_io_len);
630			writel(min((sspi->left_rx_word * sspi->word_width),
631				sspi->fifo_size),
632				sspi->base + sspi->regs->rx_dma_io_len);
633			break;
634		case SIRF_USP_SPI_A7:
635			writel(0x0, sspi->base + sspi->regs->rxfifo_op);
636			writel(0x0, sspi->base + sspi->regs->txfifo_op);
637			writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
638			writel(readl(sspi->base + sspi->regs->int_st),
639				sspi->base + sspi->regs->int_st);
640			writel(min((sspi->left_tx_word * sspi->word_width),
641				sspi->fifo_size),
642				sspi->base + sspi->regs->tx_dma_io_len);
643			writel(min((sspi->left_rx_word * sspi->word_width),
644				sspi->fifo_size),
645				sspi->base + sspi->regs->rx_dma_io_len);
646			break;
647		case SIRF_REAL_SPI:
648			writel(SIRFSOC_SPI_FIFO_START,
649				sspi->base + sspi->regs->rxfifo_op);
650			writel(SIRFSOC_SPI_FIFO_START,
651				sspi->base + sspi->regs->txfifo_op);
652			writel(0, sspi->base + sspi->regs->int_en);
653			writel(readl(sspi->base + sspi->regs->int_st),
654				sspi->base + sspi->regs->int_st);
655			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
656				SIRFSOC_SPI_MUL_DAT_MODE |
657				SIRFSOC_SPI_ENA_AUTO_CLR,
658				sspi->base + sspi->regs->spi_ctrl);
659			data_units = sspi->fifo_size / sspi->word_width;
660			writel(min(sspi->left_tx_word, data_units) - 1,
661				sspi->base + sspi->regs->tx_dma_io_len);
662			writel(min(sspi->left_rx_word, data_units) - 1,
663				sspi->base + sspi->regs->rx_dma_io_len);
664			break;
665		}
666		while (!((readl(sspi->base + sspi->regs->txfifo_st)
667			& SIRFSOC_SPI_FIFO_FULL_MASK(sspi))) &&
668			sspi->left_tx_word)
669			sspi->tx_word(sspi);
670		writel(SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN |
671			SIRFSOC_SPI_TX_UFLOW_INT_EN |
672			SIRFSOC_SPI_RX_OFLOW_INT_EN |
673			SIRFSOC_SPI_RX_IO_DMA_INT_EN,
674			sspi->base + sspi->regs->int_en);
675		writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
676			sspi->base + sspi->regs->tx_rx_en);
677		if (sspi->type == SIRF_USP_SPI_P2 ||
678			sspi->type == SIRF_USP_SPI_A7) {
679			writel(SIRFSOC_SPI_FIFO_START,
680				sspi->base + sspi->regs->rxfifo_op);
681			writel(SIRFSOC_SPI_FIFO_START,
682				sspi->base + sspi->regs->txfifo_op);
683		}
684		if (!wait_for_completion_timeout(&sspi->tx_done, timeout) ||
685			!wait_for_completion_timeout(&sspi->rx_done, timeout)) {
686			dev_err(&spi->dev, "transfer timeout\n");
687			if (sspi->type == SIRF_USP_SPI_P2 ||
688				sspi->type == SIRF_USP_SPI_A7)
689				writel(0, sspi->base + sspi->regs->tx_rx_en);
690			break;
691		}
692		while (!((readl(sspi->base + sspi->regs->rxfifo_st)
693			& SIRFSOC_SPI_FIFO_EMPTY_MASK(sspi))) &&
694			sspi->left_rx_word)
695			sspi->rx_word(sspi);
696		if (sspi->type == SIRF_USP_SPI_P2 ||
697			sspi->type == SIRF_USP_SPI_A7)
698			writel(0, sspi->base + sspi->regs->tx_rx_en);
699		writel(0, sspi->base + sspi->regs->rxfifo_op);
700		writel(0, sspi->base + sspi->regs->txfifo_op);
701	} while (sspi->left_tx_word != 0 || sspi->left_rx_word != 0);
702}
703
704static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
705{
706	struct sirfsoc_spi *sspi;
707
708	sspi = spi_master_get_devdata(spi->master);
709	sspi->tx = t->tx_buf;
710	sspi->rx = t->rx_buf;
711	sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
712	reinit_completion(&sspi->rx_done);
713	reinit_completion(&sspi->tx_done);
714	/*
715	 * in the transfer, if transfer data using command register with rx_buf
716	 * null, just fill command data into command register and wait for its
717	 * completion.
718	 */
719	if (sspi->type == SIRF_REAL_SPI && sspi->tx_by_cmd)
720		spi_sirfsoc_cmd_transfer(spi, t);
721	else if (IS_DMA_VALID(t))
722		spi_sirfsoc_dma_transfer(spi, t);
723	else
724		spi_sirfsoc_pio_transfer(spi, t);
725
726	return t->len - sspi->left_rx_word * sspi->word_width;
727}
728
729static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
730{
731	struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
732
733	if (sspi->hw_cs) {
734		u32 regval;
735
736		switch (sspi->type) {
737		case SIRF_REAL_SPI:
738			regval = readl(sspi->base + sspi->regs->spi_ctrl);
739			switch (value) {
740			case BITBANG_CS_ACTIVE:
741				if (spi->mode & SPI_CS_HIGH)
742					regval |= SIRFSOC_SPI_CS_IO_OUT;
743				else
744					regval &= ~SIRFSOC_SPI_CS_IO_OUT;
745				break;
746			case BITBANG_CS_INACTIVE:
747				if (spi->mode & SPI_CS_HIGH)
748					regval &= ~SIRFSOC_SPI_CS_IO_OUT;
749				else
750					regval |= SIRFSOC_SPI_CS_IO_OUT;
751				break;
752			}
753			writel(regval, sspi->base + sspi->regs->spi_ctrl);
754			break;
755		case SIRF_USP_SPI_P2:
756		case SIRF_USP_SPI_A7:
757			regval = readl(sspi->base +
758					sspi->regs->usp_pin_io_data);
759			switch (value) {
760			case BITBANG_CS_ACTIVE:
761				if (spi->mode & SPI_CS_HIGH)
762					regval |= SIRFSOC_USP_CS_HIGH_VALUE;
763				else
764					regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
765				break;
766			case BITBANG_CS_INACTIVE:
767				if (spi->mode & SPI_CS_HIGH)
768					regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
769				else
770					regval |= SIRFSOC_USP_CS_HIGH_VALUE;
771				break;
772			}
773			writel(regval,
774				sspi->base + sspi->regs->usp_pin_io_data);
775			break;
776		}
777	} else {
778		switch (value) {
779		case BITBANG_CS_ACTIVE:
780			gpio_direction_output(spi->cs_gpio,
781					spi->mode & SPI_CS_HIGH ? 1 : 0);
782			break;
783		case BITBANG_CS_INACTIVE:
784			gpio_direction_output(spi->cs_gpio,
785					spi->mode & SPI_CS_HIGH ? 0 : 1);
786			break;
787		}
788	}
789}
790
791static int spi_sirfsoc_config_mode(struct spi_device *spi)
792{
793	struct sirfsoc_spi *sspi;
794	u32 regval, usp_mode1;
795
796	sspi = spi_master_get_devdata(spi->master);
797	regval = readl(sspi->base + sspi->regs->spi_ctrl);
798	usp_mode1 = readl(sspi->base + sspi->regs->usp_mode1);
799	if (!(spi->mode & SPI_CS_HIGH)) {
800		regval |= SIRFSOC_SPI_CS_IDLE_STAT;
801		usp_mode1 &= ~SIRFSOC_USP_CS_HIGH_VALID;
802	} else {
803		regval &= ~SIRFSOC_SPI_CS_IDLE_STAT;
804		usp_mode1 |= SIRFSOC_USP_CS_HIGH_VALID;
805	}
806	if (!(spi->mode & SPI_LSB_FIRST)) {
807		regval |= SIRFSOC_SPI_TRAN_MSB;
808		usp_mode1 &= ~SIRFSOC_USP_LSB;
809	} else {
810		regval &= ~SIRFSOC_SPI_TRAN_MSB;
811		usp_mode1 |= SIRFSOC_USP_LSB;
812	}
813	if (spi->mode & SPI_CPOL) {
814		regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
815		usp_mode1 |= SIRFSOC_USP_SCLK_IDLE_STAT;
816	} else {
817		regval &= ~SIRFSOC_SPI_CLK_IDLE_STAT;
818		usp_mode1 &= ~SIRFSOC_USP_SCLK_IDLE_STAT;
819	}
820	/*
821	 * Data should be driven at least 1/2 cycle before the fetch edge
822	 * to make sure that data gets stable at the fetch edge.
823	 */
824	if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
825	    (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA))) {
826		regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
827		usp_mode1 |= (SIRFSOC_USP_TXD_FALLING_EDGE |
828				SIRFSOC_USP_RXD_FALLING_EDGE);
829	} else {
830		regval |= SIRFSOC_SPI_DRV_POS_EDGE;
831		usp_mode1 &= ~(SIRFSOC_USP_RXD_FALLING_EDGE |
832				SIRFSOC_USP_TXD_FALLING_EDGE);
833	}
834	writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
835		SIRFSOC_SPI_FIFO_SC_OFFSET) |
836		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
837		SIRFSOC_SPI_FIFO_LC_OFFSET) |
838		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
839		SIRFSOC_SPI_FIFO_HC_OFFSET),
840		sspi->base + sspi->regs->txfifo_level_chk);
841	writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
842		SIRFSOC_SPI_FIFO_SC_OFFSET) |
843		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
844		SIRFSOC_SPI_FIFO_LC_OFFSET) |
845		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
846		SIRFSOC_SPI_FIFO_HC_OFFSET),
847		sspi->base + sspi->regs->rxfifo_level_chk);
848	/*
849	 * it should never set to hardware cs mode because in hardware cs mode,
850	 * cs signal can't controlled by driver.
851	 */
852	switch (sspi->type) {
853	case SIRF_REAL_SPI:
854		regval |= SIRFSOC_SPI_CS_IO_MODE;
855		writel(regval, sspi->base + sspi->regs->spi_ctrl);
856		break;
857	case SIRF_USP_SPI_P2:
858	case SIRF_USP_SPI_A7:
859		usp_mode1 |= SIRFSOC_USP_SYNC_MODE;
860		usp_mode1 |= SIRFSOC_USP_TFS_IO_MODE;
861		usp_mode1 &= ~SIRFSOC_USP_TFS_IO_INPUT;
862		writel(usp_mode1, sspi->base + sspi->regs->usp_mode1);
863		break;
864	}
865
866	return 0;
867}
868
869static int
870spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
871{
872	struct sirfsoc_spi *sspi;
873	u8 bits_per_word = 0;
874	int hz = 0;
875	u32 regval, txfifo_ctrl, rxfifo_ctrl, tx_frm_ctl, rx_frm_ctl, usp_mode2;
876
877	sspi = spi_master_get_devdata(spi->master);
878
879	bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
880	hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
881
882	usp_mode2 = regval = (sspi->ctrl_freq / (2 * hz)) - 1;
883	if (regval > 0xFFFF || regval < 0) {
884		dev_err(&spi->dev, "Speed %d not supported\n", hz);
885		return -EINVAL;
886	}
887	switch (bits_per_word) {
888	case 8:
889		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
890		sspi->rx_word = spi_sirfsoc_rx_word_u8;
891		sspi->tx_word = spi_sirfsoc_tx_word_u8;
892		break;
893	case 12:
894	case 16:
895		regval |= (bits_per_word ==  12) ?
896			SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
897			SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
898		sspi->rx_word = spi_sirfsoc_rx_word_u16;
899		sspi->tx_word = spi_sirfsoc_tx_word_u16;
900		break;
901	case 32:
902		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
903		sspi->rx_word = spi_sirfsoc_rx_word_u32;
904		sspi->tx_word = spi_sirfsoc_tx_word_u32;
905		break;
906	default:
907		dev_err(&spi->dev, "bpw %d not supported\n", bits_per_word);
908		return -EINVAL;
909	}
910	sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
911	txfifo_ctrl = (((sspi->fifo_size / 2) &
912			SIRFSOC_SPI_FIFO_THD_MASK(sspi))
913			<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
914			(sspi->word_width >> 1);
915	rxfifo_ctrl = (((sspi->fifo_size / 2) &
916			SIRFSOC_SPI_FIFO_THD_MASK(sspi))
917			<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
918			(sspi->word_width >> 1);
919	writel(txfifo_ctrl, sspi->base + sspi->regs->txfifo_ctrl);
920	writel(rxfifo_ctrl, sspi->base + sspi->regs->rxfifo_ctrl);
921	if (sspi->type == SIRF_USP_SPI_P2 ||
922		sspi->type == SIRF_USP_SPI_A7) {
923		tx_frm_ctl = 0;
924		tx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_TX_DATA_MASK)
925				<< SIRFSOC_USP_TX_DATA_OFFSET;
926		tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
927				- 1) & SIRFSOC_USP_TX_SYNC_MASK) <<
928				SIRFSOC_USP_TX_SYNC_OFFSET;
929		tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
930				+ 2 - 1) & SIRFSOC_USP_TX_FRAME_MASK) <<
931				SIRFSOC_USP_TX_FRAME_OFFSET;
932		tx_frm_ctl |= ((bits_per_word - 1) &
933				SIRFSOC_USP_TX_SHIFTER_MASK) <<
934				SIRFSOC_USP_TX_SHIFTER_OFFSET;
935		rx_frm_ctl = 0;
936		rx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_RX_DATA_MASK)
937				<< SIRFSOC_USP_RX_DATA_OFFSET;
938		rx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_RXD_DELAY_LEN
939				+ 2 - 1) & SIRFSOC_USP_RX_FRAME_MASK) <<
940				SIRFSOC_USP_RX_FRAME_OFFSET;
941		rx_frm_ctl |= ((bits_per_word - 1)
942				& SIRFSOC_USP_RX_SHIFTER_MASK) <<
943				SIRFSOC_USP_RX_SHIFTER_OFFSET;
944		writel(tx_frm_ctl | (((usp_mode2 >> 10) &
945			SIRFSOC_USP_CLK_10_11_MASK) <<
946			SIRFSOC_USP_CLK_10_11_OFFSET),
947			sspi->base + sspi->regs->usp_tx_frame_ctrl);
948		writel(rx_frm_ctl | (((usp_mode2 >> 12) &
949			SIRFSOC_USP_CLK_12_15_MASK) <<
950			SIRFSOC_USP_CLK_12_15_OFFSET),
951			sspi->base + sspi->regs->usp_rx_frame_ctrl);
952		writel(readl(sspi->base + sspi->regs->usp_mode2) |
953			((usp_mode2 & SIRFSOC_USP_CLK_DIVISOR_MASK) <<
954			SIRFSOC_USP_CLK_DIVISOR_OFFSET) |
955			(SIRFSOC_USP_RXD_DELAY_LEN <<
956			 SIRFSOC_USP_RXD_DELAY_OFFSET) |
957			(SIRFSOC_USP_TXD_DELAY_LEN <<
958			 SIRFSOC_USP_TXD_DELAY_OFFSET),
959			sspi->base + sspi->regs->usp_mode2);
960	}
961	if (sspi->type == SIRF_REAL_SPI)
962		writel(regval, sspi->base + sspi->regs->spi_ctrl);
963	spi_sirfsoc_config_mode(spi);
964	if (sspi->type == SIRF_REAL_SPI) {
965		if (t && t->tx_buf && !t->rx_buf &&
966			(t->len <= SIRFSOC_MAX_CMD_BYTES)) {
967			sspi->tx_by_cmd = true;
968			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
969				(SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
970				SIRFSOC_SPI_CMD_MODE),
971				sspi->base + sspi->regs->spi_ctrl);
972		} else {
973			sspi->tx_by_cmd = false;
974			writel(readl(sspi->base + sspi->regs->spi_ctrl) &
975				~SIRFSOC_SPI_CMD_MODE,
976				sspi->base + sspi->regs->spi_ctrl);
977		}
978	}
979	if (IS_DMA_VALID(t)) {
980		/* Enable DMA mode for RX, TX */
981		writel(0, sspi->base + sspi->regs->tx_dma_io_ctrl);
982		writel(SIRFSOC_SPI_RX_DMA_FLUSH,
983			sspi->base + sspi->regs->rx_dma_io_ctrl);
984	} else {
985		/* Enable IO mode for RX, TX */
986		writel(SIRFSOC_SPI_IO_MODE_SEL,
987			sspi->base + sspi->regs->tx_dma_io_ctrl);
988		writel(SIRFSOC_SPI_IO_MODE_SEL,
989			sspi->base + sspi->regs->rx_dma_io_ctrl);
990	}
991	return 0;
992}
993
994static int spi_sirfsoc_setup(struct spi_device *spi)
995{
996	struct sirfsoc_spi *sspi;
997	int ret = 0;
998
999	sspi = spi_master_get_devdata(spi->master);
1000	if (spi->cs_gpio == -ENOENT)
1001		sspi->hw_cs = true;
1002	else {
1003		sspi->hw_cs = false;
1004		if (!spi_get_ctldata(spi)) {
1005			void *cs = kmalloc(sizeof(int), GFP_KERNEL);
1006			if (!cs) {
1007				ret = -ENOMEM;
1008				goto exit;
1009			}
1010			ret = gpio_is_valid(spi->cs_gpio);
1011			if (!ret) {
1012				dev_err(&spi->dev, "no valid gpio\n");
1013				ret = -ENOENT;
1014				goto exit;
1015			}
1016			ret = gpio_request(spi->cs_gpio, DRIVER_NAME);
1017			if (ret) {
1018				dev_err(&spi->dev, "failed to request gpio\n");
1019				goto exit;
1020			}
1021			spi_set_ctldata(spi, cs);
1022		}
1023	}
1024	spi_sirfsoc_config_mode(spi);
1025	spi_sirfsoc_chipselect(spi, BITBANG_CS_INACTIVE);
1026exit:
1027	return ret;
1028}
1029
1030static void spi_sirfsoc_cleanup(struct spi_device *spi)
1031{
1032	if (spi_get_ctldata(spi)) {
1033		gpio_free(spi->cs_gpio);
1034		kfree(spi_get_ctldata(spi));
1035	}
1036}
1037
1038static const struct sirf_spi_comp_data sirf_real_spi = {
1039	.regs = &real_spi_register,
1040	.type = SIRF_REAL_SPI,
1041	.dat_max_frm_len = 64 * 1024,
1042	.fifo_size = 256,
1043};
1044
1045static const struct sirf_spi_comp_data sirf_usp_spi_p2 = {
1046	.regs = &usp_spi_register,
1047	.type = SIRF_USP_SPI_P2,
1048	.dat_max_frm_len = 1024 * 1024,
1049	.fifo_size = 128,
1050	.hwinit = sirfsoc_usp_hwinit,
1051};
1052
1053static const struct sirf_spi_comp_data sirf_usp_spi_a7 = {
1054	.regs = &usp_spi_register,
1055	.type = SIRF_USP_SPI_A7,
1056	.dat_max_frm_len = 1024 * 1024,
1057	.fifo_size = 512,
1058	.hwinit = sirfsoc_usp_hwinit,
1059};
1060
1061static const struct of_device_id spi_sirfsoc_of_match[] = {
1062	{ .compatible = "sirf,prima2-spi", .data = &sirf_real_spi},
1063	{ .compatible = "sirf,prima2-usp-spi", .data = &sirf_usp_spi_p2},
1064	{ .compatible = "sirf,atlas7-usp-spi", .data = &sirf_usp_spi_a7},
1065	{}
1066};
1067MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
1068
1069static int spi_sirfsoc_probe(struct platform_device *pdev)
1070{
1071	struct sirfsoc_spi *sspi;
1072	struct spi_master *master;
1073	const struct sirf_spi_comp_data *spi_comp_data;
1074	int irq;
1075	int ret;
1076	const struct of_device_id *match;
1077
1078	ret = device_reset(&pdev->dev);
1079	if (ret) {
1080		dev_err(&pdev->dev, "SPI reset failed!\n");
1081		return ret;
1082	}
1083
1084	master = spi_alloc_master(&pdev->dev, sizeof(*sspi));
1085	if (!master) {
1086		dev_err(&pdev->dev, "Unable to allocate SPI master\n");
1087		return -ENOMEM;
1088	}
1089	match = of_match_node(spi_sirfsoc_of_match, pdev->dev.of_node);
1090	platform_set_drvdata(pdev, master);
1091	sspi = spi_master_get_devdata(master);
1092	sspi->fifo_full_offset = ilog2(sspi->fifo_size);
1093	spi_comp_data = match->data;
1094	sspi->regs = spi_comp_data->regs;
1095	sspi->type = spi_comp_data->type;
1096	sspi->fifo_level_chk_mask = (sspi->fifo_size / 4) - 1;
1097	sspi->dat_max_frm_len = spi_comp_data->dat_max_frm_len;
1098	sspi->fifo_size = spi_comp_data->fifo_size;
1099	sspi->base = devm_platform_ioremap_resource(pdev, 0);
1100	if (IS_ERR(sspi->base)) {
1101		ret = PTR_ERR(sspi->base);
1102		goto free_master;
1103	}
1104	irq = platform_get_irq(pdev, 0);
1105	if (irq < 0) {
1106		ret = -ENXIO;
1107		goto free_master;
1108	}
1109	ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
1110				DRIVER_NAME, sspi);
1111	if (ret)
1112		goto free_master;
1113
1114	sspi->bitbang.master = master;
1115	sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
1116	sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
1117	sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
1118	sspi->bitbang.master->setup = spi_sirfsoc_setup;
1119	sspi->bitbang.master->cleanup = spi_sirfsoc_cleanup;
1120	master->bus_num = pdev->id;
1121	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
1122	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
1123					SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
1124	master->max_speed_hz = SIRFSOC_SPI_DEFAULT_FRQ;
1125	master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
1126	sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
1127
1128	/* request DMA channels */
1129	sspi->rx_chan = dma_request_chan(&pdev->dev, "rx");
1130	if (IS_ERR(sspi->rx_chan)) {
1131		dev_err(&pdev->dev, "can not allocate rx dma channel\n");
1132		ret = PTR_ERR(sspi->rx_chan);
1133		goto free_master;
1134	}
1135	sspi->tx_chan = dma_request_chan(&pdev->dev, "tx");
1136	if (IS_ERR(sspi->tx_chan)) {
1137		dev_err(&pdev->dev, "can not allocate tx dma channel\n");
1138		ret = PTR_ERR(sspi->tx_chan);
1139		goto free_rx_dma;
1140	}
1141
1142	sspi->clk = clk_get(&pdev->dev, NULL);
1143	if (IS_ERR(sspi->clk)) {
1144		ret = PTR_ERR(sspi->clk);
1145		goto free_tx_dma;
1146	}
1147	clk_prepare_enable(sspi->clk);
1148	if (spi_comp_data->hwinit)
1149		spi_comp_data->hwinit(sspi);
1150	sspi->ctrl_freq = clk_get_rate(sspi->clk);
1151
1152	init_completion(&sspi->rx_done);
1153	init_completion(&sspi->tx_done);
1154
1155	ret = spi_bitbang_start(&sspi->bitbang);
1156	if (ret)
1157		goto free_clk;
1158	dev_info(&pdev->dev, "registered, bus number = %d\n", master->bus_num);
1159
1160	return 0;
1161free_clk:
1162	clk_disable_unprepare(sspi->clk);
1163	clk_put(sspi->clk);
1164free_tx_dma:
1165	dma_release_channel(sspi->tx_chan);
1166free_rx_dma:
1167	dma_release_channel(sspi->rx_chan);
1168free_master:
1169	spi_master_put(master);
1170
1171	return ret;
1172}
1173
1174static int  spi_sirfsoc_remove(struct platform_device *pdev)
1175{
1176	struct spi_master *master;
1177	struct sirfsoc_spi *sspi;
1178
1179	master = platform_get_drvdata(pdev);
1180	sspi = spi_master_get_devdata(master);
1181	spi_bitbang_stop(&sspi->bitbang);
1182	clk_disable_unprepare(sspi->clk);
1183	clk_put(sspi->clk);
1184	dma_release_channel(sspi->rx_chan);
1185	dma_release_channel(sspi->tx_chan);
1186	spi_master_put(master);
1187	return 0;
1188}
1189
1190#ifdef CONFIG_PM_SLEEP
1191static int spi_sirfsoc_suspend(struct device *dev)
1192{
1193	struct spi_master *master = dev_get_drvdata(dev);
1194	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
1195	int ret;
1196
1197	ret = spi_master_suspend(master);
1198	if (ret)
1199		return ret;
1200
1201	clk_disable(sspi->clk);
1202	return 0;
1203}
1204
1205static int spi_sirfsoc_resume(struct device *dev)
1206{
1207	struct spi_master *master = dev_get_drvdata(dev);
1208	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
1209
1210	clk_enable(sspi->clk);
1211	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
1212	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
1213	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
1214	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->rxfifo_op);
1215	return 0;
1216}
1217#endif
1218
1219static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
1220			 spi_sirfsoc_resume);
1221
1222static struct platform_driver spi_sirfsoc_driver = {
1223	.driver = {
1224		.name = DRIVER_NAME,
1225		.pm     = &spi_sirfsoc_pm_ops,
1226		.of_match_table = spi_sirfsoc_of_match,
1227	},
1228	.probe = spi_sirfsoc_probe,
1229	.remove = spi_sirfsoc_remove,
1230};
1231module_platform_driver(spi_sirfsoc_driver);
1232MODULE_DESCRIPTION("SiRF SoC SPI master driver");
1233MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>");
1234MODULE_AUTHOR("Barry Song <Baohua.Song@csr.com>");
1235MODULE_AUTHOR("Qipan Li <Qipan.Li@csr.com>");
1236MODULE_LICENSE("GPL v2");
1237