18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * SPI_PPC4XX SPI controller driver.
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
68c2ecf20Sopenharmony_ci * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
78c2ecf20Sopenharmony_ci * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
88c2ecf20Sopenharmony_ci *
98c2ecf20Sopenharmony_ci * Based in part on drivers/spi/spi_s3c24xx.c
108c2ecf20Sopenharmony_ci *
118c2ecf20Sopenharmony_ci * Copyright (c) 2006 Ben Dooks
128c2ecf20Sopenharmony_ci * Copyright (c) 2006 Simtec Electronics
138c2ecf20Sopenharmony_ci *	Ben Dooks <ben@simtec.co.uk>
148c2ecf20Sopenharmony_ci */
158c2ecf20Sopenharmony_ci
168c2ecf20Sopenharmony_ci/*
178c2ecf20Sopenharmony_ci * The PPC4xx SPI controller has no FIFO so each sent/received byte will
188c2ecf20Sopenharmony_ci * generate an interrupt to the CPU. This can cause high CPU utilization.
198c2ecf20Sopenharmony_ci * This driver allows platforms to reduce the interrupt load on the CPU
208c2ecf20Sopenharmony_ci * during SPI transfers by setting max_speed_hz via the device tree.
218c2ecf20Sopenharmony_ci */
228c2ecf20Sopenharmony_ci
238c2ecf20Sopenharmony_ci#include <linux/module.h>
248c2ecf20Sopenharmony_ci#include <linux/sched.h>
258c2ecf20Sopenharmony_ci#include <linux/slab.h>
268c2ecf20Sopenharmony_ci#include <linux/errno.h>
278c2ecf20Sopenharmony_ci#include <linux/wait.h>
288c2ecf20Sopenharmony_ci#include <linux/of_address.h>
298c2ecf20Sopenharmony_ci#include <linux/of_irq.h>
308c2ecf20Sopenharmony_ci#include <linux/of_platform.h>
318c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
328c2ecf20Sopenharmony_ci#include <linux/delay.h>
338c2ecf20Sopenharmony_ci
348c2ecf20Sopenharmony_ci#include <linux/spi/spi.h>
358c2ecf20Sopenharmony_ci#include <linux/spi/spi_bitbang.h>
368c2ecf20Sopenharmony_ci
378c2ecf20Sopenharmony_ci#include <asm/io.h>
388c2ecf20Sopenharmony_ci#include <asm/dcr.h>
398c2ecf20Sopenharmony_ci#include <asm/dcr-regs.h>
408c2ecf20Sopenharmony_ci
418c2ecf20Sopenharmony_ci/* bits in mode register - bit 0 is MSb */
428c2ecf20Sopenharmony_ci
438c2ecf20Sopenharmony_ci/*
448c2ecf20Sopenharmony_ci * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
458c2ecf20Sopenharmony_ci * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
468c2ecf20Sopenharmony_ci * Note: This is the inverse of CPHA.
478c2ecf20Sopenharmony_ci */
488c2ecf20Sopenharmony_ci#define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
498c2ecf20Sopenharmony_ci
508c2ecf20Sopenharmony_ci/* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
518c2ecf20Sopenharmony_ci#define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
528c2ecf20Sopenharmony_ci
538c2ecf20Sopenharmony_ci/*
548c2ecf20Sopenharmony_ci * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
558c2ecf20Sopenharmony_ci * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
568c2ecf20Sopenharmony_ci * Note: This is identical to SPI_LSB_FIRST.
578c2ecf20Sopenharmony_ci */
588c2ecf20Sopenharmony_ci#define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
598c2ecf20Sopenharmony_ci
608c2ecf20Sopenharmony_ci/*
618c2ecf20Sopenharmony_ci * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
628c2ecf20Sopenharmony_ci * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
638c2ecf20Sopenharmony_ci * Note: This is identical to CPOL.
648c2ecf20Sopenharmony_ci */
658c2ecf20Sopenharmony_ci#define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
668c2ecf20Sopenharmony_ci
678c2ecf20Sopenharmony_ci/*
688c2ecf20Sopenharmony_ci * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
698c2ecf20Sopenharmony_ci * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
708c2ecf20Sopenharmony_ci */
718c2ecf20Sopenharmony_ci#define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
728c2ecf20Sopenharmony_ci
738c2ecf20Sopenharmony_ci/* bits in control register */
748c2ecf20Sopenharmony_ci/* starts a transfer when set */
758c2ecf20Sopenharmony_ci#define SPI_PPC4XX_CR_STR	(0x80 >> 7)
768c2ecf20Sopenharmony_ci
778c2ecf20Sopenharmony_ci/* bits in status register */
788c2ecf20Sopenharmony_ci/* port is busy with a transfer */
798c2ecf20Sopenharmony_ci#define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
808c2ecf20Sopenharmony_ci/* RxD ready */
818c2ecf20Sopenharmony_ci#define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
828c2ecf20Sopenharmony_ci
838c2ecf20Sopenharmony_ci/* clock settings (SCP and CI) for various SPI modes */
848c2ecf20Sopenharmony_ci#define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
858c2ecf20Sopenharmony_ci#define SPI_CLK_MODE1	(0 | 0)
868c2ecf20Sopenharmony_ci#define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
878c2ecf20Sopenharmony_ci#define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
888c2ecf20Sopenharmony_ci
898c2ecf20Sopenharmony_ci#define DRIVER_NAME	"spi_ppc4xx_of"
908c2ecf20Sopenharmony_ci
918c2ecf20Sopenharmony_cistruct spi_ppc4xx_regs {
928c2ecf20Sopenharmony_ci	u8 mode;
938c2ecf20Sopenharmony_ci	u8 rxd;
948c2ecf20Sopenharmony_ci	u8 txd;
958c2ecf20Sopenharmony_ci	u8 cr;
968c2ecf20Sopenharmony_ci	u8 sr;
978c2ecf20Sopenharmony_ci	u8 dummy;
988c2ecf20Sopenharmony_ci	/*
998c2ecf20Sopenharmony_ci	 * Clock divisor modulus register
1008c2ecf20Sopenharmony_ci	 * This uses the following formula:
1018c2ecf20Sopenharmony_ci	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
1028c2ecf20Sopenharmony_ci	 * or
1038c2ecf20Sopenharmony_ci	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
1048c2ecf20Sopenharmony_ci	 * bit 0 is the MSb!
1058c2ecf20Sopenharmony_ci	 */
1068c2ecf20Sopenharmony_ci	u8 cdm;
1078c2ecf20Sopenharmony_ci};
1088c2ecf20Sopenharmony_ci
1098c2ecf20Sopenharmony_ci/* SPI Controller driver's private data. */
1108c2ecf20Sopenharmony_cistruct ppc4xx_spi {
1118c2ecf20Sopenharmony_ci	/* bitbang has to be first */
1128c2ecf20Sopenharmony_ci	struct spi_bitbang bitbang;
1138c2ecf20Sopenharmony_ci	struct completion done;
1148c2ecf20Sopenharmony_ci
1158c2ecf20Sopenharmony_ci	u64 mapbase;
1168c2ecf20Sopenharmony_ci	u64 mapsize;
1178c2ecf20Sopenharmony_ci	int irqnum;
1188c2ecf20Sopenharmony_ci	/* need this to set the SPI clock */
1198c2ecf20Sopenharmony_ci	unsigned int opb_freq;
1208c2ecf20Sopenharmony_ci
1218c2ecf20Sopenharmony_ci	/* for transfers */
1228c2ecf20Sopenharmony_ci	int len;
1238c2ecf20Sopenharmony_ci	int count;
1248c2ecf20Sopenharmony_ci	/* data buffers */
1258c2ecf20Sopenharmony_ci	const unsigned char *tx;
1268c2ecf20Sopenharmony_ci	unsigned char *rx;
1278c2ecf20Sopenharmony_ci
1288c2ecf20Sopenharmony_ci	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
1298c2ecf20Sopenharmony_ci	struct spi_master *master;
1308c2ecf20Sopenharmony_ci	struct device *dev;
1318c2ecf20Sopenharmony_ci};
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_ci/* need this so we can set the clock in the chipselect routine */
1348c2ecf20Sopenharmony_cistruct spi_ppc4xx_cs {
1358c2ecf20Sopenharmony_ci	u8 mode;
1368c2ecf20Sopenharmony_ci};
1378c2ecf20Sopenharmony_ci
1388c2ecf20Sopenharmony_cistatic int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
1398c2ecf20Sopenharmony_ci{
1408c2ecf20Sopenharmony_ci	struct ppc4xx_spi *hw;
1418c2ecf20Sopenharmony_ci	u8 data;
1428c2ecf20Sopenharmony_ci
1438c2ecf20Sopenharmony_ci	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
1448c2ecf20Sopenharmony_ci		t->tx_buf, t->rx_buf, t->len);
1458c2ecf20Sopenharmony_ci
1468c2ecf20Sopenharmony_ci	hw = spi_master_get_devdata(spi->master);
1478c2ecf20Sopenharmony_ci
1488c2ecf20Sopenharmony_ci	hw->tx = t->tx_buf;
1498c2ecf20Sopenharmony_ci	hw->rx = t->rx_buf;
1508c2ecf20Sopenharmony_ci	hw->len = t->len;
1518c2ecf20Sopenharmony_ci	hw->count = 0;
1528c2ecf20Sopenharmony_ci
1538c2ecf20Sopenharmony_ci	/* send the first byte */
1548c2ecf20Sopenharmony_ci	data = hw->tx ? hw->tx[0] : 0;
1558c2ecf20Sopenharmony_ci	out_8(&hw->regs->txd, data);
1568c2ecf20Sopenharmony_ci	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
1578c2ecf20Sopenharmony_ci	wait_for_completion(&hw->done);
1588c2ecf20Sopenharmony_ci
1598c2ecf20Sopenharmony_ci	return hw->count;
1608c2ecf20Sopenharmony_ci}
1618c2ecf20Sopenharmony_ci
1628c2ecf20Sopenharmony_cistatic int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
1638c2ecf20Sopenharmony_ci{
1648c2ecf20Sopenharmony_ci	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
1658c2ecf20Sopenharmony_ci	struct spi_ppc4xx_cs *cs = spi->controller_state;
1668c2ecf20Sopenharmony_ci	int scr;
1678c2ecf20Sopenharmony_ci	u8 cdm = 0;
1688c2ecf20Sopenharmony_ci	u32 speed;
1698c2ecf20Sopenharmony_ci
1708c2ecf20Sopenharmony_ci	/* Start with the generic configuration for this device. */
1718c2ecf20Sopenharmony_ci	speed = spi->max_speed_hz;
1728c2ecf20Sopenharmony_ci
1738c2ecf20Sopenharmony_ci	/*
1748c2ecf20Sopenharmony_ci	 * Modify the configuration if the transfer overrides it.  Do not allow
1758c2ecf20Sopenharmony_ci	 * the transfer to overwrite the generic configuration with zeros.
1768c2ecf20Sopenharmony_ci	 */
1778c2ecf20Sopenharmony_ci	if (t) {
1788c2ecf20Sopenharmony_ci		if (t->speed_hz)
1798c2ecf20Sopenharmony_ci			speed = min(t->speed_hz, spi->max_speed_hz);
1808c2ecf20Sopenharmony_ci	}
1818c2ecf20Sopenharmony_ci
1828c2ecf20Sopenharmony_ci	if (!speed || (speed > spi->max_speed_hz)) {
1838c2ecf20Sopenharmony_ci		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
1848c2ecf20Sopenharmony_ci		return -EINVAL;
1858c2ecf20Sopenharmony_ci	}
1868c2ecf20Sopenharmony_ci
1878c2ecf20Sopenharmony_ci	/* Write new configuration */
1888c2ecf20Sopenharmony_ci	out_8(&hw->regs->mode, cs->mode);
1898c2ecf20Sopenharmony_ci
1908c2ecf20Sopenharmony_ci	/* Set the clock */
1918c2ecf20Sopenharmony_ci	/* opb_freq was already divided by 4 */
1928c2ecf20Sopenharmony_ci	scr = (hw->opb_freq / speed) - 1;
1938c2ecf20Sopenharmony_ci	if (scr > 0)
1948c2ecf20Sopenharmony_ci		cdm = min(scr, 0xff);
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_ci	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_ci	if (in_8(&hw->regs->cdm) != cdm)
1998c2ecf20Sopenharmony_ci		out_8(&hw->regs->cdm, cdm);
2008c2ecf20Sopenharmony_ci
2018c2ecf20Sopenharmony_ci	mutex_lock(&hw->bitbang.lock);
2028c2ecf20Sopenharmony_ci	if (!hw->bitbang.busy) {
2038c2ecf20Sopenharmony_ci		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
2048c2ecf20Sopenharmony_ci		/* Need to ndelay here? */
2058c2ecf20Sopenharmony_ci	}
2068c2ecf20Sopenharmony_ci	mutex_unlock(&hw->bitbang.lock);
2078c2ecf20Sopenharmony_ci
2088c2ecf20Sopenharmony_ci	return 0;
2098c2ecf20Sopenharmony_ci}
2108c2ecf20Sopenharmony_ci
2118c2ecf20Sopenharmony_cistatic int spi_ppc4xx_setup(struct spi_device *spi)
2128c2ecf20Sopenharmony_ci{
2138c2ecf20Sopenharmony_ci	struct spi_ppc4xx_cs *cs = spi->controller_state;
2148c2ecf20Sopenharmony_ci
2158c2ecf20Sopenharmony_ci	if (!spi->max_speed_hz) {
2168c2ecf20Sopenharmony_ci		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
2178c2ecf20Sopenharmony_ci		return -EINVAL;
2188c2ecf20Sopenharmony_ci	}
2198c2ecf20Sopenharmony_ci
2208c2ecf20Sopenharmony_ci	if (cs == NULL) {
2218c2ecf20Sopenharmony_ci		cs = kzalloc(sizeof *cs, GFP_KERNEL);
2228c2ecf20Sopenharmony_ci		if (!cs)
2238c2ecf20Sopenharmony_ci			return -ENOMEM;
2248c2ecf20Sopenharmony_ci		spi->controller_state = cs;
2258c2ecf20Sopenharmony_ci	}
2268c2ecf20Sopenharmony_ci
2278c2ecf20Sopenharmony_ci	/*
2288c2ecf20Sopenharmony_ci	 * We set all bits of the SPI0_MODE register, so,
2298c2ecf20Sopenharmony_ci	 * no need to read-modify-write
2308c2ecf20Sopenharmony_ci	 */
2318c2ecf20Sopenharmony_ci	cs->mode = SPI_PPC4XX_MODE_SPE;
2328c2ecf20Sopenharmony_ci
2338c2ecf20Sopenharmony_ci	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
2348c2ecf20Sopenharmony_ci	case SPI_MODE_0:
2358c2ecf20Sopenharmony_ci		cs->mode |= SPI_CLK_MODE0;
2368c2ecf20Sopenharmony_ci		break;
2378c2ecf20Sopenharmony_ci	case SPI_MODE_1:
2388c2ecf20Sopenharmony_ci		cs->mode |= SPI_CLK_MODE1;
2398c2ecf20Sopenharmony_ci		break;
2408c2ecf20Sopenharmony_ci	case SPI_MODE_2:
2418c2ecf20Sopenharmony_ci		cs->mode |= SPI_CLK_MODE2;
2428c2ecf20Sopenharmony_ci		break;
2438c2ecf20Sopenharmony_ci	case SPI_MODE_3:
2448c2ecf20Sopenharmony_ci		cs->mode |= SPI_CLK_MODE3;
2458c2ecf20Sopenharmony_ci		break;
2468c2ecf20Sopenharmony_ci	}
2478c2ecf20Sopenharmony_ci
2488c2ecf20Sopenharmony_ci	if (spi->mode & SPI_LSB_FIRST)
2498c2ecf20Sopenharmony_ci		cs->mode |= SPI_PPC4XX_MODE_RD;
2508c2ecf20Sopenharmony_ci
2518c2ecf20Sopenharmony_ci	return 0;
2528c2ecf20Sopenharmony_ci}
2538c2ecf20Sopenharmony_ci
2548c2ecf20Sopenharmony_cistatic irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
2558c2ecf20Sopenharmony_ci{
2568c2ecf20Sopenharmony_ci	struct ppc4xx_spi *hw;
2578c2ecf20Sopenharmony_ci	u8 status;
2588c2ecf20Sopenharmony_ci	u8 data;
2598c2ecf20Sopenharmony_ci	unsigned int count;
2608c2ecf20Sopenharmony_ci
2618c2ecf20Sopenharmony_ci	hw = (struct ppc4xx_spi *)dev_id;
2628c2ecf20Sopenharmony_ci
2638c2ecf20Sopenharmony_ci	status = in_8(&hw->regs->sr);
2648c2ecf20Sopenharmony_ci	if (!status)
2658c2ecf20Sopenharmony_ci		return IRQ_NONE;
2668c2ecf20Sopenharmony_ci
2678c2ecf20Sopenharmony_ci	/*
2688c2ecf20Sopenharmony_ci	 * BSY de-asserts one cycle after the transfer is complete.  The
2698c2ecf20Sopenharmony_ci	 * interrupt is asserted after the transfer is complete.  The exact
2708c2ecf20Sopenharmony_ci	 * relationship is not documented, hence this code.
2718c2ecf20Sopenharmony_ci	 */
2728c2ecf20Sopenharmony_ci
2738c2ecf20Sopenharmony_ci	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
2748c2ecf20Sopenharmony_ci		u8 lstatus;
2758c2ecf20Sopenharmony_ci		int cnt = 0;
2768c2ecf20Sopenharmony_ci
2778c2ecf20Sopenharmony_ci		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
2788c2ecf20Sopenharmony_ci		do {
2798c2ecf20Sopenharmony_ci			ndelay(10);
2808c2ecf20Sopenharmony_ci			lstatus = in_8(&hw->regs->sr);
2818c2ecf20Sopenharmony_ci		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
2828c2ecf20Sopenharmony_ci
2838c2ecf20Sopenharmony_ci		if (cnt >= 100) {
2848c2ecf20Sopenharmony_ci			dev_err(hw->dev, "busywait: too many loops!\n");
2858c2ecf20Sopenharmony_ci			complete(&hw->done);
2868c2ecf20Sopenharmony_ci			return IRQ_HANDLED;
2878c2ecf20Sopenharmony_ci		} else {
2888c2ecf20Sopenharmony_ci			/* status is always 1 (RBR) here */
2898c2ecf20Sopenharmony_ci			status = in_8(&hw->regs->sr);
2908c2ecf20Sopenharmony_ci			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
2918c2ecf20Sopenharmony_ci		}
2928c2ecf20Sopenharmony_ci	}
2938c2ecf20Sopenharmony_ci
2948c2ecf20Sopenharmony_ci	count = hw->count;
2958c2ecf20Sopenharmony_ci	hw->count++;
2968c2ecf20Sopenharmony_ci
2978c2ecf20Sopenharmony_ci	/* RBR triggered this interrupt.  Therefore, data must be ready. */
2988c2ecf20Sopenharmony_ci	data = in_8(&hw->regs->rxd);
2998c2ecf20Sopenharmony_ci	if (hw->rx)
3008c2ecf20Sopenharmony_ci		hw->rx[count] = data;
3018c2ecf20Sopenharmony_ci
3028c2ecf20Sopenharmony_ci	count++;
3038c2ecf20Sopenharmony_ci
3048c2ecf20Sopenharmony_ci	if (count < hw->len) {
3058c2ecf20Sopenharmony_ci		data = hw->tx ? hw->tx[count] : 0;
3068c2ecf20Sopenharmony_ci		out_8(&hw->regs->txd, data);
3078c2ecf20Sopenharmony_ci		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
3088c2ecf20Sopenharmony_ci	} else {
3098c2ecf20Sopenharmony_ci		complete(&hw->done);
3108c2ecf20Sopenharmony_ci	}
3118c2ecf20Sopenharmony_ci
3128c2ecf20Sopenharmony_ci	return IRQ_HANDLED;
3138c2ecf20Sopenharmony_ci}
3148c2ecf20Sopenharmony_ci
3158c2ecf20Sopenharmony_cistatic void spi_ppc4xx_cleanup(struct spi_device *spi)
3168c2ecf20Sopenharmony_ci{
3178c2ecf20Sopenharmony_ci	kfree(spi->controller_state);
3188c2ecf20Sopenharmony_ci}
3198c2ecf20Sopenharmony_ci
3208c2ecf20Sopenharmony_cistatic void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
3218c2ecf20Sopenharmony_ci{
3228c2ecf20Sopenharmony_ci	/*
3238c2ecf20Sopenharmony_ci	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
3248c2ecf20Sopenharmony_ci	 * the 2nd I2C bus. We need to enable the the SPI bus before
3258c2ecf20Sopenharmony_ci	 * using it.
3268c2ecf20Sopenharmony_ci	 */
3278c2ecf20Sopenharmony_ci
3288c2ecf20Sopenharmony_ci	/* need to clear bit 14 to enable SPC */
3298c2ecf20Sopenharmony_ci	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
3308c2ecf20Sopenharmony_ci}
3318c2ecf20Sopenharmony_ci
3328c2ecf20Sopenharmony_ci/*
3338c2ecf20Sopenharmony_ci * platform_device layer stuff...
3348c2ecf20Sopenharmony_ci */
3358c2ecf20Sopenharmony_cistatic int spi_ppc4xx_of_probe(struct platform_device *op)
3368c2ecf20Sopenharmony_ci{
3378c2ecf20Sopenharmony_ci	struct ppc4xx_spi *hw;
3388c2ecf20Sopenharmony_ci	struct spi_master *master;
3398c2ecf20Sopenharmony_ci	struct spi_bitbang *bbp;
3408c2ecf20Sopenharmony_ci	struct resource resource;
3418c2ecf20Sopenharmony_ci	struct device_node *np = op->dev.of_node;
3428c2ecf20Sopenharmony_ci	struct device *dev = &op->dev;
3438c2ecf20Sopenharmony_ci	struct device_node *opbnp;
3448c2ecf20Sopenharmony_ci	int ret;
3458c2ecf20Sopenharmony_ci	const unsigned int *clk;
3468c2ecf20Sopenharmony_ci
3478c2ecf20Sopenharmony_ci	master = spi_alloc_master(dev, sizeof *hw);
3488c2ecf20Sopenharmony_ci	if (master == NULL)
3498c2ecf20Sopenharmony_ci		return -ENOMEM;
3508c2ecf20Sopenharmony_ci	master->dev.of_node = np;
3518c2ecf20Sopenharmony_ci	platform_set_drvdata(op, master);
3528c2ecf20Sopenharmony_ci	hw = spi_master_get_devdata(master);
3538c2ecf20Sopenharmony_ci	hw->master = master;
3548c2ecf20Sopenharmony_ci	hw->dev = dev;
3558c2ecf20Sopenharmony_ci
3568c2ecf20Sopenharmony_ci	init_completion(&hw->done);
3578c2ecf20Sopenharmony_ci
3588c2ecf20Sopenharmony_ci	/* Setup the state for the bitbang driver */
3598c2ecf20Sopenharmony_ci	bbp = &hw->bitbang;
3608c2ecf20Sopenharmony_ci	bbp->master = hw->master;
3618c2ecf20Sopenharmony_ci	bbp->setup_transfer = spi_ppc4xx_setupxfer;
3628c2ecf20Sopenharmony_ci	bbp->txrx_bufs = spi_ppc4xx_txrx;
3638c2ecf20Sopenharmony_ci	bbp->use_dma = 0;
3648c2ecf20Sopenharmony_ci	bbp->master->setup = spi_ppc4xx_setup;
3658c2ecf20Sopenharmony_ci	bbp->master->cleanup = spi_ppc4xx_cleanup;
3668c2ecf20Sopenharmony_ci	bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
3678c2ecf20Sopenharmony_ci	bbp->master->use_gpio_descriptors = true;
3688c2ecf20Sopenharmony_ci	/*
3698c2ecf20Sopenharmony_ci	 * The SPI core will count the number of GPIO descriptors to figure
3708c2ecf20Sopenharmony_ci	 * out the number of chip selects available on the platform.
3718c2ecf20Sopenharmony_ci	 */
3728c2ecf20Sopenharmony_ci	bbp->master->num_chipselect = 0;
3738c2ecf20Sopenharmony_ci
3748c2ecf20Sopenharmony_ci	/* the spi->mode bits understood by this driver: */
3758c2ecf20Sopenharmony_ci	bbp->master->mode_bits =
3768c2ecf20Sopenharmony_ci		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
3778c2ecf20Sopenharmony_ci
3788c2ecf20Sopenharmony_ci	/* Get the clock for the OPB */
3798c2ecf20Sopenharmony_ci	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
3808c2ecf20Sopenharmony_ci	if (opbnp == NULL) {
3818c2ecf20Sopenharmony_ci		dev_err(dev, "OPB: cannot find node\n");
3828c2ecf20Sopenharmony_ci		ret = -ENODEV;
3838c2ecf20Sopenharmony_ci		goto free_master;
3848c2ecf20Sopenharmony_ci	}
3858c2ecf20Sopenharmony_ci	/* Get the clock (Hz) for the OPB */
3868c2ecf20Sopenharmony_ci	clk = of_get_property(opbnp, "clock-frequency", NULL);
3878c2ecf20Sopenharmony_ci	if (clk == NULL) {
3888c2ecf20Sopenharmony_ci		dev_err(dev, "OPB: no clock-frequency property set\n");
3898c2ecf20Sopenharmony_ci		of_node_put(opbnp);
3908c2ecf20Sopenharmony_ci		ret = -ENODEV;
3918c2ecf20Sopenharmony_ci		goto free_master;
3928c2ecf20Sopenharmony_ci	}
3938c2ecf20Sopenharmony_ci	hw->opb_freq = *clk;
3948c2ecf20Sopenharmony_ci	hw->opb_freq >>= 2;
3958c2ecf20Sopenharmony_ci	of_node_put(opbnp);
3968c2ecf20Sopenharmony_ci
3978c2ecf20Sopenharmony_ci	ret = of_address_to_resource(np, 0, &resource);
3988c2ecf20Sopenharmony_ci	if (ret) {
3998c2ecf20Sopenharmony_ci		dev_err(dev, "error while parsing device node resource\n");
4008c2ecf20Sopenharmony_ci		goto free_master;
4018c2ecf20Sopenharmony_ci	}
4028c2ecf20Sopenharmony_ci	hw->mapbase = resource.start;
4038c2ecf20Sopenharmony_ci	hw->mapsize = resource_size(&resource);
4048c2ecf20Sopenharmony_ci
4058c2ecf20Sopenharmony_ci	/* Sanity check */
4068c2ecf20Sopenharmony_ci	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
4078c2ecf20Sopenharmony_ci		dev_err(dev, "too small to map registers\n");
4088c2ecf20Sopenharmony_ci		ret = -EINVAL;
4098c2ecf20Sopenharmony_ci		goto free_master;
4108c2ecf20Sopenharmony_ci	}
4118c2ecf20Sopenharmony_ci
4128c2ecf20Sopenharmony_ci	/* Request IRQ */
4138c2ecf20Sopenharmony_ci	hw->irqnum = irq_of_parse_and_map(np, 0);
4148c2ecf20Sopenharmony_ci	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
4158c2ecf20Sopenharmony_ci			  0, "spi_ppc4xx_of", (void *)hw);
4168c2ecf20Sopenharmony_ci	if (ret) {
4178c2ecf20Sopenharmony_ci		dev_err(dev, "unable to allocate interrupt\n");
4188c2ecf20Sopenharmony_ci		goto free_master;
4198c2ecf20Sopenharmony_ci	}
4208c2ecf20Sopenharmony_ci
4218c2ecf20Sopenharmony_ci	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
4228c2ecf20Sopenharmony_ci		dev_err(dev, "resource unavailable\n");
4238c2ecf20Sopenharmony_ci		ret = -EBUSY;
4248c2ecf20Sopenharmony_ci		goto request_mem_error;
4258c2ecf20Sopenharmony_ci	}
4268c2ecf20Sopenharmony_ci
4278c2ecf20Sopenharmony_ci	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
4288c2ecf20Sopenharmony_ci
4298c2ecf20Sopenharmony_ci	if (!hw->regs) {
4308c2ecf20Sopenharmony_ci		dev_err(dev, "unable to memory map registers\n");
4318c2ecf20Sopenharmony_ci		ret = -ENXIO;
4328c2ecf20Sopenharmony_ci		goto map_io_error;
4338c2ecf20Sopenharmony_ci	}
4348c2ecf20Sopenharmony_ci
4358c2ecf20Sopenharmony_ci	spi_ppc4xx_enable(hw);
4368c2ecf20Sopenharmony_ci
4378c2ecf20Sopenharmony_ci	/* Finally register our spi controller */
4388c2ecf20Sopenharmony_ci	dev->dma_mask = 0;
4398c2ecf20Sopenharmony_ci	ret = spi_bitbang_start(bbp);
4408c2ecf20Sopenharmony_ci	if (ret) {
4418c2ecf20Sopenharmony_ci		dev_err(dev, "failed to register SPI master\n");
4428c2ecf20Sopenharmony_ci		goto unmap_regs;
4438c2ecf20Sopenharmony_ci	}
4448c2ecf20Sopenharmony_ci
4458c2ecf20Sopenharmony_ci	dev_info(dev, "driver initialized\n");
4468c2ecf20Sopenharmony_ci
4478c2ecf20Sopenharmony_ci	return 0;
4488c2ecf20Sopenharmony_ci
4498c2ecf20Sopenharmony_ciunmap_regs:
4508c2ecf20Sopenharmony_ci	iounmap(hw->regs);
4518c2ecf20Sopenharmony_cimap_io_error:
4528c2ecf20Sopenharmony_ci	release_mem_region(hw->mapbase, hw->mapsize);
4538c2ecf20Sopenharmony_cirequest_mem_error:
4548c2ecf20Sopenharmony_ci	free_irq(hw->irqnum, hw);
4558c2ecf20Sopenharmony_cifree_master:
4568c2ecf20Sopenharmony_ci	spi_master_put(master);
4578c2ecf20Sopenharmony_ci
4588c2ecf20Sopenharmony_ci	dev_err(dev, "initialization failed\n");
4598c2ecf20Sopenharmony_ci	return ret;
4608c2ecf20Sopenharmony_ci}
4618c2ecf20Sopenharmony_ci
4628c2ecf20Sopenharmony_cistatic int spi_ppc4xx_of_remove(struct platform_device *op)
4638c2ecf20Sopenharmony_ci{
4648c2ecf20Sopenharmony_ci	struct spi_master *master = platform_get_drvdata(op);
4658c2ecf20Sopenharmony_ci	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
4668c2ecf20Sopenharmony_ci
4678c2ecf20Sopenharmony_ci	spi_bitbang_stop(&hw->bitbang);
4688c2ecf20Sopenharmony_ci	release_mem_region(hw->mapbase, hw->mapsize);
4698c2ecf20Sopenharmony_ci	free_irq(hw->irqnum, hw);
4708c2ecf20Sopenharmony_ci	iounmap(hw->regs);
4718c2ecf20Sopenharmony_ci	spi_master_put(master);
4728c2ecf20Sopenharmony_ci	return 0;
4738c2ecf20Sopenharmony_ci}
4748c2ecf20Sopenharmony_ci
4758c2ecf20Sopenharmony_cistatic const struct of_device_id spi_ppc4xx_of_match[] = {
4768c2ecf20Sopenharmony_ci	{ .compatible = "ibm,ppc4xx-spi", },
4778c2ecf20Sopenharmony_ci	{},
4788c2ecf20Sopenharmony_ci};
4798c2ecf20Sopenharmony_ci
4808c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
4818c2ecf20Sopenharmony_ci
4828c2ecf20Sopenharmony_cistatic struct platform_driver spi_ppc4xx_of_driver = {
4838c2ecf20Sopenharmony_ci	.probe = spi_ppc4xx_of_probe,
4848c2ecf20Sopenharmony_ci	.remove = spi_ppc4xx_of_remove,
4858c2ecf20Sopenharmony_ci	.driver = {
4868c2ecf20Sopenharmony_ci		.name = DRIVER_NAME,
4878c2ecf20Sopenharmony_ci		.of_match_table = spi_ppc4xx_of_match,
4888c2ecf20Sopenharmony_ci	},
4898c2ecf20Sopenharmony_ci};
4908c2ecf20Sopenharmony_cimodule_platform_driver(spi_ppc4xx_of_driver);
4918c2ecf20Sopenharmony_ci
4928c2ecf20Sopenharmony_ciMODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
4938c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
4948c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL");
495