1// SPDX-License-Identifier: GPL-2.0+
2
3/*
4 * NXP FlexSPI(FSPI) controller driver.
5 *
6 * Copyright 2019-2020 NXP
7 * Copyright 2020 Puresoftware Ltd.
8 *
9 * FlexSPI is a flexsible SPI host controller which supports two SPI
10 * channels and up to 4 external devices. Each channel supports
11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12 * data lines).
13 *
14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
15 * LUT registers are a look-up-table for sequences of instructions.
16 * A valid sequence consists of four LUT registers.
17 * Maximum 32 LUT sequences can be programmed simultaneously.
18 *
19 * LUTs are being created at run-time based on the commands passed
20 * from the spi-mem framework, thus using single LUT index.
21 *
22 * Software triggered Flash read/write access by IP Bus.
23 *
24 * Memory mapped read access by AHB Bus.
25 *
26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27 *
28 * Author:
29 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30 *     Boris Brezillon <bbrezillon@kernel.org>
31 *     Frieder Schrempf <frieder.schrempf@kontron.de>
32 */
33
34#include <linux/acpi.h>
35#include <linux/bitops.h>
36#include <linux/clk.h>
37#include <linux/completion.h>
38#include <linux/delay.h>
39#include <linux/err.h>
40#include <linux/errno.h>
41#include <linux/interrupt.h>
42#include <linux/io.h>
43#include <linux/iopoll.h>
44#include <linux/jiffies.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/mutex.h>
48#include <linux/of.h>
49#include <linux/of_device.h>
50#include <linux/platform_device.h>
51#include <linux/pm_qos.h>
52#include <linux/sizes.h>
53
54#include <linux/spi/spi.h>
55#include <linux/spi/spi-mem.h>
56
57/*
58 * The driver only uses one single LUT entry, that is updated on
59 * each call of exec_op(). Index 0 is preset at boot with a basic
60 * read operation, so let's use the last entry (31).
61 */
62#define	SEQID_LUT			31
63
64/* Registers used by the driver */
65#define FSPI_MCR0			0x00
66#define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
67#define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
68#define FSPI_MCR0_LEARN_EN		BIT(15)
69#define FSPI_MCR0_SCRFRUN_EN		BIT(14)
70#define FSPI_MCR0_OCTCOMB_EN		BIT(13)
71#define FSPI_MCR0_DOZE_EN		BIT(12)
72#define FSPI_MCR0_HSEN			BIT(11)
73#define FSPI_MCR0_SERCLKDIV		BIT(8)
74#define FSPI_MCR0_ATDF_EN		BIT(7)
75#define FSPI_MCR0_ARDF_EN		BIT(6)
76#define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
77#define FSPI_MCR0_END_CFG(x)		((x) << 2)
78#define FSPI_MCR0_MDIS			BIT(1)
79#define FSPI_MCR0_SWRST			BIT(0)
80
81#define FSPI_MCR1			0x04
82#define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
83#define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
84
85#define FSPI_MCR2			0x08
86#define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
87#define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
88#define FSPI_MCR2_CLRLRPHS		BIT(14)
89#define FSPI_MCR2_ABRDATSZ		BIT(8)
90#define FSPI_MCR2_ABRLEARN		BIT(7)
91#define FSPI_MCR2_ABR_READ		BIT(6)
92#define FSPI_MCR2_ABRWRITE		BIT(5)
93#define FSPI_MCR2_ABRDUMMY		BIT(4)
94#define FSPI_MCR2_ABR_MODE		BIT(3)
95#define FSPI_MCR2_ABRCADDR		BIT(2)
96#define FSPI_MCR2_ABRRADDR		BIT(1)
97#define FSPI_MCR2_ABR_CMD		BIT(0)
98
99#define FSPI_AHBCR			0x0c
100#define FSPI_AHBCR_RDADDROPT		BIT(6)
101#define FSPI_AHBCR_PREF_EN		BIT(5)
102#define FSPI_AHBCR_BUFF_EN		BIT(4)
103#define FSPI_AHBCR_CACH_EN		BIT(3)
104#define FSPI_AHBCR_CLRTXBUF		BIT(2)
105#define FSPI_AHBCR_CLRRXBUF		BIT(1)
106#define FSPI_AHBCR_PAR_EN		BIT(0)
107
108#define FSPI_INTEN			0x10
109#define FSPI_INTEN_SCLKSBWR		BIT(9)
110#define FSPI_INTEN_SCLKSBRD		BIT(8)
111#define FSPI_INTEN_DATALRNFL		BIT(7)
112#define FSPI_INTEN_IPTXWE		BIT(6)
113#define FSPI_INTEN_IPRXWA		BIT(5)
114#define FSPI_INTEN_AHBCMDERR		BIT(4)
115#define FSPI_INTEN_IPCMDERR		BIT(3)
116#define FSPI_INTEN_AHBCMDGE		BIT(2)
117#define FSPI_INTEN_IPCMDGE		BIT(1)
118#define FSPI_INTEN_IPCMDDONE		BIT(0)
119
120#define FSPI_INTR			0x14
121#define FSPI_INTR_SCLKSBWR		BIT(9)
122#define FSPI_INTR_SCLKSBRD		BIT(8)
123#define FSPI_INTR_DATALRNFL		BIT(7)
124#define FSPI_INTR_IPTXWE		BIT(6)
125#define FSPI_INTR_IPRXWA		BIT(5)
126#define FSPI_INTR_AHBCMDERR		BIT(4)
127#define FSPI_INTR_IPCMDERR		BIT(3)
128#define FSPI_INTR_AHBCMDGE		BIT(2)
129#define FSPI_INTR_IPCMDGE		BIT(1)
130#define FSPI_INTR_IPCMDDONE		BIT(0)
131
132#define FSPI_LUTKEY			0x18
133#define FSPI_LUTKEY_VALUE		0x5AF05AF0
134
135#define FSPI_LCKCR			0x1C
136
137#define FSPI_LCKER_LOCK			0x1
138#define FSPI_LCKER_UNLOCK		0x2
139
140#define FSPI_BUFXCR_INVALID_MSTRID	0xE
141#define FSPI_AHBRX_BUF0CR0		0x20
142#define FSPI_AHBRX_BUF1CR0		0x24
143#define FSPI_AHBRX_BUF2CR0		0x28
144#define FSPI_AHBRX_BUF3CR0		0x2C
145#define FSPI_AHBRX_BUF4CR0		0x30
146#define FSPI_AHBRX_BUF5CR0		0x34
147#define FSPI_AHBRX_BUF6CR0		0x38
148#define FSPI_AHBRX_BUF7CR0		0x3C
149#define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
150
151#define FSPI_AHBRX_BUF0CR1		0x40
152#define FSPI_AHBRX_BUF1CR1		0x44
153#define FSPI_AHBRX_BUF2CR1		0x48
154#define FSPI_AHBRX_BUF3CR1		0x4C
155#define FSPI_AHBRX_BUF4CR1		0x50
156#define FSPI_AHBRX_BUF5CR1		0x54
157#define FSPI_AHBRX_BUF6CR1		0x58
158#define FSPI_AHBRX_BUF7CR1		0x5C
159
160#define FSPI_FLSHA1CR0			0x60
161#define FSPI_FLSHA2CR0			0x64
162#define FSPI_FLSHB1CR0			0x68
163#define FSPI_FLSHB2CR0			0x6C
164#define FSPI_FLSHXCR0_SZ_KB		10
165#define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
166
167#define FSPI_FLSHA1CR1			0x70
168#define FSPI_FLSHA2CR1			0x74
169#define FSPI_FLSHB1CR1			0x78
170#define FSPI_FLSHB2CR1			0x7C
171#define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
172#define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
173#define FSPI_FLSHXCR1_WA		BIT(10)
174#define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
175#define FSPI_FLSHXCR1_TCSS(x)		(x)
176
177#define FSPI_FLSHA1CR2			0x80
178#define FSPI_FLSHA2CR2			0x84
179#define FSPI_FLSHB1CR2			0x88
180#define FSPI_FLSHB2CR2			0x8C
181#define FSPI_FLSHXCR2_CLRINSP		BIT(24)
182#define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
183#define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
184#define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
185#define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
186#define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
187
188#define FSPI_IPCR0			0xA0
189
190#define FSPI_IPCR1			0xA4
191#define FSPI_IPCR1_IPAREN		BIT(31)
192#define FSPI_IPCR1_SEQNUM_SHIFT		24
193#define FSPI_IPCR1_SEQID_SHIFT		16
194#define FSPI_IPCR1_IDATSZ(x)		(x)
195
196#define FSPI_IPCMD			0xB0
197#define FSPI_IPCMD_TRG			BIT(0)
198
199#define FSPI_DLPR			0xB4
200
201#define FSPI_IPRXFCR			0xB8
202#define FSPI_IPRXFCR_CLR		BIT(0)
203#define FSPI_IPRXFCR_DMA_EN		BIT(1)
204#define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
205
206#define FSPI_IPTXFCR			0xBC
207#define FSPI_IPTXFCR_CLR		BIT(0)
208#define FSPI_IPTXFCR_DMA_EN		BIT(1)
209#define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
210
211#define FSPI_DLLACR			0xC0
212#define FSPI_DLLACR_OVRDEN		BIT(8)
213
214#define FSPI_DLLBCR			0xC4
215#define FSPI_DLLBCR_OVRDEN		BIT(8)
216
217#define FSPI_STS0			0xE0
218#define FSPI_STS0_DLPHB(x)		((x) << 8)
219#define FSPI_STS0_DLPHA(x)		((x) << 4)
220#define FSPI_STS0_CMD_SRC(x)		((x) << 2)
221#define FSPI_STS0_ARB_IDLE		BIT(1)
222#define FSPI_STS0_SEQ_IDLE		BIT(0)
223
224#define FSPI_STS1			0xE4
225#define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
226#define FSPI_STS1_IP_ERRID(x)		((x) << 16)
227#define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
228#define FSPI_STS1_AHB_ERRID(x)		(x)
229
230#define FSPI_AHBSPNST			0xEC
231#define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
232#define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
233#define FSPI_AHBSPNST_ACTIVE		BIT(0)
234
235#define FSPI_IPRXFSTS			0xF0
236#define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
237#define FSPI_IPRXFSTS_FILL(x)		(x)
238
239#define FSPI_IPTXFSTS			0xF4
240#define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
241#define FSPI_IPTXFSTS_FILL(x)		(x)
242
243#define FSPI_RFDR			0x100
244#define FSPI_TFDR			0x180
245
246#define FSPI_LUT_BASE			0x200
247#define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
248#define FSPI_LUT_REG(idx) \
249	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
250
251/* register map end */
252
253/* Instruction set for the LUT register. */
254#define LUT_STOP			0x00
255#define LUT_CMD				0x01
256#define LUT_ADDR			0x02
257#define LUT_CADDR_SDR			0x03
258#define LUT_MODE			0x04
259#define LUT_MODE2			0x05
260#define LUT_MODE4			0x06
261#define LUT_MODE8			0x07
262#define LUT_NXP_WRITE			0x08
263#define LUT_NXP_READ			0x09
264#define LUT_LEARN_SDR			0x0A
265#define LUT_DATSZ_SDR			0x0B
266#define LUT_DUMMY			0x0C
267#define LUT_DUMMY_RWDS_SDR		0x0D
268#define LUT_JMP_ON_CS			0x1F
269#define LUT_CMD_DDR			0x21
270#define LUT_ADDR_DDR			0x22
271#define LUT_CADDR_DDR			0x23
272#define LUT_MODE_DDR			0x24
273#define LUT_MODE2_DDR			0x25
274#define LUT_MODE4_DDR			0x26
275#define LUT_MODE8_DDR			0x27
276#define LUT_WRITE_DDR			0x28
277#define LUT_READ_DDR			0x29
278#define LUT_LEARN_DDR			0x2A
279#define LUT_DATSZ_DDR			0x2B
280#define LUT_DUMMY_DDR			0x2C
281#define LUT_DUMMY_RWDS_DDR		0x2D
282
283/*
284 * Calculate number of required PAD bits for LUT register.
285 *
286 * The pad stands for the number of IO lines [0:7].
287 * For example, the octal read needs eight IO lines,
288 * so you should use LUT_PAD(8). This macro
289 * returns 3 i.e. use eight (2^3) IP lines for read.
290 */
291#define LUT_PAD(x) (fls(x) - 1)
292
293/*
294 * Macro for constructing the LUT entries with the following
295 * register layout:
296 *
297 *  ---------------------------------------------------
298 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
299 *  ---------------------------------------------------
300 */
301#define PAD_SHIFT		8
302#define INSTR_SHIFT		10
303#define OPRND_SHIFT		16
304
305/* Macros for constructing the LUT register. */
306#define LUT_DEF(idx, ins, pad, opr)			  \
307	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
308	(opr)) << (((idx) % 2) * OPRND_SHIFT))
309
310#define POLL_TOUT		5000
311#define NXP_FSPI_MAX_CHIPSELECT		4
312#define NXP_FSPI_MIN_IOMAP	SZ_4M
313
314struct nxp_fspi_devtype_data {
315	unsigned int rxfifo;
316	unsigned int txfifo;
317	unsigned int ahb_buf_size;
318	unsigned int quirks;
319	bool little_endian;
320};
321
322static const struct nxp_fspi_devtype_data lx2160a_data = {
323	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
324	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
325	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
326	.quirks = 0,
327	.little_endian = true,  /* little-endian    */
328};
329
330static const struct nxp_fspi_devtype_data imx8mm_data = {
331	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
332	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
333	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
334	.quirks = 0,
335	.little_endian = true,  /* little-endian    */
336};
337
338static const struct nxp_fspi_devtype_data imx8qxp_data = {
339	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
340	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
341	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
342	.quirks = 0,
343	.little_endian = true,  /* little-endian    */
344};
345
346struct nxp_fspi {
347	void __iomem *iobase;
348	void __iomem *ahb_addr;
349	u32 memmap_phy;
350	u32 memmap_phy_size;
351	u32 memmap_start;
352	u32 memmap_len;
353	struct clk *clk, *clk_en;
354	struct device *dev;
355	struct completion c;
356	const struct nxp_fspi_devtype_data *devtype_data;
357	struct mutex lock;
358	struct pm_qos_request pm_qos_req;
359	int selected;
360};
361
362/*
363 * R/W functions for big- or little-endian registers:
364 * The FSPI controller's endianness is independent of
365 * the CPU core's endianness. So far, although the CPU
366 * core is little-endian the FSPI controller can use
367 * big-endian or little-endian.
368 */
369static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
370{
371	if (f->devtype_data->little_endian)
372		iowrite32(val, addr);
373	else
374		iowrite32be(val, addr);
375}
376
377static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
378{
379	if (f->devtype_data->little_endian)
380		return ioread32(addr);
381	else
382		return ioread32be(addr);
383}
384
385static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
386{
387	struct nxp_fspi *f = dev_id;
388	u32 reg;
389
390	/* clear interrupt */
391	reg = fspi_readl(f, f->iobase + FSPI_INTR);
392	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
393
394	if (reg & FSPI_INTR_IPCMDDONE)
395		complete(&f->c);
396
397	return IRQ_HANDLED;
398}
399
400static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
401{
402	switch (width) {
403	case 1:
404	case 2:
405	case 4:
406	case 8:
407		return 0;
408	}
409
410	return -ENOTSUPP;
411}
412
413static bool nxp_fspi_supports_op(struct spi_mem *mem,
414				 const struct spi_mem_op *op)
415{
416	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
417	int ret;
418
419	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
420
421	if (op->addr.nbytes)
422		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
423
424	if (op->dummy.nbytes)
425		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
426
427	if (op->data.nbytes)
428		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
429
430	if (ret)
431		return false;
432
433	/*
434	 * The number of address bytes should be equal to or less than 4 bytes.
435	 */
436	if (op->addr.nbytes > 4)
437		return false;
438
439	/*
440	 * If requested address value is greater than controller assigned
441	 * memory mapped space, return error as it didn't fit in the range
442	 * of assigned address space.
443	 */
444	if (op->addr.val >= f->memmap_phy_size)
445		return false;
446
447	/* Max 64 dummy clock cycles supported */
448	if (op->dummy.buswidth &&
449	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
450		return false;
451
452	/* Max data length, check controller limits and alignment */
453	if (op->data.dir == SPI_MEM_DATA_IN &&
454	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
455	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
456	      !IS_ALIGNED(op->data.nbytes, 8))))
457		return false;
458
459	if (op->data.dir == SPI_MEM_DATA_OUT &&
460	    op->data.nbytes > f->devtype_data->txfifo)
461		return false;
462
463	return spi_mem_default_supports_op(mem, op);
464}
465
466/* Instead of busy looping invoke readl_poll_timeout functionality. */
467static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
468				u32 mask, u32 delay_us,
469				u32 timeout_us, bool c)
470{
471	u32 reg;
472
473	if (!f->devtype_data->little_endian)
474		mask = (u32)cpu_to_be32(mask);
475
476	if (c)
477		return readl_poll_timeout(base, reg, (reg & mask),
478					  delay_us, timeout_us);
479	else
480		return readl_poll_timeout(base, reg, !(reg & mask),
481					  delay_us, timeout_us);
482}
483
484/*
485 * If the slave device content being changed by Write/Erase, need to
486 * invalidate the AHB buffer. This can be achieved by doing the reset
487 * of controller after setting MCR0[SWRESET] bit.
488 */
489static inline void nxp_fspi_invalid(struct nxp_fspi *f)
490{
491	u32 reg;
492	int ret;
493
494	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
495	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
496
497	/* w1c register, wait unit clear */
498	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
499				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
500	WARN_ON(ret);
501}
502
503static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
504				 const struct spi_mem_op *op)
505{
506	void __iomem *base = f->iobase;
507	u32 lutval[4] = {};
508	int lutidx = 1, i;
509
510	/* cmd */
511	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
512			     op->cmd.opcode);
513
514	/* addr bytes */
515	if (op->addr.nbytes) {
516		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
517					      LUT_PAD(op->addr.buswidth),
518					      op->addr.nbytes * 8);
519		lutidx++;
520	}
521
522	/* dummy bytes, if needed */
523	if (op->dummy.nbytes) {
524		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
525		/*
526		 * Due to FlexSPI controller limitation number of PAD for dummy
527		 * buswidth needs to be programmed as equal to data buswidth.
528		 */
529					      LUT_PAD(op->data.buswidth),
530					      op->dummy.nbytes * 8 /
531					      op->dummy.buswidth);
532		lutidx++;
533	}
534
535	/* read/write data bytes */
536	if (op->data.nbytes) {
537		lutval[lutidx / 2] |= LUT_DEF(lutidx,
538					      op->data.dir == SPI_MEM_DATA_IN ?
539					      LUT_NXP_READ : LUT_NXP_WRITE,
540					      LUT_PAD(op->data.buswidth),
541					      0);
542		lutidx++;
543	}
544
545	/* stop condition. */
546	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
547
548	/* unlock LUT */
549	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
550	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
551
552	/* fill LUT */
553	for (i = 0; i < ARRAY_SIZE(lutval); i++)
554		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
555
556	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
557		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
558
559	/* lock LUT */
560	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
561	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
562}
563
564static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
565{
566	int ret;
567
568	if (is_acpi_node(f->dev->fwnode))
569		return 0;
570
571	ret = clk_prepare_enable(f->clk_en);
572	if (ret)
573		return ret;
574
575	ret = clk_prepare_enable(f->clk);
576	if (ret) {
577		clk_disable_unprepare(f->clk_en);
578		return ret;
579	}
580
581	return 0;
582}
583
584static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
585{
586	if (is_acpi_node(f->dev->fwnode))
587		return 0;
588
589	clk_disable_unprepare(f->clk);
590	clk_disable_unprepare(f->clk_en);
591
592	return 0;
593}
594
595/*
596 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
597 * register and start base address of the slave device.
598 *
599 *							    (Higher address)
600 *				--------    <-- FLSHB2CR0
601 *				|  B2  |
602 *				|      |
603 *	B2 start address -->	--------    <-- FLSHB1CR0
604 *				|  B1  |
605 *				|      |
606 *	B1 start address -->	--------    <-- FLSHA2CR0
607 *				|  A2  |
608 *				|      |
609 *	A2 start address -->	--------    <-- FLSHA1CR0
610 *				|  A1  |
611 *				|      |
612 *	A1 start address -->	--------		    (Lower address)
613 *
614 *
615 * Start base address defines the starting address range for given CS and
616 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
617 *
618 * But, different targets are having different combinations of number of CS,
619 * some targets only have single CS or two CS covering controller's full
620 * memory mapped space area.
621 * Thus, implementation is being done as independent of the size and number
622 * of the connected slave device.
623 * Assign controller memory mapped space size as the size to the connected
624 * slave device.
625 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
626 * chip-select Flash configuration register.
627 *
628 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
629 * memory mapped size of the controller.
630 * Value for rest of the CS FLSHxxCR0 register would be zero.
631 *
632 */
633static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
634{
635	unsigned long rate = spi->max_speed_hz;
636	int ret;
637	uint64_t size_kb;
638
639	/*
640	 * Return, if previously selected slave device is same as current
641	 * requested slave device.
642	 */
643	if (f->selected == spi->chip_select)
644		return;
645
646	/* Reset FLSHxxCR0 registers */
647	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
648	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
649	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
650	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
651
652	/* Assign controller memory mapped space as size, KBytes, of flash. */
653	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
654
655	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
656		    4 * spi->chip_select);
657
658	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
659
660	nxp_fspi_clk_disable_unprep(f);
661
662	ret = clk_set_rate(f->clk, rate);
663	if (ret)
664		return;
665
666	ret = nxp_fspi_clk_prep_enable(f);
667	if (ret)
668		return;
669
670	f->selected = spi->chip_select;
671}
672
673static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
674{
675	u32 start = op->addr.val;
676	u32 len = op->data.nbytes;
677
678	/* if necessary, ioremap before AHB read */
679	if ((!f->ahb_addr) || start < f->memmap_start ||
680	     start + len > f->memmap_start + f->memmap_len) {
681		if (f->ahb_addr)
682			iounmap(f->ahb_addr);
683
684		f->memmap_start = start;
685		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
686				len : NXP_FSPI_MIN_IOMAP;
687
688		f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
689					 f->memmap_len);
690
691		if (!f->ahb_addr) {
692			dev_err(f->dev, "failed to alloc memory\n");
693			return -ENOMEM;
694		}
695	}
696
697	/* Read out the data directly from the AHB buffer. */
698	memcpy_fromio(op->data.buf.in,
699		      f->ahb_addr + start - f->memmap_start, len);
700
701	return 0;
702}
703
704static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
705				 const struct spi_mem_op *op)
706{
707	void __iomem *base = f->iobase;
708	int i, ret;
709	u8 *buf = (u8 *) op->data.buf.out;
710
711	/* clear the TX FIFO. */
712	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
713
714	/*
715	 * Default value of water mark level is 8 bytes, hence in single
716	 * write request controller can write max 8 bytes of data.
717	 */
718
719	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
720		/* Wait for TXFIFO empty */
721		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
722					   FSPI_INTR_IPTXWE, 0,
723					   POLL_TOUT, true);
724		WARN_ON(ret);
725
726		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
727		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
728		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
729	}
730
731	if (i < op->data.nbytes) {
732		u32 data = 0;
733		int j;
734		/* Wait for TXFIFO empty */
735		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
736					   FSPI_INTR_IPTXWE, 0,
737					   POLL_TOUT, true);
738		WARN_ON(ret);
739
740		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
741			memcpy(&data, buf + i + j, 4);
742			fspi_writel(f, data, base + FSPI_TFDR + j);
743		}
744		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
745	}
746}
747
748static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
749			  const struct spi_mem_op *op)
750{
751	void __iomem *base = f->iobase;
752	int i, ret;
753	int len = op->data.nbytes;
754	u8 *buf = (u8 *) op->data.buf.in;
755
756	/*
757	 * Default value of water mark level is 8 bytes, hence in single
758	 * read request controller can read max 8 bytes of data.
759	 */
760	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
761		/* Wait for RXFIFO available */
762		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
763					   FSPI_INTR_IPRXWA, 0,
764					   POLL_TOUT, true);
765		WARN_ON(ret);
766
767		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
768		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
769		/* move the FIFO pointer */
770		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
771	}
772
773	if (i < len) {
774		u32 tmp;
775		int size, j;
776
777		buf = op->data.buf.in + i;
778		/* Wait for RXFIFO available */
779		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
780					   FSPI_INTR_IPRXWA, 0,
781					   POLL_TOUT, true);
782		WARN_ON(ret);
783
784		len = op->data.nbytes - i;
785		for (j = 0; j < op->data.nbytes - i; j += 4) {
786			tmp = fspi_readl(f, base + FSPI_RFDR + j);
787			size = min(len, 4);
788			memcpy(buf + j, &tmp, size);
789			len -= size;
790		}
791	}
792
793	/* invalid the RXFIFO */
794	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
795	/* move the FIFO pointer */
796	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
797}
798
799static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
800{
801	void __iomem *base = f->iobase;
802	int seqnum = 0;
803	int err = 0;
804	u32 reg;
805
806	reg = fspi_readl(f, base + FSPI_IPRXFCR);
807	/* invalid RXFIFO first */
808	reg &= ~FSPI_IPRXFCR_DMA_EN;
809	reg = reg | FSPI_IPRXFCR_CLR;
810	fspi_writel(f, reg, base + FSPI_IPRXFCR);
811
812	init_completion(&f->c);
813
814	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
815	/*
816	 * Always start the sequence at the same index since we update
817	 * the LUT at each exec_op() call. And also specify the DATA
818	 * length, since it's has not been specified in the LUT.
819	 */
820	fspi_writel(f, op->data.nbytes |
821		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
822		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
823		 base + FSPI_IPCR1);
824
825	/* Trigger the LUT now. */
826	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
827
828	/* Wait for the interrupt. */
829	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
830		err = -ETIMEDOUT;
831
832	/* Invoke IP data read, if request is of data read. */
833	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
834		nxp_fspi_read_rxfifo(f, op);
835
836	return err;
837}
838
839static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
840{
841	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
842	int err = 0;
843
844	mutex_lock(&f->lock);
845
846	/* Wait for controller being ready. */
847	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
848				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
849	WARN_ON(err);
850
851	nxp_fspi_select_mem(f, mem->spi);
852
853	nxp_fspi_prepare_lut(f, op);
854	/*
855	 * If we have large chunks of data, we read them through the AHB bus
856	 * by accessing the mapped memory. In all other cases we use
857	 * IP commands to access the flash.
858	 */
859	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
860	    op->data.dir == SPI_MEM_DATA_IN) {
861		err = nxp_fspi_read_ahb(f, op);
862	} else {
863		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
864			nxp_fspi_fill_txfifo(f, op);
865
866		err = nxp_fspi_do_op(f, op);
867	}
868
869	/* Invalidate the data in the AHB buffer. */
870	nxp_fspi_invalid(f);
871
872	mutex_unlock(&f->lock);
873
874	return err;
875}
876
877static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
878{
879	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
880
881	if (op->data.dir == SPI_MEM_DATA_OUT) {
882		if (op->data.nbytes > f->devtype_data->txfifo)
883			op->data.nbytes = f->devtype_data->txfifo;
884	} else {
885		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
886			op->data.nbytes = f->devtype_data->ahb_buf_size;
887		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
888			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
889	}
890
891	return 0;
892}
893
894static int nxp_fspi_default_setup(struct nxp_fspi *f)
895{
896	void __iomem *base = f->iobase;
897	int ret, i;
898	u32 reg;
899
900	/* disable and unprepare clock to avoid glitch pass to controller */
901	nxp_fspi_clk_disable_unprep(f);
902
903	/* the default frequency, we will change it later if necessary. */
904	ret = clk_set_rate(f->clk, 20000000);
905	if (ret)
906		return ret;
907
908	ret = nxp_fspi_clk_prep_enable(f);
909	if (ret)
910		return ret;
911
912	/* Reset the module */
913	/* w1c register, wait unit clear */
914	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
915				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
916	WARN_ON(ret);
917
918	/* Disable the module */
919	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
920
921	/* Reset the DLL register to default value */
922	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
923	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
924
925	/* enable module */
926	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
927		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
928		    base + FSPI_MCR0);
929
930	/*
931	 * Disable same device enable bit and configure all slave devices
932	 * independently.
933	 */
934	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
935	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
936	fspi_writel(f, reg, base + FSPI_MCR2);
937
938	/* AHB configuration for access buffer 0~7. */
939	for (i = 0; i < 7; i++)
940		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
941
942	/*
943	 * Set ADATSZ with the maximum AHB buffer size to improve the read
944	 * performance.
945	 */
946	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
947		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
948
949	/* prefetch and no start address alignment limitation */
950	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
951		 base + FSPI_AHBCR);
952
953	/* Reset the FLSHxCR1 registers. */
954	reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
955	fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
956	fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
957	fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
958	fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
959
960	/* AHB Read - Set lut sequence ID for all CS. */
961	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
962	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
963	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
964	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
965
966	f->selected = -1;
967
968	/* enable the interrupt */
969	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
970
971	return 0;
972}
973
974static const char *nxp_fspi_get_name(struct spi_mem *mem)
975{
976	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
977	struct device *dev = &mem->spi->dev;
978	const char *name;
979
980	// Set custom name derived from the platform_device of the controller.
981	if (of_get_available_child_count(f->dev->of_node) == 1)
982		return dev_name(f->dev);
983
984	name = devm_kasprintf(dev, GFP_KERNEL,
985			      "%s-%d", dev_name(f->dev),
986			      mem->spi->chip_select);
987
988	if (!name) {
989		dev_err(dev, "failed to get memory for custom flash name\n");
990		return ERR_PTR(-ENOMEM);
991	}
992
993	return name;
994}
995
996static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
997	.adjust_op_size = nxp_fspi_adjust_op_size,
998	.supports_op = nxp_fspi_supports_op,
999	.exec_op = nxp_fspi_exec_op,
1000	.get_name = nxp_fspi_get_name,
1001};
1002
1003static int nxp_fspi_probe(struct platform_device *pdev)
1004{
1005	struct spi_controller *ctlr;
1006	struct device *dev = &pdev->dev;
1007	struct device_node *np = dev->of_node;
1008	struct resource *res;
1009	struct nxp_fspi *f;
1010	int ret;
1011	u32 reg;
1012
1013	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1014	if (!ctlr)
1015		return -ENOMEM;
1016
1017	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1018			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1019
1020	f = spi_controller_get_devdata(ctlr);
1021	f->dev = dev;
1022	f->devtype_data = device_get_match_data(dev);
1023	if (!f->devtype_data) {
1024		ret = -ENODEV;
1025		goto err_put_ctrl;
1026	}
1027
1028	platform_set_drvdata(pdev, f);
1029
1030	/* find the resources - configuration register address space */
1031	if (is_acpi_node(f->dev->fwnode))
1032		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1033	else
1034		res = platform_get_resource_byname(pdev,
1035				IORESOURCE_MEM, "fspi_base");
1036
1037	f->iobase = devm_ioremap_resource(dev, res);
1038	if (IS_ERR(f->iobase)) {
1039		ret = PTR_ERR(f->iobase);
1040		goto err_put_ctrl;
1041	}
1042
1043	/* find the resources - controller memory mapped space */
1044	if (is_acpi_node(f->dev->fwnode))
1045		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1046	else
1047		res = platform_get_resource_byname(pdev,
1048				IORESOURCE_MEM, "fspi_mmap");
1049
1050	if (!res) {
1051		ret = -ENODEV;
1052		goto err_put_ctrl;
1053	}
1054
1055	/* assign memory mapped starting address and mapped size. */
1056	f->memmap_phy = res->start;
1057	f->memmap_phy_size = resource_size(res);
1058
1059	/* find the clocks */
1060	if (dev_of_node(&pdev->dev)) {
1061		f->clk_en = devm_clk_get(dev, "fspi_en");
1062		if (IS_ERR(f->clk_en)) {
1063			ret = PTR_ERR(f->clk_en);
1064			goto err_put_ctrl;
1065		}
1066
1067		f->clk = devm_clk_get(dev, "fspi");
1068		if (IS_ERR(f->clk)) {
1069			ret = PTR_ERR(f->clk);
1070			goto err_put_ctrl;
1071		}
1072
1073		ret = nxp_fspi_clk_prep_enable(f);
1074		if (ret) {
1075			dev_err(dev, "can not enable the clock\n");
1076			goto err_put_ctrl;
1077		}
1078	}
1079
1080	/* Clear potential interrupts */
1081	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1082	if (reg)
1083		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1084
1085	/* find the irq */
1086	ret = platform_get_irq(pdev, 0);
1087	if (ret < 0)
1088		goto err_disable_clk;
1089
1090	ret = devm_request_irq(dev, ret,
1091			nxp_fspi_irq_handler, 0, pdev->name, f);
1092	if (ret) {
1093		dev_err(dev, "failed to request irq: %d\n", ret);
1094		goto err_disable_clk;
1095	}
1096
1097	mutex_init(&f->lock);
1098
1099	ctlr->bus_num = -1;
1100	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1101	ctlr->mem_ops = &nxp_fspi_mem_ops;
1102
1103	nxp_fspi_default_setup(f);
1104
1105	ctlr->dev.of_node = np;
1106
1107	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1108	if (ret)
1109		goto err_destroy_mutex;
1110
1111	return 0;
1112
1113err_destroy_mutex:
1114	mutex_destroy(&f->lock);
1115
1116err_disable_clk:
1117	nxp_fspi_clk_disable_unprep(f);
1118
1119err_put_ctrl:
1120	spi_controller_put(ctlr);
1121
1122	dev_err(dev, "NXP FSPI probe failed\n");
1123	return ret;
1124}
1125
1126static int nxp_fspi_remove(struct platform_device *pdev)
1127{
1128	struct nxp_fspi *f = platform_get_drvdata(pdev);
1129
1130	/* disable the hardware */
1131	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1132
1133	nxp_fspi_clk_disable_unprep(f);
1134
1135	mutex_destroy(&f->lock);
1136
1137	if (f->ahb_addr)
1138		iounmap(f->ahb_addr);
1139
1140	return 0;
1141}
1142
1143static int nxp_fspi_suspend(struct device *dev)
1144{
1145	return 0;
1146}
1147
1148static int nxp_fspi_resume(struct device *dev)
1149{
1150	struct nxp_fspi *f = dev_get_drvdata(dev);
1151
1152	nxp_fspi_default_setup(f);
1153
1154	return 0;
1155}
1156
1157static const struct of_device_id nxp_fspi_dt_ids[] = {
1158	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1159	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1160	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1161	{ /* sentinel */ }
1162};
1163MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1164
1165#ifdef CONFIG_ACPI
1166static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1167	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1168	{}
1169};
1170MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1171#endif
1172
1173static const struct dev_pm_ops nxp_fspi_pm_ops = {
1174	.suspend	= nxp_fspi_suspend,
1175	.resume		= nxp_fspi_resume,
1176};
1177
1178static struct platform_driver nxp_fspi_driver = {
1179	.driver = {
1180		.name	= "nxp-fspi",
1181		.of_match_table = nxp_fspi_dt_ids,
1182		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1183		.pm =   &nxp_fspi_pm_ops,
1184	},
1185	.probe          = nxp_fspi_probe,
1186	.remove		= nxp_fspi_remove,
1187};
1188module_platform_driver(nxp_fspi_driver);
1189
1190MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1191MODULE_AUTHOR("NXP Semiconductor");
1192MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1193MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1194MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1195MODULE_LICENSE("GPL v2");
1196