18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0+ 28c2ecf20Sopenharmony_ci 38c2ecf20Sopenharmony_ci/* 48c2ecf20Sopenharmony_ci * NXP FlexSPI(FSPI) controller driver. 58c2ecf20Sopenharmony_ci * 68c2ecf20Sopenharmony_ci * Copyright 2019-2020 NXP 78c2ecf20Sopenharmony_ci * Copyright 2020 Puresoftware Ltd. 88c2ecf20Sopenharmony_ci * 98c2ecf20Sopenharmony_ci * FlexSPI is a flexsible SPI host controller which supports two SPI 108c2ecf20Sopenharmony_ci * channels and up to 4 external devices. Each channel supports 118c2ecf20Sopenharmony_ci * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional 128c2ecf20Sopenharmony_ci * data lines). 138c2ecf20Sopenharmony_ci * 148c2ecf20Sopenharmony_ci * FlexSPI controller is driven by the LUT(Look-up Table) registers 158c2ecf20Sopenharmony_ci * LUT registers are a look-up-table for sequences of instructions. 168c2ecf20Sopenharmony_ci * A valid sequence consists of four LUT registers. 178c2ecf20Sopenharmony_ci * Maximum 32 LUT sequences can be programmed simultaneously. 188c2ecf20Sopenharmony_ci * 198c2ecf20Sopenharmony_ci * LUTs are being created at run-time based on the commands passed 208c2ecf20Sopenharmony_ci * from the spi-mem framework, thus using single LUT index. 218c2ecf20Sopenharmony_ci * 228c2ecf20Sopenharmony_ci * Software triggered Flash read/write access by IP Bus. 238c2ecf20Sopenharmony_ci * 248c2ecf20Sopenharmony_ci * Memory mapped read access by AHB Bus. 258c2ecf20Sopenharmony_ci * 268c2ecf20Sopenharmony_ci * Based on SPI MEM interface and spi-fsl-qspi.c driver. 278c2ecf20Sopenharmony_ci * 288c2ecf20Sopenharmony_ci * Author: 298c2ecf20Sopenharmony_ci * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> 308c2ecf20Sopenharmony_ci * Boris Brezillon <bbrezillon@kernel.org> 318c2ecf20Sopenharmony_ci * Frieder Schrempf <frieder.schrempf@kontron.de> 328c2ecf20Sopenharmony_ci */ 338c2ecf20Sopenharmony_ci 348c2ecf20Sopenharmony_ci#include <linux/acpi.h> 358c2ecf20Sopenharmony_ci#include <linux/bitops.h> 368c2ecf20Sopenharmony_ci#include <linux/clk.h> 378c2ecf20Sopenharmony_ci#include <linux/completion.h> 388c2ecf20Sopenharmony_ci#include <linux/delay.h> 398c2ecf20Sopenharmony_ci#include <linux/err.h> 408c2ecf20Sopenharmony_ci#include <linux/errno.h> 418c2ecf20Sopenharmony_ci#include <linux/interrupt.h> 428c2ecf20Sopenharmony_ci#include <linux/io.h> 438c2ecf20Sopenharmony_ci#include <linux/iopoll.h> 448c2ecf20Sopenharmony_ci#include <linux/jiffies.h> 458c2ecf20Sopenharmony_ci#include <linux/kernel.h> 468c2ecf20Sopenharmony_ci#include <linux/module.h> 478c2ecf20Sopenharmony_ci#include <linux/mutex.h> 488c2ecf20Sopenharmony_ci#include <linux/of.h> 498c2ecf20Sopenharmony_ci#include <linux/of_device.h> 508c2ecf20Sopenharmony_ci#include <linux/platform_device.h> 518c2ecf20Sopenharmony_ci#include <linux/pm_qos.h> 528c2ecf20Sopenharmony_ci#include <linux/sizes.h> 538c2ecf20Sopenharmony_ci 548c2ecf20Sopenharmony_ci#include <linux/spi/spi.h> 558c2ecf20Sopenharmony_ci#include <linux/spi/spi-mem.h> 568c2ecf20Sopenharmony_ci 578c2ecf20Sopenharmony_ci/* 588c2ecf20Sopenharmony_ci * The driver only uses one single LUT entry, that is updated on 598c2ecf20Sopenharmony_ci * each call of exec_op(). Index 0 is preset at boot with a basic 608c2ecf20Sopenharmony_ci * read operation, so let's use the last entry (31). 618c2ecf20Sopenharmony_ci */ 628c2ecf20Sopenharmony_ci#define SEQID_LUT 31 638c2ecf20Sopenharmony_ci 648c2ecf20Sopenharmony_ci/* Registers used by the driver */ 658c2ecf20Sopenharmony_ci#define FSPI_MCR0 0x00 668c2ecf20Sopenharmony_ci#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) 678c2ecf20Sopenharmony_ci#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) 688c2ecf20Sopenharmony_ci#define FSPI_MCR0_LEARN_EN BIT(15) 698c2ecf20Sopenharmony_ci#define FSPI_MCR0_SCRFRUN_EN BIT(14) 708c2ecf20Sopenharmony_ci#define FSPI_MCR0_OCTCOMB_EN BIT(13) 718c2ecf20Sopenharmony_ci#define FSPI_MCR0_DOZE_EN BIT(12) 728c2ecf20Sopenharmony_ci#define FSPI_MCR0_HSEN BIT(11) 738c2ecf20Sopenharmony_ci#define FSPI_MCR0_SERCLKDIV BIT(8) 748c2ecf20Sopenharmony_ci#define FSPI_MCR0_ATDF_EN BIT(7) 758c2ecf20Sopenharmony_ci#define FSPI_MCR0_ARDF_EN BIT(6) 768c2ecf20Sopenharmony_ci#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) 778c2ecf20Sopenharmony_ci#define FSPI_MCR0_END_CFG(x) ((x) << 2) 788c2ecf20Sopenharmony_ci#define FSPI_MCR0_MDIS BIT(1) 798c2ecf20Sopenharmony_ci#define FSPI_MCR0_SWRST BIT(0) 808c2ecf20Sopenharmony_ci 818c2ecf20Sopenharmony_ci#define FSPI_MCR1 0x04 828c2ecf20Sopenharmony_ci#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) 838c2ecf20Sopenharmony_ci#define FSPI_MCR1_AHB_TIMEOUT(x) (x) 848c2ecf20Sopenharmony_ci 858c2ecf20Sopenharmony_ci#define FSPI_MCR2 0x08 868c2ecf20Sopenharmony_ci#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) 878c2ecf20Sopenharmony_ci#define FSPI_MCR2_SAMEDEVICEEN BIT(15) 888c2ecf20Sopenharmony_ci#define FSPI_MCR2_CLRLRPHS BIT(14) 898c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRDATSZ BIT(8) 908c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRLEARN BIT(7) 918c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABR_READ BIT(6) 928c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRWRITE BIT(5) 938c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRDUMMY BIT(4) 948c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABR_MODE BIT(3) 958c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRCADDR BIT(2) 968c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABRRADDR BIT(1) 978c2ecf20Sopenharmony_ci#define FSPI_MCR2_ABR_CMD BIT(0) 988c2ecf20Sopenharmony_ci 998c2ecf20Sopenharmony_ci#define FSPI_AHBCR 0x0c 1008c2ecf20Sopenharmony_ci#define FSPI_AHBCR_RDADDROPT BIT(6) 1018c2ecf20Sopenharmony_ci#define FSPI_AHBCR_PREF_EN BIT(5) 1028c2ecf20Sopenharmony_ci#define FSPI_AHBCR_BUFF_EN BIT(4) 1038c2ecf20Sopenharmony_ci#define FSPI_AHBCR_CACH_EN BIT(3) 1048c2ecf20Sopenharmony_ci#define FSPI_AHBCR_CLRTXBUF BIT(2) 1058c2ecf20Sopenharmony_ci#define FSPI_AHBCR_CLRRXBUF BIT(1) 1068c2ecf20Sopenharmony_ci#define FSPI_AHBCR_PAR_EN BIT(0) 1078c2ecf20Sopenharmony_ci 1088c2ecf20Sopenharmony_ci#define FSPI_INTEN 0x10 1098c2ecf20Sopenharmony_ci#define FSPI_INTEN_SCLKSBWR BIT(9) 1108c2ecf20Sopenharmony_ci#define FSPI_INTEN_SCLKSBRD BIT(8) 1118c2ecf20Sopenharmony_ci#define FSPI_INTEN_DATALRNFL BIT(7) 1128c2ecf20Sopenharmony_ci#define FSPI_INTEN_IPTXWE BIT(6) 1138c2ecf20Sopenharmony_ci#define FSPI_INTEN_IPRXWA BIT(5) 1148c2ecf20Sopenharmony_ci#define FSPI_INTEN_AHBCMDERR BIT(4) 1158c2ecf20Sopenharmony_ci#define FSPI_INTEN_IPCMDERR BIT(3) 1168c2ecf20Sopenharmony_ci#define FSPI_INTEN_AHBCMDGE BIT(2) 1178c2ecf20Sopenharmony_ci#define FSPI_INTEN_IPCMDGE BIT(1) 1188c2ecf20Sopenharmony_ci#define FSPI_INTEN_IPCMDDONE BIT(0) 1198c2ecf20Sopenharmony_ci 1208c2ecf20Sopenharmony_ci#define FSPI_INTR 0x14 1218c2ecf20Sopenharmony_ci#define FSPI_INTR_SCLKSBWR BIT(9) 1228c2ecf20Sopenharmony_ci#define FSPI_INTR_SCLKSBRD BIT(8) 1238c2ecf20Sopenharmony_ci#define FSPI_INTR_DATALRNFL BIT(7) 1248c2ecf20Sopenharmony_ci#define FSPI_INTR_IPTXWE BIT(6) 1258c2ecf20Sopenharmony_ci#define FSPI_INTR_IPRXWA BIT(5) 1268c2ecf20Sopenharmony_ci#define FSPI_INTR_AHBCMDERR BIT(4) 1278c2ecf20Sopenharmony_ci#define FSPI_INTR_IPCMDERR BIT(3) 1288c2ecf20Sopenharmony_ci#define FSPI_INTR_AHBCMDGE BIT(2) 1298c2ecf20Sopenharmony_ci#define FSPI_INTR_IPCMDGE BIT(1) 1308c2ecf20Sopenharmony_ci#define FSPI_INTR_IPCMDDONE BIT(0) 1318c2ecf20Sopenharmony_ci 1328c2ecf20Sopenharmony_ci#define FSPI_LUTKEY 0x18 1338c2ecf20Sopenharmony_ci#define FSPI_LUTKEY_VALUE 0x5AF05AF0 1348c2ecf20Sopenharmony_ci 1358c2ecf20Sopenharmony_ci#define FSPI_LCKCR 0x1C 1368c2ecf20Sopenharmony_ci 1378c2ecf20Sopenharmony_ci#define FSPI_LCKER_LOCK 0x1 1388c2ecf20Sopenharmony_ci#define FSPI_LCKER_UNLOCK 0x2 1398c2ecf20Sopenharmony_ci 1408c2ecf20Sopenharmony_ci#define FSPI_BUFXCR_INVALID_MSTRID 0xE 1418c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF0CR0 0x20 1428c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF1CR0 0x24 1438c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF2CR0 0x28 1448c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF3CR0 0x2C 1458c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF4CR0 0x30 1468c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF5CR0 0x34 1478c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF6CR0 0x38 1488c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF7CR0 0x3C 1498c2ecf20Sopenharmony_ci#define FSPI_AHBRXBUF0CR7_PREF BIT(31) 1508c2ecf20Sopenharmony_ci 1518c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF0CR1 0x40 1528c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF1CR1 0x44 1538c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF2CR1 0x48 1548c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF3CR1 0x4C 1558c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF4CR1 0x50 1568c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF5CR1 0x54 1578c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF6CR1 0x58 1588c2ecf20Sopenharmony_ci#define FSPI_AHBRX_BUF7CR1 0x5C 1598c2ecf20Sopenharmony_ci 1608c2ecf20Sopenharmony_ci#define FSPI_FLSHA1CR0 0x60 1618c2ecf20Sopenharmony_ci#define FSPI_FLSHA2CR0 0x64 1628c2ecf20Sopenharmony_ci#define FSPI_FLSHB1CR0 0x68 1638c2ecf20Sopenharmony_ci#define FSPI_FLSHB2CR0 0x6C 1648c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR0_SZ_KB 10 1658c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) 1668c2ecf20Sopenharmony_ci 1678c2ecf20Sopenharmony_ci#define FSPI_FLSHA1CR1 0x70 1688c2ecf20Sopenharmony_ci#define FSPI_FLSHA2CR1 0x74 1698c2ecf20Sopenharmony_ci#define FSPI_FLSHB1CR1 0x78 1708c2ecf20Sopenharmony_ci#define FSPI_FLSHB2CR1 0x7C 1718c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) 1728c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR1_CAS(x) ((x) << 11) 1738c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR1_WA BIT(10) 1748c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) 1758c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR1_TCSS(x) (x) 1768c2ecf20Sopenharmony_ci 1778c2ecf20Sopenharmony_ci#define FSPI_FLSHA1CR2 0x80 1788c2ecf20Sopenharmony_ci#define FSPI_FLSHA2CR2 0x84 1798c2ecf20Sopenharmony_ci#define FSPI_FLSHB1CR2 0x88 1808c2ecf20Sopenharmony_ci#define FSPI_FLSHB2CR2 0x8C 1818c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_CLRINSP BIT(24) 1828c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_AWRWAIT BIT(16) 1838c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 1848c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 1858c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 1868c2ecf20Sopenharmony_ci#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 1878c2ecf20Sopenharmony_ci 1888c2ecf20Sopenharmony_ci#define FSPI_IPCR0 0xA0 1898c2ecf20Sopenharmony_ci 1908c2ecf20Sopenharmony_ci#define FSPI_IPCR1 0xA4 1918c2ecf20Sopenharmony_ci#define FSPI_IPCR1_IPAREN BIT(31) 1928c2ecf20Sopenharmony_ci#define FSPI_IPCR1_SEQNUM_SHIFT 24 1938c2ecf20Sopenharmony_ci#define FSPI_IPCR1_SEQID_SHIFT 16 1948c2ecf20Sopenharmony_ci#define FSPI_IPCR1_IDATSZ(x) (x) 1958c2ecf20Sopenharmony_ci 1968c2ecf20Sopenharmony_ci#define FSPI_IPCMD 0xB0 1978c2ecf20Sopenharmony_ci#define FSPI_IPCMD_TRG BIT(0) 1988c2ecf20Sopenharmony_ci 1998c2ecf20Sopenharmony_ci#define FSPI_DLPR 0xB4 2008c2ecf20Sopenharmony_ci 2018c2ecf20Sopenharmony_ci#define FSPI_IPRXFCR 0xB8 2028c2ecf20Sopenharmony_ci#define FSPI_IPRXFCR_CLR BIT(0) 2038c2ecf20Sopenharmony_ci#define FSPI_IPRXFCR_DMA_EN BIT(1) 2048c2ecf20Sopenharmony_ci#define FSPI_IPRXFCR_WMRK(x) ((x) << 2) 2058c2ecf20Sopenharmony_ci 2068c2ecf20Sopenharmony_ci#define FSPI_IPTXFCR 0xBC 2078c2ecf20Sopenharmony_ci#define FSPI_IPTXFCR_CLR BIT(0) 2088c2ecf20Sopenharmony_ci#define FSPI_IPTXFCR_DMA_EN BIT(1) 2098c2ecf20Sopenharmony_ci#define FSPI_IPTXFCR_WMRK(x) ((x) << 2) 2108c2ecf20Sopenharmony_ci 2118c2ecf20Sopenharmony_ci#define FSPI_DLLACR 0xC0 2128c2ecf20Sopenharmony_ci#define FSPI_DLLACR_OVRDEN BIT(8) 2138c2ecf20Sopenharmony_ci 2148c2ecf20Sopenharmony_ci#define FSPI_DLLBCR 0xC4 2158c2ecf20Sopenharmony_ci#define FSPI_DLLBCR_OVRDEN BIT(8) 2168c2ecf20Sopenharmony_ci 2178c2ecf20Sopenharmony_ci#define FSPI_STS0 0xE0 2188c2ecf20Sopenharmony_ci#define FSPI_STS0_DLPHB(x) ((x) << 8) 2198c2ecf20Sopenharmony_ci#define FSPI_STS0_DLPHA(x) ((x) << 4) 2208c2ecf20Sopenharmony_ci#define FSPI_STS0_CMD_SRC(x) ((x) << 2) 2218c2ecf20Sopenharmony_ci#define FSPI_STS0_ARB_IDLE BIT(1) 2228c2ecf20Sopenharmony_ci#define FSPI_STS0_SEQ_IDLE BIT(0) 2238c2ecf20Sopenharmony_ci 2248c2ecf20Sopenharmony_ci#define FSPI_STS1 0xE4 2258c2ecf20Sopenharmony_ci#define FSPI_STS1_IP_ERRCD(x) ((x) << 24) 2268c2ecf20Sopenharmony_ci#define FSPI_STS1_IP_ERRID(x) ((x) << 16) 2278c2ecf20Sopenharmony_ci#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) 2288c2ecf20Sopenharmony_ci#define FSPI_STS1_AHB_ERRID(x) (x) 2298c2ecf20Sopenharmony_ci 2308c2ecf20Sopenharmony_ci#define FSPI_AHBSPNST 0xEC 2318c2ecf20Sopenharmony_ci#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) 2328c2ecf20Sopenharmony_ci#define FSPI_AHBSPNST_BUFID(x) ((x) << 1) 2338c2ecf20Sopenharmony_ci#define FSPI_AHBSPNST_ACTIVE BIT(0) 2348c2ecf20Sopenharmony_ci 2358c2ecf20Sopenharmony_ci#define FSPI_IPRXFSTS 0xF0 2368c2ecf20Sopenharmony_ci#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) 2378c2ecf20Sopenharmony_ci#define FSPI_IPRXFSTS_FILL(x) (x) 2388c2ecf20Sopenharmony_ci 2398c2ecf20Sopenharmony_ci#define FSPI_IPTXFSTS 0xF4 2408c2ecf20Sopenharmony_ci#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) 2418c2ecf20Sopenharmony_ci#define FSPI_IPTXFSTS_FILL(x) (x) 2428c2ecf20Sopenharmony_ci 2438c2ecf20Sopenharmony_ci#define FSPI_RFDR 0x100 2448c2ecf20Sopenharmony_ci#define FSPI_TFDR 0x180 2458c2ecf20Sopenharmony_ci 2468c2ecf20Sopenharmony_ci#define FSPI_LUT_BASE 0x200 2478c2ecf20Sopenharmony_ci#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) 2488c2ecf20Sopenharmony_ci#define FSPI_LUT_REG(idx) \ 2498c2ecf20Sopenharmony_ci (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) 2508c2ecf20Sopenharmony_ci 2518c2ecf20Sopenharmony_ci/* register map end */ 2528c2ecf20Sopenharmony_ci 2538c2ecf20Sopenharmony_ci/* Instruction set for the LUT register. */ 2548c2ecf20Sopenharmony_ci#define LUT_STOP 0x00 2558c2ecf20Sopenharmony_ci#define LUT_CMD 0x01 2568c2ecf20Sopenharmony_ci#define LUT_ADDR 0x02 2578c2ecf20Sopenharmony_ci#define LUT_CADDR_SDR 0x03 2588c2ecf20Sopenharmony_ci#define LUT_MODE 0x04 2598c2ecf20Sopenharmony_ci#define LUT_MODE2 0x05 2608c2ecf20Sopenharmony_ci#define LUT_MODE4 0x06 2618c2ecf20Sopenharmony_ci#define LUT_MODE8 0x07 2628c2ecf20Sopenharmony_ci#define LUT_NXP_WRITE 0x08 2638c2ecf20Sopenharmony_ci#define LUT_NXP_READ 0x09 2648c2ecf20Sopenharmony_ci#define LUT_LEARN_SDR 0x0A 2658c2ecf20Sopenharmony_ci#define LUT_DATSZ_SDR 0x0B 2668c2ecf20Sopenharmony_ci#define LUT_DUMMY 0x0C 2678c2ecf20Sopenharmony_ci#define LUT_DUMMY_RWDS_SDR 0x0D 2688c2ecf20Sopenharmony_ci#define LUT_JMP_ON_CS 0x1F 2698c2ecf20Sopenharmony_ci#define LUT_CMD_DDR 0x21 2708c2ecf20Sopenharmony_ci#define LUT_ADDR_DDR 0x22 2718c2ecf20Sopenharmony_ci#define LUT_CADDR_DDR 0x23 2728c2ecf20Sopenharmony_ci#define LUT_MODE_DDR 0x24 2738c2ecf20Sopenharmony_ci#define LUT_MODE2_DDR 0x25 2748c2ecf20Sopenharmony_ci#define LUT_MODE4_DDR 0x26 2758c2ecf20Sopenharmony_ci#define LUT_MODE8_DDR 0x27 2768c2ecf20Sopenharmony_ci#define LUT_WRITE_DDR 0x28 2778c2ecf20Sopenharmony_ci#define LUT_READ_DDR 0x29 2788c2ecf20Sopenharmony_ci#define LUT_LEARN_DDR 0x2A 2798c2ecf20Sopenharmony_ci#define LUT_DATSZ_DDR 0x2B 2808c2ecf20Sopenharmony_ci#define LUT_DUMMY_DDR 0x2C 2818c2ecf20Sopenharmony_ci#define LUT_DUMMY_RWDS_DDR 0x2D 2828c2ecf20Sopenharmony_ci 2838c2ecf20Sopenharmony_ci/* 2848c2ecf20Sopenharmony_ci * Calculate number of required PAD bits for LUT register. 2858c2ecf20Sopenharmony_ci * 2868c2ecf20Sopenharmony_ci * The pad stands for the number of IO lines [0:7]. 2878c2ecf20Sopenharmony_ci * For example, the octal read needs eight IO lines, 2888c2ecf20Sopenharmony_ci * so you should use LUT_PAD(8). This macro 2898c2ecf20Sopenharmony_ci * returns 3 i.e. use eight (2^3) IP lines for read. 2908c2ecf20Sopenharmony_ci */ 2918c2ecf20Sopenharmony_ci#define LUT_PAD(x) (fls(x) - 1) 2928c2ecf20Sopenharmony_ci 2938c2ecf20Sopenharmony_ci/* 2948c2ecf20Sopenharmony_ci * Macro for constructing the LUT entries with the following 2958c2ecf20Sopenharmony_ci * register layout: 2968c2ecf20Sopenharmony_ci * 2978c2ecf20Sopenharmony_ci * --------------------------------------------------- 2988c2ecf20Sopenharmony_ci * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | 2998c2ecf20Sopenharmony_ci * --------------------------------------------------- 3008c2ecf20Sopenharmony_ci */ 3018c2ecf20Sopenharmony_ci#define PAD_SHIFT 8 3028c2ecf20Sopenharmony_ci#define INSTR_SHIFT 10 3038c2ecf20Sopenharmony_ci#define OPRND_SHIFT 16 3048c2ecf20Sopenharmony_ci 3058c2ecf20Sopenharmony_ci/* Macros for constructing the LUT register. */ 3068c2ecf20Sopenharmony_ci#define LUT_DEF(idx, ins, pad, opr) \ 3078c2ecf20Sopenharmony_ci ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ 3088c2ecf20Sopenharmony_ci (opr)) << (((idx) % 2) * OPRND_SHIFT)) 3098c2ecf20Sopenharmony_ci 3108c2ecf20Sopenharmony_ci#define POLL_TOUT 5000 3118c2ecf20Sopenharmony_ci#define NXP_FSPI_MAX_CHIPSELECT 4 3128c2ecf20Sopenharmony_ci#define NXP_FSPI_MIN_IOMAP SZ_4M 3138c2ecf20Sopenharmony_ci 3148c2ecf20Sopenharmony_cistruct nxp_fspi_devtype_data { 3158c2ecf20Sopenharmony_ci unsigned int rxfifo; 3168c2ecf20Sopenharmony_ci unsigned int txfifo; 3178c2ecf20Sopenharmony_ci unsigned int ahb_buf_size; 3188c2ecf20Sopenharmony_ci unsigned int quirks; 3198c2ecf20Sopenharmony_ci bool little_endian; 3208c2ecf20Sopenharmony_ci}; 3218c2ecf20Sopenharmony_ci 3228c2ecf20Sopenharmony_cistatic const struct nxp_fspi_devtype_data lx2160a_data = { 3238c2ecf20Sopenharmony_ci .rxfifo = SZ_512, /* (64 * 64 bits) */ 3248c2ecf20Sopenharmony_ci .txfifo = SZ_1K, /* (128 * 64 bits) */ 3258c2ecf20Sopenharmony_ci .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 3268c2ecf20Sopenharmony_ci .quirks = 0, 3278c2ecf20Sopenharmony_ci .little_endian = true, /* little-endian */ 3288c2ecf20Sopenharmony_ci}; 3298c2ecf20Sopenharmony_ci 3308c2ecf20Sopenharmony_cistatic const struct nxp_fspi_devtype_data imx8mm_data = { 3318c2ecf20Sopenharmony_ci .rxfifo = SZ_512, /* (64 * 64 bits) */ 3328c2ecf20Sopenharmony_ci .txfifo = SZ_1K, /* (128 * 64 bits) */ 3338c2ecf20Sopenharmony_ci .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 3348c2ecf20Sopenharmony_ci .quirks = 0, 3358c2ecf20Sopenharmony_ci .little_endian = true, /* little-endian */ 3368c2ecf20Sopenharmony_ci}; 3378c2ecf20Sopenharmony_ci 3388c2ecf20Sopenharmony_cistatic const struct nxp_fspi_devtype_data imx8qxp_data = { 3398c2ecf20Sopenharmony_ci .rxfifo = SZ_512, /* (64 * 64 bits) */ 3408c2ecf20Sopenharmony_ci .txfifo = SZ_1K, /* (128 * 64 bits) */ 3418c2ecf20Sopenharmony_ci .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 3428c2ecf20Sopenharmony_ci .quirks = 0, 3438c2ecf20Sopenharmony_ci .little_endian = true, /* little-endian */ 3448c2ecf20Sopenharmony_ci}; 3458c2ecf20Sopenharmony_ci 3468c2ecf20Sopenharmony_cistruct nxp_fspi { 3478c2ecf20Sopenharmony_ci void __iomem *iobase; 3488c2ecf20Sopenharmony_ci void __iomem *ahb_addr; 3498c2ecf20Sopenharmony_ci u32 memmap_phy; 3508c2ecf20Sopenharmony_ci u32 memmap_phy_size; 3518c2ecf20Sopenharmony_ci u32 memmap_start; 3528c2ecf20Sopenharmony_ci u32 memmap_len; 3538c2ecf20Sopenharmony_ci struct clk *clk, *clk_en; 3548c2ecf20Sopenharmony_ci struct device *dev; 3558c2ecf20Sopenharmony_ci struct completion c; 3568c2ecf20Sopenharmony_ci const struct nxp_fspi_devtype_data *devtype_data; 3578c2ecf20Sopenharmony_ci struct mutex lock; 3588c2ecf20Sopenharmony_ci struct pm_qos_request pm_qos_req; 3598c2ecf20Sopenharmony_ci int selected; 3608c2ecf20Sopenharmony_ci}; 3618c2ecf20Sopenharmony_ci 3628c2ecf20Sopenharmony_ci/* 3638c2ecf20Sopenharmony_ci * R/W functions for big- or little-endian registers: 3648c2ecf20Sopenharmony_ci * The FSPI controller's endianness is independent of 3658c2ecf20Sopenharmony_ci * the CPU core's endianness. So far, although the CPU 3668c2ecf20Sopenharmony_ci * core is little-endian the FSPI controller can use 3678c2ecf20Sopenharmony_ci * big-endian or little-endian. 3688c2ecf20Sopenharmony_ci */ 3698c2ecf20Sopenharmony_cistatic void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) 3708c2ecf20Sopenharmony_ci{ 3718c2ecf20Sopenharmony_ci if (f->devtype_data->little_endian) 3728c2ecf20Sopenharmony_ci iowrite32(val, addr); 3738c2ecf20Sopenharmony_ci else 3748c2ecf20Sopenharmony_ci iowrite32be(val, addr); 3758c2ecf20Sopenharmony_ci} 3768c2ecf20Sopenharmony_ci 3778c2ecf20Sopenharmony_cistatic u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) 3788c2ecf20Sopenharmony_ci{ 3798c2ecf20Sopenharmony_ci if (f->devtype_data->little_endian) 3808c2ecf20Sopenharmony_ci return ioread32(addr); 3818c2ecf20Sopenharmony_ci else 3828c2ecf20Sopenharmony_ci return ioread32be(addr); 3838c2ecf20Sopenharmony_ci} 3848c2ecf20Sopenharmony_ci 3858c2ecf20Sopenharmony_cistatic irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) 3868c2ecf20Sopenharmony_ci{ 3878c2ecf20Sopenharmony_ci struct nxp_fspi *f = dev_id; 3888c2ecf20Sopenharmony_ci u32 reg; 3898c2ecf20Sopenharmony_ci 3908c2ecf20Sopenharmony_ci /* clear interrupt */ 3918c2ecf20Sopenharmony_ci reg = fspi_readl(f, f->iobase + FSPI_INTR); 3928c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); 3938c2ecf20Sopenharmony_ci 3948c2ecf20Sopenharmony_ci if (reg & FSPI_INTR_IPCMDDONE) 3958c2ecf20Sopenharmony_ci complete(&f->c); 3968c2ecf20Sopenharmony_ci 3978c2ecf20Sopenharmony_ci return IRQ_HANDLED; 3988c2ecf20Sopenharmony_ci} 3998c2ecf20Sopenharmony_ci 4008c2ecf20Sopenharmony_cistatic int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) 4018c2ecf20Sopenharmony_ci{ 4028c2ecf20Sopenharmony_ci switch (width) { 4038c2ecf20Sopenharmony_ci case 1: 4048c2ecf20Sopenharmony_ci case 2: 4058c2ecf20Sopenharmony_ci case 4: 4068c2ecf20Sopenharmony_ci case 8: 4078c2ecf20Sopenharmony_ci return 0; 4088c2ecf20Sopenharmony_ci } 4098c2ecf20Sopenharmony_ci 4108c2ecf20Sopenharmony_ci return -ENOTSUPP; 4118c2ecf20Sopenharmony_ci} 4128c2ecf20Sopenharmony_ci 4138c2ecf20Sopenharmony_cistatic bool nxp_fspi_supports_op(struct spi_mem *mem, 4148c2ecf20Sopenharmony_ci const struct spi_mem_op *op) 4158c2ecf20Sopenharmony_ci{ 4168c2ecf20Sopenharmony_ci struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 4178c2ecf20Sopenharmony_ci int ret; 4188c2ecf20Sopenharmony_ci 4198c2ecf20Sopenharmony_ci ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); 4208c2ecf20Sopenharmony_ci 4218c2ecf20Sopenharmony_ci if (op->addr.nbytes) 4228c2ecf20Sopenharmony_ci ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); 4238c2ecf20Sopenharmony_ci 4248c2ecf20Sopenharmony_ci if (op->dummy.nbytes) 4258c2ecf20Sopenharmony_ci ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); 4268c2ecf20Sopenharmony_ci 4278c2ecf20Sopenharmony_ci if (op->data.nbytes) 4288c2ecf20Sopenharmony_ci ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); 4298c2ecf20Sopenharmony_ci 4308c2ecf20Sopenharmony_ci if (ret) 4318c2ecf20Sopenharmony_ci return false; 4328c2ecf20Sopenharmony_ci 4338c2ecf20Sopenharmony_ci /* 4348c2ecf20Sopenharmony_ci * The number of address bytes should be equal to or less than 4 bytes. 4358c2ecf20Sopenharmony_ci */ 4368c2ecf20Sopenharmony_ci if (op->addr.nbytes > 4) 4378c2ecf20Sopenharmony_ci return false; 4388c2ecf20Sopenharmony_ci 4398c2ecf20Sopenharmony_ci /* 4408c2ecf20Sopenharmony_ci * If requested address value is greater than controller assigned 4418c2ecf20Sopenharmony_ci * memory mapped space, return error as it didn't fit in the range 4428c2ecf20Sopenharmony_ci * of assigned address space. 4438c2ecf20Sopenharmony_ci */ 4448c2ecf20Sopenharmony_ci if (op->addr.val >= f->memmap_phy_size) 4458c2ecf20Sopenharmony_ci return false; 4468c2ecf20Sopenharmony_ci 4478c2ecf20Sopenharmony_ci /* Max 64 dummy clock cycles supported */ 4488c2ecf20Sopenharmony_ci if (op->dummy.buswidth && 4498c2ecf20Sopenharmony_ci (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) 4508c2ecf20Sopenharmony_ci return false; 4518c2ecf20Sopenharmony_ci 4528c2ecf20Sopenharmony_ci /* Max data length, check controller limits and alignment */ 4538c2ecf20Sopenharmony_ci if (op->data.dir == SPI_MEM_DATA_IN && 4548c2ecf20Sopenharmony_ci (op->data.nbytes > f->devtype_data->ahb_buf_size || 4558c2ecf20Sopenharmony_ci (op->data.nbytes > f->devtype_data->rxfifo - 4 && 4568c2ecf20Sopenharmony_ci !IS_ALIGNED(op->data.nbytes, 8)))) 4578c2ecf20Sopenharmony_ci return false; 4588c2ecf20Sopenharmony_ci 4598c2ecf20Sopenharmony_ci if (op->data.dir == SPI_MEM_DATA_OUT && 4608c2ecf20Sopenharmony_ci op->data.nbytes > f->devtype_data->txfifo) 4618c2ecf20Sopenharmony_ci return false; 4628c2ecf20Sopenharmony_ci 4638c2ecf20Sopenharmony_ci return spi_mem_default_supports_op(mem, op); 4648c2ecf20Sopenharmony_ci} 4658c2ecf20Sopenharmony_ci 4668c2ecf20Sopenharmony_ci/* Instead of busy looping invoke readl_poll_timeout functionality. */ 4678c2ecf20Sopenharmony_cistatic int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, 4688c2ecf20Sopenharmony_ci u32 mask, u32 delay_us, 4698c2ecf20Sopenharmony_ci u32 timeout_us, bool c) 4708c2ecf20Sopenharmony_ci{ 4718c2ecf20Sopenharmony_ci u32 reg; 4728c2ecf20Sopenharmony_ci 4738c2ecf20Sopenharmony_ci if (!f->devtype_data->little_endian) 4748c2ecf20Sopenharmony_ci mask = (u32)cpu_to_be32(mask); 4758c2ecf20Sopenharmony_ci 4768c2ecf20Sopenharmony_ci if (c) 4778c2ecf20Sopenharmony_ci return readl_poll_timeout(base, reg, (reg & mask), 4788c2ecf20Sopenharmony_ci delay_us, timeout_us); 4798c2ecf20Sopenharmony_ci else 4808c2ecf20Sopenharmony_ci return readl_poll_timeout(base, reg, !(reg & mask), 4818c2ecf20Sopenharmony_ci delay_us, timeout_us); 4828c2ecf20Sopenharmony_ci} 4838c2ecf20Sopenharmony_ci 4848c2ecf20Sopenharmony_ci/* 4858c2ecf20Sopenharmony_ci * If the slave device content being changed by Write/Erase, need to 4868c2ecf20Sopenharmony_ci * invalidate the AHB buffer. This can be achieved by doing the reset 4878c2ecf20Sopenharmony_ci * of controller after setting MCR0[SWRESET] bit. 4888c2ecf20Sopenharmony_ci */ 4898c2ecf20Sopenharmony_cistatic inline void nxp_fspi_invalid(struct nxp_fspi *f) 4908c2ecf20Sopenharmony_ci{ 4918c2ecf20Sopenharmony_ci u32 reg; 4928c2ecf20Sopenharmony_ci int ret; 4938c2ecf20Sopenharmony_ci 4948c2ecf20Sopenharmony_ci reg = fspi_readl(f, f->iobase + FSPI_MCR0); 4958c2ecf20Sopenharmony_ci fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); 4968c2ecf20Sopenharmony_ci 4978c2ecf20Sopenharmony_ci /* w1c register, wait unit clear */ 4988c2ecf20Sopenharmony_ci ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, 4998c2ecf20Sopenharmony_ci FSPI_MCR0_SWRST, 0, POLL_TOUT, false); 5008c2ecf20Sopenharmony_ci WARN_ON(ret); 5018c2ecf20Sopenharmony_ci} 5028c2ecf20Sopenharmony_ci 5038c2ecf20Sopenharmony_cistatic void nxp_fspi_prepare_lut(struct nxp_fspi *f, 5048c2ecf20Sopenharmony_ci const struct spi_mem_op *op) 5058c2ecf20Sopenharmony_ci{ 5068c2ecf20Sopenharmony_ci void __iomem *base = f->iobase; 5078c2ecf20Sopenharmony_ci u32 lutval[4] = {}; 5088c2ecf20Sopenharmony_ci int lutidx = 1, i; 5098c2ecf20Sopenharmony_ci 5108c2ecf20Sopenharmony_ci /* cmd */ 5118c2ecf20Sopenharmony_ci lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), 5128c2ecf20Sopenharmony_ci op->cmd.opcode); 5138c2ecf20Sopenharmony_ci 5148c2ecf20Sopenharmony_ci /* addr bytes */ 5158c2ecf20Sopenharmony_ci if (op->addr.nbytes) { 5168c2ecf20Sopenharmony_ci lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, 5178c2ecf20Sopenharmony_ci LUT_PAD(op->addr.buswidth), 5188c2ecf20Sopenharmony_ci op->addr.nbytes * 8); 5198c2ecf20Sopenharmony_ci lutidx++; 5208c2ecf20Sopenharmony_ci } 5218c2ecf20Sopenharmony_ci 5228c2ecf20Sopenharmony_ci /* dummy bytes, if needed */ 5238c2ecf20Sopenharmony_ci if (op->dummy.nbytes) { 5248c2ecf20Sopenharmony_ci lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, 5258c2ecf20Sopenharmony_ci /* 5268c2ecf20Sopenharmony_ci * Due to FlexSPI controller limitation number of PAD for dummy 5278c2ecf20Sopenharmony_ci * buswidth needs to be programmed as equal to data buswidth. 5288c2ecf20Sopenharmony_ci */ 5298c2ecf20Sopenharmony_ci LUT_PAD(op->data.buswidth), 5308c2ecf20Sopenharmony_ci op->dummy.nbytes * 8 / 5318c2ecf20Sopenharmony_ci op->dummy.buswidth); 5328c2ecf20Sopenharmony_ci lutidx++; 5338c2ecf20Sopenharmony_ci } 5348c2ecf20Sopenharmony_ci 5358c2ecf20Sopenharmony_ci /* read/write data bytes */ 5368c2ecf20Sopenharmony_ci if (op->data.nbytes) { 5378c2ecf20Sopenharmony_ci lutval[lutidx / 2] |= LUT_DEF(lutidx, 5388c2ecf20Sopenharmony_ci op->data.dir == SPI_MEM_DATA_IN ? 5398c2ecf20Sopenharmony_ci LUT_NXP_READ : LUT_NXP_WRITE, 5408c2ecf20Sopenharmony_ci LUT_PAD(op->data.buswidth), 5418c2ecf20Sopenharmony_ci 0); 5428c2ecf20Sopenharmony_ci lutidx++; 5438c2ecf20Sopenharmony_ci } 5448c2ecf20Sopenharmony_ci 5458c2ecf20Sopenharmony_ci /* stop condition. */ 5468c2ecf20Sopenharmony_ci lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); 5478c2ecf20Sopenharmony_ci 5488c2ecf20Sopenharmony_ci /* unlock LUT */ 5498c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); 5508c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); 5518c2ecf20Sopenharmony_ci 5528c2ecf20Sopenharmony_ci /* fill LUT */ 5538c2ecf20Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(lutval); i++) 5548c2ecf20Sopenharmony_ci fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); 5558c2ecf20Sopenharmony_ci 5568c2ecf20Sopenharmony_ci dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", 5578c2ecf20Sopenharmony_ci op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); 5588c2ecf20Sopenharmony_ci 5598c2ecf20Sopenharmony_ci /* lock LUT */ 5608c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); 5618c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); 5628c2ecf20Sopenharmony_ci} 5638c2ecf20Sopenharmony_ci 5648c2ecf20Sopenharmony_cistatic int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) 5658c2ecf20Sopenharmony_ci{ 5668c2ecf20Sopenharmony_ci int ret; 5678c2ecf20Sopenharmony_ci 5688c2ecf20Sopenharmony_ci if (is_acpi_node(f->dev->fwnode)) 5698c2ecf20Sopenharmony_ci return 0; 5708c2ecf20Sopenharmony_ci 5718c2ecf20Sopenharmony_ci ret = clk_prepare_enable(f->clk_en); 5728c2ecf20Sopenharmony_ci if (ret) 5738c2ecf20Sopenharmony_ci return ret; 5748c2ecf20Sopenharmony_ci 5758c2ecf20Sopenharmony_ci ret = clk_prepare_enable(f->clk); 5768c2ecf20Sopenharmony_ci if (ret) { 5778c2ecf20Sopenharmony_ci clk_disable_unprepare(f->clk_en); 5788c2ecf20Sopenharmony_ci return ret; 5798c2ecf20Sopenharmony_ci } 5808c2ecf20Sopenharmony_ci 5818c2ecf20Sopenharmony_ci return 0; 5828c2ecf20Sopenharmony_ci} 5838c2ecf20Sopenharmony_ci 5848c2ecf20Sopenharmony_cistatic int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) 5858c2ecf20Sopenharmony_ci{ 5868c2ecf20Sopenharmony_ci if (is_acpi_node(f->dev->fwnode)) 5878c2ecf20Sopenharmony_ci return 0; 5888c2ecf20Sopenharmony_ci 5898c2ecf20Sopenharmony_ci clk_disable_unprepare(f->clk); 5908c2ecf20Sopenharmony_ci clk_disable_unprepare(f->clk_en); 5918c2ecf20Sopenharmony_ci 5928c2ecf20Sopenharmony_ci return 0; 5938c2ecf20Sopenharmony_ci} 5948c2ecf20Sopenharmony_ci 5958c2ecf20Sopenharmony_ci/* 5968c2ecf20Sopenharmony_ci * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 5978c2ecf20Sopenharmony_ci * register and start base address of the slave device. 5988c2ecf20Sopenharmony_ci * 5998c2ecf20Sopenharmony_ci * (Higher address) 6008c2ecf20Sopenharmony_ci * -------- <-- FLSHB2CR0 6018c2ecf20Sopenharmony_ci * | B2 | 6028c2ecf20Sopenharmony_ci * | | 6038c2ecf20Sopenharmony_ci * B2 start address --> -------- <-- FLSHB1CR0 6048c2ecf20Sopenharmony_ci * | B1 | 6058c2ecf20Sopenharmony_ci * | | 6068c2ecf20Sopenharmony_ci * B1 start address --> -------- <-- FLSHA2CR0 6078c2ecf20Sopenharmony_ci * | A2 | 6088c2ecf20Sopenharmony_ci * | | 6098c2ecf20Sopenharmony_ci * A2 start address --> -------- <-- FLSHA1CR0 6108c2ecf20Sopenharmony_ci * | A1 | 6118c2ecf20Sopenharmony_ci * | | 6128c2ecf20Sopenharmony_ci * A1 start address --> -------- (Lower address) 6138c2ecf20Sopenharmony_ci * 6148c2ecf20Sopenharmony_ci * 6158c2ecf20Sopenharmony_ci * Start base address defines the starting address range for given CS and 6168c2ecf20Sopenharmony_ci * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. 6178c2ecf20Sopenharmony_ci * 6188c2ecf20Sopenharmony_ci * But, different targets are having different combinations of number of CS, 6198c2ecf20Sopenharmony_ci * some targets only have single CS or two CS covering controller's full 6208c2ecf20Sopenharmony_ci * memory mapped space area. 6218c2ecf20Sopenharmony_ci * Thus, implementation is being done as independent of the size and number 6228c2ecf20Sopenharmony_ci * of the connected slave device. 6238c2ecf20Sopenharmony_ci * Assign controller memory mapped space size as the size to the connected 6248c2ecf20Sopenharmony_ci * slave device. 6258c2ecf20Sopenharmony_ci * Mark FLSHxxCR0 as zero initially and then assign value only to the selected 6268c2ecf20Sopenharmony_ci * chip-select Flash configuration register. 6278c2ecf20Sopenharmony_ci * 6288c2ecf20Sopenharmony_ci * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the 6298c2ecf20Sopenharmony_ci * memory mapped size of the controller. 6308c2ecf20Sopenharmony_ci * Value for rest of the CS FLSHxxCR0 register would be zero. 6318c2ecf20Sopenharmony_ci * 6328c2ecf20Sopenharmony_ci */ 6338c2ecf20Sopenharmony_cistatic void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi) 6348c2ecf20Sopenharmony_ci{ 6358c2ecf20Sopenharmony_ci unsigned long rate = spi->max_speed_hz; 6368c2ecf20Sopenharmony_ci int ret; 6378c2ecf20Sopenharmony_ci uint64_t size_kb; 6388c2ecf20Sopenharmony_ci 6398c2ecf20Sopenharmony_ci /* 6408c2ecf20Sopenharmony_ci * Return, if previously selected slave device is same as current 6418c2ecf20Sopenharmony_ci * requested slave device. 6428c2ecf20Sopenharmony_ci */ 6438c2ecf20Sopenharmony_ci if (f->selected == spi->chip_select) 6448c2ecf20Sopenharmony_ci return; 6458c2ecf20Sopenharmony_ci 6468c2ecf20Sopenharmony_ci /* Reset FLSHxxCR0 registers */ 6478c2ecf20Sopenharmony_ci fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); 6488c2ecf20Sopenharmony_ci fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); 6498c2ecf20Sopenharmony_ci fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); 6508c2ecf20Sopenharmony_ci fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); 6518c2ecf20Sopenharmony_ci 6528c2ecf20Sopenharmony_ci /* Assign controller memory mapped space as size, KBytes, of flash. */ 6538c2ecf20Sopenharmony_ci size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); 6548c2ecf20Sopenharmony_ci 6558c2ecf20Sopenharmony_ci fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + 6568c2ecf20Sopenharmony_ci 4 * spi->chip_select); 6578c2ecf20Sopenharmony_ci 6588c2ecf20Sopenharmony_ci dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select); 6598c2ecf20Sopenharmony_ci 6608c2ecf20Sopenharmony_ci nxp_fspi_clk_disable_unprep(f); 6618c2ecf20Sopenharmony_ci 6628c2ecf20Sopenharmony_ci ret = clk_set_rate(f->clk, rate); 6638c2ecf20Sopenharmony_ci if (ret) 6648c2ecf20Sopenharmony_ci return; 6658c2ecf20Sopenharmony_ci 6668c2ecf20Sopenharmony_ci ret = nxp_fspi_clk_prep_enable(f); 6678c2ecf20Sopenharmony_ci if (ret) 6688c2ecf20Sopenharmony_ci return; 6698c2ecf20Sopenharmony_ci 6708c2ecf20Sopenharmony_ci f->selected = spi->chip_select; 6718c2ecf20Sopenharmony_ci} 6728c2ecf20Sopenharmony_ci 6738c2ecf20Sopenharmony_cistatic int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) 6748c2ecf20Sopenharmony_ci{ 6758c2ecf20Sopenharmony_ci u32 start = op->addr.val; 6768c2ecf20Sopenharmony_ci u32 len = op->data.nbytes; 6778c2ecf20Sopenharmony_ci 6788c2ecf20Sopenharmony_ci /* if necessary, ioremap before AHB read */ 6798c2ecf20Sopenharmony_ci if ((!f->ahb_addr) || start < f->memmap_start || 6808c2ecf20Sopenharmony_ci start + len > f->memmap_start + f->memmap_len) { 6818c2ecf20Sopenharmony_ci if (f->ahb_addr) 6828c2ecf20Sopenharmony_ci iounmap(f->ahb_addr); 6838c2ecf20Sopenharmony_ci 6848c2ecf20Sopenharmony_ci f->memmap_start = start; 6858c2ecf20Sopenharmony_ci f->memmap_len = len > NXP_FSPI_MIN_IOMAP ? 6868c2ecf20Sopenharmony_ci len : NXP_FSPI_MIN_IOMAP; 6878c2ecf20Sopenharmony_ci 6888c2ecf20Sopenharmony_ci f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start, 6898c2ecf20Sopenharmony_ci f->memmap_len); 6908c2ecf20Sopenharmony_ci 6918c2ecf20Sopenharmony_ci if (!f->ahb_addr) { 6928c2ecf20Sopenharmony_ci dev_err(f->dev, "failed to alloc memory\n"); 6938c2ecf20Sopenharmony_ci return -ENOMEM; 6948c2ecf20Sopenharmony_ci } 6958c2ecf20Sopenharmony_ci } 6968c2ecf20Sopenharmony_ci 6978c2ecf20Sopenharmony_ci /* Read out the data directly from the AHB buffer. */ 6988c2ecf20Sopenharmony_ci memcpy_fromio(op->data.buf.in, 6998c2ecf20Sopenharmony_ci f->ahb_addr + start - f->memmap_start, len); 7008c2ecf20Sopenharmony_ci 7018c2ecf20Sopenharmony_ci return 0; 7028c2ecf20Sopenharmony_ci} 7038c2ecf20Sopenharmony_ci 7048c2ecf20Sopenharmony_cistatic void nxp_fspi_fill_txfifo(struct nxp_fspi *f, 7058c2ecf20Sopenharmony_ci const struct spi_mem_op *op) 7068c2ecf20Sopenharmony_ci{ 7078c2ecf20Sopenharmony_ci void __iomem *base = f->iobase; 7088c2ecf20Sopenharmony_ci int i, ret; 7098c2ecf20Sopenharmony_ci u8 *buf = (u8 *) op->data.buf.out; 7108c2ecf20Sopenharmony_ci 7118c2ecf20Sopenharmony_ci /* clear the TX FIFO. */ 7128c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); 7138c2ecf20Sopenharmony_ci 7148c2ecf20Sopenharmony_ci /* 7158c2ecf20Sopenharmony_ci * Default value of water mark level is 8 bytes, hence in single 7168c2ecf20Sopenharmony_ci * write request controller can write max 8 bytes of data. 7178c2ecf20Sopenharmony_ci */ 7188c2ecf20Sopenharmony_ci 7198c2ecf20Sopenharmony_ci for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { 7208c2ecf20Sopenharmony_ci /* Wait for TXFIFO empty */ 7218c2ecf20Sopenharmony_ci ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 7228c2ecf20Sopenharmony_ci FSPI_INTR_IPTXWE, 0, 7238c2ecf20Sopenharmony_ci POLL_TOUT, true); 7248c2ecf20Sopenharmony_ci WARN_ON(ret); 7258c2ecf20Sopenharmony_ci 7268c2ecf20Sopenharmony_ci fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); 7278c2ecf20Sopenharmony_ci fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); 7288c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); 7298c2ecf20Sopenharmony_ci } 7308c2ecf20Sopenharmony_ci 7318c2ecf20Sopenharmony_ci if (i < op->data.nbytes) { 7328c2ecf20Sopenharmony_ci u32 data = 0; 7338c2ecf20Sopenharmony_ci int j; 7348c2ecf20Sopenharmony_ci /* Wait for TXFIFO empty */ 7358c2ecf20Sopenharmony_ci ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 7368c2ecf20Sopenharmony_ci FSPI_INTR_IPTXWE, 0, 7378c2ecf20Sopenharmony_ci POLL_TOUT, true); 7388c2ecf20Sopenharmony_ci WARN_ON(ret); 7398c2ecf20Sopenharmony_ci 7408c2ecf20Sopenharmony_ci for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { 7418c2ecf20Sopenharmony_ci memcpy(&data, buf + i + j, 4); 7428c2ecf20Sopenharmony_ci fspi_writel(f, data, base + FSPI_TFDR + j); 7438c2ecf20Sopenharmony_ci } 7448c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); 7458c2ecf20Sopenharmony_ci } 7468c2ecf20Sopenharmony_ci} 7478c2ecf20Sopenharmony_ci 7488c2ecf20Sopenharmony_cistatic void nxp_fspi_read_rxfifo(struct nxp_fspi *f, 7498c2ecf20Sopenharmony_ci const struct spi_mem_op *op) 7508c2ecf20Sopenharmony_ci{ 7518c2ecf20Sopenharmony_ci void __iomem *base = f->iobase; 7528c2ecf20Sopenharmony_ci int i, ret; 7538c2ecf20Sopenharmony_ci int len = op->data.nbytes; 7548c2ecf20Sopenharmony_ci u8 *buf = (u8 *) op->data.buf.in; 7558c2ecf20Sopenharmony_ci 7568c2ecf20Sopenharmony_ci /* 7578c2ecf20Sopenharmony_ci * Default value of water mark level is 8 bytes, hence in single 7588c2ecf20Sopenharmony_ci * read request controller can read max 8 bytes of data. 7598c2ecf20Sopenharmony_ci */ 7608c2ecf20Sopenharmony_ci for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { 7618c2ecf20Sopenharmony_ci /* Wait for RXFIFO available */ 7628c2ecf20Sopenharmony_ci ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 7638c2ecf20Sopenharmony_ci FSPI_INTR_IPRXWA, 0, 7648c2ecf20Sopenharmony_ci POLL_TOUT, true); 7658c2ecf20Sopenharmony_ci WARN_ON(ret); 7668c2ecf20Sopenharmony_ci 7678c2ecf20Sopenharmony_ci *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); 7688c2ecf20Sopenharmony_ci *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); 7698c2ecf20Sopenharmony_ci /* move the FIFO pointer */ 7708c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); 7718c2ecf20Sopenharmony_ci } 7728c2ecf20Sopenharmony_ci 7738c2ecf20Sopenharmony_ci if (i < len) { 7748c2ecf20Sopenharmony_ci u32 tmp; 7758c2ecf20Sopenharmony_ci int size, j; 7768c2ecf20Sopenharmony_ci 7778c2ecf20Sopenharmony_ci buf = op->data.buf.in + i; 7788c2ecf20Sopenharmony_ci /* Wait for RXFIFO available */ 7798c2ecf20Sopenharmony_ci ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 7808c2ecf20Sopenharmony_ci FSPI_INTR_IPRXWA, 0, 7818c2ecf20Sopenharmony_ci POLL_TOUT, true); 7828c2ecf20Sopenharmony_ci WARN_ON(ret); 7838c2ecf20Sopenharmony_ci 7848c2ecf20Sopenharmony_ci len = op->data.nbytes - i; 7858c2ecf20Sopenharmony_ci for (j = 0; j < op->data.nbytes - i; j += 4) { 7868c2ecf20Sopenharmony_ci tmp = fspi_readl(f, base + FSPI_RFDR + j); 7878c2ecf20Sopenharmony_ci size = min(len, 4); 7888c2ecf20Sopenharmony_ci memcpy(buf + j, &tmp, size); 7898c2ecf20Sopenharmony_ci len -= size; 7908c2ecf20Sopenharmony_ci } 7918c2ecf20Sopenharmony_ci } 7928c2ecf20Sopenharmony_ci 7938c2ecf20Sopenharmony_ci /* invalid the RXFIFO */ 7948c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); 7958c2ecf20Sopenharmony_ci /* move the FIFO pointer */ 7968c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); 7978c2ecf20Sopenharmony_ci} 7988c2ecf20Sopenharmony_ci 7998c2ecf20Sopenharmony_cistatic int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) 8008c2ecf20Sopenharmony_ci{ 8018c2ecf20Sopenharmony_ci void __iomem *base = f->iobase; 8028c2ecf20Sopenharmony_ci int seqnum = 0; 8038c2ecf20Sopenharmony_ci int err = 0; 8048c2ecf20Sopenharmony_ci u32 reg; 8058c2ecf20Sopenharmony_ci 8068c2ecf20Sopenharmony_ci reg = fspi_readl(f, base + FSPI_IPRXFCR); 8078c2ecf20Sopenharmony_ci /* invalid RXFIFO first */ 8088c2ecf20Sopenharmony_ci reg &= ~FSPI_IPRXFCR_DMA_EN; 8098c2ecf20Sopenharmony_ci reg = reg | FSPI_IPRXFCR_CLR; 8108c2ecf20Sopenharmony_ci fspi_writel(f, reg, base + FSPI_IPRXFCR); 8118c2ecf20Sopenharmony_ci 8128c2ecf20Sopenharmony_ci init_completion(&f->c); 8138c2ecf20Sopenharmony_ci 8148c2ecf20Sopenharmony_ci fspi_writel(f, op->addr.val, base + FSPI_IPCR0); 8158c2ecf20Sopenharmony_ci /* 8168c2ecf20Sopenharmony_ci * Always start the sequence at the same index since we update 8178c2ecf20Sopenharmony_ci * the LUT at each exec_op() call. And also specify the DATA 8188c2ecf20Sopenharmony_ci * length, since it's has not been specified in the LUT. 8198c2ecf20Sopenharmony_ci */ 8208c2ecf20Sopenharmony_ci fspi_writel(f, op->data.nbytes | 8218c2ecf20Sopenharmony_ci (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | 8228c2ecf20Sopenharmony_ci (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), 8238c2ecf20Sopenharmony_ci base + FSPI_IPCR1); 8248c2ecf20Sopenharmony_ci 8258c2ecf20Sopenharmony_ci /* Trigger the LUT now. */ 8268c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); 8278c2ecf20Sopenharmony_ci 8288c2ecf20Sopenharmony_ci /* Wait for the interrupt. */ 8298c2ecf20Sopenharmony_ci if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) 8308c2ecf20Sopenharmony_ci err = -ETIMEDOUT; 8318c2ecf20Sopenharmony_ci 8328c2ecf20Sopenharmony_ci /* Invoke IP data read, if request is of data read. */ 8338c2ecf20Sopenharmony_ci if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) 8348c2ecf20Sopenharmony_ci nxp_fspi_read_rxfifo(f, op); 8358c2ecf20Sopenharmony_ci 8368c2ecf20Sopenharmony_ci return err; 8378c2ecf20Sopenharmony_ci} 8388c2ecf20Sopenharmony_ci 8398c2ecf20Sopenharmony_cistatic int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 8408c2ecf20Sopenharmony_ci{ 8418c2ecf20Sopenharmony_ci struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 8428c2ecf20Sopenharmony_ci int err = 0; 8438c2ecf20Sopenharmony_ci 8448c2ecf20Sopenharmony_ci mutex_lock(&f->lock); 8458c2ecf20Sopenharmony_ci 8468c2ecf20Sopenharmony_ci /* Wait for controller being ready. */ 8478c2ecf20Sopenharmony_ci err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, 8488c2ecf20Sopenharmony_ci FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); 8498c2ecf20Sopenharmony_ci WARN_ON(err); 8508c2ecf20Sopenharmony_ci 8518c2ecf20Sopenharmony_ci nxp_fspi_select_mem(f, mem->spi); 8528c2ecf20Sopenharmony_ci 8538c2ecf20Sopenharmony_ci nxp_fspi_prepare_lut(f, op); 8548c2ecf20Sopenharmony_ci /* 8558c2ecf20Sopenharmony_ci * If we have large chunks of data, we read them through the AHB bus 8568c2ecf20Sopenharmony_ci * by accessing the mapped memory. In all other cases we use 8578c2ecf20Sopenharmony_ci * IP commands to access the flash. 8588c2ecf20Sopenharmony_ci */ 8598c2ecf20Sopenharmony_ci if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && 8608c2ecf20Sopenharmony_ci op->data.dir == SPI_MEM_DATA_IN) { 8618c2ecf20Sopenharmony_ci err = nxp_fspi_read_ahb(f, op); 8628c2ecf20Sopenharmony_ci } else { 8638c2ecf20Sopenharmony_ci if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) 8648c2ecf20Sopenharmony_ci nxp_fspi_fill_txfifo(f, op); 8658c2ecf20Sopenharmony_ci 8668c2ecf20Sopenharmony_ci err = nxp_fspi_do_op(f, op); 8678c2ecf20Sopenharmony_ci } 8688c2ecf20Sopenharmony_ci 8698c2ecf20Sopenharmony_ci /* Invalidate the data in the AHB buffer. */ 8708c2ecf20Sopenharmony_ci nxp_fspi_invalid(f); 8718c2ecf20Sopenharmony_ci 8728c2ecf20Sopenharmony_ci mutex_unlock(&f->lock); 8738c2ecf20Sopenharmony_ci 8748c2ecf20Sopenharmony_ci return err; 8758c2ecf20Sopenharmony_ci} 8768c2ecf20Sopenharmony_ci 8778c2ecf20Sopenharmony_cistatic int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 8788c2ecf20Sopenharmony_ci{ 8798c2ecf20Sopenharmony_ci struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 8808c2ecf20Sopenharmony_ci 8818c2ecf20Sopenharmony_ci if (op->data.dir == SPI_MEM_DATA_OUT) { 8828c2ecf20Sopenharmony_ci if (op->data.nbytes > f->devtype_data->txfifo) 8838c2ecf20Sopenharmony_ci op->data.nbytes = f->devtype_data->txfifo; 8848c2ecf20Sopenharmony_ci } else { 8858c2ecf20Sopenharmony_ci if (op->data.nbytes > f->devtype_data->ahb_buf_size) 8868c2ecf20Sopenharmony_ci op->data.nbytes = f->devtype_data->ahb_buf_size; 8878c2ecf20Sopenharmony_ci else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) 8888c2ecf20Sopenharmony_ci op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); 8898c2ecf20Sopenharmony_ci } 8908c2ecf20Sopenharmony_ci 8918c2ecf20Sopenharmony_ci return 0; 8928c2ecf20Sopenharmony_ci} 8938c2ecf20Sopenharmony_ci 8948c2ecf20Sopenharmony_cistatic int nxp_fspi_default_setup(struct nxp_fspi *f) 8958c2ecf20Sopenharmony_ci{ 8968c2ecf20Sopenharmony_ci void __iomem *base = f->iobase; 8978c2ecf20Sopenharmony_ci int ret, i; 8988c2ecf20Sopenharmony_ci u32 reg; 8998c2ecf20Sopenharmony_ci 9008c2ecf20Sopenharmony_ci /* disable and unprepare clock to avoid glitch pass to controller */ 9018c2ecf20Sopenharmony_ci nxp_fspi_clk_disable_unprep(f); 9028c2ecf20Sopenharmony_ci 9038c2ecf20Sopenharmony_ci /* the default frequency, we will change it later if necessary. */ 9048c2ecf20Sopenharmony_ci ret = clk_set_rate(f->clk, 20000000); 9058c2ecf20Sopenharmony_ci if (ret) 9068c2ecf20Sopenharmony_ci return ret; 9078c2ecf20Sopenharmony_ci 9088c2ecf20Sopenharmony_ci ret = nxp_fspi_clk_prep_enable(f); 9098c2ecf20Sopenharmony_ci if (ret) 9108c2ecf20Sopenharmony_ci return ret; 9118c2ecf20Sopenharmony_ci 9128c2ecf20Sopenharmony_ci /* Reset the module */ 9138c2ecf20Sopenharmony_ci /* w1c register, wait unit clear */ 9148c2ecf20Sopenharmony_ci ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, 9158c2ecf20Sopenharmony_ci FSPI_MCR0_SWRST, 0, POLL_TOUT, false); 9168c2ecf20Sopenharmony_ci WARN_ON(ret); 9178c2ecf20Sopenharmony_ci 9188c2ecf20Sopenharmony_ci /* Disable the module */ 9198c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); 9208c2ecf20Sopenharmony_ci 9218c2ecf20Sopenharmony_ci /* Reset the DLL register to default value */ 9228c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); 9238c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); 9248c2ecf20Sopenharmony_ci 9258c2ecf20Sopenharmony_ci /* enable module */ 9268c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | 9278c2ecf20Sopenharmony_ci FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN, 9288c2ecf20Sopenharmony_ci base + FSPI_MCR0); 9298c2ecf20Sopenharmony_ci 9308c2ecf20Sopenharmony_ci /* 9318c2ecf20Sopenharmony_ci * Disable same device enable bit and configure all slave devices 9328c2ecf20Sopenharmony_ci * independently. 9338c2ecf20Sopenharmony_ci */ 9348c2ecf20Sopenharmony_ci reg = fspi_readl(f, f->iobase + FSPI_MCR2); 9358c2ecf20Sopenharmony_ci reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); 9368c2ecf20Sopenharmony_ci fspi_writel(f, reg, base + FSPI_MCR2); 9378c2ecf20Sopenharmony_ci 9388c2ecf20Sopenharmony_ci /* AHB configuration for access buffer 0~7. */ 9398c2ecf20Sopenharmony_ci for (i = 0; i < 7; i++) 9408c2ecf20Sopenharmony_ci fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); 9418c2ecf20Sopenharmony_ci 9428c2ecf20Sopenharmony_ci /* 9438c2ecf20Sopenharmony_ci * Set ADATSZ with the maximum AHB buffer size to improve the read 9448c2ecf20Sopenharmony_ci * performance. 9458c2ecf20Sopenharmony_ci */ 9468c2ecf20Sopenharmony_ci fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | 9478c2ecf20Sopenharmony_ci FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); 9488c2ecf20Sopenharmony_ci 9498c2ecf20Sopenharmony_ci /* prefetch and no start address alignment limitation */ 9508c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, 9518c2ecf20Sopenharmony_ci base + FSPI_AHBCR); 9528c2ecf20Sopenharmony_ci 9538c2ecf20Sopenharmony_ci /* Reset the FLSHxCR1 registers. */ 9548c2ecf20Sopenharmony_ci reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3); 9558c2ecf20Sopenharmony_ci fspi_writel(f, reg, base + FSPI_FLSHA1CR1); 9568c2ecf20Sopenharmony_ci fspi_writel(f, reg, base + FSPI_FLSHA2CR1); 9578c2ecf20Sopenharmony_ci fspi_writel(f, reg, base + FSPI_FLSHB1CR1); 9588c2ecf20Sopenharmony_ci fspi_writel(f, reg, base + FSPI_FLSHB2CR1); 9598c2ecf20Sopenharmony_ci 9608c2ecf20Sopenharmony_ci /* AHB Read - Set lut sequence ID for all CS. */ 9618c2ecf20Sopenharmony_ci fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); 9628c2ecf20Sopenharmony_ci fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); 9638c2ecf20Sopenharmony_ci fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); 9648c2ecf20Sopenharmony_ci fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); 9658c2ecf20Sopenharmony_ci 9668c2ecf20Sopenharmony_ci f->selected = -1; 9678c2ecf20Sopenharmony_ci 9688c2ecf20Sopenharmony_ci /* enable the interrupt */ 9698c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); 9708c2ecf20Sopenharmony_ci 9718c2ecf20Sopenharmony_ci return 0; 9728c2ecf20Sopenharmony_ci} 9738c2ecf20Sopenharmony_ci 9748c2ecf20Sopenharmony_cistatic const char *nxp_fspi_get_name(struct spi_mem *mem) 9758c2ecf20Sopenharmony_ci{ 9768c2ecf20Sopenharmony_ci struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); 9778c2ecf20Sopenharmony_ci struct device *dev = &mem->spi->dev; 9788c2ecf20Sopenharmony_ci const char *name; 9798c2ecf20Sopenharmony_ci 9808c2ecf20Sopenharmony_ci // Set custom name derived from the platform_device of the controller. 9818c2ecf20Sopenharmony_ci if (of_get_available_child_count(f->dev->of_node) == 1) 9828c2ecf20Sopenharmony_ci return dev_name(f->dev); 9838c2ecf20Sopenharmony_ci 9848c2ecf20Sopenharmony_ci name = devm_kasprintf(dev, GFP_KERNEL, 9858c2ecf20Sopenharmony_ci "%s-%d", dev_name(f->dev), 9868c2ecf20Sopenharmony_ci mem->spi->chip_select); 9878c2ecf20Sopenharmony_ci 9888c2ecf20Sopenharmony_ci if (!name) { 9898c2ecf20Sopenharmony_ci dev_err(dev, "failed to get memory for custom flash name\n"); 9908c2ecf20Sopenharmony_ci return ERR_PTR(-ENOMEM); 9918c2ecf20Sopenharmony_ci } 9928c2ecf20Sopenharmony_ci 9938c2ecf20Sopenharmony_ci return name; 9948c2ecf20Sopenharmony_ci} 9958c2ecf20Sopenharmony_ci 9968c2ecf20Sopenharmony_cistatic const struct spi_controller_mem_ops nxp_fspi_mem_ops = { 9978c2ecf20Sopenharmony_ci .adjust_op_size = nxp_fspi_adjust_op_size, 9988c2ecf20Sopenharmony_ci .supports_op = nxp_fspi_supports_op, 9998c2ecf20Sopenharmony_ci .exec_op = nxp_fspi_exec_op, 10008c2ecf20Sopenharmony_ci .get_name = nxp_fspi_get_name, 10018c2ecf20Sopenharmony_ci}; 10028c2ecf20Sopenharmony_ci 10038c2ecf20Sopenharmony_cistatic int nxp_fspi_probe(struct platform_device *pdev) 10048c2ecf20Sopenharmony_ci{ 10058c2ecf20Sopenharmony_ci struct spi_controller *ctlr; 10068c2ecf20Sopenharmony_ci struct device *dev = &pdev->dev; 10078c2ecf20Sopenharmony_ci struct device_node *np = dev->of_node; 10088c2ecf20Sopenharmony_ci struct resource *res; 10098c2ecf20Sopenharmony_ci struct nxp_fspi *f; 10108c2ecf20Sopenharmony_ci int ret; 10118c2ecf20Sopenharmony_ci u32 reg; 10128c2ecf20Sopenharmony_ci 10138c2ecf20Sopenharmony_ci ctlr = spi_alloc_master(&pdev->dev, sizeof(*f)); 10148c2ecf20Sopenharmony_ci if (!ctlr) 10158c2ecf20Sopenharmony_ci return -ENOMEM; 10168c2ecf20Sopenharmony_ci 10178c2ecf20Sopenharmony_ci ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | 10188c2ecf20Sopenharmony_ci SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; 10198c2ecf20Sopenharmony_ci 10208c2ecf20Sopenharmony_ci f = spi_controller_get_devdata(ctlr); 10218c2ecf20Sopenharmony_ci f->dev = dev; 10228c2ecf20Sopenharmony_ci f->devtype_data = device_get_match_data(dev); 10238c2ecf20Sopenharmony_ci if (!f->devtype_data) { 10248c2ecf20Sopenharmony_ci ret = -ENODEV; 10258c2ecf20Sopenharmony_ci goto err_put_ctrl; 10268c2ecf20Sopenharmony_ci } 10278c2ecf20Sopenharmony_ci 10288c2ecf20Sopenharmony_ci platform_set_drvdata(pdev, f); 10298c2ecf20Sopenharmony_ci 10308c2ecf20Sopenharmony_ci /* find the resources - configuration register address space */ 10318c2ecf20Sopenharmony_ci if (is_acpi_node(f->dev->fwnode)) 10328c2ecf20Sopenharmony_ci res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 10338c2ecf20Sopenharmony_ci else 10348c2ecf20Sopenharmony_ci res = platform_get_resource_byname(pdev, 10358c2ecf20Sopenharmony_ci IORESOURCE_MEM, "fspi_base"); 10368c2ecf20Sopenharmony_ci 10378c2ecf20Sopenharmony_ci f->iobase = devm_ioremap_resource(dev, res); 10388c2ecf20Sopenharmony_ci if (IS_ERR(f->iobase)) { 10398c2ecf20Sopenharmony_ci ret = PTR_ERR(f->iobase); 10408c2ecf20Sopenharmony_ci goto err_put_ctrl; 10418c2ecf20Sopenharmony_ci } 10428c2ecf20Sopenharmony_ci 10438c2ecf20Sopenharmony_ci /* find the resources - controller memory mapped space */ 10448c2ecf20Sopenharmony_ci if (is_acpi_node(f->dev->fwnode)) 10458c2ecf20Sopenharmony_ci res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 10468c2ecf20Sopenharmony_ci else 10478c2ecf20Sopenharmony_ci res = platform_get_resource_byname(pdev, 10488c2ecf20Sopenharmony_ci IORESOURCE_MEM, "fspi_mmap"); 10498c2ecf20Sopenharmony_ci 10508c2ecf20Sopenharmony_ci if (!res) { 10518c2ecf20Sopenharmony_ci ret = -ENODEV; 10528c2ecf20Sopenharmony_ci goto err_put_ctrl; 10538c2ecf20Sopenharmony_ci } 10548c2ecf20Sopenharmony_ci 10558c2ecf20Sopenharmony_ci /* assign memory mapped starting address and mapped size. */ 10568c2ecf20Sopenharmony_ci f->memmap_phy = res->start; 10578c2ecf20Sopenharmony_ci f->memmap_phy_size = resource_size(res); 10588c2ecf20Sopenharmony_ci 10598c2ecf20Sopenharmony_ci /* find the clocks */ 10608c2ecf20Sopenharmony_ci if (dev_of_node(&pdev->dev)) { 10618c2ecf20Sopenharmony_ci f->clk_en = devm_clk_get(dev, "fspi_en"); 10628c2ecf20Sopenharmony_ci if (IS_ERR(f->clk_en)) { 10638c2ecf20Sopenharmony_ci ret = PTR_ERR(f->clk_en); 10648c2ecf20Sopenharmony_ci goto err_put_ctrl; 10658c2ecf20Sopenharmony_ci } 10668c2ecf20Sopenharmony_ci 10678c2ecf20Sopenharmony_ci f->clk = devm_clk_get(dev, "fspi"); 10688c2ecf20Sopenharmony_ci if (IS_ERR(f->clk)) { 10698c2ecf20Sopenharmony_ci ret = PTR_ERR(f->clk); 10708c2ecf20Sopenharmony_ci goto err_put_ctrl; 10718c2ecf20Sopenharmony_ci } 10728c2ecf20Sopenharmony_ci 10738c2ecf20Sopenharmony_ci ret = nxp_fspi_clk_prep_enable(f); 10748c2ecf20Sopenharmony_ci if (ret) { 10758c2ecf20Sopenharmony_ci dev_err(dev, "can not enable the clock\n"); 10768c2ecf20Sopenharmony_ci goto err_put_ctrl; 10778c2ecf20Sopenharmony_ci } 10788c2ecf20Sopenharmony_ci } 10798c2ecf20Sopenharmony_ci 10808c2ecf20Sopenharmony_ci /* Clear potential interrupts */ 10818c2ecf20Sopenharmony_ci reg = fspi_readl(f, f->iobase + FSPI_INTR); 10828c2ecf20Sopenharmony_ci if (reg) 10838c2ecf20Sopenharmony_ci fspi_writel(f, reg, f->iobase + FSPI_INTR); 10848c2ecf20Sopenharmony_ci 10858c2ecf20Sopenharmony_ci /* find the irq */ 10868c2ecf20Sopenharmony_ci ret = platform_get_irq(pdev, 0); 10878c2ecf20Sopenharmony_ci if (ret < 0) 10888c2ecf20Sopenharmony_ci goto err_disable_clk; 10898c2ecf20Sopenharmony_ci 10908c2ecf20Sopenharmony_ci ret = devm_request_irq(dev, ret, 10918c2ecf20Sopenharmony_ci nxp_fspi_irq_handler, 0, pdev->name, f); 10928c2ecf20Sopenharmony_ci if (ret) { 10938c2ecf20Sopenharmony_ci dev_err(dev, "failed to request irq: %d\n", ret); 10948c2ecf20Sopenharmony_ci goto err_disable_clk; 10958c2ecf20Sopenharmony_ci } 10968c2ecf20Sopenharmony_ci 10978c2ecf20Sopenharmony_ci mutex_init(&f->lock); 10988c2ecf20Sopenharmony_ci 10998c2ecf20Sopenharmony_ci ctlr->bus_num = -1; 11008c2ecf20Sopenharmony_ci ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; 11018c2ecf20Sopenharmony_ci ctlr->mem_ops = &nxp_fspi_mem_ops; 11028c2ecf20Sopenharmony_ci 11038c2ecf20Sopenharmony_ci nxp_fspi_default_setup(f); 11048c2ecf20Sopenharmony_ci 11058c2ecf20Sopenharmony_ci ctlr->dev.of_node = np; 11068c2ecf20Sopenharmony_ci 11078c2ecf20Sopenharmony_ci ret = devm_spi_register_controller(&pdev->dev, ctlr); 11088c2ecf20Sopenharmony_ci if (ret) 11098c2ecf20Sopenharmony_ci goto err_destroy_mutex; 11108c2ecf20Sopenharmony_ci 11118c2ecf20Sopenharmony_ci return 0; 11128c2ecf20Sopenharmony_ci 11138c2ecf20Sopenharmony_cierr_destroy_mutex: 11148c2ecf20Sopenharmony_ci mutex_destroy(&f->lock); 11158c2ecf20Sopenharmony_ci 11168c2ecf20Sopenharmony_cierr_disable_clk: 11178c2ecf20Sopenharmony_ci nxp_fspi_clk_disable_unprep(f); 11188c2ecf20Sopenharmony_ci 11198c2ecf20Sopenharmony_cierr_put_ctrl: 11208c2ecf20Sopenharmony_ci spi_controller_put(ctlr); 11218c2ecf20Sopenharmony_ci 11228c2ecf20Sopenharmony_ci dev_err(dev, "NXP FSPI probe failed\n"); 11238c2ecf20Sopenharmony_ci return ret; 11248c2ecf20Sopenharmony_ci} 11258c2ecf20Sopenharmony_ci 11268c2ecf20Sopenharmony_cistatic int nxp_fspi_remove(struct platform_device *pdev) 11278c2ecf20Sopenharmony_ci{ 11288c2ecf20Sopenharmony_ci struct nxp_fspi *f = platform_get_drvdata(pdev); 11298c2ecf20Sopenharmony_ci 11308c2ecf20Sopenharmony_ci /* disable the hardware */ 11318c2ecf20Sopenharmony_ci fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); 11328c2ecf20Sopenharmony_ci 11338c2ecf20Sopenharmony_ci nxp_fspi_clk_disable_unprep(f); 11348c2ecf20Sopenharmony_ci 11358c2ecf20Sopenharmony_ci mutex_destroy(&f->lock); 11368c2ecf20Sopenharmony_ci 11378c2ecf20Sopenharmony_ci if (f->ahb_addr) 11388c2ecf20Sopenharmony_ci iounmap(f->ahb_addr); 11398c2ecf20Sopenharmony_ci 11408c2ecf20Sopenharmony_ci return 0; 11418c2ecf20Sopenharmony_ci} 11428c2ecf20Sopenharmony_ci 11438c2ecf20Sopenharmony_cistatic int nxp_fspi_suspend(struct device *dev) 11448c2ecf20Sopenharmony_ci{ 11458c2ecf20Sopenharmony_ci return 0; 11468c2ecf20Sopenharmony_ci} 11478c2ecf20Sopenharmony_ci 11488c2ecf20Sopenharmony_cistatic int nxp_fspi_resume(struct device *dev) 11498c2ecf20Sopenharmony_ci{ 11508c2ecf20Sopenharmony_ci struct nxp_fspi *f = dev_get_drvdata(dev); 11518c2ecf20Sopenharmony_ci 11528c2ecf20Sopenharmony_ci nxp_fspi_default_setup(f); 11538c2ecf20Sopenharmony_ci 11548c2ecf20Sopenharmony_ci return 0; 11558c2ecf20Sopenharmony_ci} 11568c2ecf20Sopenharmony_ci 11578c2ecf20Sopenharmony_cistatic const struct of_device_id nxp_fspi_dt_ids[] = { 11588c2ecf20Sopenharmony_ci { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, 11598c2ecf20Sopenharmony_ci { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, }, 11608c2ecf20Sopenharmony_ci { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, }, 11618c2ecf20Sopenharmony_ci { /* sentinel */ } 11628c2ecf20Sopenharmony_ci}; 11638c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); 11648c2ecf20Sopenharmony_ci 11658c2ecf20Sopenharmony_ci#ifdef CONFIG_ACPI 11668c2ecf20Sopenharmony_cistatic const struct acpi_device_id nxp_fspi_acpi_ids[] = { 11678c2ecf20Sopenharmony_ci { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, }, 11688c2ecf20Sopenharmony_ci {} 11698c2ecf20Sopenharmony_ci}; 11708c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids); 11718c2ecf20Sopenharmony_ci#endif 11728c2ecf20Sopenharmony_ci 11738c2ecf20Sopenharmony_cistatic const struct dev_pm_ops nxp_fspi_pm_ops = { 11748c2ecf20Sopenharmony_ci .suspend = nxp_fspi_suspend, 11758c2ecf20Sopenharmony_ci .resume = nxp_fspi_resume, 11768c2ecf20Sopenharmony_ci}; 11778c2ecf20Sopenharmony_ci 11788c2ecf20Sopenharmony_cistatic struct platform_driver nxp_fspi_driver = { 11798c2ecf20Sopenharmony_ci .driver = { 11808c2ecf20Sopenharmony_ci .name = "nxp-fspi", 11818c2ecf20Sopenharmony_ci .of_match_table = nxp_fspi_dt_ids, 11828c2ecf20Sopenharmony_ci .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids), 11838c2ecf20Sopenharmony_ci .pm = &nxp_fspi_pm_ops, 11848c2ecf20Sopenharmony_ci }, 11858c2ecf20Sopenharmony_ci .probe = nxp_fspi_probe, 11868c2ecf20Sopenharmony_ci .remove = nxp_fspi_remove, 11878c2ecf20Sopenharmony_ci}; 11888c2ecf20Sopenharmony_cimodule_platform_driver(nxp_fspi_driver); 11898c2ecf20Sopenharmony_ci 11908c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("NXP FSPI Controller Driver"); 11918c2ecf20Sopenharmony_ciMODULE_AUTHOR("NXP Semiconductor"); 11928c2ecf20Sopenharmony_ciMODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>"); 11938c2ecf20Sopenharmony_ciMODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>"); 11948c2ecf20Sopenharmony_ciMODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); 11958c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2"); 1196