1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 *
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 *
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 *
10 * Initial version inspired by:
11 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 *      Sachin Verma <sachin.verma@st.com>
14 */
15
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/device.h>
19#include <linux/ioport.h>
20#include <linux/errno.h>
21#include <linux/interrupt.h>
22#include <linux/spi/spi.h>
23#include <linux/delay.h>
24#include <linux/clk.h>
25#include <linux/err.h>
26#include <linux/amba/bus.h>
27#include <linux/amba/pl022.h>
28#include <linux/io.h>
29#include <linux/slab.h>
30#include <linux/dmaengine.h>
31#include <linux/dma-mapping.h>
32#include <linux/scatterlist.h>
33#include <linux/pm_runtime.h>
34#include <linux/gpio.h>
35#include <linux/of_gpio.h>
36#include <linux/pinctrl/consumer.h>
37
38/*
39 * This macro is used to define some register default values.
40 * reg is masked with mask, the OR:ed with an (again masked)
41 * val shifted sb steps to the left.
42 */
43#define SSP_WRITE_BITS(reg, val, mask, sb) \
44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
45
46/*
47 * This macro is also used to define some default values.
48 * It will just shift val by sb steps to the left and mask
49 * the result with mask.
50 */
51#define GEN_MASK_BITS(val, mask, sb) \
52 (((val)<<(sb)) & (mask))
53
54#define DRIVE_TX		0
55#define DO_NOT_DRIVE_TX		1
56
57#define DO_NOT_QUEUE_DMA	0
58#define QUEUE_DMA		1
59
60#define RX_TRANSFER		1
61#define TX_TRANSFER		2
62
63/*
64 * Macros to access SSP Registers with their offsets
65 */
66#define SSP_CR0(r)	(r + 0x000)
67#define SSP_CR1(r)	(r + 0x004)
68#define SSP_DR(r)	(r + 0x008)
69#define SSP_SR(r)	(r + 0x00C)
70#define SSP_CPSR(r)	(r + 0x010)
71#define SSP_IMSC(r)	(r + 0x014)
72#define SSP_RIS(r)	(r + 0x018)
73#define SSP_MIS(r)	(r + 0x01C)
74#define SSP_ICR(r)	(r + 0x020)
75#define SSP_DMACR(r)	(r + 0x024)
76#define SSP_CSR(r)	(r + 0x030) /* vendor extension */
77#define SSP_ITCR(r)	(r + 0x080)
78#define SSP_ITIP(r)	(r + 0x084)
79#define SSP_ITOP(r)	(r + 0x088)
80#define SSP_TDR(r)	(r + 0x08C)
81
82#define SSP_PID0(r)	(r + 0xFE0)
83#define SSP_PID1(r)	(r + 0xFE4)
84#define SSP_PID2(r)	(r + 0xFE8)
85#define SSP_PID3(r)	(r + 0xFEC)
86
87#define SSP_CID0(r)	(r + 0xFF0)
88#define SSP_CID1(r)	(r + 0xFF4)
89#define SSP_CID2(r)	(r + 0xFF8)
90#define SSP_CID3(r)	(r + 0xFFC)
91
92/*
93 * SSP Control Register 0  - SSP_CR0
94 */
95#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
96#define SSP_CR0_MASK_FRF	(0x3UL << 4)
97#define SSP_CR0_MASK_SPO	(0x1UL << 6)
98#define SSP_CR0_MASK_SPH	(0x1UL << 7)
99#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
100
101/*
102 * The ST version of this block moves som bits
103 * in SSP_CR0 and extends it to 32 bits
104 */
105#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
106#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
107#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
108#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
109
110/*
111 * SSP Control Register 0  - SSP_CR1
112 */
113#define SSP_CR1_MASK_LBM	(0x1UL << 0)
114#define SSP_CR1_MASK_SSE	(0x1UL << 1)
115#define SSP_CR1_MASK_MS		(0x1UL << 2)
116#define SSP_CR1_MASK_SOD	(0x1UL << 3)
117
118/*
119 * The ST version of this block adds some bits
120 * in SSP_CR1
121 */
122#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
123#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
124#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
125#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
126#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
127/* This one is only in the PL023 variant */
128#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
129
130/*
131 * SSP Status Register - SSP_SR
132 */
133#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
134#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
135#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
136#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
137#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
138
139/*
140 * SSP Clock Prescale Register  - SSP_CPSR
141 */
142#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
143
144/*
145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
146 */
147#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
148#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
149#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
150#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
151
152/*
153 * SSP Raw Interrupt Status Register - SSP_RIS
154 */
155/* Receive Overrun Raw Interrupt status */
156#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
157/* Receive Timeout Raw Interrupt status */
158#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
159/* Receive FIFO Raw Interrupt status */
160#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
161/* Transmit FIFO Raw Interrupt status */
162#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
163
164/*
165 * SSP Masked Interrupt Status Register - SSP_MIS
166 */
167/* Receive Overrun Masked Interrupt status */
168#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
169/* Receive Timeout Masked Interrupt status */
170#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
171/* Receive FIFO Masked Interrupt status */
172#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
173/* Transmit FIFO Masked Interrupt status */
174#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
175
176/*
177 * SSP Interrupt Clear Register - SSP_ICR
178 */
179/* Receive Overrun Raw Clear Interrupt bit */
180#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
181/* Receive Timeout Clear Interrupt bit */
182#define SSP_ICR_MASK_RTIC		(0x1UL << 1)
183
184/*
185 * SSP DMA Control Register - SSP_DMACR
186 */
187/* Receive DMA Enable bit */
188#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
189/* Transmit DMA Enable bit */
190#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
191
192/*
193 * SSP Chip Select Control Register - SSP_CSR
194 * (vendor extension)
195 */
196#define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
197
198/*
199 * SSP Integration Test control Register - SSP_ITCR
200 */
201#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
202#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
203
204/*
205 * SSP Integration Test Input Register - SSP_ITIP
206 */
207#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
208#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
209#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
210#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
211#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
212#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
213
214/*
215 * SSP Integration Test output Register - SSP_ITOP
216 */
217#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
218#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
219#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
220#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
221#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
222#define ITOP_MASK_RORINTR		 (0x1UL << 5)
223#define ITOP_MASK_RTINTR		 (0x1UL << 6)
224#define ITOP_MASK_RXINTR		 (0x1UL << 7)
225#define ITOP_MASK_TXINTR		 (0x1UL << 8)
226#define ITOP_MASK_INTR			 (0x1UL << 9)
227#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
228#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
229#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
230#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
231
232/*
233 * SSP Test Data Register - SSP_TDR
234 */
235#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
236
237/*
238 * Message State
239 * we use the spi_message.state (void *) pointer to
240 * hold a single state value, that's why all this
241 * (void *) casting is done here.
242 */
243#define STATE_START			((void *) 0)
244#define STATE_RUNNING			((void *) 1)
245#define STATE_DONE			((void *) 2)
246#define STATE_ERROR			((void *) -1)
247#define STATE_TIMEOUT			((void *) -2)
248
249/*
250 * SSP State - Whether Enabled or Disabled
251 */
252#define SSP_DISABLED			(0)
253#define SSP_ENABLED			(1)
254
255/*
256 * SSP DMA State - Whether DMA Enabled or Disabled
257 */
258#define SSP_DMA_DISABLED		(0)
259#define SSP_DMA_ENABLED			(1)
260
261/*
262 * SSP Clock Defaults
263 */
264#define SSP_DEFAULT_CLKRATE 0x2
265#define SSP_DEFAULT_PRESCALE 0x40
266
267/*
268 * SSP Clock Parameter ranges
269 */
270#define CPSDVR_MIN 0x02
271#define CPSDVR_MAX 0xFE
272#define SCR_MIN 0x00
273#define SCR_MAX 0xFF
274
275/*
276 * SSP Interrupt related Macros
277 */
278#define DEFAULT_SSP_REG_IMSC  0x0UL
279#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280#define ENABLE_ALL_INTERRUPTS ( \
281	SSP_IMSC_MASK_RORIM | \
282	SSP_IMSC_MASK_RTIM | \
283	SSP_IMSC_MASK_RXIM | \
284	SSP_IMSC_MASK_TXIM \
285)
286
287#define CLEAR_ALL_INTERRUPTS  0x3
288
289#define SPI_POLLING_TIMEOUT 1000
290
291/*
292 * The type of reading going on on this chip
293 */
294enum ssp_reading {
295	READING_NULL,
296	READING_U8,
297	READING_U16,
298	READING_U32
299};
300
301/*
302 * The type of writing going on on this chip
303 */
304enum ssp_writing {
305	WRITING_NULL,
306	WRITING_U8,
307	WRITING_U16,
308	WRITING_U32
309};
310
311/**
312 * struct vendor_data - vendor-specific config parameters
313 * for PL022 derivates
314 * @fifodepth: depth of FIFOs (both)
315 * @max_bpw: maximum number of bits per word
316 * @unidir: supports unidirection transfers
317 * @extended_cr: 32 bit wide control register 0 with extra
318 * features and extra features in CR1 as found in the ST variants
319 * @pl023: supports a subset of the ST extensions called "PL023"
320 * @loopback: supports loopback mode
321 * @internal_cs_ctrl: supports chip select control register
322 */
323struct vendor_data {
324	int fifodepth;
325	int max_bpw;
326	bool unidir;
327	bool extended_cr;
328	bool pl023;
329	bool loopback;
330	bool internal_cs_ctrl;
331};
332
333/**
334 * struct pl022 - This is the private SSP driver data structure
335 * @adev: AMBA device model hookup
336 * @vendor: vendor data for the IP block
337 * @phybase: the physical memory where the SSP device resides
338 * @virtbase: the virtual memory where the SSP is mapped
339 * @clk: outgoing clock "SPICLK" for the SPI bus
340 * @master: SPI framework hookup
341 * @master_info: controller-specific data from machine setup
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 * @next_msg_cs_active: the next message in the queue has been examined
347 *  and it was found that it uses the same chip select as the previous
348 *  message, so we left it active after the previous transfer, and it's
349 *  active already.
350 * @tx: current position in TX buffer to be read
351 * @tx_end: end position in TX buffer to be read
352 * @rx: current position in RX buffer to be written
353 * @rx_end: end position in RX buffer to be written
354 * @read: the type of read currently going on
355 * @write: the type of write currently going on
356 * @exp_fifo_level: expected FIFO level
357 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
358 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
359 * @dma_rx_channel: optional channel for RX DMA
360 * @dma_tx_channel: optional channel for TX DMA
361 * @sgt_rx: scattertable for the RX transfer
362 * @sgt_tx: scattertable for the TX transfer
363 * @dummypage: a dummy page used for driving data on the bus with DMA
364 * @dma_running: indicates whether DMA is in operation
365 * @cur_cs: current chip select (gpio)
366 * @chipselects: list of chipselects (gpios)
367 */
368struct pl022 {
369	struct amba_device		*adev;
370	struct vendor_data		*vendor;
371	resource_size_t			phybase;
372	void __iomem			*virtbase;
373	struct clk			*clk;
374	struct spi_master		*master;
375	struct pl022_ssp_controller	*master_info;
376	/* Message per-transfer pump */
377	struct tasklet_struct		pump_transfers;
378	struct spi_message		*cur_msg;
379	struct spi_transfer		*cur_transfer;
380	struct chip_data		*cur_chip;
381	bool				next_msg_cs_active;
382	void				*tx;
383	void				*tx_end;
384	void				*rx;
385	void				*rx_end;
386	enum ssp_reading		read;
387	enum ssp_writing		write;
388	u32				exp_fifo_level;
389	enum ssp_rx_level_trig		rx_lev_trig;
390	enum ssp_tx_level_trig		tx_lev_trig;
391	/* DMA settings */
392#ifdef CONFIG_DMA_ENGINE
393	struct dma_chan			*dma_rx_channel;
394	struct dma_chan			*dma_tx_channel;
395	struct sg_table			sgt_rx;
396	struct sg_table			sgt_tx;
397	char				*dummypage;
398	bool				dma_running;
399#endif
400	int cur_cs;
401	int *chipselects;
402};
403
404/**
405 * struct chip_data - To maintain runtime state of SSP for each client chip
406 * @cr0: Value of control register CR0 of SSP - on later ST variants this
407 *       register is 32 bits wide rather than just 16
408 * @cr1: Value of control register CR1 of SSP
409 * @dmacr: Value of DMA control Register of SSP
410 * @cpsr: Value of Clock prescale register
411 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
412 * @enable_dma: Whether to enable DMA or not
413 * @read: function ptr to be used to read when doing xfer for this chip
414 * @write: function ptr to be used to write when doing xfer for this chip
415 * @cs_control: chip select callback provided by chip
416 * @xfer_type: polling/interrupt/DMA
417 *
418 * Runtime state of the SSP controller, maintained per chip,
419 * This would be set according to the current message that would be served
420 */
421struct chip_data {
422	u32 cr0;
423	u16 cr1;
424	u16 dmacr;
425	u16 cpsr;
426	u8 n_bytes;
427	bool enable_dma;
428	enum ssp_reading read;
429	enum ssp_writing write;
430	void (*cs_control) (u32 command);
431	int xfer_type;
432};
433
434/**
435 * null_cs_control - Dummy chip select function
436 * @command: select/delect the chip
437 *
438 * If no chip select function is provided by client this is used as dummy
439 * chip select
440 */
441static void null_cs_control(u32 command)
442{
443	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
444}
445
446/**
447 * internal_cs_control - Control chip select signals via SSP_CSR.
448 * @pl022: SSP driver private data structure
449 * @command: select/delect the chip
450 *
451 * Used on controller with internal chip select control via SSP_CSR register
452 * (vendor extension). Each of the 5 LSB in the register controls one chip
453 * select signal.
454 */
455static void internal_cs_control(struct pl022 *pl022, u32 command)
456{
457	u32 tmp;
458
459	tmp = readw(SSP_CSR(pl022->virtbase));
460	if (command == SSP_CHIP_SELECT)
461		tmp &= ~BIT(pl022->cur_cs);
462	else
463		tmp |= BIT(pl022->cur_cs);
464	writew(tmp, SSP_CSR(pl022->virtbase));
465}
466
467static void pl022_cs_control(struct pl022 *pl022, u32 command)
468{
469	if (pl022->vendor->internal_cs_ctrl)
470		internal_cs_control(pl022, command);
471	else if (gpio_is_valid(pl022->cur_cs))
472		gpio_set_value(pl022->cur_cs, command);
473	else
474		pl022->cur_chip->cs_control(command);
475}
476
477/**
478 * giveback - current spi_message is over, schedule next message and call
479 * callback of this message. Assumes that caller already
480 * set message->status; dma and pio irqs are blocked
481 * @pl022: SSP driver private data structure
482 */
483static void giveback(struct pl022 *pl022)
484{
485	struct spi_transfer *last_transfer;
486	pl022->next_msg_cs_active = false;
487
488	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
489					struct spi_transfer, transfer_list);
490
491	/* Delay if requested before any change in chip select */
492	/*
493	 * FIXME: This runs in interrupt context.
494	 * Is this really smart?
495	 */
496	spi_transfer_delay_exec(last_transfer);
497
498	if (!last_transfer->cs_change) {
499		struct spi_message *next_msg;
500
501		/*
502		 * cs_change was not set. We can keep the chip select
503		 * enabled if there is message in the queue and it is
504		 * for the same spi device.
505		 *
506		 * We cannot postpone this until pump_messages, because
507		 * after calling msg->complete (below) the driver that
508		 * sent the current message could be unloaded, which
509		 * could invalidate the cs_control() callback...
510		 */
511		/* get a pointer to the next message, if any */
512		next_msg = spi_get_next_queued_message(pl022->master);
513
514		/*
515		 * see if the next and current messages point
516		 * to the same spi device.
517		 */
518		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
519			next_msg = NULL;
520		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
521			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
522		else
523			pl022->next_msg_cs_active = true;
524
525	}
526
527	pl022->cur_msg = NULL;
528	pl022->cur_transfer = NULL;
529	pl022->cur_chip = NULL;
530
531	/* disable the SPI/SSP operation */
532	writew((readw(SSP_CR1(pl022->virtbase)) &
533		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
534
535	spi_finalize_current_message(pl022->master);
536}
537
538/**
539 * flush - flush the FIFO to reach a clean state
540 * @pl022: SSP driver private data structure
541 */
542static int flush(struct pl022 *pl022)
543{
544	unsigned long limit = loops_per_jiffy << 1;
545
546	dev_dbg(&pl022->adev->dev, "flush\n");
547	do {
548		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
549			readw(SSP_DR(pl022->virtbase));
550	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
551
552	pl022->exp_fifo_level = 0;
553
554	return limit;
555}
556
557/**
558 * restore_state - Load configuration of current chip
559 * @pl022: SSP driver private data structure
560 */
561static void restore_state(struct pl022 *pl022)
562{
563	struct chip_data *chip = pl022->cur_chip;
564
565	if (pl022->vendor->extended_cr)
566		writel(chip->cr0, SSP_CR0(pl022->virtbase));
567	else
568		writew(chip->cr0, SSP_CR0(pl022->virtbase));
569	writew(chip->cr1, SSP_CR1(pl022->virtbase));
570	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
571	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
572	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
573	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
574}
575
576/*
577 * Default SSP Register Values
578 */
579#define DEFAULT_SSP_REG_CR0 ( \
580	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
581	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
582	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
583	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
584	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
585)
586
587/* ST versions have slightly different bit layout */
588#define DEFAULT_SSP_REG_CR0_ST ( \
589	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
590	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
591	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
592	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
593	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
594	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
595	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
596)
597
598/* The PL023 version is slightly different again */
599#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
600	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
601	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
602	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
603	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
604)
605
606#define DEFAULT_SSP_REG_CR1 ( \
607	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
608	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
609	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
610	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
611)
612
613/* ST versions extend this register to use all 16 bits */
614#define DEFAULT_SSP_REG_CR1_ST ( \
615	DEFAULT_SSP_REG_CR1 | \
616	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
617	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
618	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
619	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
620	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
621)
622
623/*
624 * The PL023 variant has further differences: no loopback mode, no microwire
625 * support, and a new clock feedback delay setting.
626 */
627#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
628	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
629	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
630	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
631	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
632	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
633	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
634	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
635	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
636)
637
638#define DEFAULT_SSP_REG_CPSR ( \
639	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
640)
641
642#define DEFAULT_SSP_REG_DMACR (\
643	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
644	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
645)
646
647/**
648 * load_ssp_default_config - Load default configuration for SSP
649 * @pl022: SSP driver private data structure
650 */
651static void load_ssp_default_config(struct pl022 *pl022)
652{
653	if (pl022->vendor->pl023) {
654		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
655		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
656	} else if (pl022->vendor->extended_cr) {
657		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
658		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
659	} else {
660		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
661		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
662	}
663	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
664	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
665	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
666	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
667}
668
669/*
670 * This will write to TX and read from RX according to the parameters
671 * set in pl022.
672 */
673static void readwriter(struct pl022 *pl022)
674{
675
676	/*
677	 * The FIFO depth is different between primecell variants.
678	 * I believe filling in too much in the FIFO might cause
679	 * errons in 8bit wide transfers on ARM variants (just 8 words
680	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
681	 *
682	 * To prevent this issue, the TX FIFO is only filled to the
683	 * unused RX FIFO fill length, regardless of what the TX
684	 * FIFO status flag indicates.
685	 */
686	dev_dbg(&pl022->adev->dev,
687		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
688		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
689
690	/* Read as much as you can */
691	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
692	       && (pl022->rx < pl022->rx_end)) {
693		switch (pl022->read) {
694		case READING_NULL:
695			readw(SSP_DR(pl022->virtbase));
696			break;
697		case READING_U8:
698			*(u8 *) (pl022->rx) =
699				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
700			break;
701		case READING_U16:
702			*(u16 *) (pl022->rx) =
703				(u16) readw(SSP_DR(pl022->virtbase));
704			break;
705		case READING_U32:
706			*(u32 *) (pl022->rx) =
707				readl(SSP_DR(pl022->virtbase));
708			break;
709		}
710		pl022->rx += (pl022->cur_chip->n_bytes);
711		pl022->exp_fifo_level--;
712	}
713	/*
714	 * Write as much as possible up to the RX FIFO size
715	 */
716	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
717	       && (pl022->tx < pl022->tx_end)) {
718		switch (pl022->write) {
719		case WRITING_NULL:
720			writew(0x0, SSP_DR(pl022->virtbase));
721			break;
722		case WRITING_U8:
723			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
724			break;
725		case WRITING_U16:
726			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
727			break;
728		case WRITING_U32:
729			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
730			break;
731		}
732		pl022->tx += (pl022->cur_chip->n_bytes);
733		pl022->exp_fifo_level++;
734		/*
735		 * This inner reader takes care of things appearing in the RX
736		 * FIFO as we're transmitting. This will happen a lot since the
737		 * clock starts running when you put things into the TX FIFO,
738		 * and then things are continuously clocked into the RX FIFO.
739		 */
740		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
741		       && (pl022->rx < pl022->rx_end)) {
742			switch (pl022->read) {
743			case READING_NULL:
744				readw(SSP_DR(pl022->virtbase));
745				break;
746			case READING_U8:
747				*(u8 *) (pl022->rx) =
748					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
749				break;
750			case READING_U16:
751				*(u16 *) (pl022->rx) =
752					(u16) readw(SSP_DR(pl022->virtbase));
753				break;
754			case READING_U32:
755				*(u32 *) (pl022->rx) =
756					readl(SSP_DR(pl022->virtbase));
757				break;
758			}
759			pl022->rx += (pl022->cur_chip->n_bytes);
760			pl022->exp_fifo_level--;
761		}
762	}
763	/*
764	 * When we exit here the TX FIFO should be full and the RX FIFO
765	 * should be empty
766	 */
767}
768
769/**
770 * next_transfer - Move to the Next transfer in the current spi message
771 * @pl022: SSP driver private data structure
772 *
773 * This function moves though the linked list of spi transfers in the
774 * current spi message and returns with the state of current spi
775 * message i.e whether its last transfer is done(STATE_DONE) or
776 * Next transfer is ready(STATE_RUNNING)
777 */
778static void *next_transfer(struct pl022 *pl022)
779{
780	struct spi_message *msg = pl022->cur_msg;
781	struct spi_transfer *trans = pl022->cur_transfer;
782
783	/* Move to next transfer */
784	if (trans->transfer_list.next != &msg->transfers) {
785		pl022->cur_transfer =
786		    list_entry(trans->transfer_list.next,
787			       struct spi_transfer, transfer_list);
788		return STATE_RUNNING;
789	}
790	return STATE_DONE;
791}
792
793/*
794 * This DMA functionality is only compiled in if we have
795 * access to the generic DMA devices/DMA engine.
796 */
797#ifdef CONFIG_DMA_ENGINE
798static void unmap_free_dma_scatter(struct pl022 *pl022)
799{
800	/* Unmap and free the SG tables */
801	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
802		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
803	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
804		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
805	sg_free_table(&pl022->sgt_rx);
806	sg_free_table(&pl022->sgt_tx);
807}
808
809static void dma_callback(void *data)
810{
811	struct pl022 *pl022 = data;
812	struct spi_message *msg = pl022->cur_msg;
813
814	BUG_ON(!pl022->sgt_rx.sgl);
815
816#ifdef VERBOSE_DEBUG
817	/*
818	 * Optionally dump out buffers to inspect contents, this is
819	 * good if you want to convince yourself that the loopback
820	 * read/write contents are the same, when adopting to a new
821	 * DMA engine.
822	 */
823	{
824		struct scatterlist *sg;
825		unsigned int i;
826
827		dma_sync_sg_for_cpu(&pl022->adev->dev,
828				    pl022->sgt_rx.sgl,
829				    pl022->sgt_rx.nents,
830				    DMA_FROM_DEVICE);
831
832		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
833			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
834			print_hex_dump(KERN_ERR, "SPI RX: ",
835				       DUMP_PREFIX_OFFSET,
836				       16,
837				       1,
838				       sg_virt(sg),
839				       sg_dma_len(sg),
840				       1);
841		}
842		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
843			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
844			print_hex_dump(KERN_ERR, "SPI TX: ",
845				       DUMP_PREFIX_OFFSET,
846				       16,
847				       1,
848				       sg_virt(sg),
849				       sg_dma_len(sg),
850				       1);
851		}
852	}
853#endif
854
855	unmap_free_dma_scatter(pl022);
856
857	/* Update total bytes transferred */
858	msg->actual_length += pl022->cur_transfer->len;
859	/* Move to next transfer */
860	msg->state = next_transfer(pl022);
861	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
862		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
863	tasklet_schedule(&pl022->pump_transfers);
864}
865
866static void setup_dma_scatter(struct pl022 *pl022,
867			      void *buffer,
868			      unsigned int length,
869			      struct sg_table *sgtab)
870{
871	struct scatterlist *sg;
872	int bytesleft = length;
873	void *bufp = buffer;
874	int mapbytes;
875	int i;
876
877	if (buffer) {
878		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
879			/*
880			 * If there are less bytes left than what fits
881			 * in the current page (plus page alignment offset)
882			 * we just feed in this, else we stuff in as much
883			 * as we can.
884			 */
885			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
886				mapbytes = bytesleft;
887			else
888				mapbytes = PAGE_SIZE - offset_in_page(bufp);
889			sg_set_page(sg, virt_to_page(bufp),
890				    mapbytes, offset_in_page(bufp));
891			bufp += mapbytes;
892			bytesleft -= mapbytes;
893			dev_dbg(&pl022->adev->dev,
894				"set RX/TX target page @ %p, %d bytes, %d left\n",
895				bufp, mapbytes, bytesleft);
896		}
897	} else {
898		/* Map the dummy buffer on every page */
899		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
900			if (bytesleft < PAGE_SIZE)
901				mapbytes = bytesleft;
902			else
903				mapbytes = PAGE_SIZE;
904			sg_set_page(sg, virt_to_page(pl022->dummypage),
905				    mapbytes, 0);
906			bytesleft -= mapbytes;
907			dev_dbg(&pl022->adev->dev,
908				"set RX/TX to dummy page %d bytes, %d left\n",
909				mapbytes, bytesleft);
910
911		}
912	}
913	BUG_ON(bytesleft);
914}
915
916/**
917 * configure_dma - configures the channels for the next transfer
918 * @pl022: SSP driver's private data structure
919 */
920static int configure_dma(struct pl022 *pl022)
921{
922	struct dma_slave_config rx_conf = {
923		.src_addr = SSP_DR(pl022->phybase),
924		.direction = DMA_DEV_TO_MEM,
925		.device_fc = false,
926	};
927	struct dma_slave_config tx_conf = {
928		.dst_addr = SSP_DR(pl022->phybase),
929		.direction = DMA_MEM_TO_DEV,
930		.device_fc = false,
931	};
932	unsigned int pages;
933	int ret;
934	int rx_sglen, tx_sglen;
935	struct dma_chan *rxchan = pl022->dma_rx_channel;
936	struct dma_chan *txchan = pl022->dma_tx_channel;
937	struct dma_async_tx_descriptor *rxdesc;
938	struct dma_async_tx_descriptor *txdesc;
939
940	/* Check that the channels are available */
941	if (!rxchan || !txchan)
942		return -ENODEV;
943
944	/*
945	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
946	 * Notice that the DMA engine uses one-to-one mapping. Since we can
947	 * not trigger on 2 elements this needs explicit mapping rather than
948	 * calculation.
949	 */
950	switch (pl022->rx_lev_trig) {
951	case SSP_RX_1_OR_MORE_ELEM:
952		rx_conf.src_maxburst = 1;
953		break;
954	case SSP_RX_4_OR_MORE_ELEM:
955		rx_conf.src_maxburst = 4;
956		break;
957	case SSP_RX_8_OR_MORE_ELEM:
958		rx_conf.src_maxburst = 8;
959		break;
960	case SSP_RX_16_OR_MORE_ELEM:
961		rx_conf.src_maxburst = 16;
962		break;
963	case SSP_RX_32_OR_MORE_ELEM:
964		rx_conf.src_maxburst = 32;
965		break;
966	default:
967		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
968		break;
969	}
970
971	switch (pl022->tx_lev_trig) {
972	case SSP_TX_1_OR_MORE_EMPTY_LOC:
973		tx_conf.dst_maxburst = 1;
974		break;
975	case SSP_TX_4_OR_MORE_EMPTY_LOC:
976		tx_conf.dst_maxburst = 4;
977		break;
978	case SSP_TX_8_OR_MORE_EMPTY_LOC:
979		tx_conf.dst_maxburst = 8;
980		break;
981	case SSP_TX_16_OR_MORE_EMPTY_LOC:
982		tx_conf.dst_maxburst = 16;
983		break;
984	case SSP_TX_32_OR_MORE_EMPTY_LOC:
985		tx_conf.dst_maxburst = 32;
986		break;
987	default:
988		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
989		break;
990	}
991
992	switch (pl022->read) {
993	case READING_NULL:
994		/* Use the same as for writing */
995		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
996		break;
997	case READING_U8:
998		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
999		break;
1000	case READING_U16:
1001		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1002		break;
1003	case READING_U32:
1004		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1005		break;
1006	}
1007
1008	switch (pl022->write) {
1009	case WRITING_NULL:
1010		/* Use the same as for reading */
1011		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1012		break;
1013	case WRITING_U8:
1014		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1015		break;
1016	case WRITING_U16:
1017		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1018		break;
1019	case WRITING_U32:
1020		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1021		break;
1022	}
1023
1024	/* SPI pecularity: we need to read and write the same width */
1025	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1026		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1027	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1028		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1029	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1030
1031	dmaengine_slave_config(rxchan, &rx_conf);
1032	dmaengine_slave_config(txchan, &tx_conf);
1033
1034	/* Create sglists for the transfers */
1035	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1036	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1037
1038	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1039	if (ret)
1040		goto err_alloc_rx_sg;
1041
1042	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1043	if (ret)
1044		goto err_alloc_tx_sg;
1045
1046	/* Fill in the scatterlists for the RX+TX buffers */
1047	setup_dma_scatter(pl022, pl022->rx,
1048			  pl022->cur_transfer->len, &pl022->sgt_rx);
1049	setup_dma_scatter(pl022, pl022->tx,
1050			  pl022->cur_transfer->len, &pl022->sgt_tx);
1051
1052	/* Map DMA buffers */
1053	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1054			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1055	if (!rx_sglen)
1056		goto err_rx_sgmap;
1057
1058	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1059			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1060	if (!tx_sglen)
1061		goto err_tx_sgmap;
1062
1063	/* Send both scatterlists */
1064	rxdesc = dmaengine_prep_slave_sg(rxchan,
1065				      pl022->sgt_rx.sgl,
1066				      rx_sglen,
1067				      DMA_DEV_TO_MEM,
1068				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1069	if (!rxdesc)
1070		goto err_rxdesc;
1071
1072	txdesc = dmaengine_prep_slave_sg(txchan,
1073				      pl022->sgt_tx.sgl,
1074				      tx_sglen,
1075				      DMA_MEM_TO_DEV,
1076				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1077	if (!txdesc)
1078		goto err_txdesc;
1079
1080	/* Put the callback on the RX transfer only, that should finish last */
1081	rxdesc->callback = dma_callback;
1082	rxdesc->callback_param = pl022;
1083
1084	/* Submit and fire RX and TX with TX last so we're ready to read! */
1085	dmaengine_submit(rxdesc);
1086	dmaengine_submit(txdesc);
1087	dma_async_issue_pending(rxchan);
1088	dma_async_issue_pending(txchan);
1089	pl022->dma_running = true;
1090
1091	return 0;
1092
1093err_txdesc:
1094	dmaengine_terminate_all(txchan);
1095err_rxdesc:
1096	dmaengine_terminate_all(rxchan);
1097	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1098		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1099err_tx_sgmap:
1100	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1101		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1102err_rx_sgmap:
1103	sg_free_table(&pl022->sgt_tx);
1104err_alloc_tx_sg:
1105	sg_free_table(&pl022->sgt_rx);
1106err_alloc_rx_sg:
1107	return -ENOMEM;
1108}
1109
1110static int pl022_dma_probe(struct pl022 *pl022)
1111{
1112	dma_cap_mask_t mask;
1113
1114	/* Try to acquire a generic DMA engine slave channel */
1115	dma_cap_zero(mask);
1116	dma_cap_set(DMA_SLAVE, mask);
1117	/*
1118	 * We need both RX and TX channels to do DMA, else do none
1119	 * of them.
1120	 */
1121	pl022->dma_rx_channel = dma_request_channel(mask,
1122					    pl022->master_info->dma_filter,
1123					    pl022->master_info->dma_rx_param);
1124	if (!pl022->dma_rx_channel) {
1125		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1126		goto err_no_rxchan;
1127	}
1128
1129	pl022->dma_tx_channel = dma_request_channel(mask,
1130					    pl022->master_info->dma_filter,
1131					    pl022->master_info->dma_tx_param);
1132	if (!pl022->dma_tx_channel) {
1133		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1134		goto err_no_txchan;
1135	}
1136
1137	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1138	if (!pl022->dummypage)
1139		goto err_no_dummypage;
1140
1141	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1142		 dma_chan_name(pl022->dma_rx_channel),
1143		 dma_chan_name(pl022->dma_tx_channel));
1144
1145	return 0;
1146
1147err_no_dummypage:
1148	dma_release_channel(pl022->dma_tx_channel);
1149err_no_txchan:
1150	dma_release_channel(pl022->dma_rx_channel);
1151	pl022->dma_rx_channel = NULL;
1152err_no_rxchan:
1153	dev_err(&pl022->adev->dev,
1154			"Failed to work in dma mode, work without dma!\n");
1155	return -ENODEV;
1156}
1157
1158static int pl022_dma_autoprobe(struct pl022 *pl022)
1159{
1160	struct device *dev = &pl022->adev->dev;
1161	struct dma_chan *chan;
1162	int err;
1163
1164	/* automatically configure DMA channels from platform, normally using DT */
1165	chan = dma_request_chan(dev, "rx");
1166	if (IS_ERR(chan)) {
1167		err = PTR_ERR(chan);
1168		goto err_no_rxchan;
1169	}
1170
1171	pl022->dma_rx_channel = chan;
1172
1173	chan = dma_request_chan(dev, "tx");
1174	if (IS_ERR(chan)) {
1175		err = PTR_ERR(chan);
1176		goto err_no_txchan;
1177	}
1178
1179	pl022->dma_tx_channel = chan;
1180
1181	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1182	if (!pl022->dummypage) {
1183		err = -ENOMEM;
1184		goto err_no_dummypage;
1185	}
1186
1187	return 0;
1188
1189err_no_dummypage:
1190	dma_release_channel(pl022->dma_tx_channel);
1191	pl022->dma_tx_channel = NULL;
1192err_no_txchan:
1193	dma_release_channel(pl022->dma_rx_channel);
1194	pl022->dma_rx_channel = NULL;
1195err_no_rxchan:
1196	return err;
1197}
1198
1199static void terminate_dma(struct pl022 *pl022)
1200{
1201	struct dma_chan *rxchan = pl022->dma_rx_channel;
1202	struct dma_chan *txchan = pl022->dma_tx_channel;
1203
1204	dmaengine_terminate_all(rxchan);
1205	dmaengine_terminate_all(txchan);
1206	unmap_free_dma_scatter(pl022);
1207	pl022->dma_running = false;
1208}
1209
1210static void pl022_dma_remove(struct pl022 *pl022)
1211{
1212	if (pl022->dma_running)
1213		terminate_dma(pl022);
1214	if (pl022->dma_tx_channel)
1215		dma_release_channel(pl022->dma_tx_channel);
1216	if (pl022->dma_rx_channel)
1217		dma_release_channel(pl022->dma_rx_channel);
1218	kfree(pl022->dummypage);
1219}
1220
1221#else
1222static inline int configure_dma(struct pl022 *pl022)
1223{
1224	return -ENODEV;
1225}
1226
1227static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1228{
1229	return 0;
1230}
1231
1232static inline int pl022_dma_probe(struct pl022 *pl022)
1233{
1234	return 0;
1235}
1236
1237static inline void pl022_dma_remove(struct pl022 *pl022)
1238{
1239}
1240#endif
1241
1242/**
1243 * pl022_interrupt_handler - Interrupt handler for SSP controller
1244 * @irq: IRQ number
1245 * @dev_id: Local device data
1246 *
1247 * This function handles interrupts generated for an interrupt based transfer.
1248 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1249 * current message's state as STATE_ERROR and schedule the tasklet
1250 * pump_transfers which will do the postprocessing of the current message by
1251 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1252 * more data, and writes data in TX FIFO till it is not full. If we complete
1253 * the transfer we move to the next transfer and schedule the tasklet.
1254 */
1255static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1256{
1257	struct pl022 *pl022 = dev_id;
1258	struct spi_message *msg = pl022->cur_msg;
1259	u16 irq_status = 0;
1260
1261	if (unlikely(!msg)) {
1262		dev_err(&pl022->adev->dev,
1263			"bad message state in interrupt handler");
1264		/* Never fail */
1265		return IRQ_HANDLED;
1266	}
1267
1268	/* Read the Interrupt Status Register */
1269	irq_status = readw(SSP_MIS(pl022->virtbase));
1270
1271	if (unlikely(!irq_status))
1272		return IRQ_NONE;
1273
1274	/*
1275	 * This handles the FIFO interrupts, the timeout
1276	 * interrupts are flatly ignored, they cannot be
1277	 * trusted.
1278	 */
1279	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1280		/*
1281		 * Overrun interrupt - bail out since our Data has been
1282		 * corrupted
1283		 */
1284		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1285		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1286			dev_err(&pl022->adev->dev,
1287				"RXFIFO is full\n");
1288
1289		/*
1290		 * Disable and clear interrupts, disable SSP,
1291		 * mark message with bad status so it can be
1292		 * retried.
1293		 */
1294		writew(DISABLE_ALL_INTERRUPTS,
1295		       SSP_IMSC(pl022->virtbase));
1296		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1297		writew((readw(SSP_CR1(pl022->virtbase)) &
1298			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1299		msg->state = STATE_ERROR;
1300
1301		/* Schedule message queue handler */
1302		tasklet_schedule(&pl022->pump_transfers);
1303		return IRQ_HANDLED;
1304	}
1305
1306	readwriter(pl022);
1307
1308	if (pl022->tx == pl022->tx_end) {
1309		/* Disable Transmit interrupt, enable receive interrupt */
1310		writew((readw(SSP_IMSC(pl022->virtbase)) &
1311		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1312		       SSP_IMSC(pl022->virtbase));
1313	}
1314
1315	/*
1316	 * Since all transactions must write as much as shall be read,
1317	 * we can conclude the entire transaction once RX is complete.
1318	 * At this point, all TX will always be finished.
1319	 */
1320	if (pl022->rx >= pl022->rx_end) {
1321		writew(DISABLE_ALL_INTERRUPTS,
1322		       SSP_IMSC(pl022->virtbase));
1323		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1324		if (unlikely(pl022->rx > pl022->rx_end)) {
1325			dev_warn(&pl022->adev->dev, "read %u surplus "
1326				 "bytes (did you request an odd "
1327				 "number of bytes on a 16bit bus?)\n",
1328				 (u32) (pl022->rx - pl022->rx_end));
1329		}
1330		/* Update total bytes transferred */
1331		msg->actual_length += pl022->cur_transfer->len;
1332		/* Move to next transfer */
1333		msg->state = next_transfer(pl022);
1334		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1335			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1336		tasklet_schedule(&pl022->pump_transfers);
1337		return IRQ_HANDLED;
1338	}
1339
1340	return IRQ_HANDLED;
1341}
1342
1343/*
1344 * This sets up the pointers to memory for the next message to
1345 * send out on the SPI bus.
1346 */
1347static int set_up_next_transfer(struct pl022 *pl022,
1348				struct spi_transfer *transfer)
1349{
1350	int residue;
1351
1352	/* Sanity check the message for this bus width */
1353	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1354	if (unlikely(residue != 0)) {
1355		dev_err(&pl022->adev->dev,
1356			"message of %u bytes to transmit but the current "
1357			"chip bus has a data width of %u bytes!\n",
1358			pl022->cur_transfer->len,
1359			pl022->cur_chip->n_bytes);
1360		dev_err(&pl022->adev->dev, "skipping this message\n");
1361		return -EIO;
1362	}
1363	pl022->tx = (void *)transfer->tx_buf;
1364	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1365	pl022->rx = (void *)transfer->rx_buf;
1366	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1367	pl022->write =
1368	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1369	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1370	return 0;
1371}
1372
1373/**
1374 * pump_transfers - Tasklet function which schedules next transfer
1375 * when running in interrupt or DMA transfer mode.
1376 * @data: SSP driver private data structure
1377 *
1378 */
1379static void pump_transfers(unsigned long data)
1380{
1381	struct pl022 *pl022 = (struct pl022 *) data;
1382	struct spi_message *message = NULL;
1383	struct spi_transfer *transfer = NULL;
1384	struct spi_transfer *previous = NULL;
1385
1386	/* Get current state information */
1387	message = pl022->cur_msg;
1388	transfer = pl022->cur_transfer;
1389
1390	/* Handle for abort */
1391	if (message->state == STATE_ERROR) {
1392		message->status = -EIO;
1393		giveback(pl022);
1394		return;
1395	}
1396
1397	/* Handle end of message */
1398	if (message->state == STATE_DONE) {
1399		message->status = 0;
1400		giveback(pl022);
1401		return;
1402	}
1403
1404	/* Delay if requested at end of transfer before CS change */
1405	if (message->state == STATE_RUNNING) {
1406		previous = list_entry(transfer->transfer_list.prev,
1407					struct spi_transfer,
1408					transfer_list);
1409		/*
1410		 * FIXME: This runs in interrupt context.
1411		 * Is this really smart?
1412		 */
1413		spi_transfer_delay_exec(previous);
1414
1415		/* Reselect chip select only if cs_change was requested */
1416		if (previous->cs_change)
1417			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1418	} else {
1419		/* STATE_START */
1420		message->state = STATE_RUNNING;
1421	}
1422
1423	if (set_up_next_transfer(pl022, transfer)) {
1424		message->state = STATE_ERROR;
1425		message->status = -EIO;
1426		giveback(pl022);
1427		return;
1428	}
1429	/* Flush the FIFOs and let's go! */
1430	flush(pl022);
1431
1432	if (pl022->cur_chip->enable_dma) {
1433		if (configure_dma(pl022)) {
1434			dev_dbg(&pl022->adev->dev,
1435				"configuration of DMA failed, fall back to interrupt mode\n");
1436			goto err_config_dma;
1437		}
1438		return;
1439	}
1440
1441err_config_dma:
1442	/* enable all interrupts except RX */
1443	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1444}
1445
1446static void do_interrupt_dma_transfer(struct pl022 *pl022)
1447{
1448	/*
1449	 * Default is to enable all interrupts except RX -
1450	 * this will be enabled once TX is complete
1451	 */
1452	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1453
1454	/* Enable target chip, if not already active */
1455	if (!pl022->next_msg_cs_active)
1456		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1457
1458	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1459		/* Error path */
1460		pl022->cur_msg->state = STATE_ERROR;
1461		pl022->cur_msg->status = -EIO;
1462		giveback(pl022);
1463		return;
1464	}
1465	/* If we're using DMA, set up DMA here */
1466	if (pl022->cur_chip->enable_dma) {
1467		/* Configure DMA transfer */
1468		if (configure_dma(pl022)) {
1469			dev_dbg(&pl022->adev->dev,
1470				"configuration of DMA failed, fall back to interrupt mode\n");
1471			goto err_config_dma;
1472		}
1473		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1474		irqflags = DISABLE_ALL_INTERRUPTS;
1475	}
1476err_config_dma:
1477	/* Enable SSP, turn on interrupts */
1478	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1479	       SSP_CR1(pl022->virtbase));
1480	writew(irqflags, SSP_IMSC(pl022->virtbase));
1481}
1482
1483static void print_current_status(struct pl022 *pl022)
1484{
1485	u32 read_cr0;
1486	u16 read_cr1, read_dmacr, read_sr;
1487
1488	if (pl022->vendor->extended_cr)
1489		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1490	else
1491		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1492	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1493	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1494	read_sr = readw(SSP_SR(pl022->virtbase));
1495
1496	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1497	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1498	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1499	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1500	dev_warn(&pl022->adev->dev,
1501			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1502			pl022->exp_fifo_level,
1503			pl022->vendor->fifodepth);
1504
1505}
1506
1507static void do_polling_transfer(struct pl022 *pl022)
1508{
1509	struct spi_message *message = NULL;
1510	struct spi_transfer *transfer = NULL;
1511	struct spi_transfer *previous = NULL;
1512	unsigned long time, timeout;
1513
1514	message = pl022->cur_msg;
1515
1516	while (message->state != STATE_DONE) {
1517		/* Handle for abort */
1518		if (message->state == STATE_ERROR)
1519			break;
1520		transfer = pl022->cur_transfer;
1521
1522		/* Delay if requested at end of transfer */
1523		if (message->state == STATE_RUNNING) {
1524			previous =
1525			    list_entry(transfer->transfer_list.prev,
1526				       struct spi_transfer, transfer_list);
1527			spi_transfer_delay_exec(previous);
1528			if (previous->cs_change)
1529				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1530		} else {
1531			/* STATE_START */
1532			message->state = STATE_RUNNING;
1533			if (!pl022->next_msg_cs_active)
1534				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1535		}
1536
1537		/* Configuration Changing Per Transfer */
1538		if (set_up_next_transfer(pl022, transfer)) {
1539			/* Error path */
1540			message->state = STATE_ERROR;
1541			break;
1542		}
1543		/* Flush FIFOs and enable SSP */
1544		flush(pl022);
1545		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1546		       SSP_CR1(pl022->virtbase));
1547
1548		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1549
1550		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1551		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1552			time = jiffies;
1553			readwriter(pl022);
1554			if (time_after(time, timeout)) {
1555				dev_warn(&pl022->adev->dev,
1556				"%s: timeout!\n", __func__);
1557				message->state = STATE_TIMEOUT;
1558				print_current_status(pl022);
1559				goto out;
1560			}
1561			cpu_relax();
1562		}
1563
1564		/* Update total byte transferred */
1565		message->actual_length += pl022->cur_transfer->len;
1566		/* Move to next transfer */
1567		message->state = next_transfer(pl022);
1568		if (message->state != STATE_DONE
1569		    && pl022->cur_transfer->cs_change)
1570			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1571	}
1572out:
1573	/* Handle end of message */
1574	if (message->state == STATE_DONE)
1575		message->status = 0;
1576	else if (message->state == STATE_TIMEOUT)
1577		message->status = -EAGAIN;
1578	else
1579		message->status = -EIO;
1580
1581	giveback(pl022);
1582	return;
1583}
1584
1585static int pl022_transfer_one_message(struct spi_master *master,
1586				      struct spi_message *msg)
1587{
1588	struct pl022 *pl022 = spi_master_get_devdata(master);
1589
1590	/* Initial message state */
1591	pl022->cur_msg = msg;
1592	msg->state = STATE_START;
1593
1594	pl022->cur_transfer = list_entry(msg->transfers.next,
1595					 struct spi_transfer, transfer_list);
1596
1597	/* Setup the SPI using the per chip configuration */
1598	pl022->cur_chip = spi_get_ctldata(msg->spi);
1599	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1600
1601	restore_state(pl022);
1602	flush(pl022);
1603
1604	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1605		do_polling_transfer(pl022);
1606	else
1607		do_interrupt_dma_transfer(pl022);
1608
1609	return 0;
1610}
1611
1612static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1613{
1614	struct pl022 *pl022 = spi_master_get_devdata(master);
1615
1616	/* nothing more to do - disable spi/ssp and power off */
1617	writew((readw(SSP_CR1(pl022->virtbase)) &
1618		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1619
1620	return 0;
1621}
1622
1623static int verify_controller_parameters(struct pl022 *pl022,
1624				struct pl022_config_chip const *chip_info)
1625{
1626	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1627	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1628		dev_err(&pl022->adev->dev,
1629			"interface is configured incorrectly\n");
1630		return -EINVAL;
1631	}
1632	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1633	    (!pl022->vendor->unidir)) {
1634		dev_err(&pl022->adev->dev,
1635			"unidirectional mode not supported in this "
1636			"hardware version\n");
1637		return -EINVAL;
1638	}
1639	if ((chip_info->hierarchy != SSP_MASTER)
1640	    && (chip_info->hierarchy != SSP_SLAVE)) {
1641		dev_err(&pl022->adev->dev,
1642			"hierarchy is configured incorrectly\n");
1643		return -EINVAL;
1644	}
1645	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1646	    && (chip_info->com_mode != DMA_TRANSFER)
1647	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1648		dev_err(&pl022->adev->dev,
1649			"Communication mode is configured incorrectly\n");
1650		return -EINVAL;
1651	}
1652	switch (chip_info->rx_lev_trig) {
1653	case SSP_RX_1_OR_MORE_ELEM:
1654	case SSP_RX_4_OR_MORE_ELEM:
1655	case SSP_RX_8_OR_MORE_ELEM:
1656		/* These are always OK, all variants can handle this */
1657		break;
1658	case SSP_RX_16_OR_MORE_ELEM:
1659		if (pl022->vendor->fifodepth < 16) {
1660			dev_err(&pl022->adev->dev,
1661			"RX FIFO Trigger Level is configured incorrectly\n");
1662			return -EINVAL;
1663		}
1664		break;
1665	case SSP_RX_32_OR_MORE_ELEM:
1666		if (pl022->vendor->fifodepth < 32) {
1667			dev_err(&pl022->adev->dev,
1668			"RX FIFO Trigger Level is configured incorrectly\n");
1669			return -EINVAL;
1670		}
1671		break;
1672	default:
1673		dev_err(&pl022->adev->dev,
1674			"RX FIFO Trigger Level is configured incorrectly\n");
1675		return -EINVAL;
1676	}
1677	switch (chip_info->tx_lev_trig) {
1678	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1679	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1680	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1681		/* These are always OK, all variants can handle this */
1682		break;
1683	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1684		if (pl022->vendor->fifodepth < 16) {
1685			dev_err(&pl022->adev->dev,
1686			"TX FIFO Trigger Level is configured incorrectly\n");
1687			return -EINVAL;
1688		}
1689		break;
1690	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1691		if (pl022->vendor->fifodepth < 32) {
1692			dev_err(&pl022->adev->dev,
1693			"TX FIFO Trigger Level is configured incorrectly\n");
1694			return -EINVAL;
1695		}
1696		break;
1697	default:
1698		dev_err(&pl022->adev->dev,
1699			"TX FIFO Trigger Level is configured incorrectly\n");
1700		return -EINVAL;
1701	}
1702	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1703		if ((chip_info->ctrl_len < SSP_BITS_4)
1704		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1705			dev_err(&pl022->adev->dev,
1706				"CTRL LEN is configured incorrectly\n");
1707			return -EINVAL;
1708		}
1709		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1710		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1711			dev_err(&pl022->adev->dev,
1712				"Wait State is configured incorrectly\n");
1713			return -EINVAL;
1714		}
1715		/* Half duplex is only available in the ST Micro version */
1716		if (pl022->vendor->extended_cr) {
1717			if ((chip_info->duplex !=
1718			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1719			    && (chip_info->duplex !=
1720				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1721				dev_err(&pl022->adev->dev,
1722					"Microwire duplex mode is configured incorrectly\n");
1723				return -EINVAL;
1724			}
1725		} else {
1726			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1727				dev_err(&pl022->adev->dev,
1728					"Microwire half duplex mode requested,"
1729					" but this is only available in the"
1730					" ST version of PL022\n");
1731				return -EINVAL;
1732			}
1733		}
1734	}
1735	return 0;
1736}
1737
1738static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1739{
1740	return rate / (cpsdvsr * (1 + scr));
1741}
1742
1743static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1744				    ssp_clock_params * clk_freq)
1745{
1746	/* Lets calculate the frequency parameters */
1747	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1748	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1749		best_scr = 0, tmp, found = 0;
1750
1751	rate = clk_get_rate(pl022->clk);
1752	/* cpsdvscr = 2 & scr 0 */
1753	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1754	/* cpsdvsr = 254 & scr = 255 */
1755	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1756
1757	if (freq > max_tclk)
1758		dev_warn(&pl022->adev->dev,
1759			"Max speed that can be programmed is %d Hz, you requested %d\n",
1760			max_tclk, freq);
1761
1762	if (freq < min_tclk) {
1763		dev_err(&pl022->adev->dev,
1764			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1765			freq, min_tclk);
1766		return -EINVAL;
1767	}
1768
1769	/*
1770	 * best_freq will give closest possible available rate (<= requested
1771	 * freq) for all values of scr & cpsdvsr.
1772	 */
1773	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1774		while (scr <= SCR_MAX) {
1775			tmp = spi_rate(rate, cpsdvsr, scr);
1776
1777			if (tmp > freq) {
1778				/* we need lower freq */
1779				scr++;
1780				continue;
1781			}
1782
1783			/*
1784			 * If found exact value, mark found and break.
1785			 * If found more closer value, update and break.
1786			 */
1787			if (tmp > best_freq) {
1788				best_freq = tmp;
1789				best_cpsdvsr = cpsdvsr;
1790				best_scr = scr;
1791
1792				if (tmp == freq)
1793					found = 1;
1794			}
1795			/*
1796			 * increased scr will give lower rates, which are not
1797			 * required
1798			 */
1799			break;
1800		}
1801		cpsdvsr += 2;
1802		scr = SCR_MIN;
1803	}
1804
1805	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1806			freq);
1807
1808	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1809	clk_freq->scr = (u8) (best_scr & 0xFF);
1810	dev_dbg(&pl022->adev->dev,
1811		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1812		freq, best_freq);
1813	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1814		clk_freq->cpsdvsr, clk_freq->scr);
1815
1816	return 0;
1817}
1818
1819/*
1820 * A piece of default chip info unless the platform
1821 * supplies it.
1822 */
1823static const struct pl022_config_chip pl022_default_chip_info = {
1824	.com_mode = POLLING_TRANSFER,
1825	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1826	.hierarchy = SSP_SLAVE,
1827	.slave_tx_disable = DO_NOT_DRIVE_TX,
1828	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1829	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1830	.ctrl_len = SSP_BITS_8,
1831	.wait_state = SSP_MWIRE_WAIT_ZERO,
1832	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1833	.cs_control = null_cs_control,
1834};
1835
1836/**
1837 * pl022_setup - setup function registered to SPI master framework
1838 * @spi: spi device which is requesting setup
1839 *
1840 * This function is registered to the SPI framework for this SPI master
1841 * controller. If it is the first time when setup is called by this device,
1842 * this function will initialize the runtime state for this chip and save
1843 * the same in the device structure. Else it will update the runtime info
1844 * with the updated chip info. Nothing is really being written to the
1845 * controller hardware here, that is not done until the actual transfer
1846 * commence.
1847 */
1848static int pl022_setup(struct spi_device *spi)
1849{
1850	struct pl022_config_chip const *chip_info;
1851	struct pl022_config_chip chip_info_dt;
1852	struct chip_data *chip;
1853	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1854	int status = 0;
1855	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1856	unsigned int bits = spi->bits_per_word;
1857	u32 tmp;
1858	struct device_node *np = spi->dev.of_node;
1859
1860	if (!spi->max_speed_hz)
1861		return -EINVAL;
1862
1863	/* Get controller_state if one is supplied */
1864	chip = spi_get_ctldata(spi);
1865
1866	if (chip == NULL) {
1867		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1868		if (!chip)
1869			return -ENOMEM;
1870		dev_dbg(&spi->dev,
1871			"allocated memory for controller's runtime state\n");
1872	}
1873
1874	/* Get controller data if one is supplied */
1875	chip_info = spi->controller_data;
1876
1877	if (chip_info == NULL) {
1878		if (np) {
1879			chip_info_dt = pl022_default_chip_info;
1880
1881			chip_info_dt.hierarchy = SSP_MASTER;
1882			of_property_read_u32(np, "pl022,interface",
1883				&chip_info_dt.iface);
1884			of_property_read_u32(np, "pl022,com-mode",
1885				&chip_info_dt.com_mode);
1886			of_property_read_u32(np, "pl022,rx-level-trig",
1887				&chip_info_dt.rx_lev_trig);
1888			of_property_read_u32(np, "pl022,tx-level-trig",
1889				&chip_info_dt.tx_lev_trig);
1890			of_property_read_u32(np, "pl022,ctrl-len",
1891				&chip_info_dt.ctrl_len);
1892			of_property_read_u32(np, "pl022,wait-state",
1893				&chip_info_dt.wait_state);
1894			of_property_read_u32(np, "pl022,duplex",
1895				&chip_info_dt.duplex);
1896
1897			chip_info = &chip_info_dt;
1898		} else {
1899			chip_info = &pl022_default_chip_info;
1900			/* spi_board_info.controller_data not is supplied */
1901			dev_dbg(&spi->dev,
1902				"using default controller_data settings\n");
1903		}
1904	} else
1905		dev_dbg(&spi->dev,
1906			"using user supplied controller_data settings\n");
1907
1908	/*
1909	 * We can override with custom divisors, else we use the board
1910	 * frequency setting
1911	 */
1912	if ((0 == chip_info->clk_freq.cpsdvsr)
1913	    && (0 == chip_info->clk_freq.scr)) {
1914		status = calculate_effective_freq(pl022,
1915						  spi->max_speed_hz,
1916						  &clk_freq);
1917		if (status < 0)
1918			goto err_config_params;
1919	} else {
1920		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1921		if ((clk_freq.cpsdvsr % 2) != 0)
1922			clk_freq.cpsdvsr =
1923				clk_freq.cpsdvsr - 1;
1924	}
1925	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1926	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1927		status = -EINVAL;
1928		dev_err(&spi->dev,
1929			"cpsdvsr is configured incorrectly\n");
1930		goto err_config_params;
1931	}
1932
1933	status = verify_controller_parameters(pl022, chip_info);
1934	if (status) {
1935		dev_err(&spi->dev, "controller data is incorrect");
1936		goto err_config_params;
1937	}
1938
1939	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1940	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1941
1942	/* Now set controller state based on controller data */
1943	chip->xfer_type = chip_info->com_mode;
1944	if (!chip_info->cs_control) {
1945		chip->cs_control = null_cs_control;
1946		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1947			dev_warn(&spi->dev,
1948				 "invalid chip select\n");
1949	} else
1950		chip->cs_control = chip_info->cs_control;
1951
1952	/* Check bits per word with vendor specific range */
1953	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1954		status = -ENOTSUPP;
1955		dev_err(&spi->dev, "illegal data size for this controller!\n");
1956		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1957				pl022->vendor->max_bpw);
1958		goto err_config_params;
1959	} else if (bits <= 8) {
1960		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1961		chip->n_bytes = 1;
1962		chip->read = READING_U8;
1963		chip->write = WRITING_U8;
1964	} else if (bits <= 16) {
1965		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1966		chip->n_bytes = 2;
1967		chip->read = READING_U16;
1968		chip->write = WRITING_U16;
1969	} else {
1970		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1971		chip->n_bytes = 4;
1972		chip->read = READING_U32;
1973		chip->write = WRITING_U32;
1974	}
1975
1976	/* Now Initialize all register settings required for this chip */
1977	chip->cr0 = 0;
1978	chip->cr1 = 0;
1979	chip->dmacr = 0;
1980	chip->cpsr = 0;
1981	if ((chip_info->com_mode == DMA_TRANSFER)
1982	    && ((pl022->master_info)->enable_dma)) {
1983		chip->enable_dma = true;
1984		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1985		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1986			       SSP_DMACR_MASK_RXDMAE, 0);
1987		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1988			       SSP_DMACR_MASK_TXDMAE, 1);
1989	} else {
1990		chip->enable_dma = false;
1991		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1992		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1993			       SSP_DMACR_MASK_RXDMAE, 0);
1994		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1995			       SSP_DMACR_MASK_TXDMAE, 1);
1996	}
1997
1998	chip->cpsr = clk_freq.cpsdvsr;
1999
2000	/* Special setup for the ST micro extended control registers */
2001	if (pl022->vendor->extended_cr) {
2002		u32 etx;
2003
2004		if (pl022->vendor->pl023) {
2005			/* These bits are only in the PL023 */
2006			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2007				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2008		} else {
2009			/* These bits are in the PL022 but not PL023 */
2010			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2011				       SSP_CR0_MASK_HALFDUP_ST, 5);
2012			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2013				       SSP_CR0_MASK_CSS_ST, 16);
2014			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2015				       SSP_CR0_MASK_FRF_ST, 21);
2016			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2017				       SSP_CR1_MASK_MWAIT_ST, 6);
2018		}
2019		SSP_WRITE_BITS(chip->cr0, bits - 1,
2020			       SSP_CR0_MASK_DSS_ST, 0);
2021
2022		if (spi->mode & SPI_LSB_FIRST) {
2023			tmp = SSP_RX_LSB;
2024			etx = SSP_TX_LSB;
2025		} else {
2026			tmp = SSP_RX_MSB;
2027			etx = SSP_TX_MSB;
2028		}
2029		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2030		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2031		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2032			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2033		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2034			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2035	} else {
2036		SSP_WRITE_BITS(chip->cr0, bits - 1,
2037			       SSP_CR0_MASK_DSS, 0);
2038		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2039			       SSP_CR0_MASK_FRF, 4);
2040	}
2041
2042	/* Stuff that is common for all versions */
2043	if (spi->mode & SPI_CPOL)
2044		tmp = SSP_CLK_POL_IDLE_HIGH;
2045	else
2046		tmp = SSP_CLK_POL_IDLE_LOW;
2047	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2048
2049	if (spi->mode & SPI_CPHA)
2050		tmp = SSP_CLK_SECOND_EDGE;
2051	else
2052		tmp = SSP_CLK_FIRST_EDGE;
2053	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2054
2055	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2056	/* Loopback is available on all versions except PL023 */
2057	if (pl022->vendor->loopback) {
2058		if (spi->mode & SPI_LOOP)
2059			tmp = LOOPBACK_ENABLED;
2060		else
2061			tmp = LOOPBACK_DISABLED;
2062		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2063	}
2064	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2065	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2066	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2067		3);
2068
2069	/* Save controller_state */
2070	spi_set_ctldata(spi, chip);
2071	return status;
2072 err_config_params:
2073	spi_set_ctldata(spi, NULL);
2074	kfree(chip);
2075	return status;
2076}
2077
2078/**
2079 * pl022_cleanup - cleanup function registered to SPI master framework
2080 * @spi: spi device which is requesting cleanup
2081 *
2082 * This function is registered to the SPI framework for this SPI master
2083 * controller. It will free the runtime state of chip.
2084 */
2085static void pl022_cleanup(struct spi_device *spi)
2086{
2087	struct chip_data *chip = spi_get_ctldata(spi);
2088
2089	spi_set_ctldata(spi, NULL);
2090	kfree(chip);
2091}
2092
2093static struct pl022_ssp_controller *
2094pl022_platform_data_dt_get(struct device *dev)
2095{
2096	struct device_node *np = dev->of_node;
2097	struct pl022_ssp_controller *pd;
2098	u32 tmp = 0;
2099
2100	if (!np) {
2101		dev_err(dev, "no dt node defined\n");
2102		return NULL;
2103	}
2104
2105	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2106	if (!pd)
2107		return NULL;
2108
2109	pd->bus_id = -1;
2110	pd->enable_dma = 1;
2111	of_property_read_u32(np, "num-cs", &tmp);
2112	pd->num_chipselect = tmp;
2113	of_property_read_u32(np, "pl022,autosuspend-delay",
2114			     &pd->autosuspend_delay);
2115	pd->rt = of_property_read_bool(np, "pl022,rt");
2116
2117	return pd;
2118}
2119
2120static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2121{
2122	struct device *dev = &adev->dev;
2123	struct pl022_ssp_controller *platform_info =
2124			dev_get_platdata(&adev->dev);
2125	struct spi_master *master;
2126	struct pl022 *pl022 = NULL;	/*Data for this driver */
2127	struct device_node *np = adev->dev.of_node;
2128	int status = 0, i, num_cs;
2129
2130	dev_info(&adev->dev,
2131		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2132	if (!platform_info && IS_ENABLED(CONFIG_OF))
2133		platform_info = pl022_platform_data_dt_get(dev);
2134
2135	if (!platform_info) {
2136		dev_err(dev, "probe: no platform data defined\n");
2137		return -ENODEV;
2138	}
2139
2140	if (platform_info->num_chipselect) {
2141		num_cs = platform_info->num_chipselect;
2142	} else {
2143		dev_err(dev, "probe: no chip select defined\n");
2144		return -ENODEV;
2145	}
2146
2147	/* Allocate master with space for data */
2148	master = spi_alloc_master(dev, sizeof(struct pl022));
2149	if (master == NULL) {
2150		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2151		return -ENOMEM;
2152	}
2153
2154	pl022 = spi_master_get_devdata(master);
2155	pl022->master = master;
2156	pl022->master_info = platform_info;
2157	pl022->adev = adev;
2158	pl022->vendor = id->data;
2159	pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2160					  GFP_KERNEL);
2161	if (!pl022->chipselects) {
2162		status = -ENOMEM;
2163		goto err_no_mem;
2164	}
2165
2166	/*
2167	 * Bus Number Which has been Assigned to this SSP controller
2168	 * on this board
2169	 */
2170	master->bus_num = platform_info->bus_id;
2171	master->num_chipselect = num_cs;
2172	master->cleanup = pl022_cleanup;
2173	master->setup = pl022_setup;
2174	master->auto_runtime_pm = true;
2175	master->transfer_one_message = pl022_transfer_one_message;
2176	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2177	master->rt = platform_info->rt;
2178	master->dev.of_node = dev->of_node;
2179
2180	if (platform_info->num_chipselect && platform_info->chipselects) {
2181		for (i = 0; i < num_cs; i++)
2182			pl022->chipselects[i] = platform_info->chipselects[i];
2183	} else if (pl022->vendor->internal_cs_ctrl) {
2184		for (i = 0; i < num_cs; i++)
2185			pl022->chipselects[i] = i;
2186	} else if (IS_ENABLED(CONFIG_OF)) {
2187		for (i = 0; i < num_cs; i++) {
2188			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2189
2190			if (cs_gpio == -EPROBE_DEFER) {
2191				status = -EPROBE_DEFER;
2192				goto err_no_gpio;
2193			}
2194
2195			pl022->chipselects[i] = cs_gpio;
2196
2197			if (gpio_is_valid(cs_gpio)) {
2198				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2199					dev_err(&adev->dev,
2200						"could not request %d gpio\n",
2201						cs_gpio);
2202				else if (gpio_direction_output(cs_gpio, 1))
2203					dev_err(&adev->dev,
2204						"could not set gpio %d as output\n",
2205						cs_gpio);
2206			}
2207		}
2208	}
2209
2210	/*
2211	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2212	 * always MS bit first on the original pl022.
2213	 */
2214	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2215	if (pl022->vendor->extended_cr)
2216		master->mode_bits |= SPI_LSB_FIRST;
2217
2218	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2219
2220	status = amba_request_regions(adev, NULL);
2221	if (status)
2222		goto err_no_ioregion;
2223
2224	pl022->phybase = adev->res.start;
2225	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2226				       resource_size(&adev->res));
2227	if (pl022->virtbase == NULL) {
2228		status = -ENOMEM;
2229		goto err_no_ioremap;
2230	}
2231	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2232		&adev->res.start, pl022->virtbase);
2233
2234	pl022->clk = devm_clk_get(&adev->dev, NULL);
2235	if (IS_ERR(pl022->clk)) {
2236		status = PTR_ERR(pl022->clk);
2237		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2238		goto err_no_clk;
2239	}
2240
2241	status = clk_prepare_enable(pl022->clk);
2242	if (status) {
2243		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2244		goto err_no_clk_en;
2245	}
2246
2247	/* Initialize transfer pump */
2248	tasklet_init(&pl022->pump_transfers, pump_transfers,
2249		     (unsigned long)pl022);
2250
2251	/* Disable SSP */
2252	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2253	       SSP_CR1(pl022->virtbase));
2254	load_ssp_default_config(pl022);
2255
2256	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2257				  0, "pl022", pl022);
2258	if (status < 0) {
2259		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2260		goto err_no_irq;
2261	}
2262
2263	/* Get DMA channels, try autoconfiguration first */
2264	status = pl022_dma_autoprobe(pl022);
2265	if (status == -EPROBE_DEFER) {
2266		dev_dbg(dev, "deferring probe to get DMA channel\n");
2267		goto err_no_irq;
2268	}
2269
2270	/* If that failed, use channels from platform_info */
2271	if (status == 0)
2272		platform_info->enable_dma = 1;
2273	else if (platform_info->enable_dma) {
2274		status = pl022_dma_probe(pl022);
2275		if (status != 0)
2276			platform_info->enable_dma = 0;
2277	}
2278
2279	/* Register with the SPI framework */
2280	amba_set_drvdata(adev, pl022);
2281	status = devm_spi_register_master(&adev->dev, master);
2282	if (status != 0) {
2283		dev_err(&adev->dev,
2284			"probe - problem registering spi master\n");
2285		goto err_spi_register;
2286	}
2287	dev_dbg(dev, "probe succeeded\n");
2288
2289	/* let runtime pm put suspend */
2290	if (platform_info->autosuspend_delay > 0) {
2291		dev_info(&adev->dev,
2292			"will use autosuspend for runtime pm, delay %dms\n",
2293			platform_info->autosuspend_delay);
2294		pm_runtime_set_autosuspend_delay(dev,
2295			platform_info->autosuspend_delay);
2296		pm_runtime_use_autosuspend(dev);
2297	}
2298	pm_runtime_put(dev);
2299
2300	return 0;
2301
2302 err_spi_register:
2303	if (platform_info->enable_dma)
2304		pl022_dma_remove(pl022);
2305 err_no_irq:
2306	clk_disable_unprepare(pl022->clk);
2307 err_no_clk_en:
2308 err_no_clk:
2309 err_no_ioremap:
2310	amba_release_regions(adev);
2311 err_no_ioregion:
2312 err_no_gpio:
2313 err_no_mem:
2314	spi_master_put(master);
2315	return status;
2316}
2317
2318static void
2319pl022_remove(struct amba_device *adev)
2320{
2321	struct pl022 *pl022 = amba_get_drvdata(adev);
2322
2323	if (!pl022)
2324		return;
2325
2326	/*
2327	 * undo pm_runtime_put() in probe.  I assume that we're not
2328	 * accessing the primecell here.
2329	 */
2330	pm_runtime_get_noresume(&adev->dev);
2331
2332	load_ssp_default_config(pl022);
2333	if (pl022->master_info->enable_dma)
2334		pl022_dma_remove(pl022);
2335
2336	clk_disable_unprepare(pl022->clk);
2337	amba_release_regions(adev);
2338	tasklet_disable(&pl022->pump_transfers);
2339}
2340
2341#ifdef CONFIG_PM_SLEEP
2342static int pl022_suspend(struct device *dev)
2343{
2344	struct pl022 *pl022 = dev_get_drvdata(dev);
2345	int ret;
2346
2347	ret = spi_master_suspend(pl022->master);
2348	if (ret)
2349		return ret;
2350
2351	ret = pm_runtime_force_suspend(dev);
2352	if (ret) {
2353		spi_master_resume(pl022->master);
2354		return ret;
2355	}
2356
2357	pinctrl_pm_select_sleep_state(dev);
2358
2359	dev_dbg(dev, "suspended\n");
2360	return 0;
2361}
2362
2363static int pl022_resume(struct device *dev)
2364{
2365	struct pl022 *pl022 = dev_get_drvdata(dev);
2366	int ret;
2367
2368	ret = pm_runtime_force_resume(dev);
2369	if (ret)
2370		dev_err(dev, "problem resuming\n");
2371
2372	/* Start the queue running */
2373	ret = spi_master_resume(pl022->master);
2374	if (!ret)
2375		dev_dbg(dev, "resumed\n");
2376
2377	return ret;
2378}
2379#endif
2380
2381#ifdef CONFIG_PM
2382static int pl022_runtime_suspend(struct device *dev)
2383{
2384	struct pl022 *pl022 = dev_get_drvdata(dev);
2385
2386	clk_disable_unprepare(pl022->clk);
2387	pinctrl_pm_select_idle_state(dev);
2388
2389	return 0;
2390}
2391
2392static int pl022_runtime_resume(struct device *dev)
2393{
2394	struct pl022 *pl022 = dev_get_drvdata(dev);
2395
2396	pinctrl_pm_select_default_state(dev);
2397	clk_prepare_enable(pl022->clk);
2398
2399	return 0;
2400}
2401#endif
2402
2403static const struct dev_pm_ops pl022_dev_pm_ops = {
2404	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2405	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2406};
2407
2408static struct vendor_data vendor_arm = {
2409	.fifodepth = 8,
2410	.max_bpw = 16,
2411	.unidir = false,
2412	.extended_cr = false,
2413	.pl023 = false,
2414	.loopback = true,
2415	.internal_cs_ctrl = false,
2416};
2417
2418static struct vendor_data vendor_st = {
2419	.fifodepth = 32,
2420	.max_bpw = 32,
2421	.unidir = false,
2422	.extended_cr = true,
2423	.pl023 = false,
2424	.loopback = true,
2425	.internal_cs_ctrl = false,
2426};
2427
2428static struct vendor_data vendor_st_pl023 = {
2429	.fifodepth = 32,
2430	.max_bpw = 32,
2431	.unidir = false,
2432	.extended_cr = true,
2433	.pl023 = true,
2434	.loopback = false,
2435	.internal_cs_ctrl = false,
2436};
2437
2438static struct vendor_data vendor_lsi = {
2439	.fifodepth = 8,
2440	.max_bpw = 16,
2441	.unidir = false,
2442	.extended_cr = false,
2443	.pl023 = false,
2444	.loopback = true,
2445	.internal_cs_ctrl = true,
2446};
2447
2448static const struct amba_id pl022_ids[] = {
2449	{
2450		/*
2451		 * ARM PL022 variant, this has a 16bit wide
2452		 * and 8 locations deep TX/RX FIFO
2453		 */
2454		.id	= 0x00041022,
2455		.mask	= 0x000fffff,
2456		.data	= &vendor_arm,
2457	},
2458	{
2459		/*
2460		 * ST Micro derivative, this has 32bit wide
2461		 * and 32 locations deep TX/RX FIFO
2462		 */
2463		.id	= 0x01080022,
2464		.mask	= 0xffffffff,
2465		.data	= &vendor_st,
2466	},
2467	{
2468		/*
2469		 * ST-Ericsson derivative "PL023" (this is not
2470		 * an official ARM number), this is a PL022 SSP block
2471		 * stripped to SPI mode only, it has 32bit wide
2472		 * and 32 locations deep TX/RX FIFO but no extended
2473		 * CR0/CR1 register
2474		 */
2475		.id	= 0x00080023,
2476		.mask	= 0xffffffff,
2477		.data	= &vendor_st_pl023,
2478	},
2479	{
2480		/*
2481		 * PL022 variant that has a chip select control register whih
2482		 * allows control of 5 output signals nCS[0:4].
2483		 */
2484		.id	= 0x000b6022,
2485		.mask	= 0x000fffff,
2486		.data	= &vendor_lsi,
2487	},
2488	{ 0, 0 },
2489};
2490
2491MODULE_DEVICE_TABLE(amba, pl022_ids);
2492
2493static struct amba_driver pl022_driver = {
2494	.drv = {
2495		.name	= "ssp-pl022",
2496		.pm	= &pl022_dev_pm_ops,
2497	},
2498	.id_table	= pl022_ids,
2499	.probe		= pl022_probe,
2500	.remove		= pl022_remove,
2501};
2502
2503static int __init pl022_init(void)
2504{
2505	return amba_driver_register(&pl022_driver);
2506}
2507subsys_initcall(pl022_init);
2508
2509static void __exit pl022_exit(void)
2510{
2511	amba_driver_unregister(&pl022_driver);
2512}
2513module_exit(pl022_exit);
2514
2515MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2516MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2517MODULE_LICENSE("GPL");
2518