18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0+
28c2ecf20Sopenharmony_ci
38c2ecf20Sopenharmony_ci/*
48c2ecf20Sopenharmony_ci * NXP FlexSPI(FSPI) controller driver.
58c2ecf20Sopenharmony_ci *
68c2ecf20Sopenharmony_ci * Copyright 2019-2020 NXP
78c2ecf20Sopenharmony_ci * Copyright 2020 Puresoftware Ltd.
88c2ecf20Sopenharmony_ci *
98c2ecf20Sopenharmony_ci * FlexSPI is a flexsible SPI host controller which supports two SPI
108c2ecf20Sopenharmony_ci * channels and up to 4 external devices. Each channel supports
118c2ecf20Sopenharmony_ci * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
128c2ecf20Sopenharmony_ci * data lines).
138c2ecf20Sopenharmony_ci *
148c2ecf20Sopenharmony_ci * FlexSPI controller is driven by the LUT(Look-up Table) registers
158c2ecf20Sopenharmony_ci * LUT registers are a look-up-table for sequences of instructions.
168c2ecf20Sopenharmony_ci * A valid sequence consists of four LUT registers.
178c2ecf20Sopenharmony_ci * Maximum 32 LUT sequences can be programmed simultaneously.
188c2ecf20Sopenharmony_ci *
198c2ecf20Sopenharmony_ci * LUTs are being created at run-time based on the commands passed
208c2ecf20Sopenharmony_ci * from the spi-mem framework, thus using single LUT index.
218c2ecf20Sopenharmony_ci *
228c2ecf20Sopenharmony_ci * Software triggered Flash read/write access by IP Bus.
238c2ecf20Sopenharmony_ci *
248c2ecf20Sopenharmony_ci * Memory mapped read access by AHB Bus.
258c2ecf20Sopenharmony_ci *
268c2ecf20Sopenharmony_ci * Based on SPI MEM interface and spi-fsl-qspi.c driver.
278c2ecf20Sopenharmony_ci *
288c2ecf20Sopenharmony_ci * Author:
298c2ecf20Sopenharmony_ci *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
308c2ecf20Sopenharmony_ci *     Boris Brezillon <bbrezillon@kernel.org>
318c2ecf20Sopenharmony_ci *     Frieder Schrempf <frieder.schrempf@kontron.de>
328c2ecf20Sopenharmony_ci */
338c2ecf20Sopenharmony_ci
348c2ecf20Sopenharmony_ci#include <linux/acpi.h>
358c2ecf20Sopenharmony_ci#include <linux/bitops.h>
368c2ecf20Sopenharmony_ci#include <linux/clk.h>
378c2ecf20Sopenharmony_ci#include <linux/completion.h>
388c2ecf20Sopenharmony_ci#include <linux/delay.h>
398c2ecf20Sopenharmony_ci#include <linux/err.h>
408c2ecf20Sopenharmony_ci#include <linux/errno.h>
418c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
428c2ecf20Sopenharmony_ci#include <linux/io.h>
438c2ecf20Sopenharmony_ci#include <linux/iopoll.h>
448c2ecf20Sopenharmony_ci#include <linux/jiffies.h>
458c2ecf20Sopenharmony_ci#include <linux/kernel.h>
468c2ecf20Sopenharmony_ci#include <linux/module.h>
478c2ecf20Sopenharmony_ci#include <linux/mutex.h>
488c2ecf20Sopenharmony_ci#include <linux/of.h>
498c2ecf20Sopenharmony_ci#include <linux/of_device.h>
508c2ecf20Sopenharmony_ci#include <linux/platform_device.h>
518c2ecf20Sopenharmony_ci#include <linux/pm_qos.h>
528c2ecf20Sopenharmony_ci#include <linux/sizes.h>
538c2ecf20Sopenharmony_ci
548c2ecf20Sopenharmony_ci#include <linux/spi/spi.h>
558c2ecf20Sopenharmony_ci#include <linux/spi/spi-mem.h>
568c2ecf20Sopenharmony_ci
578c2ecf20Sopenharmony_ci/*
588c2ecf20Sopenharmony_ci * The driver only uses one single LUT entry, that is updated on
598c2ecf20Sopenharmony_ci * each call of exec_op(). Index 0 is preset at boot with a basic
608c2ecf20Sopenharmony_ci * read operation, so let's use the last entry (31).
618c2ecf20Sopenharmony_ci */
628c2ecf20Sopenharmony_ci#define	SEQID_LUT			31
638c2ecf20Sopenharmony_ci
648c2ecf20Sopenharmony_ci/* Registers used by the driver */
658c2ecf20Sopenharmony_ci#define FSPI_MCR0			0x00
668c2ecf20Sopenharmony_ci#define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
678c2ecf20Sopenharmony_ci#define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
688c2ecf20Sopenharmony_ci#define FSPI_MCR0_LEARN_EN		BIT(15)
698c2ecf20Sopenharmony_ci#define FSPI_MCR0_SCRFRUN_EN		BIT(14)
708c2ecf20Sopenharmony_ci#define FSPI_MCR0_OCTCOMB_EN		BIT(13)
718c2ecf20Sopenharmony_ci#define FSPI_MCR0_DOZE_EN		BIT(12)
728c2ecf20Sopenharmony_ci#define FSPI_MCR0_HSEN			BIT(11)
738c2ecf20Sopenharmony_ci#define FSPI_MCR0_SERCLKDIV		BIT(8)
748c2ecf20Sopenharmony_ci#define FSPI_MCR0_ATDF_EN		BIT(7)
758c2ecf20Sopenharmony_ci#define FSPI_MCR0_ARDF_EN		BIT(6)
768c2ecf20Sopenharmony_ci#define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
778c2ecf20Sopenharmony_ci#define FSPI_MCR0_END_CFG(x)		((x) << 2)
788c2ecf20Sopenharmony_ci#define FSPI_MCR0_MDIS			BIT(1)
798c2ecf20Sopenharmony_ci#define FSPI_MCR0_SWRST			BIT(0)
808c2ecf20Sopenharmony_ci
818c2ecf20Sopenharmony_ci#define FSPI_MCR1			0x04
828c2ecf20Sopenharmony_ci#define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
838c2ecf20Sopenharmony_ci#define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
848c2ecf20Sopenharmony_ci
858c2ecf20Sopenharmony_ci#define FSPI_MCR2			0x08
868c2ecf20Sopenharmony_ci#define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
878c2ecf20Sopenharmony_ci#define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
888c2ecf20Sopenharmony_ci#define FSPI_MCR2_CLRLRPHS		BIT(14)
898c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRDATSZ		BIT(8)
908c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRLEARN		BIT(7)
918c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABR_READ		BIT(6)
928c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRWRITE		BIT(5)
938c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRDUMMY		BIT(4)
948c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABR_MODE		BIT(3)
958c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRCADDR		BIT(2)
968c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRRADDR		BIT(1)
978c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABR_CMD		BIT(0)
988c2ecf20Sopenharmony_ci
998c2ecf20Sopenharmony_ci#define FSPI_AHBCR			0x0c
1008c2ecf20Sopenharmony_ci#define FSPI_AHBCR_RDADDROPT		BIT(6)
1018c2ecf20Sopenharmony_ci#define FSPI_AHBCR_PREF_EN		BIT(5)
1028c2ecf20Sopenharmony_ci#define FSPI_AHBCR_BUFF_EN		BIT(4)
1038c2ecf20Sopenharmony_ci#define FSPI_AHBCR_CACH_EN		BIT(3)
1048c2ecf20Sopenharmony_ci#define FSPI_AHBCR_CLRTXBUF		BIT(2)
1058c2ecf20Sopenharmony_ci#define FSPI_AHBCR_CLRRXBUF		BIT(1)
1068c2ecf20Sopenharmony_ci#define FSPI_AHBCR_PAR_EN		BIT(0)
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_ci#define FSPI_INTEN			0x10
1098c2ecf20Sopenharmony_ci#define FSPI_INTEN_SCLKSBWR		BIT(9)
1108c2ecf20Sopenharmony_ci#define FSPI_INTEN_SCLKSBRD		BIT(8)
1118c2ecf20Sopenharmony_ci#define FSPI_INTEN_DATALRNFL		BIT(7)
1128c2ecf20Sopenharmony_ci#define FSPI_INTEN_IPTXWE		BIT(6)
1138c2ecf20Sopenharmony_ci#define FSPI_INTEN_IPRXWA		BIT(5)
1148c2ecf20Sopenharmony_ci#define FSPI_INTEN_AHBCMDERR		BIT(4)
1158c2ecf20Sopenharmony_ci#define FSPI_INTEN_IPCMDERR		BIT(3)
1168c2ecf20Sopenharmony_ci#define FSPI_INTEN_AHBCMDGE		BIT(2)
1178c2ecf20Sopenharmony_ci#define FSPI_INTEN_IPCMDGE		BIT(1)
1188c2ecf20Sopenharmony_ci#define FSPI_INTEN_IPCMDDONE		BIT(0)
1198c2ecf20Sopenharmony_ci
1208c2ecf20Sopenharmony_ci#define FSPI_INTR			0x14
1218c2ecf20Sopenharmony_ci#define FSPI_INTR_SCLKSBWR		BIT(9)
1228c2ecf20Sopenharmony_ci#define FSPI_INTR_SCLKSBRD		BIT(8)
1238c2ecf20Sopenharmony_ci#define FSPI_INTR_DATALRNFL		BIT(7)
1248c2ecf20Sopenharmony_ci#define FSPI_INTR_IPTXWE		BIT(6)
1258c2ecf20Sopenharmony_ci#define FSPI_INTR_IPRXWA		BIT(5)
1268c2ecf20Sopenharmony_ci#define FSPI_INTR_AHBCMDERR		BIT(4)
1278c2ecf20Sopenharmony_ci#define FSPI_INTR_IPCMDERR		BIT(3)
1288c2ecf20Sopenharmony_ci#define FSPI_INTR_AHBCMDGE		BIT(2)
1298c2ecf20Sopenharmony_ci#define FSPI_INTR_IPCMDGE		BIT(1)
1308c2ecf20Sopenharmony_ci#define FSPI_INTR_IPCMDDONE		BIT(0)
1318c2ecf20Sopenharmony_ci
1328c2ecf20Sopenharmony_ci#define FSPI_LUTKEY			0x18
1338c2ecf20Sopenharmony_ci#define FSPI_LUTKEY_VALUE		0x5AF05AF0
1348c2ecf20Sopenharmony_ci
1358c2ecf20Sopenharmony_ci#define FSPI_LCKCR			0x1C
1368c2ecf20Sopenharmony_ci
1378c2ecf20Sopenharmony_ci#define FSPI_LCKER_LOCK			0x1
1388c2ecf20Sopenharmony_ci#define FSPI_LCKER_UNLOCK		0x2
1398c2ecf20Sopenharmony_ci
1408c2ecf20Sopenharmony_ci#define FSPI_BUFXCR_INVALID_MSTRID	0xE
1418c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF0CR0		0x20
1428c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF1CR0		0x24
1438c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF2CR0		0x28
1448c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF3CR0		0x2C
1458c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF4CR0		0x30
1468c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF5CR0		0x34
1478c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF6CR0		0x38
1488c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF7CR0		0x3C
1498c2ecf20Sopenharmony_ci#define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
1508c2ecf20Sopenharmony_ci
1518c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF0CR1		0x40
1528c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF1CR1		0x44
1538c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF2CR1		0x48
1548c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF3CR1		0x4C
1558c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF4CR1		0x50
1568c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF5CR1		0x54
1578c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF6CR1		0x58
1588c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF7CR1		0x5C
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_ci#define FSPI_FLSHA1CR0			0x60
1618c2ecf20Sopenharmony_ci#define FSPI_FLSHA2CR0			0x64
1628c2ecf20Sopenharmony_ci#define FSPI_FLSHB1CR0			0x68
1638c2ecf20Sopenharmony_ci#define FSPI_FLSHB2CR0			0x6C
1648c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR0_SZ_KB		10
1658c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
1668c2ecf20Sopenharmony_ci
1678c2ecf20Sopenharmony_ci#define FSPI_FLSHA1CR1			0x70
1688c2ecf20Sopenharmony_ci#define FSPI_FLSHA2CR1			0x74
1698c2ecf20Sopenharmony_ci#define FSPI_FLSHB1CR1			0x78
1708c2ecf20Sopenharmony_ci#define FSPI_FLSHB2CR1			0x7C
1718c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
1728c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
1738c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR1_WA		BIT(10)
1748c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
1758c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR1_TCSS(x)		(x)
1768c2ecf20Sopenharmony_ci
1778c2ecf20Sopenharmony_ci#define FSPI_FLSHA1CR2			0x80
1788c2ecf20Sopenharmony_ci#define FSPI_FLSHA2CR2			0x84
1798c2ecf20Sopenharmony_ci#define FSPI_FLSHB1CR2			0x88
1808c2ecf20Sopenharmony_ci#define FSPI_FLSHB2CR2			0x8C
1818c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_CLRINSP		BIT(24)
1828c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
1838c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
1848c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
1858c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
1868c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
1878c2ecf20Sopenharmony_ci
1888c2ecf20Sopenharmony_ci#define FSPI_IPCR0			0xA0
1898c2ecf20Sopenharmony_ci
1908c2ecf20Sopenharmony_ci#define FSPI_IPCR1			0xA4
1918c2ecf20Sopenharmony_ci#define FSPI_IPCR1_IPAREN		BIT(31)
1928c2ecf20Sopenharmony_ci#define FSPI_IPCR1_SEQNUM_SHIFT		24
1938c2ecf20Sopenharmony_ci#define FSPI_IPCR1_SEQID_SHIFT		16
1948c2ecf20Sopenharmony_ci#define FSPI_IPCR1_IDATSZ(x)		(x)
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_ci#define FSPI_IPCMD			0xB0
1978c2ecf20Sopenharmony_ci#define FSPI_IPCMD_TRG			BIT(0)
1988c2ecf20Sopenharmony_ci
1998c2ecf20Sopenharmony_ci#define FSPI_DLPR			0xB4
2008c2ecf20Sopenharmony_ci
2018c2ecf20Sopenharmony_ci#define FSPI_IPRXFCR			0xB8
2028c2ecf20Sopenharmony_ci#define FSPI_IPRXFCR_CLR		BIT(0)
2038c2ecf20Sopenharmony_ci#define FSPI_IPRXFCR_DMA_EN		BIT(1)
2048c2ecf20Sopenharmony_ci#define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
2058c2ecf20Sopenharmony_ci
2068c2ecf20Sopenharmony_ci#define FSPI_IPTXFCR			0xBC
2078c2ecf20Sopenharmony_ci#define FSPI_IPTXFCR_CLR		BIT(0)
2088c2ecf20Sopenharmony_ci#define FSPI_IPTXFCR_DMA_EN		BIT(1)
2098c2ecf20Sopenharmony_ci#define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
2108c2ecf20Sopenharmony_ci
2118c2ecf20Sopenharmony_ci#define FSPI_DLLACR			0xC0
2128c2ecf20Sopenharmony_ci#define FSPI_DLLACR_OVRDEN		BIT(8)
2138c2ecf20Sopenharmony_ci
2148c2ecf20Sopenharmony_ci#define FSPI_DLLBCR			0xC4
2158c2ecf20Sopenharmony_ci#define FSPI_DLLBCR_OVRDEN		BIT(8)
2168c2ecf20Sopenharmony_ci
2178c2ecf20Sopenharmony_ci#define FSPI_STS0			0xE0
2188c2ecf20Sopenharmony_ci#define FSPI_STS0_DLPHB(x)		((x) << 8)
2198c2ecf20Sopenharmony_ci#define FSPI_STS0_DLPHA(x)		((x) << 4)
2208c2ecf20Sopenharmony_ci#define FSPI_STS0_CMD_SRC(x)		((x) << 2)
2218c2ecf20Sopenharmony_ci#define FSPI_STS0_ARB_IDLE		BIT(1)
2228c2ecf20Sopenharmony_ci#define FSPI_STS0_SEQ_IDLE		BIT(0)
2238c2ecf20Sopenharmony_ci
2248c2ecf20Sopenharmony_ci#define FSPI_STS1			0xE4
2258c2ecf20Sopenharmony_ci#define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
2268c2ecf20Sopenharmony_ci#define FSPI_STS1_IP_ERRID(x)		((x) << 16)
2278c2ecf20Sopenharmony_ci#define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
2288c2ecf20Sopenharmony_ci#define FSPI_STS1_AHB_ERRID(x)		(x)
2298c2ecf20Sopenharmony_ci
2308c2ecf20Sopenharmony_ci#define FSPI_AHBSPNST			0xEC
2318c2ecf20Sopenharmony_ci#define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
2328c2ecf20Sopenharmony_ci#define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
2338c2ecf20Sopenharmony_ci#define FSPI_AHBSPNST_ACTIVE		BIT(0)
2348c2ecf20Sopenharmony_ci
2358c2ecf20Sopenharmony_ci#define FSPI_IPRXFSTS			0xF0
2368c2ecf20Sopenharmony_ci#define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
2378c2ecf20Sopenharmony_ci#define FSPI_IPRXFSTS_FILL(x)		(x)
2388c2ecf20Sopenharmony_ci
2398c2ecf20Sopenharmony_ci#define FSPI_IPTXFSTS			0xF4
2408c2ecf20Sopenharmony_ci#define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
2418c2ecf20Sopenharmony_ci#define FSPI_IPTXFSTS_FILL(x)		(x)
2428c2ecf20Sopenharmony_ci
2438c2ecf20Sopenharmony_ci#define FSPI_RFDR			0x100
2448c2ecf20Sopenharmony_ci#define FSPI_TFDR			0x180
2458c2ecf20Sopenharmony_ci
2468c2ecf20Sopenharmony_ci#define FSPI_LUT_BASE			0x200
2478c2ecf20Sopenharmony_ci#define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
2488c2ecf20Sopenharmony_ci#define FSPI_LUT_REG(idx) \
2498c2ecf20Sopenharmony_ci	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
2508c2ecf20Sopenharmony_ci
2518c2ecf20Sopenharmony_ci/* register map end */
2528c2ecf20Sopenharmony_ci
2538c2ecf20Sopenharmony_ci/* Instruction set for the LUT register. */
2548c2ecf20Sopenharmony_ci#define LUT_STOP			0x00
2558c2ecf20Sopenharmony_ci#define LUT_CMD				0x01
2568c2ecf20Sopenharmony_ci#define LUT_ADDR			0x02
2578c2ecf20Sopenharmony_ci#define LUT_CADDR_SDR			0x03
2588c2ecf20Sopenharmony_ci#define LUT_MODE			0x04
2598c2ecf20Sopenharmony_ci#define LUT_MODE2			0x05
2608c2ecf20Sopenharmony_ci#define LUT_MODE4			0x06
2618c2ecf20Sopenharmony_ci#define LUT_MODE8			0x07
2628c2ecf20Sopenharmony_ci#define LUT_NXP_WRITE			0x08
2638c2ecf20Sopenharmony_ci#define LUT_NXP_READ			0x09
2648c2ecf20Sopenharmony_ci#define LUT_LEARN_SDR			0x0A
2658c2ecf20Sopenharmony_ci#define LUT_DATSZ_SDR			0x0B
2668c2ecf20Sopenharmony_ci#define LUT_DUMMY			0x0C
2678c2ecf20Sopenharmony_ci#define LUT_DUMMY_RWDS_SDR		0x0D
2688c2ecf20Sopenharmony_ci#define LUT_JMP_ON_CS			0x1F
2698c2ecf20Sopenharmony_ci#define LUT_CMD_DDR			0x21
2708c2ecf20Sopenharmony_ci#define LUT_ADDR_DDR			0x22
2718c2ecf20Sopenharmony_ci#define LUT_CADDR_DDR			0x23
2728c2ecf20Sopenharmony_ci#define LUT_MODE_DDR			0x24
2738c2ecf20Sopenharmony_ci#define LUT_MODE2_DDR			0x25
2748c2ecf20Sopenharmony_ci#define LUT_MODE4_DDR			0x26
2758c2ecf20Sopenharmony_ci#define LUT_MODE8_DDR			0x27
2768c2ecf20Sopenharmony_ci#define LUT_WRITE_DDR			0x28
2778c2ecf20Sopenharmony_ci#define LUT_READ_DDR			0x29
2788c2ecf20Sopenharmony_ci#define LUT_LEARN_DDR			0x2A
2798c2ecf20Sopenharmony_ci#define LUT_DATSZ_DDR			0x2B
2808c2ecf20Sopenharmony_ci#define LUT_DUMMY_DDR			0x2C
2818c2ecf20Sopenharmony_ci#define LUT_DUMMY_RWDS_DDR		0x2D
2828c2ecf20Sopenharmony_ci
2838c2ecf20Sopenharmony_ci/*
2848c2ecf20Sopenharmony_ci * Calculate number of required PAD bits for LUT register.
2858c2ecf20Sopenharmony_ci *
2868c2ecf20Sopenharmony_ci * The pad stands for the number of IO lines [0:7].
2878c2ecf20Sopenharmony_ci * For example, the octal read needs eight IO lines,
2888c2ecf20Sopenharmony_ci * so you should use LUT_PAD(8). This macro
2898c2ecf20Sopenharmony_ci * returns 3 i.e. use eight (2^3) IP lines for read.
2908c2ecf20Sopenharmony_ci */
2918c2ecf20Sopenharmony_ci#define LUT_PAD(x) (fls(x) - 1)
2928c2ecf20Sopenharmony_ci
2938c2ecf20Sopenharmony_ci/*
2948c2ecf20Sopenharmony_ci * Macro for constructing the LUT entries with the following
2958c2ecf20Sopenharmony_ci * register layout:
2968c2ecf20Sopenharmony_ci *
2978c2ecf20Sopenharmony_ci *  ---------------------------------------------------
2988c2ecf20Sopenharmony_ci *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
2998c2ecf20Sopenharmony_ci *  ---------------------------------------------------
3008c2ecf20Sopenharmony_ci */
3018c2ecf20Sopenharmony_ci#define PAD_SHIFT		8
3028c2ecf20Sopenharmony_ci#define INSTR_SHIFT		10
3038c2ecf20Sopenharmony_ci#define OPRND_SHIFT		16
3048c2ecf20Sopenharmony_ci
3058c2ecf20Sopenharmony_ci/* Macros for constructing the LUT register. */
3068c2ecf20Sopenharmony_ci#define LUT_DEF(idx, ins, pad, opr)			  \
3078c2ecf20Sopenharmony_ci	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
3088c2ecf20Sopenharmony_ci	(opr)) << (((idx) % 2) * OPRND_SHIFT))
3098c2ecf20Sopenharmony_ci
3108c2ecf20Sopenharmony_ci#define POLL_TOUT		5000
3118c2ecf20Sopenharmony_ci#define NXP_FSPI_MAX_CHIPSELECT		4
3128c2ecf20Sopenharmony_ci#define NXP_FSPI_MIN_IOMAP	SZ_4M
3138c2ecf20Sopenharmony_ci
3148c2ecf20Sopenharmony_cistruct nxp_fspi_devtype_data {
3158c2ecf20Sopenharmony_ci	unsigned int rxfifo;
3168c2ecf20Sopenharmony_ci	unsigned int txfifo;
3178c2ecf20Sopenharmony_ci	unsigned int ahb_buf_size;
3188c2ecf20Sopenharmony_ci	unsigned int quirks;
3198c2ecf20Sopenharmony_ci	bool little_endian;
3208c2ecf20Sopenharmony_ci};
3218c2ecf20Sopenharmony_ci
3228c2ecf20Sopenharmony_cistatic const struct nxp_fspi_devtype_data lx2160a_data = {
3238c2ecf20Sopenharmony_ci	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
3248c2ecf20Sopenharmony_ci	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
3258c2ecf20Sopenharmony_ci	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
3268c2ecf20Sopenharmony_ci	.quirks = 0,
3278c2ecf20Sopenharmony_ci	.little_endian = true,  /* little-endian    */
3288c2ecf20Sopenharmony_ci};
3298c2ecf20Sopenharmony_ci
3308c2ecf20Sopenharmony_cistatic const struct nxp_fspi_devtype_data imx8mm_data = {
3318c2ecf20Sopenharmony_ci	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
3328c2ecf20Sopenharmony_ci	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
3338c2ecf20Sopenharmony_ci	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
3348c2ecf20Sopenharmony_ci	.quirks = 0,
3358c2ecf20Sopenharmony_ci	.little_endian = true,  /* little-endian    */
3368c2ecf20Sopenharmony_ci};
3378c2ecf20Sopenharmony_ci
3388c2ecf20Sopenharmony_cistatic const struct nxp_fspi_devtype_data imx8qxp_data = {
3398c2ecf20Sopenharmony_ci	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
3408c2ecf20Sopenharmony_ci	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
3418c2ecf20Sopenharmony_ci	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
3428c2ecf20Sopenharmony_ci	.quirks = 0,
3438c2ecf20Sopenharmony_ci	.little_endian = true,  /* little-endian    */
3448c2ecf20Sopenharmony_ci};
3458c2ecf20Sopenharmony_ci
3468c2ecf20Sopenharmony_cistruct nxp_fspi {
3478c2ecf20Sopenharmony_ci	void __iomem *iobase;
3488c2ecf20Sopenharmony_ci	void __iomem *ahb_addr;
3498c2ecf20Sopenharmony_ci	u32 memmap_phy;
3508c2ecf20Sopenharmony_ci	u32 memmap_phy_size;
3518c2ecf20Sopenharmony_ci	u32 memmap_start;
3528c2ecf20Sopenharmony_ci	u32 memmap_len;
3538c2ecf20Sopenharmony_ci	struct clk *clk, *clk_en;
3548c2ecf20Sopenharmony_ci	struct device *dev;
3558c2ecf20Sopenharmony_ci	struct completion c;
3568c2ecf20Sopenharmony_ci	const struct nxp_fspi_devtype_data *devtype_data;
3578c2ecf20Sopenharmony_ci	struct mutex lock;
3588c2ecf20Sopenharmony_ci	struct pm_qos_request pm_qos_req;
3598c2ecf20Sopenharmony_ci	int selected;
3608c2ecf20Sopenharmony_ci};
3618c2ecf20Sopenharmony_ci
3628c2ecf20Sopenharmony_ci/*
3638c2ecf20Sopenharmony_ci * R/W functions for big- or little-endian registers:
3648c2ecf20Sopenharmony_ci * The FSPI controller's endianness is independent of
3658c2ecf20Sopenharmony_ci * the CPU core's endianness. So far, although the CPU
3668c2ecf20Sopenharmony_ci * core is little-endian the FSPI controller can use
3678c2ecf20Sopenharmony_ci * big-endian or little-endian.
3688c2ecf20Sopenharmony_ci */
3698c2ecf20Sopenharmony_cistatic void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
3708c2ecf20Sopenharmony_ci{
3718c2ecf20Sopenharmony_ci	if (f->devtype_data->little_endian)
3728c2ecf20Sopenharmony_ci		iowrite32(val, addr);
3738c2ecf20Sopenharmony_ci	else
3748c2ecf20Sopenharmony_ci		iowrite32be(val, addr);
3758c2ecf20Sopenharmony_ci}
3768c2ecf20Sopenharmony_ci
3778c2ecf20Sopenharmony_cistatic u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
3788c2ecf20Sopenharmony_ci{
3798c2ecf20Sopenharmony_ci	if (f->devtype_data->little_endian)
3808c2ecf20Sopenharmony_ci		return ioread32(addr);
3818c2ecf20Sopenharmony_ci	else
3828c2ecf20Sopenharmony_ci		return ioread32be(addr);
3838c2ecf20Sopenharmony_ci}
3848c2ecf20Sopenharmony_ci
3858c2ecf20Sopenharmony_cistatic irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
3868c2ecf20Sopenharmony_ci{
3878c2ecf20Sopenharmony_ci	struct nxp_fspi *f = dev_id;
3888c2ecf20Sopenharmony_ci	u32 reg;
3898c2ecf20Sopenharmony_ci
3908c2ecf20Sopenharmony_ci	/* clear interrupt */
3918c2ecf20Sopenharmony_ci	reg = fspi_readl(f, f->iobase + FSPI_INTR);
3928c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
3938c2ecf20Sopenharmony_ci
3948c2ecf20Sopenharmony_ci	if (reg & FSPI_INTR_IPCMDDONE)
3958c2ecf20Sopenharmony_ci		complete(&f->c);
3968c2ecf20Sopenharmony_ci
3978c2ecf20Sopenharmony_ci	return IRQ_HANDLED;
3988c2ecf20Sopenharmony_ci}
3998c2ecf20Sopenharmony_ci
4008c2ecf20Sopenharmony_cistatic int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
4018c2ecf20Sopenharmony_ci{
4028c2ecf20Sopenharmony_ci	switch (width) {
4038c2ecf20Sopenharmony_ci	case 1:
4048c2ecf20Sopenharmony_ci	case 2:
4058c2ecf20Sopenharmony_ci	case 4:
4068c2ecf20Sopenharmony_ci	case 8:
4078c2ecf20Sopenharmony_ci		return 0;
4088c2ecf20Sopenharmony_ci	}
4098c2ecf20Sopenharmony_ci
4108c2ecf20Sopenharmony_ci	return -ENOTSUPP;
4118c2ecf20Sopenharmony_ci}
4128c2ecf20Sopenharmony_ci
4138c2ecf20Sopenharmony_cistatic bool nxp_fspi_supports_op(struct spi_mem *mem,
4148c2ecf20Sopenharmony_ci				 const struct spi_mem_op *op)
4158c2ecf20Sopenharmony_ci{
4168c2ecf20Sopenharmony_ci	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
4178c2ecf20Sopenharmony_ci	int ret;
4188c2ecf20Sopenharmony_ci
4198c2ecf20Sopenharmony_ci	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
4208c2ecf20Sopenharmony_ci
4218c2ecf20Sopenharmony_ci	if (op->addr.nbytes)
4228c2ecf20Sopenharmony_ci		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
4238c2ecf20Sopenharmony_ci
4248c2ecf20Sopenharmony_ci	if (op->dummy.nbytes)
4258c2ecf20Sopenharmony_ci		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
4268c2ecf20Sopenharmony_ci
4278c2ecf20Sopenharmony_ci	if (op->data.nbytes)
4288c2ecf20Sopenharmony_ci		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
4298c2ecf20Sopenharmony_ci
4308c2ecf20Sopenharmony_ci	if (ret)
4318c2ecf20Sopenharmony_ci		return false;
4328c2ecf20Sopenharmony_ci
4338c2ecf20Sopenharmony_ci	/*
4348c2ecf20Sopenharmony_ci	 * The number of address bytes should be equal to or less than 4 bytes.
4358c2ecf20Sopenharmony_ci	 */
4368c2ecf20Sopenharmony_ci	if (op->addr.nbytes > 4)
4378c2ecf20Sopenharmony_ci		return false;
4388c2ecf20Sopenharmony_ci
4398c2ecf20Sopenharmony_ci	/*
4408c2ecf20Sopenharmony_ci	 * If requested address value is greater than controller assigned
4418c2ecf20Sopenharmony_ci	 * memory mapped space, return error as it didn't fit in the range
4428c2ecf20Sopenharmony_ci	 * of assigned address space.
4438c2ecf20Sopenharmony_ci	 */
4448c2ecf20Sopenharmony_ci	if (op->addr.val >= f->memmap_phy_size)
4458c2ecf20Sopenharmony_ci		return false;
4468c2ecf20Sopenharmony_ci
4478c2ecf20Sopenharmony_ci	/* Max 64 dummy clock cycles supported */
4488c2ecf20Sopenharmony_ci	if (op->dummy.buswidth &&
4498c2ecf20Sopenharmony_ci	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
4508c2ecf20Sopenharmony_ci		return false;
4518c2ecf20Sopenharmony_ci
4528c2ecf20Sopenharmony_ci	/* Max data length, check controller limits and alignment */
4538c2ecf20Sopenharmony_ci	if (op->data.dir == SPI_MEM_DATA_IN &&
4548c2ecf20Sopenharmony_ci	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
4558c2ecf20Sopenharmony_ci	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
4568c2ecf20Sopenharmony_ci	      !IS_ALIGNED(op->data.nbytes, 8))))
4578c2ecf20Sopenharmony_ci		return false;
4588c2ecf20Sopenharmony_ci
4598c2ecf20Sopenharmony_ci	if (op->data.dir == SPI_MEM_DATA_OUT &&
4608c2ecf20Sopenharmony_ci	    op->data.nbytes > f->devtype_data->txfifo)
4618c2ecf20Sopenharmony_ci		return false;
4628c2ecf20Sopenharmony_ci
4638c2ecf20Sopenharmony_ci	return spi_mem_default_supports_op(mem, op);
4648c2ecf20Sopenharmony_ci}
4658c2ecf20Sopenharmony_ci
4668c2ecf20Sopenharmony_ci/* Instead of busy looping invoke readl_poll_timeout functionality. */
4678c2ecf20Sopenharmony_cistatic int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
4688c2ecf20Sopenharmony_ci				u32 mask, u32 delay_us,
4698c2ecf20Sopenharmony_ci				u32 timeout_us, bool c)
4708c2ecf20Sopenharmony_ci{
4718c2ecf20Sopenharmony_ci	u32 reg;
4728c2ecf20Sopenharmony_ci
4738c2ecf20Sopenharmony_ci	if (!f->devtype_data->little_endian)
4748c2ecf20Sopenharmony_ci		mask = (u32)cpu_to_be32(mask);
4758c2ecf20Sopenharmony_ci
4768c2ecf20Sopenharmony_ci	if (c)
4778c2ecf20Sopenharmony_ci		return readl_poll_timeout(base, reg, (reg & mask),
4788c2ecf20Sopenharmony_ci					  delay_us, timeout_us);
4798c2ecf20Sopenharmony_ci	else
4808c2ecf20Sopenharmony_ci		return readl_poll_timeout(base, reg, !(reg & mask),
4818c2ecf20Sopenharmony_ci					  delay_us, timeout_us);
4828c2ecf20Sopenharmony_ci}
4838c2ecf20Sopenharmony_ci
4848c2ecf20Sopenharmony_ci/*
4858c2ecf20Sopenharmony_ci * If the slave device content being changed by Write/Erase, need to
4868c2ecf20Sopenharmony_ci * invalidate the AHB buffer. This can be achieved by doing the reset
4878c2ecf20Sopenharmony_ci * of controller after setting MCR0[SWRESET] bit.
4888c2ecf20Sopenharmony_ci */
4898c2ecf20Sopenharmony_cistatic inline void nxp_fspi_invalid(struct nxp_fspi *f)
4908c2ecf20Sopenharmony_ci{
4918c2ecf20Sopenharmony_ci	u32 reg;
4928c2ecf20Sopenharmony_ci	int ret;
4938c2ecf20Sopenharmony_ci
4948c2ecf20Sopenharmony_ci	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
4958c2ecf20Sopenharmony_ci	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
4968c2ecf20Sopenharmony_ci
4978c2ecf20Sopenharmony_ci	/* w1c register, wait unit clear */
4988c2ecf20Sopenharmony_ci	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
4998c2ecf20Sopenharmony_ci				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
5008c2ecf20Sopenharmony_ci	WARN_ON(ret);
5018c2ecf20Sopenharmony_ci}
5028c2ecf20Sopenharmony_ci
5038c2ecf20Sopenharmony_cistatic void nxp_fspi_prepare_lut(struct nxp_fspi *f,
5048c2ecf20Sopenharmony_ci				 const struct spi_mem_op *op)
5058c2ecf20Sopenharmony_ci{
5068c2ecf20Sopenharmony_ci	void __iomem *base = f->iobase;
5078c2ecf20Sopenharmony_ci	u32 lutval[4] = {};
5088c2ecf20Sopenharmony_ci	int lutidx = 1, i;
5098c2ecf20Sopenharmony_ci
5108c2ecf20Sopenharmony_ci	/* cmd */
5118c2ecf20Sopenharmony_ci	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
5128c2ecf20Sopenharmony_ci			     op->cmd.opcode);
5138c2ecf20Sopenharmony_ci
5148c2ecf20Sopenharmony_ci	/* addr bytes */
5158c2ecf20Sopenharmony_ci	if (op->addr.nbytes) {
5168c2ecf20Sopenharmony_ci		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
5178c2ecf20Sopenharmony_ci					      LUT_PAD(op->addr.buswidth),
5188c2ecf20Sopenharmony_ci					      op->addr.nbytes * 8);
5198c2ecf20Sopenharmony_ci		lutidx++;
5208c2ecf20Sopenharmony_ci	}
5218c2ecf20Sopenharmony_ci
5228c2ecf20Sopenharmony_ci	/* dummy bytes, if needed */
5238c2ecf20Sopenharmony_ci	if (op->dummy.nbytes) {
5248c2ecf20Sopenharmony_ci		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
5258c2ecf20Sopenharmony_ci		/*
5268c2ecf20Sopenharmony_ci		 * Due to FlexSPI controller limitation number of PAD for dummy
5278c2ecf20Sopenharmony_ci		 * buswidth needs to be programmed as equal to data buswidth.
5288c2ecf20Sopenharmony_ci		 */
5298c2ecf20Sopenharmony_ci					      LUT_PAD(op->data.buswidth),
5308c2ecf20Sopenharmony_ci					      op->dummy.nbytes * 8 /
5318c2ecf20Sopenharmony_ci					      op->dummy.buswidth);
5328c2ecf20Sopenharmony_ci		lutidx++;
5338c2ecf20Sopenharmony_ci	}
5348c2ecf20Sopenharmony_ci
5358c2ecf20Sopenharmony_ci	/* read/write data bytes */
5368c2ecf20Sopenharmony_ci	if (op->data.nbytes) {
5378c2ecf20Sopenharmony_ci		lutval[lutidx / 2] |= LUT_DEF(lutidx,
5388c2ecf20Sopenharmony_ci					      op->data.dir == SPI_MEM_DATA_IN ?
5398c2ecf20Sopenharmony_ci					      LUT_NXP_READ : LUT_NXP_WRITE,
5408c2ecf20Sopenharmony_ci					      LUT_PAD(op->data.buswidth),
5418c2ecf20Sopenharmony_ci					      0);
5428c2ecf20Sopenharmony_ci		lutidx++;
5438c2ecf20Sopenharmony_ci	}
5448c2ecf20Sopenharmony_ci
5458c2ecf20Sopenharmony_ci	/* stop condition. */
5468c2ecf20Sopenharmony_ci	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
5478c2ecf20Sopenharmony_ci
5488c2ecf20Sopenharmony_ci	/* unlock LUT */
5498c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
5508c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
5518c2ecf20Sopenharmony_ci
5528c2ecf20Sopenharmony_ci	/* fill LUT */
5538c2ecf20Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(lutval); i++)
5548c2ecf20Sopenharmony_ci		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
5558c2ecf20Sopenharmony_ci
5568c2ecf20Sopenharmony_ci	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
5578c2ecf20Sopenharmony_ci		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
5588c2ecf20Sopenharmony_ci
5598c2ecf20Sopenharmony_ci	/* lock LUT */
5608c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
5618c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
5628c2ecf20Sopenharmony_ci}
5638c2ecf20Sopenharmony_ci
5648c2ecf20Sopenharmony_cistatic int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
5658c2ecf20Sopenharmony_ci{
5668c2ecf20Sopenharmony_ci	int ret;
5678c2ecf20Sopenharmony_ci
5688c2ecf20Sopenharmony_ci	if (is_acpi_node(f->dev->fwnode))
5698c2ecf20Sopenharmony_ci		return 0;
5708c2ecf20Sopenharmony_ci
5718c2ecf20Sopenharmony_ci	ret = clk_prepare_enable(f->clk_en);
5728c2ecf20Sopenharmony_ci	if (ret)
5738c2ecf20Sopenharmony_ci		return ret;
5748c2ecf20Sopenharmony_ci
5758c2ecf20Sopenharmony_ci	ret = clk_prepare_enable(f->clk);
5768c2ecf20Sopenharmony_ci	if (ret) {
5778c2ecf20Sopenharmony_ci		clk_disable_unprepare(f->clk_en);
5788c2ecf20Sopenharmony_ci		return ret;
5798c2ecf20Sopenharmony_ci	}
5808c2ecf20Sopenharmony_ci
5818c2ecf20Sopenharmony_ci	return 0;
5828c2ecf20Sopenharmony_ci}
5838c2ecf20Sopenharmony_ci
5848c2ecf20Sopenharmony_cistatic int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
5858c2ecf20Sopenharmony_ci{
5868c2ecf20Sopenharmony_ci	if (is_acpi_node(f->dev->fwnode))
5878c2ecf20Sopenharmony_ci		return 0;
5888c2ecf20Sopenharmony_ci
5898c2ecf20Sopenharmony_ci	clk_disable_unprepare(f->clk);
5908c2ecf20Sopenharmony_ci	clk_disable_unprepare(f->clk_en);
5918c2ecf20Sopenharmony_ci
5928c2ecf20Sopenharmony_ci	return 0;
5938c2ecf20Sopenharmony_ci}
5948c2ecf20Sopenharmony_ci
5958c2ecf20Sopenharmony_ci/*
5968c2ecf20Sopenharmony_ci * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
5978c2ecf20Sopenharmony_ci * register and start base address of the slave device.
5988c2ecf20Sopenharmony_ci *
5998c2ecf20Sopenharmony_ci *							    (Higher address)
6008c2ecf20Sopenharmony_ci *				--------    <-- FLSHB2CR0
6018c2ecf20Sopenharmony_ci *				|  B2  |
6028c2ecf20Sopenharmony_ci *				|      |
6038c2ecf20Sopenharmony_ci *	B2 start address -->	--------    <-- FLSHB1CR0
6048c2ecf20Sopenharmony_ci *				|  B1  |
6058c2ecf20Sopenharmony_ci *				|      |
6068c2ecf20Sopenharmony_ci *	B1 start address -->	--------    <-- FLSHA2CR0
6078c2ecf20Sopenharmony_ci *				|  A2  |
6088c2ecf20Sopenharmony_ci *				|      |
6098c2ecf20Sopenharmony_ci *	A2 start address -->	--------    <-- FLSHA1CR0
6108c2ecf20Sopenharmony_ci *				|  A1  |
6118c2ecf20Sopenharmony_ci *				|      |
6128c2ecf20Sopenharmony_ci *	A1 start address -->	--------		    (Lower address)
6138c2ecf20Sopenharmony_ci *
6148c2ecf20Sopenharmony_ci *
6158c2ecf20Sopenharmony_ci * Start base address defines the starting address range for given CS and
6168c2ecf20Sopenharmony_ci * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
6178c2ecf20Sopenharmony_ci *
6188c2ecf20Sopenharmony_ci * But, different targets are having different combinations of number of CS,
6198c2ecf20Sopenharmony_ci * some targets only have single CS or two CS covering controller's full
6208c2ecf20Sopenharmony_ci * memory mapped space area.
6218c2ecf20Sopenharmony_ci * Thus, implementation is being done as independent of the size and number
6228c2ecf20Sopenharmony_ci * of the connected slave device.
6238c2ecf20Sopenharmony_ci * Assign controller memory mapped space size as the size to the connected
6248c2ecf20Sopenharmony_ci * slave device.
6258c2ecf20Sopenharmony_ci * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
6268c2ecf20Sopenharmony_ci * chip-select Flash configuration register.
6278c2ecf20Sopenharmony_ci *
6288c2ecf20Sopenharmony_ci * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
6298c2ecf20Sopenharmony_ci * memory mapped size of the controller.
6308c2ecf20Sopenharmony_ci * Value for rest of the CS FLSHxxCR0 register would be zero.
6318c2ecf20Sopenharmony_ci *
6328c2ecf20Sopenharmony_ci */
6338c2ecf20Sopenharmony_cistatic void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
6348c2ecf20Sopenharmony_ci{
6358c2ecf20Sopenharmony_ci	unsigned long rate = spi->max_speed_hz;
6368c2ecf20Sopenharmony_ci	int ret;
6378c2ecf20Sopenharmony_ci	uint64_t size_kb;
6388c2ecf20Sopenharmony_ci
6398c2ecf20Sopenharmony_ci	/*
6408c2ecf20Sopenharmony_ci	 * Return, if previously selected slave device is same as current
6418c2ecf20Sopenharmony_ci	 * requested slave device.
6428c2ecf20Sopenharmony_ci	 */
6438c2ecf20Sopenharmony_ci	if (f->selected == spi->chip_select)
6448c2ecf20Sopenharmony_ci		return;
6458c2ecf20Sopenharmony_ci
6468c2ecf20Sopenharmony_ci	/* Reset FLSHxxCR0 registers */
6478c2ecf20Sopenharmony_ci	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
6488c2ecf20Sopenharmony_ci	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
6498c2ecf20Sopenharmony_ci	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
6508c2ecf20Sopenharmony_ci	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
6518c2ecf20Sopenharmony_ci
6528c2ecf20Sopenharmony_ci	/* Assign controller memory mapped space as size, KBytes, of flash. */
6538c2ecf20Sopenharmony_ci	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
6548c2ecf20Sopenharmony_ci
6558c2ecf20Sopenharmony_ci	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
6568c2ecf20Sopenharmony_ci		    4 * spi->chip_select);
6578c2ecf20Sopenharmony_ci
6588c2ecf20Sopenharmony_ci	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
6598c2ecf20Sopenharmony_ci
6608c2ecf20Sopenharmony_ci	nxp_fspi_clk_disable_unprep(f);
6618c2ecf20Sopenharmony_ci
6628c2ecf20Sopenharmony_ci	ret = clk_set_rate(f->clk, rate);
6638c2ecf20Sopenharmony_ci	if (ret)
6648c2ecf20Sopenharmony_ci		return;
6658c2ecf20Sopenharmony_ci
6668c2ecf20Sopenharmony_ci	ret = nxp_fspi_clk_prep_enable(f);
6678c2ecf20Sopenharmony_ci	if (ret)
6688c2ecf20Sopenharmony_ci		return;
6698c2ecf20Sopenharmony_ci
6708c2ecf20Sopenharmony_ci	f->selected = spi->chip_select;
6718c2ecf20Sopenharmony_ci}
6728c2ecf20Sopenharmony_ci
6738c2ecf20Sopenharmony_cistatic int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
6748c2ecf20Sopenharmony_ci{
6758c2ecf20Sopenharmony_ci	u32 start = op->addr.val;
6768c2ecf20Sopenharmony_ci	u32 len = op->data.nbytes;
6778c2ecf20Sopenharmony_ci
6788c2ecf20Sopenharmony_ci	/* if necessary, ioremap before AHB read */
6798c2ecf20Sopenharmony_ci	if ((!f->ahb_addr) || start < f->memmap_start ||
6808c2ecf20Sopenharmony_ci	     start + len > f->memmap_start + f->memmap_len) {
6818c2ecf20Sopenharmony_ci		if (f->ahb_addr)
6828c2ecf20Sopenharmony_ci			iounmap(f->ahb_addr);
6838c2ecf20Sopenharmony_ci
6848c2ecf20Sopenharmony_ci		f->memmap_start = start;
6858c2ecf20Sopenharmony_ci		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
6868c2ecf20Sopenharmony_ci				len : NXP_FSPI_MIN_IOMAP;
6878c2ecf20Sopenharmony_ci
6888c2ecf20Sopenharmony_ci		f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
6898c2ecf20Sopenharmony_ci					 f->memmap_len);
6908c2ecf20Sopenharmony_ci
6918c2ecf20Sopenharmony_ci		if (!f->ahb_addr) {
6928c2ecf20Sopenharmony_ci			dev_err(f->dev, "failed to alloc memory\n");
6938c2ecf20Sopenharmony_ci			return -ENOMEM;
6948c2ecf20Sopenharmony_ci		}
6958c2ecf20Sopenharmony_ci	}
6968c2ecf20Sopenharmony_ci
6978c2ecf20Sopenharmony_ci	/* Read out the data directly from the AHB buffer. */
6988c2ecf20Sopenharmony_ci	memcpy_fromio(op->data.buf.in,
6998c2ecf20Sopenharmony_ci		      f->ahb_addr + start - f->memmap_start, len);
7008c2ecf20Sopenharmony_ci
7018c2ecf20Sopenharmony_ci	return 0;
7028c2ecf20Sopenharmony_ci}
7038c2ecf20Sopenharmony_ci
7048c2ecf20Sopenharmony_cistatic void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
7058c2ecf20Sopenharmony_ci				 const struct spi_mem_op *op)
7068c2ecf20Sopenharmony_ci{
7078c2ecf20Sopenharmony_ci	void __iomem *base = f->iobase;
7088c2ecf20Sopenharmony_ci	int i, ret;
7098c2ecf20Sopenharmony_ci	u8 *buf = (u8 *) op->data.buf.out;
7108c2ecf20Sopenharmony_ci
7118c2ecf20Sopenharmony_ci	/* clear the TX FIFO. */
7128c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
7138c2ecf20Sopenharmony_ci
7148c2ecf20Sopenharmony_ci	/*
7158c2ecf20Sopenharmony_ci	 * Default value of water mark level is 8 bytes, hence in single
7168c2ecf20Sopenharmony_ci	 * write request controller can write max 8 bytes of data.
7178c2ecf20Sopenharmony_ci	 */
7188c2ecf20Sopenharmony_ci
7198c2ecf20Sopenharmony_ci	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
7208c2ecf20Sopenharmony_ci		/* Wait for TXFIFO empty */
7218c2ecf20Sopenharmony_ci		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
7228c2ecf20Sopenharmony_ci					   FSPI_INTR_IPTXWE, 0,
7238c2ecf20Sopenharmony_ci					   POLL_TOUT, true);
7248c2ecf20Sopenharmony_ci		WARN_ON(ret);
7258c2ecf20Sopenharmony_ci
7268c2ecf20Sopenharmony_ci		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
7278c2ecf20Sopenharmony_ci		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
7288c2ecf20Sopenharmony_ci		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
7298c2ecf20Sopenharmony_ci	}
7308c2ecf20Sopenharmony_ci
7318c2ecf20Sopenharmony_ci	if (i < op->data.nbytes) {
7328c2ecf20Sopenharmony_ci		u32 data = 0;
7338c2ecf20Sopenharmony_ci		int j;
7348c2ecf20Sopenharmony_ci		/* Wait for TXFIFO empty */
7358c2ecf20Sopenharmony_ci		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
7368c2ecf20Sopenharmony_ci					   FSPI_INTR_IPTXWE, 0,
7378c2ecf20Sopenharmony_ci					   POLL_TOUT, true);
7388c2ecf20Sopenharmony_ci		WARN_ON(ret);
7398c2ecf20Sopenharmony_ci
7408c2ecf20Sopenharmony_ci		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
7418c2ecf20Sopenharmony_ci			memcpy(&data, buf + i + j, 4);
7428c2ecf20Sopenharmony_ci			fspi_writel(f, data, base + FSPI_TFDR + j);
7438c2ecf20Sopenharmony_ci		}
7448c2ecf20Sopenharmony_ci		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
7458c2ecf20Sopenharmony_ci	}
7468c2ecf20Sopenharmony_ci}
7478c2ecf20Sopenharmony_ci
7488c2ecf20Sopenharmony_cistatic void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
7498c2ecf20Sopenharmony_ci			  const struct spi_mem_op *op)
7508c2ecf20Sopenharmony_ci{
7518c2ecf20Sopenharmony_ci	void __iomem *base = f->iobase;
7528c2ecf20Sopenharmony_ci	int i, ret;
7538c2ecf20Sopenharmony_ci	int len = op->data.nbytes;
7548c2ecf20Sopenharmony_ci	u8 *buf = (u8 *) op->data.buf.in;
7558c2ecf20Sopenharmony_ci
7568c2ecf20Sopenharmony_ci	/*
7578c2ecf20Sopenharmony_ci	 * Default value of water mark level is 8 bytes, hence in single
7588c2ecf20Sopenharmony_ci	 * read request controller can read max 8 bytes of data.
7598c2ecf20Sopenharmony_ci	 */
7608c2ecf20Sopenharmony_ci	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
7618c2ecf20Sopenharmony_ci		/* Wait for RXFIFO available */
7628c2ecf20Sopenharmony_ci		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
7638c2ecf20Sopenharmony_ci					   FSPI_INTR_IPRXWA, 0,
7648c2ecf20Sopenharmony_ci					   POLL_TOUT, true);
7658c2ecf20Sopenharmony_ci		WARN_ON(ret);
7668c2ecf20Sopenharmony_ci
7678c2ecf20Sopenharmony_ci		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
7688c2ecf20Sopenharmony_ci		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
7698c2ecf20Sopenharmony_ci		/* move the FIFO pointer */
7708c2ecf20Sopenharmony_ci		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
7718c2ecf20Sopenharmony_ci	}
7728c2ecf20Sopenharmony_ci
7738c2ecf20Sopenharmony_ci	if (i < len) {
7748c2ecf20Sopenharmony_ci		u32 tmp;
7758c2ecf20Sopenharmony_ci		int size, j;
7768c2ecf20Sopenharmony_ci
7778c2ecf20Sopenharmony_ci		buf = op->data.buf.in + i;
7788c2ecf20Sopenharmony_ci		/* Wait for RXFIFO available */
7798c2ecf20Sopenharmony_ci		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
7808c2ecf20Sopenharmony_ci					   FSPI_INTR_IPRXWA, 0,
7818c2ecf20Sopenharmony_ci					   POLL_TOUT, true);
7828c2ecf20Sopenharmony_ci		WARN_ON(ret);
7838c2ecf20Sopenharmony_ci
7848c2ecf20Sopenharmony_ci		len = op->data.nbytes - i;
7858c2ecf20Sopenharmony_ci		for (j = 0; j < op->data.nbytes - i; j += 4) {
7868c2ecf20Sopenharmony_ci			tmp = fspi_readl(f, base + FSPI_RFDR + j);
7878c2ecf20Sopenharmony_ci			size = min(len, 4);
7888c2ecf20Sopenharmony_ci			memcpy(buf + j, &tmp, size);
7898c2ecf20Sopenharmony_ci			len -= size;
7908c2ecf20Sopenharmony_ci		}
7918c2ecf20Sopenharmony_ci	}
7928c2ecf20Sopenharmony_ci
7938c2ecf20Sopenharmony_ci	/* invalid the RXFIFO */
7948c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
7958c2ecf20Sopenharmony_ci	/* move the FIFO pointer */
7968c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
7978c2ecf20Sopenharmony_ci}
7988c2ecf20Sopenharmony_ci
7998c2ecf20Sopenharmony_cistatic int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
8008c2ecf20Sopenharmony_ci{
8018c2ecf20Sopenharmony_ci	void __iomem *base = f->iobase;
8028c2ecf20Sopenharmony_ci	int seqnum = 0;
8038c2ecf20Sopenharmony_ci	int err = 0;
8048c2ecf20Sopenharmony_ci	u32 reg;
8058c2ecf20Sopenharmony_ci
8068c2ecf20Sopenharmony_ci	reg = fspi_readl(f, base + FSPI_IPRXFCR);
8078c2ecf20Sopenharmony_ci	/* invalid RXFIFO first */
8088c2ecf20Sopenharmony_ci	reg &= ~FSPI_IPRXFCR_DMA_EN;
8098c2ecf20Sopenharmony_ci	reg = reg | FSPI_IPRXFCR_CLR;
8108c2ecf20Sopenharmony_ci	fspi_writel(f, reg, base + FSPI_IPRXFCR);
8118c2ecf20Sopenharmony_ci
8128c2ecf20Sopenharmony_ci	init_completion(&f->c);
8138c2ecf20Sopenharmony_ci
8148c2ecf20Sopenharmony_ci	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
8158c2ecf20Sopenharmony_ci	/*
8168c2ecf20Sopenharmony_ci	 * Always start the sequence at the same index since we update
8178c2ecf20Sopenharmony_ci	 * the LUT at each exec_op() call. And also specify the DATA
8188c2ecf20Sopenharmony_ci	 * length, since it's has not been specified in the LUT.
8198c2ecf20Sopenharmony_ci	 */
8208c2ecf20Sopenharmony_ci	fspi_writel(f, op->data.nbytes |
8218c2ecf20Sopenharmony_ci		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
8228c2ecf20Sopenharmony_ci		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
8238c2ecf20Sopenharmony_ci		 base + FSPI_IPCR1);
8248c2ecf20Sopenharmony_ci
8258c2ecf20Sopenharmony_ci	/* Trigger the LUT now. */
8268c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
8278c2ecf20Sopenharmony_ci
8288c2ecf20Sopenharmony_ci	/* Wait for the interrupt. */
8298c2ecf20Sopenharmony_ci	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
8308c2ecf20Sopenharmony_ci		err = -ETIMEDOUT;
8318c2ecf20Sopenharmony_ci
8328c2ecf20Sopenharmony_ci	/* Invoke IP data read, if request is of data read. */
8338c2ecf20Sopenharmony_ci	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
8348c2ecf20Sopenharmony_ci		nxp_fspi_read_rxfifo(f, op);
8358c2ecf20Sopenharmony_ci
8368c2ecf20Sopenharmony_ci	return err;
8378c2ecf20Sopenharmony_ci}
8388c2ecf20Sopenharmony_ci
8398c2ecf20Sopenharmony_cistatic int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
8408c2ecf20Sopenharmony_ci{
8418c2ecf20Sopenharmony_ci	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
8428c2ecf20Sopenharmony_ci	int err = 0;
8438c2ecf20Sopenharmony_ci
8448c2ecf20Sopenharmony_ci	mutex_lock(&f->lock);
8458c2ecf20Sopenharmony_ci
8468c2ecf20Sopenharmony_ci	/* Wait for controller being ready. */
8478c2ecf20Sopenharmony_ci	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
8488c2ecf20Sopenharmony_ci				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
8498c2ecf20Sopenharmony_ci	WARN_ON(err);
8508c2ecf20Sopenharmony_ci
8518c2ecf20Sopenharmony_ci	nxp_fspi_select_mem(f, mem->spi);
8528c2ecf20Sopenharmony_ci
8538c2ecf20Sopenharmony_ci	nxp_fspi_prepare_lut(f, op);
8548c2ecf20Sopenharmony_ci	/*
8558c2ecf20Sopenharmony_ci	 * If we have large chunks of data, we read them through the AHB bus
8568c2ecf20Sopenharmony_ci	 * by accessing the mapped memory. In all other cases we use
8578c2ecf20Sopenharmony_ci	 * IP commands to access the flash.
8588c2ecf20Sopenharmony_ci	 */
8598c2ecf20Sopenharmony_ci	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
8608c2ecf20Sopenharmony_ci	    op->data.dir == SPI_MEM_DATA_IN) {
8618c2ecf20Sopenharmony_ci		err = nxp_fspi_read_ahb(f, op);
8628c2ecf20Sopenharmony_ci	} else {
8638c2ecf20Sopenharmony_ci		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
8648c2ecf20Sopenharmony_ci			nxp_fspi_fill_txfifo(f, op);
8658c2ecf20Sopenharmony_ci
8668c2ecf20Sopenharmony_ci		err = nxp_fspi_do_op(f, op);
8678c2ecf20Sopenharmony_ci	}
8688c2ecf20Sopenharmony_ci
8698c2ecf20Sopenharmony_ci	/* Invalidate the data in the AHB buffer. */
8708c2ecf20Sopenharmony_ci	nxp_fspi_invalid(f);
8718c2ecf20Sopenharmony_ci
8728c2ecf20Sopenharmony_ci	mutex_unlock(&f->lock);
8738c2ecf20Sopenharmony_ci
8748c2ecf20Sopenharmony_ci	return err;
8758c2ecf20Sopenharmony_ci}
8768c2ecf20Sopenharmony_ci
8778c2ecf20Sopenharmony_cistatic int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
8788c2ecf20Sopenharmony_ci{
8798c2ecf20Sopenharmony_ci	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
8808c2ecf20Sopenharmony_ci
8818c2ecf20Sopenharmony_ci	if (op->data.dir == SPI_MEM_DATA_OUT) {
8828c2ecf20Sopenharmony_ci		if (op->data.nbytes > f->devtype_data->txfifo)
8838c2ecf20Sopenharmony_ci			op->data.nbytes = f->devtype_data->txfifo;
8848c2ecf20Sopenharmony_ci	} else {
8858c2ecf20Sopenharmony_ci		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
8868c2ecf20Sopenharmony_ci			op->data.nbytes = f->devtype_data->ahb_buf_size;
8878c2ecf20Sopenharmony_ci		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
8888c2ecf20Sopenharmony_ci			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
8898c2ecf20Sopenharmony_ci	}
8908c2ecf20Sopenharmony_ci
8918c2ecf20Sopenharmony_ci	return 0;
8928c2ecf20Sopenharmony_ci}
8938c2ecf20Sopenharmony_ci
8948c2ecf20Sopenharmony_cistatic int nxp_fspi_default_setup(struct nxp_fspi *f)
8958c2ecf20Sopenharmony_ci{
8968c2ecf20Sopenharmony_ci	void __iomem *base = f->iobase;
8978c2ecf20Sopenharmony_ci	int ret, i;
8988c2ecf20Sopenharmony_ci	u32 reg;
8998c2ecf20Sopenharmony_ci
9008c2ecf20Sopenharmony_ci	/* disable and unprepare clock to avoid glitch pass to controller */
9018c2ecf20Sopenharmony_ci	nxp_fspi_clk_disable_unprep(f);
9028c2ecf20Sopenharmony_ci
9038c2ecf20Sopenharmony_ci	/* the default frequency, we will change it later if necessary. */
9048c2ecf20Sopenharmony_ci	ret = clk_set_rate(f->clk, 20000000);
9058c2ecf20Sopenharmony_ci	if (ret)
9068c2ecf20Sopenharmony_ci		return ret;
9078c2ecf20Sopenharmony_ci
9088c2ecf20Sopenharmony_ci	ret = nxp_fspi_clk_prep_enable(f);
9098c2ecf20Sopenharmony_ci	if (ret)
9108c2ecf20Sopenharmony_ci		return ret;
9118c2ecf20Sopenharmony_ci
9128c2ecf20Sopenharmony_ci	/* Reset the module */
9138c2ecf20Sopenharmony_ci	/* w1c register, wait unit clear */
9148c2ecf20Sopenharmony_ci	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
9158c2ecf20Sopenharmony_ci				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
9168c2ecf20Sopenharmony_ci	WARN_ON(ret);
9178c2ecf20Sopenharmony_ci
9188c2ecf20Sopenharmony_ci	/* Disable the module */
9198c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
9208c2ecf20Sopenharmony_ci
9218c2ecf20Sopenharmony_ci	/* Reset the DLL register to default value */
9228c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
9238c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
9248c2ecf20Sopenharmony_ci
9258c2ecf20Sopenharmony_ci	/* enable module */
9268c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
9278c2ecf20Sopenharmony_ci		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
9288c2ecf20Sopenharmony_ci		    base + FSPI_MCR0);
9298c2ecf20Sopenharmony_ci
9308c2ecf20Sopenharmony_ci	/*
9318c2ecf20Sopenharmony_ci	 * Disable same device enable bit and configure all slave devices
9328c2ecf20Sopenharmony_ci	 * independently.
9338c2ecf20Sopenharmony_ci	 */
9348c2ecf20Sopenharmony_ci	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
9358c2ecf20Sopenharmony_ci	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
9368c2ecf20Sopenharmony_ci	fspi_writel(f, reg, base + FSPI_MCR2);
9378c2ecf20Sopenharmony_ci
9388c2ecf20Sopenharmony_ci	/* AHB configuration for access buffer 0~7. */
9398c2ecf20Sopenharmony_ci	for (i = 0; i < 7; i++)
9408c2ecf20Sopenharmony_ci		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
9418c2ecf20Sopenharmony_ci
9428c2ecf20Sopenharmony_ci	/*
9438c2ecf20Sopenharmony_ci	 * Set ADATSZ with the maximum AHB buffer size to improve the read
9448c2ecf20Sopenharmony_ci	 * performance.
9458c2ecf20Sopenharmony_ci	 */
9468c2ecf20Sopenharmony_ci	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
9478c2ecf20Sopenharmony_ci		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
9488c2ecf20Sopenharmony_ci
9498c2ecf20Sopenharmony_ci	/* prefetch and no start address alignment limitation */
9508c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
9518c2ecf20Sopenharmony_ci		 base + FSPI_AHBCR);
9528c2ecf20Sopenharmony_ci
9538c2ecf20Sopenharmony_ci	/* Reset the FLSHxCR1 registers. */
9548c2ecf20Sopenharmony_ci	reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
9558c2ecf20Sopenharmony_ci	fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
9568c2ecf20Sopenharmony_ci	fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
9578c2ecf20Sopenharmony_ci	fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
9588c2ecf20Sopenharmony_ci	fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
9598c2ecf20Sopenharmony_ci
9608c2ecf20Sopenharmony_ci	/* AHB Read - Set lut sequence ID for all CS. */
9618c2ecf20Sopenharmony_ci	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
9628c2ecf20Sopenharmony_ci	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
9638c2ecf20Sopenharmony_ci	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
9648c2ecf20Sopenharmony_ci	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
9658c2ecf20Sopenharmony_ci
9668c2ecf20Sopenharmony_ci	f->selected = -1;
9678c2ecf20Sopenharmony_ci
9688c2ecf20Sopenharmony_ci	/* enable the interrupt */
9698c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
9708c2ecf20Sopenharmony_ci
9718c2ecf20Sopenharmony_ci	return 0;
9728c2ecf20Sopenharmony_ci}
9738c2ecf20Sopenharmony_ci
9748c2ecf20Sopenharmony_cistatic const char *nxp_fspi_get_name(struct spi_mem *mem)
9758c2ecf20Sopenharmony_ci{
9768c2ecf20Sopenharmony_ci	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
9778c2ecf20Sopenharmony_ci	struct device *dev = &mem->spi->dev;
9788c2ecf20Sopenharmony_ci	const char *name;
9798c2ecf20Sopenharmony_ci
9808c2ecf20Sopenharmony_ci	// Set custom name derived from the platform_device of the controller.
9818c2ecf20Sopenharmony_ci	if (of_get_available_child_count(f->dev->of_node) == 1)
9828c2ecf20Sopenharmony_ci		return dev_name(f->dev);
9838c2ecf20Sopenharmony_ci
9848c2ecf20Sopenharmony_ci	name = devm_kasprintf(dev, GFP_KERNEL,
9858c2ecf20Sopenharmony_ci			      "%s-%d", dev_name(f->dev),
9868c2ecf20Sopenharmony_ci			      mem->spi->chip_select);
9878c2ecf20Sopenharmony_ci
9888c2ecf20Sopenharmony_ci	if (!name) {
9898c2ecf20Sopenharmony_ci		dev_err(dev, "failed to get memory for custom flash name\n");
9908c2ecf20Sopenharmony_ci		return ERR_PTR(-ENOMEM);
9918c2ecf20Sopenharmony_ci	}
9928c2ecf20Sopenharmony_ci
9938c2ecf20Sopenharmony_ci	return name;
9948c2ecf20Sopenharmony_ci}
9958c2ecf20Sopenharmony_ci
9968c2ecf20Sopenharmony_cistatic const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
9978c2ecf20Sopenharmony_ci	.adjust_op_size = nxp_fspi_adjust_op_size,
9988c2ecf20Sopenharmony_ci	.supports_op = nxp_fspi_supports_op,
9998c2ecf20Sopenharmony_ci	.exec_op = nxp_fspi_exec_op,
10008c2ecf20Sopenharmony_ci	.get_name = nxp_fspi_get_name,
10018c2ecf20Sopenharmony_ci};
10028c2ecf20Sopenharmony_ci
10038c2ecf20Sopenharmony_cistatic int nxp_fspi_probe(struct platform_device *pdev)
10048c2ecf20Sopenharmony_ci{
10058c2ecf20Sopenharmony_ci	struct spi_controller *ctlr;
10068c2ecf20Sopenharmony_ci	struct device *dev = &pdev->dev;
10078c2ecf20Sopenharmony_ci	struct device_node *np = dev->of_node;
10088c2ecf20Sopenharmony_ci	struct resource *res;
10098c2ecf20Sopenharmony_ci	struct nxp_fspi *f;
10108c2ecf20Sopenharmony_ci	int ret;
10118c2ecf20Sopenharmony_ci	u32 reg;
10128c2ecf20Sopenharmony_ci
10138c2ecf20Sopenharmony_ci	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
10148c2ecf20Sopenharmony_ci	if (!ctlr)
10158c2ecf20Sopenharmony_ci		return -ENOMEM;
10168c2ecf20Sopenharmony_ci
10178c2ecf20Sopenharmony_ci	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
10188c2ecf20Sopenharmony_ci			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
10198c2ecf20Sopenharmony_ci
10208c2ecf20Sopenharmony_ci	f = spi_controller_get_devdata(ctlr);
10218c2ecf20Sopenharmony_ci	f->dev = dev;
10228c2ecf20Sopenharmony_ci	f->devtype_data = device_get_match_data(dev);
10238c2ecf20Sopenharmony_ci	if (!f->devtype_data) {
10248c2ecf20Sopenharmony_ci		ret = -ENODEV;
10258c2ecf20Sopenharmony_ci		goto err_put_ctrl;
10268c2ecf20Sopenharmony_ci	}
10278c2ecf20Sopenharmony_ci
10288c2ecf20Sopenharmony_ci	platform_set_drvdata(pdev, f);
10298c2ecf20Sopenharmony_ci
10308c2ecf20Sopenharmony_ci	/* find the resources - configuration register address space */
10318c2ecf20Sopenharmony_ci	if (is_acpi_node(f->dev->fwnode))
10328c2ecf20Sopenharmony_ci		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
10338c2ecf20Sopenharmony_ci	else
10348c2ecf20Sopenharmony_ci		res = platform_get_resource_byname(pdev,
10358c2ecf20Sopenharmony_ci				IORESOURCE_MEM, "fspi_base");
10368c2ecf20Sopenharmony_ci
10378c2ecf20Sopenharmony_ci	f->iobase = devm_ioremap_resource(dev, res);
10388c2ecf20Sopenharmony_ci	if (IS_ERR(f->iobase)) {
10398c2ecf20Sopenharmony_ci		ret = PTR_ERR(f->iobase);
10408c2ecf20Sopenharmony_ci		goto err_put_ctrl;
10418c2ecf20Sopenharmony_ci	}
10428c2ecf20Sopenharmony_ci
10438c2ecf20Sopenharmony_ci	/* find the resources - controller memory mapped space */
10448c2ecf20Sopenharmony_ci	if (is_acpi_node(f->dev->fwnode))
10458c2ecf20Sopenharmony_ci		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
10468c2ecf20Sopenharmony_ci	else
10478c2ecf20Sopenharmony_ci		res = platform_get_resource_byname(pdev,
10488c2ecf20Sopenharmony_ci				IORESOURCE_MEM, "fspi_mmap");
10498c2ecf20Sopenharmony_ci
10508c2ecf20Sopenharmony_ci	if (!res) {
10518c2ecf20Sopenharmony_ci		ret = -ENODEV;
10528c2ecf20Sopenharmony_ci		goto err_put_ctrl;
10538c2ecf20Sopenharmony_ci	}
10548c2ecf20Sopenharmony_ci
10558c2ecf20Sopenharmony_ci	/* assign memory mapped starting address and mapped size. */
10568c2ecf20Sopenharmony_ci	f->memmap_phy = res->start;
10578c2ecf20Sopenharmony_ci	f->memmap_phy_size = resource_size(res);
10588c2ecf20Sopenharmony_ci
10598c2ecf20Sopenharmony_ci	/* find the clocks */
10608c2ecf20Sopenharmony_ci	if (dev_of_node(&pdev->dev)) {
10618c2ecf20Sopenharmony_ci		f->clk_en = devm_clk_get(dev, "fspi_en");
10628c2ecf20Sopenharmony_ci		if (IS_ERR(f->clk_en)) {
10638c2ecf20Sopenharmony_ci			ret = PTR_ERR(f->clk_en);
10648c2ecf20Sopenharmony_ci			goto err_put_ctrl;
10658c2ecf20Sopenharmony_ci		}
10668c2ecf20Sopenharmony_ci
10678c2ecf20Sopenharmony_ci		f->clk = devm_clk_get(dev, "fspi");
10688c2ecf20Sopenharmony_ci		if (IS_ERR(f->clk)) {
10698c2ecf20Sopenharmony_ci			ret = PTR_ERR(f->clk);
10708c2ecf20Sopenharmony_ci			goto err_put_ctrl;
10718c2ecf20Sopenharmony_ci		}
10728c2ecf20Sopenharmony_ci
10738c2ecf20Sopenharmony_ci		ret = nxp_fspi_clk_prep_enable(f);
10748c2ecf20Sopenharmony_ci		if (ret) {
10758c2ecf20Sopenharmony_ci			dev_err(dev, "can not enable the clock\n");
10768c2ecf20Sopenharmony_ci			goto err_put_ctrl;
10778c2ecf20Sopenharmony_ci		}
10788c2ecf20Sopenharmony_ci	}
10798c2ecf20Sopenharmony_ci
10808c2ecf20Sopenharmony_ci	/* Clear potential interrupts */
10818c2ecf20Sopenharmony_ci	reg = fspi_readl(f, f->iobase + FSPI_INTR);
10828c2ecf20Sopenharmony_ci	if (reg)
10838c2ecf20Sopenharmony_ci		fspi_writel(f, reg, f->iobase + FSPI_INTR);
10848c2ecf20Sopenharmony_ci
10858c2ecf20Sopenharmony_ci	/* find the irq */
10868c2ecf20Sopenharmony_ci	ret = platform_get_irq(pdev, 0);
10878c2ecf20Sopenharmony_ci	if (ret < 0)
10888c2ecf20Sopenharmony_ci		goto err_disable_clk;
10898c2ecf20Sopenharmony_ci
10908c2ecf20Sopenharmony_ci	ret = devm_request_irq(dev, ret,
10918c2ecf20Sopenharmony_ci			nxp_fspi_irq_handler, 0, pdev->name, f);
10928c2ecf20Sopenharmony_ci	if (ret) {
10938c2ecf20Sopenharmony_ci		dev_err(dev, "failed to request irq: %d\n", ret);
10948c2ecf20Sopenharmony_ci		goto err_disable_clk;
10958c2ecf20Sopenharmony_ci	}
10968c2ecf20Sopenharmony_ci
10978c2ecf20Sopenharmony_ci	mutex_init(&f->lock);
10988c2ecf20Sopenharmony_ci
10998c2ecf20Sopenharmony_ci	ctlr->bus_num = -1;
11008c2ecf20Sopenharmony_ci	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
11018c2ecf20Sopenharmony_ci	ctlr->mem_ops = &nxp_fspi_mem_ops;
11028c2ecf20Sopenharmony_ci
11038c2ecf20Sopenharmony_ci	nxp_fspi_default_setup(f);
11048c2ecf20Sopenharmony_ci
11058c2ecf20Sopenharmony_ci	ctlr->dev.of_node = np;
11068c2ecf20Sopenharmony_ci
11078c2ecf20Sopenharmony_ci	ret = devm_spi_register_controller(&pdev->dev, ctlr);
11088c2ecf20Sopenharmony_ci	if (ret)
11098c2ecf20Sopenharmony_ci		goto err_destroy_mutex;
11108c2ecf20Sopenharmony_ci
11118c2ecf20Sopenharmony_ci	return 0;
11128c2ecf20Sopenharmony_ci
11138c2ecf20Sopenharmony_cierr_destroy_mutex:
11148c2ecf20Sopenharmony_ci	mutex_destroy(&f->lock);
11158c2ecf20Sopenharmony_ci
11168c2ecf20Sopenharmony_cierr_disable_clk:
11178c2ecf20Sopenharmony_ci	nxp_fspi_clk_disable_unprep(f);
11188c2ecf20Sopenharmony_ci
11198c2ecf20Sopenharmony_cierr_put_ctrl:
11208c2ecf20Sopenharmony_ci	spi_controller_put(ctlr);
11218c2ecf20Sopenharmony_ci
11228c2ecf20Sopenharmony_ci	dev_err(dev, "NXP FSPI probe failed\n");
11238c2ecf20Sopenharmony_ci	return ret;
11248c2ecf20Sopenharmony_ci}
11258c2ecf20Sopenharmony_ci
11268c2ecf20Sopenharmony_cistatic int nxp_fspi_remove(struct platform_device *pdev)
11278c2ecf20Sopenharmony_ci{
11288c2ecf20Sopenharmony_ci	struct nxp_fspi *f = platform_get_drvdata(pdev);
11298c2ecf20Sopenharmony_ci
11308c2ecf20Sopenharmony_ci	/* disable the hardware */
11318c2ecf20Sopenharmony_ci	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
11328c2ecf20Sopenharmony_ci
11338c2ecf20Sopenharmony_ci	nxp_fspi_clk_disable_unprep(f);
11348c2ecf20Sopenharmony_ci
11358c2ecf20Sopenharmony_ci	mutex_destroy(&f->lock);
11368c2ecf20Sopenharmony_ci
11378c2ecf20Sopenharmony_ci	if (f->ahb_addr)
11388c2ecf20Sopenharmony_ci		iounmap(f->ahb_addr);
11398c2ecf20Sopenharmony_ci
11408c2ecf20Sopenharmony_ci	return 0;
11418c2ecf20Sopenharmony_ci}
11428c2ecf20Sopenharmony_ci
11438c2ecf20Sopenharmony_cistatic int nxp_fspi_suspend(struct device *dev)
11448c2ecf20Sopenharmony_ci{
11458c2ecf20Sopenharmony_ci	return 0;
11468c2ecf20Sopenharmony_ci}
11478c2ecf20Sopenharmony_ci
11488c2ecf20Sopenharmony_cistatic int nxp_fspi_resume(struct device *dev)
11498c2ecf20Sopenharmony_ci{
11508c2ecf20Sopenharmony_ci	struct nxp_fspi *f = dev_get_drvdata(dev);
11518c2ecf20Sopenharmony_ci
11528c2ecf20Sopenharmony_ci	nxp_fspi_default_setup(f);
11538c2ecf20Sopenharmony_ci
11548c2ecf20Sopenharmony_ci	return 0;
11558c2ecf20Sopenharmony_ci}
11568c2ecf20Sopenharmony_ci
11578c2ecf20Sopenharmony_cistatic const struct of_device_id nxp_fspi_dt_ids[] = {
11588c2ecf20Sopenharmony_ci	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
11598c2ecf20Sopenharmony_ci	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
11608c2ecf20Sopenharmony_ci	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
11618c2ecf20Sopenharmony_ci	{ /* sentinel */ }
11628c2ecf20Sopenharmony_ci};
11638c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
11648c2ecf20Sopenharmony_ci
11658c2ecf20Sopenharmony_ci#ifdef CONFIG_ACPI
11668c2ecf20Sopenharmony_cistatic const struct acpi_device_id nxp_fspi_acpi_ids[] = {
11678c2ecf20Sopenharmony_ci	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
11688c2ecf20Sopenharmony_ci	{}
11698c2ecf20Sopenharmony_ci};
11708c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
11718c2ecf20Sopenharmony_ci#endif
11728c2ecf20Sopenharmony_ci
11738c2ecf20Sopenharmony_cistatic const struct dev_pm_ops nxp_fspi_pm_ops = {
11748c2ecf20Sopenharmony_ci	.suspend	= nxp_fspi_suspend,
11758c2ecf20Sopenharmony_ci	.resume		= nxp_fspi_resume,
11768c2ecf20Sopenharmony_ci};
11778c2ecf20Sopenharmony_ci
11788c2ecf20Sopenharmony_cistatic struct platform_driver nxp_fspi_driver = {
11798c2ecf20Sopenharmony_ci	.driver = {
11808c2ecf20Sopenharmony_ci		.name	= "nxp-fspi",
11818c2ecf20Sopenharmony_ci		.of_match_table = nxp_fspi_dt_ids,
11828c2ecf20Sopenharmony_ci		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
11838c2ecf20Sopenharmony_ci		.pm =   &nxp_fspi_pm_ops,
11848c2ecf20Sopenharmony_ci	},
11858c2ecf20Sopenharmony_ci	.probe          = nxp_fspi_probe,
11868c2ecf20Sopenharmony_ci	.remove		= nxp_fspi_remove,
11878c2ecf20Sopenharmony_ci};
11888c2ecf20Sopenharmony_cimodule_platform_driver(nxp_fspi_driver);
11898c2ecf20Sopenharmony_ci
11908c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("NXP FSPI Controller Driver");
11918c2ecf20Sopenharmony_ciMODULE_AUTHOR("NXP Semiconductor");
11928c2ecf20Sopenharmony_ciMODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
11938c2ecf20Sopenharmony_ciMODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
11948c2ecf20Sopenharmony_ciMODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
11958c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2");
1196