xref: /kernel/linux/linux-5.10/drivers/spi/spi-mem.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8#include <linux/dmaengine.h>
9#include <linux/pm_runtime.h>
10#include <linux/spi/spi.h>
11#include <linux/spi/spi-mem.h>
12
13#include "internals.h"
14
15#define SPI_MEM_MAX_BUSWIDTH		8
16
17/**
18 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
19 *					  memory operation
20 * @ctlr: the SPI controller requesting this dma_map()
21 * @op: the memory operation containing the buffer to map
22 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
23 *	 function
24 *
25 * Some controllers might want to do DMA on the data buffer embedded in @op.
26 * This helper prepares everything for you and provides a ready-to-use
27 * sg_table. This function is not intended to be called from spi drivers.
28 * Only SPI controller drivers should use it.
29 * Note that the caller must ensure the memory region pointed by
30 * op->data.buf.{in,out} is DMA-able before calling this function.
31 *
32 * Return: 0 in case of success, a negative error code otherwise.
33 */
34int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
35				       const struct spi_mem_op *op,
36				       struct sg_table *sgt)
37{
38	struct device *dmadev;
39
40	if (!op->data.nbytes)
41		return -EINVAL;
42
43	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
44		dmadev = ctlr->dma_tx->device->dev;
45	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
46		dmadev = ctlr->dma_rx->device->dev;
47	else
48		dmadev = ctlr->dev.parent;
49
50	if (!dmadev)
51		return -EINVAL;
52
53	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
54			   op->data.dir == SPI_MEM_DATA_IN ?
55			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
56}
57EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
58
59/**
60 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
61 *					    memory operation
62 * @ctlr: the SPI controller requesting this dma_unmap()
63 * @op: the memory operation containing the buffer to unmap
64 * @sgt: a pointer to an sg_table previously initialized by
65 *	 spi_controller_dma_map_mem_op_data()
66 *
67 * Some controllers might want to do DMA on the data buffer embedded in @op.
68 * This helper prepares things so that the CPU can access the
69 * op->data.buf.{in,out} buffer again.
70 *
71 * This function is not intended to be called from SPI drivers. Only SPI
72 * controller drivers should use it.
73 *
74 * This function should be called after the DMA operation has finished and is
75 * only valid if the previous spi_controller_dma_map_mem_op_data() call
76 * returned 0.
77 *
78 * Return: 0 in case of success, a negative error code otherwise.
79 */
80void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
81					  const struct spi_mem_op *op,
82					  struct sg_table *sgt)
83{
84	struct device *dmadev;
85
86	if (!op->data.nbytes)
87		return;
88
89	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
90		dmadev = ctlr->dma_tx->device->dev;
91	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
92		dmadev = ctlr->dma_rx->device->dev;
93	else
94		dmadev = ctlr->dev.parent;
95
96	spi_unmap_buf(ctlr, dmadev, sgt,
97		      op->data.dir == SPI_MEM_DATA_IN ?
98		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
99}
100EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
101
102static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
103{
104	u32 mode = mem->spi->mode;
105
106	switch (buswidth) {
107	case 1:
108		return 0;
109
110	case 2:
111		if ((tx &&
112		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
113		    (!tx &&
114		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
115			return 0;
116
117		break;
118
119	case 4:
120		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
121		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
122			return 0;
123
124		break;
125
126	case 8:
127		if ((tx && (mode & SPI_TX_OCTAL)) ||
128		    (!tx && (mode & SPI_RX_OCTAL)))
129			return 0;
130
131		break;
132
133	default:
134		break;
135	}
136
137	return -ENOTSUPP;
138}
139
140bool spi_mem_default_supports_op(struct spi_mem *mem,
141				 const struct spi_mem_op *op)
142{
143	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
144		return false;
145
146	if (op->addr.nbytes &&
147	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
148		return false;
149
150	if (op->dummy.nbytes &&
151	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
152		return false;
153
154	if (op->data.dir != SPI_MEM_NO_DATA &&
155	    spi_check_buswidth_req(mem, op->data.buswidth,
156				   op->data.dir == SPI_MEM_DATA_OUT))
157		return false;
158
159	if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
160		return false;
161
162	if (op->cmd.nbytes != 1)
163		return false;
164
165	return true;
166}
167EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
168
169static bool spi_mem_buswidth_is_valid(u8 buswidth)
170{
171	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
172		return false;
173
174	return true;
175}
176
177static int spi_mem_check_op(const struct spi_mem_op *op)
178{
179	if (!op->cmd.buswidth || !op->cmd.nbytes)
180		return -EINVAL;
181
182	if ((op->addr.nbytes && !op->addr.buswidth) ||
183	    (op->dummy.nbytes && !op->dummy.buswidth) ||
184	    (op->data.nbytes && !op->data.buswidth))
185		return -EINVAL;
186
187	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
188	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
189	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
190	    !spi_mem_buswidth_is_valid(op->data.buswidth))
191		return -EINVAL;
192
193	return 0;
194}
195
196static bool spi_mem_internal_supports_op(struct spi_mem *mem,
197					 const struct spi_mem_op *op)
198{
199	struct spi_controller *ctlr = mem->spi->controller;
200
201	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
202		return ctlr->mem_ops->supports_op(mem, op);
203
204	return spi_mem_default_supports_op(mem, op);
205}
206
207/**
208 * spi_mem_supports_op() - Check if a memory device and the controller it is
209 *			   connected to support a specific memory operation
210 * @mem: the SPI memory
211 * @op: the memory operation to check
212 *
213 * Some controllers are only supporting Single or Dual IOs, others might only
214 * support specific opcodes, or it can even be that the controller and device
215 * both support Quad IOs but the hardware prevents you from using it because
216 * only 2 IO lines are connected.
217 *
218 * This function checks whether a specific operation is supported.
219 *
220 * Return: true if @op is supported, false otherwise.
221 */
222bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
223{
224	if (spi_mem_check_op(op))
225		return false;
226
227	return spi_mem_internal_supports_op(mem, op);
228}
229EXPORT_SYMBOL_GPL(spi_mem_supports_op);
230
231static int spi_mem_access_start(struct spi_mem *mem)
232{
233	struct spi_controller *ctlr = mem->spi->controller;
234
235	/*
236	 * Flush the message queue before executing our SPI memory
237	 * operation to prevent preemption of regular SPI transfers.
238	 */
239	spi_flush_queue(ctlr);
240
241	if (ctlr->auto_runtime_pm) {
242		int ret;
243
244		ret = pm_runtime_get_sync(ctlr->dev.parent);
245		if (ret < 0) {
246			pm_runtime_put_noidle(ctlr->dev.parent);
247			dev_err(&ctlr->dev, "Failed to power device: %d\n",
248				ret);
249			return ret;
250		}
251	}
252
253	mutex_lock(&ctlr->bus_lock_mutex);
254	mutex_lock(&ctlr->io_mutex);
255
256	return 0;
257}
258
259static void spi_mem_access_end(struct spi_mem *mem)
260{
261	struct spi_controller *ctlr = mem->spi->controller;
262
263	mutex_unlock(&ctlr->io_mutex);
264	mutex_unlock(&ctlr->bus_lock_mutex);
265
266	if (ctlr->auto_runtime_pm)
267		pm_runtime_put(ctlr->dev.parent);
268}
269
270/**
271 * spi_mem_exec_op() - Execute a memory operation
272 * @mem: the SPI memory
273 * @op: the memory operation to execute
274 *
275 * Executes a memory operation.
276 *
277 * This function first checks that @op is supported and then tries to execute
278 * it.
279 *
280 * Return: 0 in case of success, a negative error code otherwise.
281 */
282int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
283{
284	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
285	struct spi_controller *ctlr = mem->spi->controller;
286	struct spi_transfer xfers[4] = { };
287	struct spi_message msg;
288	u8 *tmpbuf;
289	int ret;
290
291	ret = spi_mem_check_op(op);
292	if (ret)
293		return ret;
294
295	if (!spi_mem_internal_supports_op(mem, op))
296		return -ENOTSUPP;
297
298	if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
299		ret = spi_mem_access_start(mem);
300		if (ret)
301			return ret;
302
303		ret = ctlr->mem_ops->exec_op(mem, op);
304
305		spi_mem_access_end(mem);
306
307		/*
308		 * Some controllers only optimize specific paths (typically the
309		 * read path) and expect the core to use the regular SPI
310		 * interface in other cases.
311		 */
312		if (!ret || ret != -ENOTSUPP)
313			return ret;
314	}
315
316	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
317
318	/*
319	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
320	 * we're guaranteed that this buffer is DMA-able, as required by the
321	 * SPI layer.
322	 */
323	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
324	if (!tmpbuf)
325		return -ENOMEM;
326
327	spi_message_init(&msg);
328
329	tmpbuf[0] = op->cmd.opcode;
330	xfers[xferpos].tx_buf = tmpbuf;
331	xfers[xferpos].len = op->cmd.nbytes;
332	xfers[xferpos].tx_nbits = op->cmd.buswidth;
333	spi_message_add_tail(&xfers[xferpos], &msg);
334	xferpos++;
335	totalxferlen++;
336
337	if (op->addr.nbytes) {
338		int i;
339
340		for (i = 0; i < op->addr.nbytes; i++)
341			tmpbuf[i + 1] = op->addr.val >>
342					(8 * (op->addr.nbytes - i - 1));
343
344		xfers[xferpos].tx_buf = tmpbuf + 1;
345		xfers[xferpos].len = op->addr.nbytes;
346		xfers[xferpos].tx_nbits = op->addr.buswidth;
347		spi_message_add_tail(&xfers[xferpos], &msg);
348		xferpos++;
349		totalxferlen += op->addr.nbytes;
350	}
351
352	if (op->dummy.nbytes) {
353		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
354		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
355		xfers[xferpos].len = op->dummy.nbytes;
356		xfers[xferpos].tx_nbits = op->dummy.buswidth;
357		spi_message_add_tail(&xfers[xferpos], &msg);
358		xferpos++;
359		totalxferlen += op->dummy.nbytes;
360	}
361
362	if (op->data.nbytes) {
363		if (op->data.dir == SPI_MEM_DATA_IN) {
364			xfers[xferpos].rx_buf = op->data.buf.in;
365			xfers[xferpos].rx_nbits = op->data.buswidth;
366		} else {
367			xfers[xferpos].tx_buf = op->data.buf.out;
368			xfers[xferpos].tx_nbits = op->data.buswidth;
369		}
370
371		xfers[xferpos].len = op->data.nbytes;
372		spi_message_add_tail(&xfers[xferpos], &msg);
373		xferpos++;
374		totalxferlen += op->data.nbytes;
375	}
376
377	ret = spi_sync(mem->spi, &msg);
378
379	kfree(tmpbuf);
380
381	if (ret)
382		return ret;
383
384	if (msg.actual_length != totalxferlen)
385		return -EIO;
386
387	return 0;
388}
389EXPORT_SYMBOL_GPL(spi_mem_exec_op);
390
391/**
392 * spi_mem_get_name() - Return the SPI mem device name to be used by the
393 *			upper layer if necessary
394 * @mem: the SPI memory
395 *
396 * This function allows SPI mem users to retrieve the SPI mem device name.
397 * It is useful if the upper layer needs to expose a custom name for
398 * compatibility reasons.
399 *
400 * Return: a string containing the name of the memory device to be used
401 *	   by the SPI mem user
402 */
403const char *spi_mem_get_name(struct spi_mem *mem)
404{
405	return mem->name;
406}
407EXPORT_SYMBOL_GPL(spi_mem_get_name);
408
409/**
410 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
411 *			      match controller limitations
412 * @mem: the SPI memory
413 * @op: the operation to adjust
414 *
415 * Some controllers have FIFO limitations and must split a data transfer
416 * operation into multiple ones, others require a specific alignment for
417 * optimized accesses. This function allows SPI mem drivers to split a single
418 * operation into multiple sub-operations when required.
419 *
420 * Return: a negative error code if the controller can't properly adjust @op,
421 *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
422 *	   can't be handled in a single step.
423 */
424int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
425{
426	struct spi_controller *ctlr = mem->spi->controller;
427	size_t len;
428
429	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
430		return ctlr->mem_ops->adjust_op_size(mem, op);
431
432	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
433		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
434
435		if (len > spi_max_transfer_size(mem->spi))
436			return -EINVAL;
437
438		op->data.nbytes = min3((size_t)op->data.nbytes,
439				       spi_max_transfer_size(mem->spi),
440				       spi_max_message_size(mem->spi) -
441				       len);
442		if (!op->data.nbytes)
443			return -EINVAL;
444	}
445
446	return 0;
447}
448EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
449
450static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
451				      u64 offs, size_t len, void *buf)
452{
453	struct spi_mem_op op = desc->info.op_tmpl;
454	int ret;
455
456	op.addr.val = desc->info.offset + offs;
457	op.data.buf.in = buf;
458	op.data.nbytes = len;
459	ret = spi_mem_adjust_op_size(desc->mem, &op);
460	if (ret)
461		return ret;
462
463	ret = spi_mem_exec_op(desc->mem, &op);
464	if (ret)
465		return ret;
466
467	return op.data.nbytes;
468}
469
470static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
471				       u64 offs, size_t len, const void *buf)
472{
473	struct spi_mem_op op = desc->info.op_tmpl;
474	int ret;
475
476	op.addr.val = desc->info.offset + offs;
477	op.data.buf.out = buf;
478	op.data.nbytes = len;
479	ret = spi_mem_adjust_op_size(desc->mem, &op);
480	if (ret)
481		return ret;
482
483	ret = spi_mem_exec_op(desc->mem, &op);
484	if (ret)
485		return ret;
486
487	return op.data.nbytes;
488}
489
490/**
491 * spi_mem_dirmap_create() - Create a direct mapping descriptor
492 * @mem: SPI mem device this direct mapping should be created for
493 * @info: direct mapping information
494 *
495 * This function is creating a direct mapping descriptor which can then be used
496 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
497 * If the SPI controller driver does not support direct mapping, this function
498 * falls back to an implementation using spi_mem_exec_op(), so that the caller
499 * doesn't have to bother implementing a fallback on his own.
500 *
501 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
502 */
503struct spi_mem_dirmap_desc *
504spi_mem_dirmap_create(struct spi_mem *mem,
505		      const struct spi_mem_dirmap_info *info)
506{
507	struct spi_controller *ctlr = mem->spi->controller;
508	struct spi_mem_dirmap_desc *desc;
509	int ret = -ENOTSUPP;
510
511	/* Make sure the number of address cycles is between 1 and 8 bytes. */
512	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
513		return ERR_PTR(-EINVAL);
514
515	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
516	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
517		return ERR_PTR(-EINVAL);
518
519	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
520	if (!desc)
521		return ERR_PTR(-ENOMEM);
522
523	desc->mem = mem;
524	desc->info = *info;
525	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
526		ret = ctlr->mem_ops->dirmap_create(desc);
527
528	if (ret) {
529		desc->nodirmap = true;
530		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
531			ret = -ENOTSUPP;
532		else
533			ret = 0;
534	}
535
536	if (ret) {
537		kfree(desc);
538		return ERR_PTR(ret);
539	}
540
541	return desc;
542}
543EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
544
545/**
546 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
547 * @desc: the direct mapping descriptor to destroy
548 *
549 * This function destroys a direct mapping descriptor previously created by
550 * spi_mem_dirmap_create().
551 */
552void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
553{
554	struct spi_controller *ctlr = desc->mem->spi->controller;
555
556	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
557		ctlr->mem_ops->dirmap_destroy(desc);
558
559	kfree(desc);
560}
561EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
562
563static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
564{
565	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
566
567	spi_mem_dirmap_destroy(desc);
568}
569
570/**
571 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
572 *				  it to a device
573 * @dev: device the dirmap desc will be attached to
574 * @mem: SPI mem device this direct mapping should be created for
575 * @info: direct mapping information
576 *
577 * devm_ variant of the spi_mem_dirmap_create() function. See
578 * spi_mem_dirmap_create() for more details.
579 *
580 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
581 */
582struct spi_mem_dirmap_desc *
583devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
584			   const struct spi_mem_dirmap_info *info)
585{
586	struct spi_mem_dirmap_desc **ptr, *desc;
587
588	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
589			   GFP_KERNEL);
590	if (!ptr)
591		return ERR_PTR(-ENOMEM);
592
593	desc = spi_mem_dirmap_create(mem, info);
594	if (IS_ERR(desc)) {
595		devres_free(ptr);
596	} else {
597		*ptr = desc;
598		devres_add(dev, ptr);
599	}
600
601	return desc;
602}
603EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
604
605static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
606{
607        struct spi_mem_dirmap_desc **ptr = res;
608
609        if (WARN_ON(!ptr || !*ptr))
610                return 0;
611
612	return *ptr == data;
613}
614
615/**
616 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
617 *				   to a device
618 * @dev: device the dirmap desc is attached to
619 * @desc: the direct mapping descriptor to destroy
620 *
621 * devm_ variant of the spi_mem_dirmap_destroy() function. See
622 * spi_mem_dirmap_destroy() for more details.
623 */
624void devm_spi_mem_dirmap_destroy(struct device *dev,
625				 struct spi_mem_dirmap_desc *desc)
626{
627	devres_release(dev, devm_spi_mem_dirmap_release,
628		       devm_spi_mem_dirmap_match, desc);
629}
630EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
631
632/**
633 * spi_mem_dirmap_read() - Read data through a direct mapping
634 * @desc: direct mapping descriptor
635 * @offs: offset to start reading from. Note that this is not an absolute
636 *	  offset, but the offset within the direct mapping which already has
637 *	  its own offset
638 * @len: length in bytes
639 * @buf: destination buffer. This buffer must be DMA-able
640 *
641 * This function reads data from a memory device using a direct mapping
642 * previously instantiated with spi_mem_dirmap_create().
643 *
644 * Return: the amount of data read from the memory device or a negative error
645 * code. Note that the returned size might be smaller than @len, and the caller
646 * is responsible for calling spi_mem_dirmap_read() again when that happens.
647 */
648ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
649			    u64 offs, size_t len, void *buf)
650{
651	struct spi_controller *ctlr = desc->mem->spi->controller;
652	ssize_t ret;
653
654	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
655		return -EINVAL;
656
657	if (!len)
658		return 0;
659
660	if (desc->nodirmap) {
661		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
662	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
663		ret = spi_mem_access_start(desc->mem);
664		if (ret)
665			return ret;
666
667		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
668
669		spi_mem_access_end(desc->mem);
670	} else {
671		ret = -ENOTSUPP;
672	}
673
674	return ret;
675}
676EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
677
678/**
679 * spi_mem_dirmap_write() - Write data through a direct mapping
680 * @desc: direct mapping descriptor
681 * @offs: offset to start writing from. Note that this is not an absolute
682 *	  offset, but the offset within the direct mapping which already has
683 *	  its own offset
684 * @len: length in bytes
685 * @buf: source buffer. This buffer must be DMA-able
686 *
687 * This function writes data to a memory device using a direct mapping
688 * previously instantiated with spi_mem_dirmap_create().
689 *
690 * Return: the amount of data written to the memory device or a negative error
691 * code. Note that the returned size might be smaller than @len, and the caller
692 * is responsible for calling spi_mem_dirmap_write() again when that happens.
693 */
694ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
695			     u64 offs, size_t len, const void *buf)
696{
697	struct spi_controller *ctlr = desc->mem->spi->controller;
698	ssize_t ret;
699
700	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
701		return -EINVAL;
702
703	if (!len)
704		return 0;
705
706	if (desc->nodirmap) {
707		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
708	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
709		ret = spi_mem_access_start(desc->mem);
710		if (ret)
711			return ret;
712
713		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
714
715		spi_mem_access_end(desc->mem);
716	} else {
717		ret = -ENOTSUPP;
718	}
719
720	return ret;
721}
722EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
723
724static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
725{
726	return container_of(drv, struct spi_mem_driver, spidrv.driver);
727}
728
729static int spi_mem_probe(struct spi_device *spi)
730{
731	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
732	struct spi_controller *ctlr = spi->controller;
733	struct spi_mem *mem;
734
735	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
736	if (!mem)
737		return -ENOMEM;
738
739	mem->spi = spi;
740
741	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
742		mem->name = ctlr->mem_ops->get_name(mem);
743	else
744		mem->name = dev_name(&spi->dev);
745
746	if (IS_ERR_OR_NULL(mem->name))
747		return PTR_ERR(mem->name);
748
749	spi_set_drvdata(spi, mem);
750
751	return memdrv->probe(mem);
752}
753
754static int spi_mem_remove(struct spi_device *spi)
755{
756	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
757	struct spi_mem *mem = spi_get_drvdata(spi);
758
759	if (memdrv->remove)
760		return memdrv->remove(mem);
761
762	return 0;
763}
764
765static void spi_mem_shutdown(struct spi_device *spi)
766{
767	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
768	struct spi_mem *mem = spi_get_drvdata(spi);
769
770	if (memdrv->shutdown)
771		memdrv->shutdown(mem);
772}
773
774/**
775 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
776 * @memdrv: the SPI memory driver to register
777 * @owner: the owner of this driver
778 *
779 * Registers a SPI memory driver.
780 *
781 * Return: 0 in case of success, a negative error core otherwise.
782 */
783
784int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
785				       struct module *owner)
786{
787	memdrv->spidrv.probe = spi_mem_probe;
788	memdrv->spidrv.remove = spi_mem_remove;
789	memdrv->spidrv.shutdown = spi_mem_shutdown;
790
791	return __spi_register_driver(owner, &memdrv->spidrv);
792}
793EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
794
795/**
796 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
797 * @memdrv: the SPI memory driver to unregister
798 *
799 * Unregisters a SPI memory driver.
800 */
801void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
802{
803	spi_unregister_driver(&memdrv->spidrv);
804}
805EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
806