1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, Intel Corporation
5 */
6
7#include <linux/acpi.h>
8#include <linux/bitops.h>
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/err.h>
13#include <linux/errno.h>
14#include <linux/gpio/consumer.h>
15#include <linux/gpio.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/ioport.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/mod_devicetable.h>
22#include <linux/of.h>
23#include <linux/pci.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/property.h>
27#include <linux/slab.h>
28#include <linux/spi/pxa2xx_spi.h>
29#include <linux/spi/spi.h>
30
31#include "spi-pxa2xx.h"
32
33MODULE_AUTHOR("Stephen Street");
34MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35MODULE_LICENSE("GPL");
36MODULE_ALIAS("platform:pxa2xx-spi");
37
38#define TIMOUT_DFLT		1000
39
40/*
41 * for testing SSCR1 changes that require SSP restart, basically
42 * everything except the service and interrupt enables, the pxa270 developer
43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44 * list, but the PXA255 dev man says all bits without really meaning the
45 * service and interrupt enables
46 */
47#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53
54#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
55				| QUARK_X1000_SSCR1_EFWR	\
56				| QUARK_X1000_SSCR1_RFT		\
57				| QUARK_X1000_SSCR1_TFT		\
58				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59
60#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66
67#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
68#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
69#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
70#define LPSS_CAPS_CS_EN_SHIFT			9
71#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
72
73#define LPSS_PRIV_CLOCK_GATE 0x38
74#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
76
77struct lpss_config {
78	/* LPSS offset from drv_data->ioaddr */
79	unsigned offset;
80	/* Register offsets from drv_data->lpss_base or -1 */
81	int reg_general;
82	int reg_ssp;
83	int reg_cs_ctrl;
84	int reg_capabilities;
85	/* FIFO thresholds */
86	u32 rx_threshold;
87	u32 tx_threshold_lo;
88	u32 tx_threshold_hi;
89	/* Chip select control */
90	unsigned cs_sel_shift;
91	unsigned cs_sel_mask;
92	unsigned cs_num;
93	/* Quirks */
94	unsigned cs_clk_stays_gated : 1;
95};
96
97/* Keep these sorted with enum pxa_ssp_type */
98static const struct lpss_config lpss_platforms[] = {
99	{	/* LPSS_LPT_SSP */
100		.offset = 0x800,
101		.reg_general = 0x08,
102		.reg_ssp = 0x0c,
103		.reg_cs_ctrl = 0x18,
104		.reg_capabilities = -1,
105		.rx_threshold = 64,
106		.tx_threshold_lo = 160,
107		.tx_threshold_hi = 224,
108	},
109	{	/* LPSS_BYT_SSP */
110		.offset = 0x400,
111		.reg_general = 0x08,
112		.reg_ssp = 0x0c,
113		.reg_cs_ctrl = 0x18,
114		.reg_capabilities = -1,
115		.rx_threshold = 64,
116		.tx_threshold_lo = 160,
117		.tx_threshold_hi = 224,
118	},
119	{	/* LPSS_BSW_SSP */
120		.offset = 0x400,
121		.reg_general = 0x08,
122		.reg_ssp = 0x0c,
123		.reg_cs_ctrl = 0x18,
124		.reg_capabilities = -1,
125		.rx_threshold = 64,
126		.tx_threshold_lo = 160,
127		.tx_threshold_hi = 224,
128		.cs_sel_shift = 2,
129		.cs_sel_mask = 1 << 2,
130		.cs_num = 2,
131	},
132	{	/* LPSS_SPT_SSP */
133		.offset = 0x200,
134		.reg_general = -1,
135		.reg_ssp = 0x20,
136		.reg_cs_ctrl = 0x24,
137		.reg_capabilities = -1,
138		.rx_threshold = 1,
139		.tx_threshold_lo = 32,
140		.tx_threshold_hi = 56,
141	},
142	{	/* LPSS_BXT_SSP */
143		.offset = 0x200,
144		.reg_general = -1,
145		.reg_ssp = 0x20,
146		.reg_cs_ctrl = 0x24,
147		.reg_capabilities = 0xfc,
148		.rx_threshold = 1,
149		.tx_threshold_lo = 16,
150		.tx_threshold_hi = 48,
151		.cs_sel_shift = 8,
152		.cs_sel_mask = 3 << 8,
153		.cs_clk_stays_gated = true,
154	},
155	{	/* LPSS_CNL_SSP */
156		.offset = 0x200,
157		.reg_general = -1,
158		.reg_ssp = 0x20,
159		.reg_cs_ctrl = 0x24,
160		.reg_capabilities = 0xfc,
161		.rx_threshold = 1,
162		.tx_threshold_lo = 32,
163		.tx_threshold_hi = 56,
164		.cs_sel_shift = 8,
165		.cs_sel_mask = 3 << 8,
166		.cs_clk_stays_gated = true,
167	},
168};
169
170static inline const struct lpss_config
171*lpss_get_config(const struct driver_data *drv_data)
172{
173	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
174}
175
176static bool is_lpss_ssp(const struct driver_data *drv_data)
177{
178	switch (drv_data->ssp_type) {
179	case LPSS_LPT_SSP:
180	case LPSS_BYT_SSP:
181	case LPSS_BSW_SSP:
182	case LPSS_SPT_SSP:
183	case LPSS_BXT_SSP:
184	case LPSS_CNL_SSP:
185		return true;
186	default:
187		return false;
188	}
189}
190
191static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
192{
193	return drv_data->ssp_type == QUARK_X1000_SSP;
194}
195
196static bool is_mmp2_ssp(const struct driver_data *drv_data)
197{
198	return drv_data->ssp_type == MMP2_SSP;
199}
200
201static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
202{
203	switch (drv_data->ssp_type) {
204	case QUARK_X1000_SSP:
205		return QUARK_X1000_SSCR1_CHANGE_MASK;
206	case CE4100_SSP:
207		return CE4100_SSCR1_CHANGE_MASK;
208	default:
209		return SSCR1_CHANGE_MASK;
210	}
211}
212
213static u32
214pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
215{
216	switch (drv_data->ssp_type) {
217	case QUARK_X1000_SSP:
218		return RX_THRESH_QUARK_X1000_DFLT;
219	case CE4100_SSP:
220		return RX_THRESH_CE4100_DFLT;
221	default:
222		return RX_THRESH_DFLT;
223	}
224}
225
226static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
227{
228	u32 mask;
229
230	switch (drv_data->ssp_type) {
231	case QUARK_X1000_SSP:
232		mask = QUARK_X1000_SSSR_TFL_MASK;
233		break;
234	case CE4100_SSP:
235		mask = CE4100_SSSR_TFL_MASK;
236		break;
237	default:
238		mask = SSSR_TFL_MASK;
239		break;
240	}
241
242	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
243}
244
245static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
246				     u32 *sccr1_reg)
247{
248	u32 mask;
249
250	switch (drv_data->ssp_type) {
251	case QUARK_X1000_SSP:
252		mask = QUARK_X1000_SSCR1_RFT;
253		break;
254	case CE4100_SSP:
255		mask = CE4100_SSCR1_RFT;
256		break;
257	default:
258		mask = SSCR1_RFT;
259		break;
260	}
261	*sccr1_reg &= ~mask;
262}
263
264static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
265				   u32 *sccr1_reg, u32 threshold)
266{
267	switch (drv_data->ssp_type) {
268	case QUARK_X1000_SSP:
269		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
270		break;
271	case CE4100_SSP:
272		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
273		break;
274	default:
275		*sccr1_reg |= SSCR1_RxTresh(threshold);
276		break;
277	}
278}
279
280static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
281				  u32 clk_div, u8 bits)
282{
283	switch (drv_data->ssp_type) {
284	case QUARK_X1000_SSP:
285		return clk_div
286			| QUARK_X1000_SSCR0_Motorola
287			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
288			| SSCR0_SSE;
289	default:
290		return clk_div
291			| SSCR0_Motorola
292			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
293			| SSCR0_SSE
294			| (bits > 16 ? SSCR0_EDSS : 0);
295	}
296}
297
298/*
299 * Read and write LPSS SSP private registers. Caller must first check that
300 * is_lpss_ssp() returns true before these can be called.
301 */
302static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
303{
304	WARN_ON(!drv_data->lpss_base);
305	return readl(drv_data->lpss_base + offset);
306}
307
308static void __lpss_ssp_write_priv(struct driver_data *drv_data,
309				  unsigned offset, u32 value)
310{
311	WARN_ON(!drv_data->lpss_base);
312	writel(value, drv_data->lpss_base + offset);
313}
314
315/*
316 * lpss_ssp_setup - perform LPSS SSP specific setup
317 * @drv_data: pointer to the driver private data
318 *
319 * Perform LPSS SSP specific setup. This function must be called first if
320 * one is going to use LPSS SSP private registers.
321 */
322static void lpss_ssp_setup(struct driver_data *drv_data)
323{
324	const struct lpss_config *config;
325	u32 value;
326
327	config = lpss_get_config(drv_data);
328	drv_data->lpss_base = drv_data->ioaddr + config->offset;
329
330	/* Enable software chip select control */
331	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
332	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
333	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
334	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
335
336	/* Enable multiblock DMA transfers */
337	if (drv_data->controller_info->enable_dma) {
338		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
339
340		if (config->reg_general >= 0) {
341			value = __lpss_ssp_read_priv(drv_data,
342						     config->reg_general);
343			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
344			__lpss_ssp_write_priv(drv_data,
345					      config->reg_general, value);
346		}
347	}
348}
349
350static void lpss_ssp_select_cs(struct spi_device *spi,
351			       const struct lpss_config *config)
352{
353	struct driver_data *drv_data =
354		spi_controller_get_devdata(spi->controller);
355	u32 value, cs;
356
357	if (!config->cs_sel_mask)
358		return;
359
360	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
361
362	cs = spi->chip_select;
363	cs <<= config->cs_sel_shift;
364	if (cs != (value & config->cs_sel_mask)) {
365		/*
366		 * When switching another chip select output active the
367		 * output must be selected first and wait 2 ssp_clk cycles
368		 * before changing state to active. Otherwise a short
369		 * glitch will occur on the previous chip select since
370		 * output select is latched but state control is not.
371		 */
372		value &= ~config->cs_sel_mask;
373		value |= cs;
374		__lpss_ssp_write_priv(drv_data,
375				      config->reg_cs_ctrl, value);
376		ndelay(1000000000 /
377		       (drv_data->controller->max_speed_hz / 2));
378	}
379}
380
381static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
382{
383	struct driver_data *drv_data =
384		spi_controller_get_devdata(spi->controller);
385	const struct lpss_config *config;
386	u32 value;
387
388	config = lpss_get_config(drv_data);
389
390	if (enable)
391		lpss_ssp_select_cs(spi, config);
392
393	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
394	if (enable)
395		value &= ~LPSS_CS_CONTROL_CS_HIGH;
396	else
397		value |= LPSS_CS_CONTROL_CS_HIGH;
398	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
399	if (config->cs_clk_stays_gated) {
400		u32 clkgate;
401
402		/*
403		 * Changing CS alone when dynamic clock gating is on won't
404		 * actually flip CS at that time. This ruins SPI transfers
405		 * that specify delays, or have no data. Toggle the clock mode
406		 * to force on briefly to poke the CS pin to move.
407		 */
408		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
409		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
410			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
411
412		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
413		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
414	}
415}
416
417static void cs_assert(struct spi_device *spi)
418{
419	struct chip_data *chip = spi_get_ctldata(spi);
420	struct driver_data *drv_data =
421		spi_controller_get_devdata(spi->controller);
422
423	if (drv_data->ssp_type == CE4100_SSP) {
424		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
425		return;
426	}
427
428	if (chip->cs_control) {
429		chip->cs_control(PXA2XX_CS_ASSERT);
430		return;
431	}
432
433	if (chip->gpiod_cs) {
434		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
435		return;
436	}
437
438	if (is_lpss_ssp(drv_data))
439		lpss_ssp_cs_control(spi, true);
440}
441
442static void cs_deassert(struct spi_device *spi)
443{
444	struct chip_data *chip = spi_get_ctldata(spi);
445	struct driver_data *drv_data =
446		spi_controller_get_devdata(spi->controller);
447	unsigned long timeout;
448
449	if (drv_data->ssp_type == CE4100_SSP)
450		return;
451
452	/* Wait until SSP becomes idle before deasserting the CS */
453	timeout = jiffies + msecs_to_jiffies(10);
454	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
455	       !time_after(jiffies, timeout))
456		cpu_relax();
457
458	if (chip->cs_control) {
459		chip->cs_control(PXA2XX_CS_DEASSERT);
460		return;
461	}
462
463	if (chip->gpiod_cs) {
464		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
465		return;
466	}
467
468	if (is_lpss_ssp(drv_data))
469		lpss_ssp_cs_control(spi, false);
470}
471
472static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
473{
474	if (level)
475		cs_deassert(spi);
476	else
477		cs_assert(spi);
478}
479
480int pxa2xx_spi_flush(struct driver_data *drv_data)
481{
482	unsigned long limit = loops_per_jiffy << 1;
483
484	do {
485		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
486			pxa2xx_spi_read(drv_data, SSDR);
487	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
488	write_SSSR_CS(drv_data, SSSR_ROR);
489
490	return limit;
491}
492
493static void pxa2xx_spi_off(struct driver_data *drv_data)
494{
495	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
496	if (is_mmp2_ssp(drv_data))
497		return;
498
499	pxa2xx_spi_write(drv_data, SSCR0,
500			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
501}
502
503static int null_writer(struct driver_data *drv_data)
504{
505	u8 n_bytes = drv_data->n_bytes;
506
507	if (pxa2xx_spi_txfifo_full(drv_data)
508		|| (drv_data->tx == drv_data->tx_end))
509		return 0;
510
511	pxa2xx_spi_write(drv_data, SSDR, 0);
512	drv_data->tx += n_bytes;
513
514	return 1;
515}
516
517static int null_reader(struct driver_data *drv_data)
518{
519	u8 n_bytes = drv_data->n_bytes;
520
521	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
522	       && (drv_data->rx < drv_data->rx_end)) {
523		pxa2xx_spi_read(drv_data, SSDR);
524		drv_data->rx += n_bytes;
525	}
526
527	return drv_data->rx == drv_data->rx_end;
528}
529
530static int u8_writer(struct driver_data *drv_data)
531{
532	if (pxa2xx_spi_txfifo_full(drv_data)
533		|| (drv_data->tx == drv_data->tx_end))
534		return 0;
535
536	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
537	++drv_data->tx;
538
539	return 1;
540}
541
542static int u8_reader(struct driver_data *drv_data)
543{
544	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
545	       && (drv_data->rx < drv_data->rx_end)) {
546		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
547		++drv_data->rx;
548	}
549
550	return drv_data->rx == drv_data->rx_end;
551}
552
553static int u16_writer(struct driver_data *drv_data)
554{
555	if (pxa2xx_spi_txfifo_full(drv_data)
556		|| (drv_data->tx == drv_data->tx_end))
557		return 0;
558
559	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
560	drv_data->tx += 2;
561
562	return 1;
563}
564
565static int u16_reader(struct driver_data *drv_data)
566{
567	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
568	       && (drv_data->rx < drv_data->rx_end)) {
569		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
570		drv_data->rx += 2;
571	}
572
573	return drv_data->rx == drv_data->rx_end;
574}
575
576static int u32_writer(struct driver_data *drv_data)
577{
578	if (pxa2xx_spi_txfifo_full(drv_data)
579		|| (drv_data->tx == drv_data->tx_end))
580		return 0;
581
582	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
583	drv_data->tx += 4;
584
585	return 1;
586}
587
588static int u32_reader(struct driver_data *drv_data)
589{
590	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
591	       && (drv_data->rx < drv_data->rx_end)) {
592		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
593		drv_data->rx += 4;
594	}
595
596	return drv_data->rx == drv_data->rx_end;
597}
598
599static void reset_sccr1(struct driver_data *drv_data)
600{
601	struct chip_data *chip =
602		spi_get_ctldata(drv_data->controller->cur_msg->spi);
603	u32 sccr1_reg;
604
605	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
606	switch (drv_data->ssp_type) {
607	case QUARK_X1000_SSP:
608		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
609		break;
610	case CE4100_SSP:
611		sccr1_reg &= ~CE4100_SSCR1_RFT;
612		break;
613	default:
614		sccr1_reg &= ~SSCR1_RFT;
615		break;
616	}
617	sccr1_reg |= chip->threshold;
618	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
619}
620
621static void int_error_stop(struct driver_data *drv_data, const char* msg)
622{
623	/* Stop and reset SSP */
624	write_SSSR_CS(drv_data, drv_data->clear_sr);
625	reset_sccr1(drv_data);
626	if (!pxa25x_ssp_comp(drv_data))
627		pxa2xx_spi_write(drv_data, SSTO, 0);
628	pxa2xx_spi_flush(drv_data);
629	pxa2xx_spi_off(drv_data);
630
631	dev_err(&drv_data->pdev->dev, "%s\n", msg);
632
633	drv_data->controller->cur_msg->status = -EIO;
634	spi_finalize_current_transfer(drv_data->controller);
635}
636
637static void int_transfer_complete(struct driver_data *drv_data)
638{
639	/* Clear and disable interrupts */
640	write_SSSR_CS(drv_data, drv_data->clear_sr);
641	reset_sccr1(drv_data);
642	if (!pxa25x_ssp_comp(drv_data))
643		pxa2xx_spi_write(drv_data, SSTO, 0);
644
645	spi_finalize_current_transfer(drv_data->controller);
646}
647
648static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
649{
650	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
651		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
652
653	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
654
655	if (irq_status & SSSR_ROR) {
656		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
657		return IRQ_HANDLED;
658	}
659
660	if (irq_status & SSSR_TUR) {
661		int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
662		return IRQ_HANDLED;
663	}
664
665	if (irq_status & SSSR_TINT) {
666		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
667		if (drv_data->read(drv_data)) {
668			int_transfer_complete(drv_data);
669			return IRQ_HANDLED;
670		}
671	}
672
673	/* Drain rx fifo, Fill tx fifo and prevent overruns */
674	do {
675		if (drv_data->read(drv_data)) {
676			int_transfer_complete(drv_data);
677			return IRQ_HANDLED;
678		}
679	} while (drv_data->write(drv_data));
680
681	if (drv_data->read(drv_data)) {
682		int_transfer_complete(drv_data);
683		return IRQ_HANDLED;
684	}
685
686	if (drv_data->tx == drv_data->tx_end) {
687		u32 bytes_left;
688		u32 sccr1_reg;
689
690		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
691		sccr1_reg &= ~SSCR1_TIE;
692
693		/*
694		 * PXA25x_SSP has no timeout, set up rx threshould for the
695		 * remaining RX bytes.
696		 */
697		if (pxa25x_ssp_comp(drv_data)) {
698			u32 rx_thre;
699
700			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
701
702			bytes_left = drv_data->rx_end - drv_data->rx;
703			switch (drv_data->n_bytes) {
704			case 4:
705				bytes_left >>= 2;
706				break;
707			case 2:
708				bytes_left >>= 1;
709				break;
710			}
711
712			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
713			if (rx_thre > bytes_left)
714				rx_thre = bytes_left;
715
716			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
717		}
718		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
719	}
720
721	/* We did something */
722	return IRQ_HANDLED;
723}
724
725static void handle_bad_msg(struct driver_data *drv_data)
726{
727	pxa2xx_spi_off(drv_data);
728	pxa2xx_spi_write(drv_data, SSCR1,
729			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
730	if (!pxa25x_ssp_comp(drv_data))
731		pxa2xx_spi_write(drv_data, SSTO, 0);
732	write_SSSR_CS(drv_data, drv_data->clear_sr);
733
734	dev_err(&drv_data->pdev->dev,
735		"bad message state in interrupt handler\n");
736}
737
738static irqreturn_t ssp_int(int irq, void *dev_id)
739{
740	struct driver_data *drv_data = dev_id;
741	u32 sccr1_reg;
742	u32 mask = drv_data->mask_sr;
743	u32 status;
744
745	/*
746	 * The IRQ might be shared with other peripherals so we must first
747	 * check that are we RPM suspended or not. If we are we assume that
748	 * the IRQ was not for us (we shouldn't be RPM suspended when the
749	 * interrupt is enabled).
750	 */
751	if (pm_runtime_suspended(&drv_data->pdev->dev))
752		return IRQ_NONE;
753
754	/*
755	 * If the device is not yet in RPM suspended state and we get an
756	 * interrupt that is meant for another device, check if status bits
757	 * are all set to one. That means that the device is already
758	 * powered off.
759	 */
760	status = pxa2xx_spi_read(drv_data, SSSR);
761	if (status == ~0)
762		return IRQ_NONE;
763
764	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
765
766	/* Ignore possible writes if we don't need to write */
767	if (!(sccr1_reg & SSCR1_TIE))
768		mask &= ~SSSR_TFS;
769
770	/* Ignore RX timeout interrupt if it is disabled */
771	if (!(sccr1_reg & SSCR1_TINTE))
772		mask &= ~SSSR_TINT;
773
774	if (!(status & mask))
775		return IRQ_NONE;
776
777	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
778	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
779
780	if (!drv_data->controller->cur_msg) {
781		handle_bad_msg(drv_data);
782		/* Never fail */
783		return IRQ_HANDLED;
784	}
785
786	return drv_data->transfer_handler(drv_data);
787}
788
789/*
790 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
791 * input frequency by fractions of 2^24. It also has a divider by 5.
792 *
793 * There are formulas to get baud rate value for given input frequency and
794 * divider parameters, such as DDS_CLK_RATE and SCR:
795 *
796 * Fsys = 200MHz
797 *
798 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
799 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
800 *
801 * DDS_CLK_RATE either 2^n or 2^n / 5.
802 * SCR is in range 0 .. 255
803 *
804 * Divisor = 5^i * 2^j * 2 * k
805 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
806 *       j = [0, 23]     j = 0 iff i = 1
807 *       k = [1, 256]
808 * Special case: j = 0, i = 1: Divisor = 2 / 5
809 *
810 * Accordingly to the specification the recommended values for DDS_CLK_RATE
811 * are:
812 *	Case 1:		2^n, n = [0, 23]
813 *	Case 2:		2^24 * 2 / 5 (0x666666)
814 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
815 *
816 * In all cases the lowest possible value is better.
817 *
818 * The function calculates parameters for all cases and chooses the one closest
819 * to the asked baud rate.
820 */
821static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
822{
823	unsigned long xtal = 200000000;
824	unsigned long fref = xtal / 2;		/* mandatory division by 2,
825						   see (2) */
826						/* case 3 */
827	unsigned long fref1 = fref / 2;		/* case 1 */
828	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
829	unsigned long scale;
830	unsigned long q, q1, q2;
831	long r, r1, r2;
832	u32 mul;
833
834	/* Case 1 */
835
836	/* Set initial value for DDS_CLK_RATE */
837	mul = (1 << 24) >> 1;
838
839	/* Calculate initial quot */
840	q1 = DIV_ROUND_UP(fref1, rate);
841
842	/* Scale q1 if it's too big */
843	if (q1 > 256) {
844		/* Scale q1 to range [1, 512] */
845		scale = fls_long(q1 - 1);
846		if (scale > 9) {
847			q1 >>= scale - 9;
848			mul >>= scale - 9;
849		}
850
851		/* Round the result if we have a remainder */
852		q1 += q1 & 1;
853	}
854
855	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
856	scale = __ffs(q1);
857	q1 >>= scale;
858	mul >>= scale;
859
860	/* Get the remainder */
861	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
862
863	/* Case 2 */
864
865	q2 = DIV_ROUND_UP(fref2, rate);
866	r2 = abs(fref2 / q2 - rate);
867
868	/*
869	 * Choose the best between two: less remainder we have the better. We
870	 * can't go case 2 if q2 is greater than 256 since SCR register can
871	 * hold only values 0 .. 255.
872	 */
873	if (r2 >= r1 || q2 > 256) {
874		/* case 1 is better */
875		r = r1;
876		q = q1;
877	} else {
878		/* case 2 is better */
879		r = r2;
880		q = q2;
881		mul = (1 << 24) * 2 / 5;
882	}
883
884	/* Check case 3 only if the divisor is big enough */
885	if (fref / rate >= 80) {
886		u64 fssp;
887		u32 m;
888
889		/* Calculate initial quot */
890		q1 = DIV_ROUND_UP(fref, rate);
891		m = (1 << 24) / q1;
892
893		/* Get the remainder */
894		fssp = (u64)fref * m;
895		do_div(fssp, 1 << 24);
896		r1 = abs(fssp - rate);
897
898		/* Choose this one if it suits better */
899		if (r1 < r) {
900			/* case 3 is better */
901			q = 1;
902			mul = m;
903		}
904	}
905
906	*dds = mul;
907	return q - 1;
908}
909
910static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
911{
912	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
913	const struct ssp_device *ssp = drv_data->ssp;
914
915	rate = min_t(int, ssp_clk, rate);
916
917	/*
918	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
919	 * that the SSP transmission rate can be greater than the device rate
920	 */
921	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
922		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
923	else
924		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
925}
926
927static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
928					   int rate)
929{
930	struct chip_data *chip =
931		spi_get_ctldata(drv_data->controller->cur_msg->spi);
932	unsigned int clk_div;
933
934	switch (drv_data->ssp_type) {
935	case QUARK_X1000_SSP:
936		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
937		break;
938	default:
939		clk_div = ssp_get_clk_div(drv_data, rate);
940		break;
941	}
942	return clk_div << 8;
943}
944
945static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
946			       struct spi_device *spi,
947			       struct spi_transfer *xfer)
948{
949	struct chip_data *chip = spi_get_ctldata(spi);
950
951	return chip->enable_dma &&
952	       xfer->len <= MAX_DMA_LEN &&
953	       xfer->len >= chip->dma_burst_size;
954}
955
956static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
957				   struct spi_device *spi,
958				   struct spi_transfer *transfer)
959{
960	struct driver_data *drv_data = spi_controller_get_devdata(controller);
961	struct spi_message *message = controller->cur_msg;
962	struct chip_data *chip = spi_get_ctldata(spi);
963	u32 dma_thresh = chip->dma_threshold;
964	u32 dma_burst = chip->dma_burst_size;
965	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
966	u32 clk_div;
967	u8 bits;
968	u32 speed;
969	u32 cr0;
970	u32 cr1;
971	int err;
972	int dma_mapped;
973
974	/* Check if we can DMA this transfer */
975	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
976
977		/* reject already-mapped transfers; PIO won't always work */
978		if (message->is_dma_mapped
979				|| transfer->rx_dma || transfer->tx_dma) {
980			dev_err(&spi->dev,
981				"Mapped transfer length of %u is greater than %d\n",
982				transfer->len, MAX_DMA_LEN);
983			return -EINVAL;
984		}
985
986		/* warn ... we force this to PIO mode */
987		dev_warn_ratelimited(&spi->dev,
988				     "DMA disabled for transfer length %ld greater than %d\n",
989				     (long)transfer->len, MAX_DMA_LEN);
990	}
991
992	/* Setup the transfer state based on the type of transfer */
993	if (pxa2xx_spi_flush(drv_data) == 0) {
994		dev_err(&spi->dev, "Flush failed\n");
995		return -EIO;
996	}
997	drv_data->n_bytes = chip->n_bytes;
998	drv_data->tx = (void *)transfer->tx_buf;
999	drv_data->tx_end = drv_data->tx + transfer->len;
1000	drv_data->rx = transfer->rx_buf;
1001	drv_data->rx_end = drv_data->rx + transfer->len;
1002	drv_data->write = drv_data->tx ? chip->write : null_writer;
1003	drv_data->read = drv_data->rx ? chip->read : null_reader;
1004
1005	/* Change speed and bit per word on a per transfer */
1006	bits = transfer->bits_per_word;
1007	speed = transfer->speed_hz;
1008
1009	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1010
1011	if (bits <= 8) {
1012		drv_data->n_bytes = 1;
1013		drv_data->read = drv_data->read != null_reader ?
1014					u8_reader : null_reader;
1015		drv_data->write = drv_data->write != null_writer ?
1016					u8_writer : null_writer;
1017	} else if (bits <= 16) {
1018		drv_data->n_bytes = 2;
1019		drv_data->read = drv_data->read != null_reader ?
1020					u16_reader : null_reader;
1021		drv_data->write = drv_data->write != null_writer ?
1022					u16_writer : null_writer;
1023	} else if (bits <= 32) {
1024		drv_data->n_bytes = 4;
1025		drv_data->read = drv_data->read != null_reader ?
1026					u32_reader : null_reader;
1027		drv_data->write = drv_data->write != null_writer ?
1028					u32_writer : null_writer;
1029	}
1030	/*
1031	 * if bits/word is changed in dma mode, then must check the
1032	 * thresholds and burst also
1033	 */
1034	if (chip->enable_dma) {
1035		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1036						spi,
1037						bits, &dma_burst,
1038						&dma_thresh))
1039			dev_warn_ratelimited(&spi->dev,
1040					     "DMA burst size reduced to match bits_per_word\n");
1041	}
1042
1043	dma_mapped = controller->can_dma &&
1044		     controller->can_dma(controller, spi, transfer) &&
1045		     controller->cur_msg_mapped;
1046	if (dma_mapped) {
1047
1048		/* Ensure we have the correct interrupt handler */
1049		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1050
1051		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1052		if (err)
1053			return err;
1054
1055		/* Clear status and start DMA engine */
1056		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1057		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1058
1059		pxa2xx_spi_dma_start(drv_data);
1060	} else {
1061		/* Ensure we have the correct interrupt handler	*/
1062		drv_data->transfer_handler = interrupt_transfer;
1063
1064		/* Clear status  */
1065		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1066		write_SSSR_CS(drv_data, drv_data->clear_sr);
1067	}
1068
1069	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1070	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1071	if (!pxa25x_ssp_comp(drv_data))
1072		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1073			controller->max_speed_hz
1074				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1075			dma_mapped ? "DMA" : "PIO");
1076	else
1077		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1078			controller->max_speed_hz / 2
1079				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1080			dma_mapped ? "DMA" : "PIO");
1081
1082	if (is_lpss_ssp(drv_data)) {
1083		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1084		    != chip->lpss_rx_threshold)
1085			pxa2xx_spi_write(drv_data, SSIRF,
1086					 chip->lpss_rx_threshold);
1087		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1088		    != chip->lpss_tx_threshold)
1089			pxa2xx_spi_write(drv_data, SSITF,
1090					 chip->lpss_tx_threshold);
1091	}
1092
1093	if (is_quark_x1000_ssp(drv_data) &&
1094	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1095		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1096
1097	/* see if we need to reload the config registers */
1098	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1099	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1100	    != (cr1 & change_mask)) {
1101		/* stop the SSP, and update the other bits */
1102		if (!is_mmp2_ssp(drv_data))
1103			pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1104		if (!pxa25x_ssp_comp(drv_data))
1105			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1106		/* first set CR1 without interrupt and service enables */
1107		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1108		/* restart the SSP */
1109		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1110
1111	} else {
1112		if (!pxa25x_ssp_comp(drv_data))
1113			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1114	}
1115
1116	if (is_mmp2_ssp(drv_data)) {
1117		u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1118					& SSSR_TFL_MASK) >> 8;
1119
1120		if (tx_level) {
1121			/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1122			dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1123								tx_level);
1124			if (tx_level > transfer->len)
1125				tx_level = transfer->len;
1126			drv_data->tx += tx_level;
1127		}
1128	}
1129
1130	if (spi_controller_is_slave(controller)) {
1131		while (drv_data->write(drv_data))
1132			;
1133		if (drv_data->gpiod_ready) {
1134			gpiod_set_value(drv_data->gpiod_ready, 1);
1135			udelay(1);
1136			gpiod_set_value(drv_data->gpiod_ready, 0);
1137		}
1138	}
1139
1140	/*
1141	 * Release the data by enabling service requests and interrupts,
1142	 * without changing any mode bits
1143	 */
1144	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1145
1146	return 1;
1147}
1148
1149static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1150{
1151	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1152
1153	/* Stop and reset SSP */
1154	write_SSSR_CS(drv_data, drv_data->clear_sr);
1155	reset_sccr1(drv_data);
1156	if (!pxa25x_ssp_comp(drv_data))
1157		pxa2xx_spi_write(drv_data, SSTO, 0);
1158	pxa2xx_spi_flush(drv_data);
1159	pxa2xx_spi_off(drv_data);
1160
1161	dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1162
1163	drv_data->controller->cur_msg->status = -EINTR;
1164	spi_finalize_current_transfer(drv_data->controller);
1165
1166	return 0;
1167}
1168
1169static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1170				 struct spi_message *msg)
1171{
1172	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1173
1174	/* Disable the SSP */
1175	pxa2xx_spi_off(drv_data);
1176	/* Clear and disable interrupts and service requests */
1177	write_SSSR_CS(drv_data, drv_data->clear_sr);
1178	pxa2xx_spi_write(drv_data, SSCR1,
1179			 pxa2xx_spi_read(drv_data, SSCR1)
1180			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1181	if (!pxa25x_ssp_comp(drv_data))
1182		pxa2xx_spi_write(drv_data, SSTO, 0);
1183
1184	/*
1185	 * Stop the DMA if running. Note DMA callback handler may have unset
1186	 * the dma_running already, which is fine as stopping is not needed
1187	 * then but we shouldn't rely this flag for anything else than
1188	 * stopping. For instance to differentiate between PIO and DMA
1189	 * transfers.
1190	 */
1191	if (atomic_read(&drv_data->dma_running))
1192		pxa2xx_spi_dma_stop(drv_data);
1193}
1194
1195static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1196{
1197	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1198
1199	/* Disable the SSP now */
1200	pxa2xx_spi_off(drv_data);
1201
1202	return 0;
1203}
1204
1205static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1206		    struct pxa2xx_spi_chip *chip_info)
1207{
1208	struct driver_data *drv_data =
1209		spi_controller_get_devdata(spi->controller);
1210	struct gpio_desc *gpiod;
1211	int err = 0;
1212
1213	if (chip == NULL)
1214		return 0;
1215
1216	if (drv_data->cs_gpiods) {
1217		gpiod = drv_data->cs_gpiods[spi->chip_select];
1218		if (gpiod) {
1219			chip->gpiod_cs = gpiod;
1220			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1221			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1222		}
1223
1224		return 0;
1225	}
1226
1227	if (chip_info == NULL)
1228		return 0;
1229
1230	/* NOTE: setup() can be called multiple times, possibly with
1231	 * different chip_info, release previously requested GPIO
1232	 */
1233	if (chip->gpiod_cs) {
1234		gpiod_put(chip->gpiod_cs);
1235		chip->gpiod_cs = NULL;
1236	}
1237
1238	/* If (*cs_control) is provided, ignore GPIO chip select */
1239	if (chip_info->cs_control) {
1240		chip->cs_control = chip_info->cs_control;
1241		return 0;
1242	}
1243
1244	if (gpio_is_valid(chip_info->gpio_cs)) {
1245		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1246		if (err) {
1247			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1248				chip_info->gpio_cs);
1249			return err;
1250		}
1251
1252		gpiod = gpio_to_desc(chip_info->gpio_cs);
1253		chip->gpiod_cs = gpiod;
1254		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1255
1256		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1257		if (err)
1258			gpiod_put(chip->gpiod_cs);
1259	}
1260
1261	return err;
1262}
1263
1264static int setup(struct spi_device *spi)
1265{
1266	struct pxa2xx_spi_chip *chip_info;
1267	struct chip_data *chip;
1268	const struct lpss_config *config;
1269	struct driver_data *drv_data =
1270		spi_controller_get_devdata(spi->controller);
1271	uint tx_thres, tx_hi_thres, rx_thres;
1272	int err;
1273
1274	switch (drv_data->ssp_type) {
1275	case QUARK_X1000_SSP:
1276		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1277		tx_hi_thres = 0;
1278		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1279		break;
1280	case CE4100_SSP:
1281		tx_thres = TX_THRESH_CE4100_DFLT;
1282		tx_hi_thres = 0;
1283		rx_thres = RX_THRESH_CE4100_DFLT;
1284		break;
1285	case LPSS_LPT_SSP:
1286	case LPSS_BYT_SSP:
1287	case LPSS_BSW_SSP:
1288	case LPSS_SPT_SSP:
1289	case LPSS_BXT_SSP:
1290	case LPSS_CNL_SSP:
1291		config = lpss_get_config(drv_data);
1292		tx_thres = config->tx_threshold_lo;
1293		tx_hi_thres = config->tx_threshold_hi;
1294		rx_thres = config->rx_threshold;
1295		break;
1296	default:
1297		tx_hi_thres = 0;
1298		if (spi_controller_is_slave(drv_data->controller)) {
1299			tx_thres = 1;
1300			rx_thres = 2;
1301		} else {
1302			tx_thres = TX_THRESH_DFLT;
1303			rx_thres = RX_THRESH_DFLT;
1304		}
1305		break;
1306	}
1307
1308	/* Only alloc on first setup */
1309	chip = spi_get_ctldata(spi);
1310	if (!chip) {
1311		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1312		if (!chip)
1313			return -ENOMEM;
1314
1315		if (drv_data->ssp_type == CE4100_SSP) {
1316			if (spi->chip_select > 4) {
1317				dev_err(&spi->dev,
1318					"failed setup: cs number must not be > 4.\n");
1319				kfree(chip);
1320				return -EINVAL;
1321			}
1322
1323			chip->frm = spi->chip_select;
1324		}
1325		chip->enable_dma = drv_data->controller_info->enable_dma;
1326		chip->timeout = TIMOUT_DFLT;
1327	}
1328
1329	/* protocol drivers may change the chip settings, so...
1330	 * if chip_info exists, use it */
1331	chip_info = spi->controller_data;
1332
1333	/* chip_info isn't always needed */
1334	chip->cr1 = 0;
1335	if (chip_info) {
1336		if (chip_info->timeout)
1337			chip->timeout = chip_info->timeout;
1338		if (chip_info->tx_threshold)
1339			tx_thres = chip_info->tx_threshold;
1340		if (chip_info->tx_hi_threshold)
1341			tx_hi_thres = chip_info->tx_hi_threshold;
1342		if (chip_info->rx_threshold)
1343			rx_thres = chip_info->rx_threshold;
1344		chip->dma_threshold = 0;
1345		if (chip_info->enable_loopback)
1346			chip->cr1 = SSCR1_LBM;
1347	}
1348	if (spi_controller_is_slave(drv_data->controller)) {
1349		chip->cr1 |= SSCR1_SCFR;
1350		chip->cr1 |= SSCR1_SCLKDIR;
1351		chip->cr1 |= SSCR1_SFRMDIR;
1352		chip->cr1 |= SSCR1_SPH;
1353	}
1354
1355	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1356	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1357				| SSITF_TxHiThresh(tx_hi_thres);
1358
1359	/* set dma burst and threshold outside of chip_info path so that if
1360	 * chip_info goes away after setting chip->enable_dma, the
1361	 * burst and threshold can still respond to changes in bits_per_word */
1362	if (chip->enable_dma) {
1363		/* set up legal burst and threshold for dma */
1364		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1365						spi->bits_per_word,
1366						&chip->dma_burst_size,
1367						&chip->dma_threshold)) {
1368			dev_warn(&spi->dev,
1369				 "in setup: DMA burst size reduced to match bits_per_word\n");
1370		}
1371		dev_dbg(&spi->dev,
1372			"in setup: DMA burst size set to %u\n",
1373			chip->dma_burst_size);
1374	}
1375
1376	switch (drv_data->ssp_type) {
1377	case QUARK_X1000_SSP:
1378		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1379				   & QUARK_X1000_SSCR1_RFT)
1380				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1381				   & QUARK_X1000_SSCR1_TFT);
1382		break;
1383	case CE4100_SSP:
1384		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1385			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1386		break;
1387	default:
1388		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1389			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1390		break;
1391	}
1392
1393	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1394	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1395			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1396
1397	if (spi->mode & SPI_LOOP)
1398		chip->cr1 |= SSCR1_LBM;
1399
1400	if (spi->bits_per_word <= 8) {
1401		chip->n_bytes = 1;
1402		chip->read = u8_reader;
1403		chip->write = u8_writer;
1404	} else if (spi->bits_per_word <= 16) {
1405		chip->n_bytes = 2;
1406		chip->read = u16_reader;
1407		chip->write = u16_writer;
1408	} else if (spi->bits_per_word <= 32) {
1409		chip->n_bytes = 4;
1410		chip->read = u32_reader;
1411		chip->write = u32_writer;
1412	}
1413
1414	spi_set_ctldata(spi, chip);
1415
1416	if (drv_data->ssp_type == CE4100_SSP)
1417		return 0;
1418
1419	err = setup_cs(spi, chip, chip_info);
1420	if (err)
1421		kfree(chip);
1422
1423	return err;
1424}
1425
1426static void cleanup(struct spi_device *spi)
1427{
1428	struct chip_data *chip = spi_get_ctldata(spi);
1429	struct driver_data *drv_data =
1430		spi_controller_get_devdata(spi->controller);
1431
1432	if (!chip)
1433		return;
1434
1435	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1436	    chip->gpiod_cs)
1437		gpiod_put(chip->gpiod_cs);
1438
1439	kfree(chip);
1440}
1441
1442#ifdef CONFIG_ACPI
1443static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1444	{ "INT33C0", LPSS_LPT_SSP },
1445	{ "INT33C1", LPSS_LPT_SSP },
1446	{ "INT3430", LPSS_LPT_SSP },
1447	{ "INT3431", LPSS_LPT_SSP },
1448	{ "80860F0E", LPSS_BYT_SSP },
1449	{ "8086228E", LPSS_BSW_SSP },
1450	{ },
1451};
1452MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1453#endif
1454
1455/*
1456 * PCI IDs of compound devices that integrate both host controller and private
1457 * integrated DMA engine. Please note these are not used in module
1458 * autoloading and probing in this module but matching the LPSS SSP type.
1459 */
1460static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1461	/* SPT-LP */
1462	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1463	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1464	/* SPT-H */
1465	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1466	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1467	/* KBL-H */
1468	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1469	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1470	/* CML-V */
1471	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1472	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1473	/* BXT A-Step */
1474	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1475	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1476	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1477	/* BXT B-Step */
1478	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1479	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1480	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1481	/* GLK */
1482	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1483	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1484	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1485	/* ICL-LP */
1486	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1487	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1488	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1489	/* EHL */
1490	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1491	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1492	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1493	/* JSL */
1494	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1495	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1496	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1497	/* TGL-H */
1498	{ PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1499	{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1500	{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1501	{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1502	/* APL */
1503	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1504	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1505	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1506	/* CNL-LP */
1507	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1508	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1509	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1510	/* CNL-H */
1511	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1512	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1513	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1514	/* CML-LP */
1515	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1516	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1517	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1518	/* CML-H */
1519	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1520	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1521	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1522	/* TGL-LP */
1523	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1524	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1525	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1526	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1527	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1528	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1529	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1530	{ },
1531};
1532
1533static const struct of_device_id pxa2xx_spi_of_match[] = {
1534	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1535	{},
1536};
1537MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1538
1539#ifdef CONFIG_ACPI
1540
1541static int pxa2xx_spi_get_port_id(struct device *dev)
1542{
1543	struct acpi_device *adev;
1544	unsigned int devid;
1545	int port_id = -1;
1546
1547	adev = ACPI_COMPANION(dev);
1548	if (adev && adev->pnp.unique_id &&
1549	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1550		port_id = devid;
1551	return port_id;
1552}
1553
1554#else /* !CONFIG_ACPI */
1555
1556static int pxa2xx_spi_get_port_id(struct device *dev)
1557{
1558	return -1;
1559}
1560
1561#endif /* CONFIG_ACPI */
1562
1563
1564#ifdef CONFIG_PCI
1565
1566static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1567{
1568	return param == chan->device->dev;
1569}
1570
1571#endif /* CONFIG_PCI */
1572
1573static struct pxa2xx_spi_controller *
1574pxa2xx_spi_init_pdata(struct platform_device *pdev)
1575{
1576	struct pxa2xx_spi_controller *pdata;
1577	struct ssp_device *ssp;
1578	struct resource *res;
1579	struct device *parent = pdev->dev.parent;
1580	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1581	const struct pci_device_id *pcidev_id = NULL;
1582	enum pxa_ssp_type type;
1583	const void *match;
1584
1585	if (pcidev)
1586		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1587
1588	match = device_get_match_data(&pdev->dev);
1589	if (match)
1590		type = (enum pxa_ssp_type)match;
1591	else if (pcidev_id)
1592		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1593	else
1594		return ERR_PTR(-EINVAL);
1595
1596	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1597	if (!pdata)
1598		return ERR_PTR(-ENOMEM);
1599
1600	ssp = &pdata->ssp;
1601
1602	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1603	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1604	if (IS_ERR(ssp->mmio_base))
1605		return ERR_CAST(ssp->mmio_base);
1606
1607	ssp->phys_base = res->start;
1608
1609#ifdef CONFIG_PCI
1610	if (pcidev_id) {
1611		pdata->tx_param = parent;
1612		pdata->rx_param = parent;
1613		pdata->dma_filter = pxa2xx_spi_idma_filter;
1614	}
1615#endif
1616
1617	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1618	if (IS_ERR(ssp->clk))
1619		return ERR_CAST(ssp->clk);
1620
1621	ssp->irq = platform_get_irq(pdev, 0);
1622	if (ssp->irq < 0)
1623		return ERR_PTR(ssp->irq);
1624
1625	ssp->type = type;
1626	ssp->dev = &pdev->dev;
1627	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1628
1629	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1630	pdata->num_chipselect = 1;
1631	pdata->enable_dma = true;
1632	pdata->dma_burst_size = 1;
1633
1634	return pdata;
1635}
1636
1637static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1638				      unsigned int cs)
1639{
1640	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1641
1642	if (has_acpi_companion(&drv_data->pdev->dev)) {
1643		switch (drv_data->ssp_type) {
1644		/*
1645		 * For Atoms the ACPI DeviceSelection used by the Windows
1646		 * driver starts from 1 instead of 0 so translate it here
1647		 * to match what Linux expects.
1648		 */
1649		case LPSS_BYT_SSP:
1650		case LPSS_BSW_SSP:
1651			return cs - 1;
1652
1653		default:
1654			break;
1655		}
1656	}
1657
1658	return cs;
1659}
1660
1661static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1662{
1663	return MAX_DMA_LEN;
1664}
1665
1666static int pxa2xx_spi_probe(struct platform_device *pdev)
1667{
1668	struct device *dev = &pdev->dev;
1669	struct pxa2xx_spi_controller *platform_info;
1670	struct spi_controller *controller;
1671	struct driver_data *drv_data;
1672	struct ssp_device *ssp;
1673	const struct lpss_config *config;
1674	int status, count;
1675	u32 tmp;
1676
1677	platform_info = dev_get_platdata(dev);
1678	if (!platform_info) {
1679		platform_info = pxa2xx_spi_init_pdata(pdev);
1680		if (IS_ERR(platform_info)) {
1681			dev_err(&pdev->dev, "missing platform data\n");
1682			return PTR_ERR(platform_info);
1683		}
1684	}
1685
1686	ssp = pxa_ssp_request(pdev->id, pdev->name);
1687	if (!ssp)
1688		ssp = &platform_info->ssp;
1689
1690	if (!ssp->mmio_base) {
1691		dev_err(&pdev->dev, "failed to get ssp\n");
1692		return -ENODEV;
1693	}
1694
1695	if (platform_info->is_slave)
1696		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1697	else
1698		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1699
1700	if (!controller) {
1701		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1702		pxa_ssp_free(ssp);
1703		return -ENOMEM;
1704	}
1705	drv_data = spi_controller_get_devdata(controller);
1706	drv_data->controller = controller;
1707	drv_data->controller_info = platform_info;
1708	drv_data->pdev = pdev;
1709	drv_data->ssp = ssp;
1710
1711	controller->dev.of_node = pdev->dev.of_node;
1712	/* the spi->mode bits understood by this driver: */
1713	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1714
1715	controller->bus_num = ssp->port_id;
1716	controller->dma_alignment = DMA_ALIGNMENT;
1717	controller->cleanup = cleanup;
1718	controller->setup = setup;
1719	controller->set_cs = pxa2xx_spi_set_cs;
1720	controller->transfer_one = pxa2xx_spi_transfer_one;
1721	controller->slave_abort = pxa2xx_spi_slave_abort;
1722	controller->handle_err = pxa2xx_spi_handle_err;
1723	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1724	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1725	controller->auto_runtime_pm = true;
1726	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1727
1728	drv_data->ssp_type = ssp->type;
1729
1730	drv_data->ioaddr = ssp->mmio_base;
1731	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1732	if (pxa25x_ssp_comp(drv_data)) {
1733		switch (drv_data->ssp_type) {
1734		case QUARK_X1000_SSP:
1735			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1736			break;
1737		default:
1738			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1739			break;
1740		}
1741
1742		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1743		drv_data->dma_cr1 = 0;
1744		drv_data->clear_sr = SSSR_ROR;
1745		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1746	} else {
1747		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1748		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1749		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1750		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1751		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1752						| SSSR_ROR | SSSR_TUR;
1753	}
1754
1755	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1756			drv_data);
1757	if (status < 0) {
1758		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1759		goto out_error_controller_alloc;
1760	}
1761
1762	/* Setup DMA if requested */
1763	if (platform_info->enable_dma) {
1764		status = pxa2xx_spi_dma_setup(drv_data);
1765		if (status) {
1766			dev_warn(dev, "no DMA channels available, using PIO\n");
1767			platform_info->enable_dma = false;
1768		} else {
1769			controller->can_dma = pxa2xx_spi_can_dma;
1770			controller->max_dma_len = MAX_DMA_LEN;
1771			controller->max_transfer_size =
1772				pxa2xx_spi_max_dma_transfer_size;
1773		}
1774	}
1775
1776	/* Enable SOC clock */
1777	status = clk_prepare_enable(ssp->clk);
1778	if (status)
1779		goto out_error_dma_irq_alloc;
1780
1781	controller->max_speed_hz = clk_get_rate(ssp->clk);
1782	/*
1783	 * Set minimum speed for all other platforms than Intel Quark which is
1784	 * able do under 1 Hz transfers.
1785	 */
1786	if (!pxa25x_ssp_comp(drv_data))
1787		controller->min_speed_hz =
1788			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1789	else if (!is_quark_x1000_ssp(drv_data))
1790		controller->min_speed_hz =
1791			DIV_ROUND_UP(controller->max_speed_hz, 512);
1792
1793	/* Load default SSP configuration */
1794	pxa2xx_spi_write(drv_data, SSCR0, 0);
1795	switch (drv_data->ssp_type) {
1796	case QUARK_X1000_SSP:
1797		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1798		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1799		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1800
1801		/* using the Motorola SPI protocol and use 8 bit frame */
1802		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1803		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1804		break;
1805	case CE4100_SSP:
1806		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1807		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1808		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1809		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1810		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1811		break;
1812	default:
1813
1814		if (spi_controller_is_slave(controller)) {
1815			tmp = SSCR1_SCFR |
1816			      SSCR1_SCLKDIR |
1817			      SSCR1_SFRMDIR |
1818			      SSCR1_RxTresh(2) |
1819			      SSCR1_TxTresh(1) |
1820			      SSCR1_SPH;
1821		} else {
1822			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1823			      SSCR1_TxTresh(TX_THRESH_DFLT);
1824		}
1825		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1826		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1827		if (!spi_controller_is_slave(controller))
1828			tmp |= SSCR0_SCR(2);
1829		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1830		break;
1831	}
1832
1833	if (!pxa25x_ssp_comp(drv_data))
1834		pxa2xx_spi_write(drv_data, SSTO, 0);
1835
1836	if (!is_quark_x1000_ssp(drv_data))
1837		pxa2xx_spi_write(drv_data, SSPSP, 0);
1838
1839	if (is_lpss_ssp(drv_data)) {
1840		lpss_ssp_setup(drv_data);
1841		config = lpss_get_config(drv_data);
1842		if (config->reg_capabilities >= 0) {
1843			tmp = __lpss_ssp_read_priv(drv_data,
1844						   config->reg_capabilities);
1845			tmp &= LPSS_CAPS_CS_EN_MASK;
1846			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1847			platform_info->num_chipselect = ffz(tmp);
1848		} else if (config->cs_num) {
1849			platform_info->num_chipselect = config->cs_num;
1850		}
1851	}
1852	controller->num_chipselect = platform_info->num_chipselect;
1853
1854	count = gpiod_count(&pdev->dev, "cs");
1855	if (count > 0) {
1856		int i;
1857
1858		controller->num_chipselect = max_t(int, count,
1859			controller->num_chipselect);
1860
1861		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1862			controller->num_chipselect, sizeof(struct gpio_desc *),
1863			GFP_KERNEL);
1864		if (!drv_data->cs_gpiods) {
1865			status = -ENOMEM;
1866			goto out_error_clock_enabled;
1867		}
1868
1869		for (i = 0; i < controller->num_chipselect; i++) {
1870			struct gpio_desc *gpiod;
1871
1872			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1873			if (IS_ERR(gpiod)) {
1874				/* Means use native chip select */
1875				if (PTR_ERR(gpiod) == -ENOENT)
1876					continue;
1877
1878				status = PTR_ERR(gpiod);
1879				goto out_error_clock_enabled;
1880			} else {
1881				drv_data->cs_gpiods[i] = gpiod;
1882			}
1883		}
1884	}
1885
1886	if (platform_info->is_slave) {
1887		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1888						"ready", GPIOD_OUT_LOW);
1889		if (IS_ERR(drv_data->gpiod_ready)) {
1890			status = PTR_ERR(drv_data->gpiod_ready);
1891			goto out_error_clock_enabled;
1892		}
1893	}
1894
1895	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1896	pm_runtime_use_autosuspend(&pdev->dev);
1897	pm_runtime_set_active(&pdev->dev);
1898	pm_runtime_enable(&pdev->dev);
1899
1900	/* Register with the SPI framework */
1901	platform_set_drvdata(pdev, drv_data);
1902	status = spi_register_controller(controller);
1903	if (status != 0) {
1904		dev_err(&pdev->dev, "problem registering spi controller\n");
1905		goto out_error_pm_runtime_enabled;
1906	}
1907
1908	return status;
1909
1910out_error_pm_runtime_enabled:
1911	pm_runtime_disable(&pdev->dev);
1912
1913out_error_clock_enabled:
1914	clk_disable_unprepare(ssp->clk);
1915
1916out_error_dma_irq_alloc:
1917	pxa2xx_spi_dma_release(drv_data);
1918	free_irq(ssp->irq, drv_data);
1919
1920out_error_controller_alloc:
1921	pxa_ssp_free(ssp);
1922	return status;
1923}
1924
1925static int pxa2xx_spi_remove(struct platform_device *pdev)
1926{
1927	struct driver_data *drv_data = platform_get_drvdata(pdev);
1928	struct ssp_device *ssp = drv_data->ssp;
1929
1930	pm_runtime_get_sync(&pdev->dev);
1931
1932	spi_unregister_controller(drv_data->controller);
1933
1934	/* Disable the SSP at the peripheral and SOC level */
1935	pxa2xx_spi_write(drv_data, SSCR0, 0);
1936	clk_disable_unprepare(ssp->clk);
1937
1938	/* Release DMA */
1939	if (drv_data->controller_info->enable_dma)
1940		pxa2xx_spi_dma_release(drv_data);
1941
1942	pm_runtime_put_noidle(&pdev->dev);
1943	pm_runtime_disable(&pdev->dev);
1944
1945	/* Release IRQ */
1946	free_irq(ssp->irq, drv_data);
1947
1948	/* Release SSP */
1949	pxa_ssp_free(ssp);
1950
1951	return 0;
1952}
1953
1954#ifdef CONFIG_PM_SLEEP
1955static int pxa2xx_spi_suspend(struct device *dev)
1956{
1957	struct driver_data *drv_data = dev_get_drvdata(dev);
1958	struct ssp_device *ssp = drv_data->ssp;
1959	int status;
1960
1961	status = spi_controller_suspend(drv_data->controller);
1962	if (status != 0)
1963		return status;
1964	pxa2xx_spi_write(drv_data, SSCR0, 0);
1965
1966	if (!pm_runtime_suspended(dev))
1967		clk_disable_unprepare(ssp->clk);
1968
1969	return 0;
1970}
1971
1972static int pxa2xx_spi_resume(struct device *dev)
1973{
1974	struct driver_data *drv_data = dev_get_drvdata(dev);
1975	struct ssp_device *ssp = drv_data->ssp;
1976	int status;
1977
1978	/* Enable the SSP clock */
1979	if (!pm_runtime_suspended(dev)) {
1980		status = clk_prepare_enable(ssp->clk);
1981		if (status)
1982			return status;
1983	}
1984
1985	/* Start the queue running */
1986	return spi_controller_resume(drv_data->controller);
1987}
1988#endif
1989
1990#ifdef CONFIG_PM
1991static int pxa2xx_spi_runtime_suspend(struct device *dev)
1992{
1993	struct driver_data *drv_data = dev_get_drvdata(dev);
1994
1995	clk_disable_unprepare(drv_data->ssp->clk);
1996	return 0;
1997}
1998
1999static int pxa2xx_spi_runtime_resume(struct device *dev)
2000{
2001	struct driver_data *drv_data = dev_get_drvdata(dev);
2002	int status;
2003
2004	status = clk_prepare_enable(drv_data->ssp->clk);
2005	return status;
2006}
2007#endif
2008
2009static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
2010	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
2011	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
2012			   pxa2xx_spi_runtime_resume, NULL)
2013};
2014
2015static struct platform_driver driver = {
2016	.driver = {
2017		.name	= "pxa2xx-spi",
2018		.pm	= &pxa2xx_spi_pm_ops,
2019		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
2020		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
2021	},
2022	.probe = pxa2xx_spi_probe,
2023	.remove = pxa2xx_spi_remove,
2024};
2025
2026static int __init pxa2xx_spi_init(void)
2027{
2028	return platform_driver_register(&driver);
2029}
2030subsys_initcall(pxa2xx_spi_init);
2031
2032static void __exit pxa2xx_spi_exit(void)
2033{
2034	platform_driver_unregister(&driver);
2035}
2036module_exit(pxa2xx_spi_exit);
2037
2038MODULE_SOFTDEP("pre: dw_dmac");
2039