1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
4 * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
5 */
6
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/of_device.h>
10#include <linux/clk.h>
11#include <linux/io.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/sched.h>
15#include <linux/completion.h>
16#include <linux/spinlock.h>
17#include <linux/err.h>
18#include <linux/pm_runtime.h>
19#include <linux/spi/spi.h>
20
21#ifdef CONFIG_LANTIQ
22#include <lantiq_soc.h>
23#endif
24
25#define LTQ_SPI_RX_IRQ_NAME	"spi_rx"
26#define LTQ_SPI_TX_IRQ_NAME	"spi_tx"
27#define LTQ_SPI_ERR_IRQ_NAME	"spi_err"
28#define LTQ_SPI_FRM_IRQ_NAME	"spi_frm"
29
30#define LTQ_SPI_CLC		0x00
31#define LTQ_SPI_PISEL		0x04
32#define LTQ_SPI_ID		0x08
33#define LTQ_SPI_CON		0x10
34#define LTQ_SPI_STAT		0x14
35#define LTQ_SPI_WHBSTATE	0x18
36#define LTQ_SPI_TB		0x20
37#define LTQ_SPI_RB		0x24
38#define LTQ_SPI_RXFCON		0x30
39#define LTQ_SPI_TXFCON		0x34
40#define LTQ_SPI_FSTAT		0x38
41#define LTQ_SPI_BRT		0x40
42#define LTQ_SPI_BRSTAT		0x44
43#define LTQ_SPI_SFCON		0x60
44#define LTQ_SPI_SFSTAT		0x64
45#define LTQ_SPI_GPOCON		0x70
46#define LTQ_SPI_GPOSTAT		0x74
47#define LTQ_SPI_FPGO		0x78
48#define LTQ_SPI_RXREQ		0x80
49#define LTQ_SPI_RXCNT		0x84
50#define LTQ_SPI_DMACON		0xec
51#define LTQ_SPI_IRNEN		0xf4
52
53#define LTQ_SPI_CLC_SMC_S	16	/* Clock divider for sleep mode */
54#define LTQ_SPI_CLC_SMC_M	(0xFF << LTQ_SPI_CLC_SMC_S)
55#define LTQ_SPI_CLC_RMC_S	8	/* Clock divider for normal run mode */
56#define LTQ_SPI_CLC_RMC_M	(0xFF << LTQ_SPI_CLC_RMC_S)
57#define LTQ_SPI_CLC_DISS	BIT(1)	/* Disable status bit */
58#define LTQ_SPI_CLC_DISR	BIT(0)	/* Disable request bit */
59
60#define LTQ_SPI_ID_TXFS_S	24	/* Implemented TX FIFO size */
61#define LTQ_SPI_ID_RXFS_S	16	/* Implemented RX FIFO size */
62#define LTQ_SPI_ID_MOD_S	8	/* Module ID */
63#define LTQ_SPI_ID_MOD_M	(0xff << LTQ_SPI_ID_MOD_S)
64#define LTQ_SPI_ID_CFG_S	5	/* DMA interface support */
65#define LTQ_SPI_ID_CFG_M	(1 << LTQ_SPI_ID_CFG_S)
66#define LTQ_SPI_ID_REV_M	0x1F	/* Hardware revision number */
67
68#define LTQ_SPI_CON_BM_S	16	/* Data width selection */
69#define LTQ_SPI_CON_BM_M	(0x1F << LTQ_SPI_CON_BM_S)
70#define LTQ_SPI_CON_EM		BIT(24)	/* Echo mode */
71#define LTQ_SPI_CON_IDLE	BIT(23)	/* Idle bit value */
72#define LTQ_SPI_CON_ENBV	BIT(22)	/* Enable byte valid control */
73#define LTQ_SPI_CON_RUEN	BIT(12)	/* Receive underflow error enable */
74#define LTQ_SPI_CON_TUEN	BIT(11)	/* Transmit underflow error enable */
75#define LTQ_SPI_CON_AEN		BIT(10)	/* Abort error enable */
76#define LTQ_SPI_CON_REN		BIT(9)	/* Receive overflow error enable */
77#define LTQ_SPI_CON_TEN		BIT(8)	/* Transmit overflow error enable */
78#define LTQ_SPI_CON_LB		BIT(7)	/* Loopback control */
79#define LTQ_SPI_CON_PO		BIT(6)	/* Clock polarity control */
80#define LTQ_SPI_CON_PH		BIT(5)	/* Clock phase control */
81#define LTQ_SPI_CON_HB		BIT(4)	/* Heading control */
82#define LTQ_SPI_CON_RXOFF	BIT(1)	/* Switch receiver off */
83#define LTQ_SPI_CON_TXOFF	BIT(0)	/* Switch transmitter off */
84
85#define LTQ_SPI_STAT_RXBV_S	28
86#define LTQ_SPI_STAT_RXBV_M	(0x7 << LTQ_SPI_STAT_RXBV_S)
87#define LTQ_SPI_STAT_BSY	BIT(13)	/* Busy flag */
88#define LTQ_SPI_STAT_RUE	BIT(12)	/* Receive underflow error flag */
89#define LTQ_SPI_STAT_TUE	BIT(11)	/* Transmit underflow error flag */
90#define LTQ_SPI_STAT_AE		BIT(10)	/* Abort error flag */
91#define LTQ_SPI_STAT_RE		BIT(9)	/* Receive error flag */
92#define LTQ_SPI_STAT_TE		BIT(8)	/* Transmit error flag */
93#define LTQ_SPI_STAT_ME		BIT(7)	/* Mode error flag */
94#define LTQ_SPI_STAT_MS		BIT(1)	/* Master/slave select bit */
95#define LTQ_SPI_STAT_EN		BIT(0)	/* Enable bit */
96#define LTQ_SPI_STAT_ERRORS	(LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
97				 LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
98				 LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)
99
100#define LTQ_SPI_WHBSTATE_SETTUE	BIT(15)	/* Set transmit underflow error flag */
101#define LTQ_SPI_WHBSTATE_SETAE	BIT(14)	/* Set abort error flag */
102#define LTQ_SPI_WHBSTATE_SETRE	BIT(13)	/* Set receive error flag */
103#define LTQ_SPI_WHBSTATE_SETTE	BIT(12)	/* Set transmit error flag */
104#define LTQ_SPI_WHBSTATE_CLRTUE	BIT(11)	/* Clear transmit underflow error flag */
105#define LTQ_SPI_WHBSTATE_CLRAE	BIT(10)	/* Clear abort error flag */
106#define LTQ_SPI_WHBSTATE_CLRRE	BIT(9)	/* Clear receive error flag */
107#define LTQ_SPI_WHBSTATE_CLRTE	BIT(8)	/* Clear transmit error flag */
108#define LTQ_SPI_WHBSTATE_SETME	BIT(7)	/* Set mode error flag */
109#define LTQ_SPI_WHBSTATE_CLRME	BIT(6)	/* Clear mode error flag */
110#define LTQ_SPI_WHBSTATE_SETRUE	BIT(5)	/* Set receive underflow error flag */
111#define LTQ_SPI_WHBSTATE_CLRRUE	BIT(4)	/* Clear receive underflow error flag */
112#define LTQ_SPI_WHBSTATE_SETMS	BIT(3)	/* Set master select bit */
113#define LTQ_SPI_WHBSTATE_CLRMS	BIT(2)	/* Clear master select bit */
114#define LTQ_SPI_WHBSTATE_SETEN	BIT(1)	/* Set enable bit (operational mode) */
115#define LTQ_SPI_WHBSTATE_CLREN	BIT(0)	/* Clear enable bit (config mode */
116#define LTQ_SPI_WHBSTATE_CLR_ERRORS	(LTQ_SPI_WHBSTATE_CLRRUE | \
117					 LTQ_SPI_WHBSTATE_CLRME | \
118					 LTQ_SPI_WHBSTATE_CLRTE | \
119					 LTQ_SPI_WHBSTATE_CLRRE | \
120					 LTQ_SPI_WHBSTATE_CLRAE | \
121					 LTQ_SPI_WHBSTATE_CLRTUE)
122
123#define LTQ_SPI_RXFCON_RXFITL_S	8	/* FIFO interrupt trigger level */
124#define LTQ_SPI_RXFCON_RXFLU	BIT(1)	/* FIFO flush */
125#define LTQ_SPI_RXFCON_RXFEN	BIT(0)	/* FIFO enable */
126
127#define LTQ_SPI_TXFCON_TXFITL_S	8	/* FIFO interrupt trigger level */
128#define LTQ_SPI_TXFCON_TXFLU	BIT(1)	/* FIFO flush */
129#define LTQ_SPI_TXFCON_TXFEN	BIT(0)	/* FIFO enable */
130
131#define LTQ_SPI_FSTAT_RXFFL_S	0
132#define LTQ_SPI_FSTAT_TXFFL_S	8
133
134#define LTQ_SPI_GPOCON_ISCSBN_S	8
135#define LTQ_SPI_GPOCON_INVOUTN_S	0
136
137#define LTQ_SPI_FGPO_SETOUTN_S	8
138#define LTQ_SPI_FGPO_CLROUTN_S	0
139
140#define LTQ_SPI_RXREQ_RXCNT_M	0xFFFF	/* Receive count value */
141#define LTQ_SPI_RXCNT_TODO_M	0xFFFF	/* Recevie to-do value */
142
143#define LTQ_SPI_IRNEN_TFI	BIT(4)	/* TX finished interrupt */
144#define LTQ_SPI_IRNEN_F		BIT(3)	/* Frame end interrupt request */
145#define LTQ_SPI_IRNEN_E		BIT(2)	/* Error end interrupt request */
146#define LTQ_SPI_IRNEN_T_XWAY	BIT(1)	/* Transmit end interrupt request */
147#define LTQ_SPI_IRNEN_R_XWAY	BIT(0)	/* Receive end interrupt request */
148#define LTQ_SPI_IRNEN_R_XRX	BIT(1)	/* Transmit end interrupt request */
149#define LTQ_SPI_IRNEN_T_XRX	BIT(0)	/* Receive end interrupt request */
150#define LTQ_SPI_IRNEN_ALL	0x1F
151
152struct lantiq_ssc_spi;
153
154struct lantiq_ssc_hwcfg {
155	int (*cfg_irq)(struct platform_device *pdev, struct lantiq_ssc_spi *spi);
156	unsigned int	irnen_r;
157	unsigned int	irnen_t;
158	unsigned int	irncr;
159	unsigned int	irnicr;
160	bool		irq_ack;
161	u32		fifo_size_mask;
162};
163
164struct lantiq_ssc_spi {
165	struct spi_master		*master;
166	struct device			*dev;
167	void __iomem			*regbase;
168	struct clk			*spi_clk;
169	struct clk			*fpi_clk;
170	const struct lantiq_ssc_hwcfg	*hwcfg;
171
172	spinlock_t			lock;
173	struct workqueue_struct		*wq;
174	struct work_struct		work;
175
176	const u8			*tx;
177	u8				*rx;
178	unsigned int			tx_todo;
179	unsigned int			rx_todo;
180	unsigned int			bits_per_word;
181	unsigned int			speed_hz;
182	unsigned int			tx_fifo_size;
183	unsigned int			rx_fifo_size;
184	unsigned int			base_cs;
185	unsigned int			fdx_tx_level;
186};
187
188static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
189{
190	return __raw_readl(spi->regbase + reg);
191}
192
193static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
194			      u32 reg)
195{
196	__raw_writel(val, spi->regbase + reg);
197}
198
199static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
200			     u32 set, u32 reg)
201{
202	u32 val = __raw_readl(spi->regbase + reg);
203
204	val &= ~clr;
205	val |= set;
206	__raw_writel(val, spi->regbase + reg);
207}
208
209static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
210{
211	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
212	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
213
214	return (fstat >> LTQ_SPI_FSTAT_TXFFL_S) & hwcfg->fifo_size_mask;
215}
216
217static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
218{
219	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
220	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
221
222	return (fstat >> LTQ_SPI_FSTAT_RXFFL_S) & hwcfg->fifo_size_mask;
223}
224
225static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
226{
227	return spi->tx_fifo_size - tx_fifo_level(spi);
228}
229
230static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
231{
232	u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;
233
234	val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
235	lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
236}
237
238static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
239{
240	u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;
241
242	val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
243	lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
244}
245
246static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
247{
248	lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
249}
250
251static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
252{
253	lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
254}
255
256static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
257{
258	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
259}
260
261static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
262{
263	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
264}
265
266static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
267			      unsigned int max_speed_hz)
268{
269	u32 spi_clk, brt;
270
271	/*
272	 * SPI module clock is derived from FPI bus clock dependent on
273	 * divider value in CLC.RMS which is always set to 1.
274	 *
275	 *                 f_SPI
276	 * baudrate = --------------
277	 *             2 * (BR + 1)
278	 */
279	spi_clk = clk_get_rate(spi->fpi_clk) / 2;
280
281	if (max_speed_hz > spi_clk)
282		brt = 0;
283	else
284		brt = spi_clk / max_speed_hz - 1;
285
286	if (brt > 0xFFFF)
287		brt = 0xFFFF;
288
289	dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
290		spi_clk, max_speed_hz, brt);
291
292	lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
293}
294
295static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
296				   unsigned int bits_per_word)
297{
298	u32 bm;
299
300	/* CON.BM value = bits_per_word - 1 */
301	bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;
302
303	lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
304}
305
306static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
307				unsigned int mode)
308{
309	u32 con_set = 0, con_clr = 0;
310
311	/*
312	 * SPI mode mapping in CON register:
313	 * Mode CPOL CPHA CON.PO CON.PH
314	 *  0    0    0      0      1
315	 *  1    0    1      0      0
316	 *  2    1    0      1      1
317	 *  3    1    1      1      0
318	 */
319	if (mode & SPI_CPHA)
320		con_clr |= LTQ_SPI_CON_PH;
321	else
322		con_set |= LTQ_SPI_CON_PH;
323
324	if (mode & SPI_CPOL)
325		con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
326	else
327		con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
328
329	/* Set heading control */
330	if (mode & SPI_LSB_FIRST)
331		con_clr |= LTQ_SPI_CON_HB;
332	else
333		con_set |= LTQ_SPI_CON_HB;
334
335	/* Set loopback mode */
336	if (mode & SPI_LOOP)
337		con_set |= LTQ_SPI_CON_LB;
338	else
339		con_clr |= LTQ_SPI_CON_LB;
340
341	lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
342}
343
344static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
345{
346	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
347
348	/*
349	 * Set clock divider for run mode to 1 to
350	 * run at same frequency as FPI bus
351	 */
352	lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);
353
354	/* Put controller into config mode */
355	hw_enter_config_mode(spi);
356
357	/* Clear error flags */
358	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
359
360	/* Enable error checking, disable TX/RX */
361	lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
362		LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
363		LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);
364
365	/* Setup default SPI mode */
366	hw_setup_bits_per_word(spi, spi->bits_per_word);
367	hw_setup_clock_mode(spi, SPI_MODE_0);
368
369	/* Enable master mode and clear error flags */
370	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
371			       LTQ_SPI_WHBSTATE_CLR_ERRORS,
372			       LTQ_SPI_WHBSTATE);
373
374	/* Reset GPIO/CS registers */
375	lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
376	lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);
377
378	/* Enable and flush FIFOs */
379	rx_fifo_reset(spi);
380	tx_fifo_reset(spi);
381
382	/* Enable interrupts */
383	lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
384			  LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
385}
386
387static int lantiq_ssc_setup(struct spi_device *spidev)
388{
389	struct spi_master *master = spidev->master;
390	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
391	unsigned int cs = spidev->chip_select;
392	u32 gpocon;
393
394	/* GPIOs are used for CS */
395	if (spidev->cs_gpiod)
396		return 0;
397
398	dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
399
400	if (cs < spi->base_cs) {
401		dev_err(spi->dev,
402			"chipselect %i too small (min %i)\n", cs, spi->base_cs);
403		return -EINVAL;
404	}
405
406	/* set GPO pin to CS mode */
407	gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);
408
409	/* invert GPO pin */
410	if (spidev->mode & SPI_CS_HIGH)
411		gpocon |= 1 << (cs - spi->base_cs);
412
413	lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);
414
415	return 0;
416}
417
418static int lantiq_ssc_prepare_message(struct spi_master *master,
419				      struct spi_message *message)
420{
421	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
422
423	hw_enter_config_mode(spi);
424	hw_setup_clock_mode(spi, message->spi->mode);
425	hw_enter_active_mode(spi);
426
427	return 0;
428}
429
430static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
431			      struct spi_device *spidev, struct spi_transfer *t)
432{
433	unsigned int speed_hz = t->speed_hz;
434	unsigned int bits_per_word = t->bits_per_word;
435	u32 con;
436
437	if (bits_per_word != spi->bits_per_word ||
438		speed_hz != spi->speed_hz) {
439		hw_enter_config_mode(spi);
440		hw_setup_speed_hz(spi, speed_hz);
441		hw_setup_bits_per_word(spi, bits_per_word);
442		hw_enter_active_mode(spi);
443
444		spi->speed_hz = speed_hz;
445		spi->bits_per_word = bits_per_word;
446	}
447
448	/* Configure transmitter and receiver */
449	con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
450	if (t->tx_buf)
451		con &= ~LTQ_SPI_CON_TXOFF;
452	else
453		con |= LTQ_SPI_CON_TXOFF;
454
455	if (t->rx_buf)
456		con &= ~LTQ_SPI_CON_RXOFF;
457	else
458		con |= LTQ_SPI_CON_RXOFF;
459
460	lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
461}
462
463static int lantiq_ssc_unprepare_message(struct spi_master *master,
464					struct spi_message *message)
465{
466	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
467
468	flush_workqueue(spi->wq);
469
470	/* Disable transmitter and receiver while idle */
471	lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
472			 LTQ_SPI_CON);
473
474	return 0;
475}
476
477static void tx_fifo_write(struct lantiq_ssc_spi *spi)
478{
479	const u8 *tx8;
480	const u16 *tx16;
481	const u32 *tx32;
482	u32 data;
483	unsigned int tx_free = tx_fifo_free(spi);
484
485	spi->fdx_tx_level = 0;
486	while (spi->tx_todo && tx_free) {
487		switch (spi->bits_per_word) {
488		case 2 ... 8:
489			tx8 = spi->tx;
490			data = *tx8;
491			spi->tx_todo--;
492			spi->tx++;
493			break;
494		case 16:
495			tx16 = (u16 *) spi->tx;
496			data = *tx16;
497			spi->tx_todo -= 2;
498			spi->tx += 2;
499			break;
500		case 32:
501			tx32 = (u32 *) spi->tx;
502			data = *tx32;
503			spi->tx_todo -= 4;
504			spi->tx += 4;
505			break;
506		default:
507			WARN_ON(1);
508			data = 0;
509			break;
510		}
511
512		lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
513		tx_free--;
514		spi->fdx_tx_level++;
515	}
516}
517
518static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
519{
520	u8 *rx8;
521	u16 *rx16;
522	u32 *rx32;
523	u32 data;
524	unsigned int rx_fill = rx_fifo_level(spi);
525
526	/*
527	 * Wait until all expected data to be shifted in.
528	 * Otherwise, rx overrun may occur.
529	 */
530	while (rx_fill != spi->fdx_tx_level)
531		rx_fill = rx_fifo_level(spi);
532
533	while (rx_fill) {
534		data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
535
536		switch (spi->bits_per_word) {
537		case 2 ... 8:
538			rx8 = spi->rx;
539			*rx8 = data;
540			spi->rx_todo--;
541			spi->rx++;
542			break;
543		case 16:
544			rx16 = (u16 *) spi->rx;
545			*rx16 = data;
546			spi->rx_todo -= 2;
547			spi->rx += 2;
548			break;
549		case 32:
550			rx32 = (u32 *) spi->rx;
551			*rx32 = data;
552			spi->rx_todo -= 4;
553			spi->rx += 4;
554			break;
555		default:
556			WARN_ON(1);
557			break;
558		}
559
560		rx_fill--;
561	}
562}
563
564static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
565{
566	u32 data, *rx32;
567	u8 *rx8;
568	unsigned int rxbv, shift;
569	unsigned int rx_fill = rx_fifo_level(spi);
570
571	/*
572	 * In RX-only mode the bits per word value is ignored by HW. A value
573	 * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
574	 * If remaining RX bytes are less than 4, the FIFO must be read
575	 * differently. The amount of received and valid bytes is indicated
576	 * by STAT.RXBV register value.
577	 */
578	while (rx_fill) {
579		if (spi->rx_todo < 4)  {
580			rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
581				LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
582			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
583
584			shift = (rxbv - 1) * 8;
585			rx8 = spi->rx;
586
587			while (rxbv) {
588				*rx8++ = (data >> shift) & 0xFF;
589				rxbv--;
590				shift -= 8;
591				spi->rx_todo--;
592				spi->rx++;
593			}
594		} else {
595			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
596			rx32 = (u32 *) spi->rx;
597
598			*rx32++ = data;
599			spi->rx_todo -= 4;
600			spi->rx += 4;
601		}
602		rx_fill--;
603	}
604}
605
606static void rx_request(struct lantiq_ssc_spi *spi)
607{
608	unsigned int rxreq, rxreq_max;
609
610	/*
611	 * To avoid receive overflows at high clocks it is better to request
612	 * only the amount of bytes that fits into all FIFOs. This value
613	 * depends on the FIFO size implemented in hardware.
614	 */
615	rxreq = spi->rx_todo;
616	rxreq_max = spi->rx_fifo_size * 4;
617	if (rxreq > rxreq_max)
618		rxreq = rxreq_max;
619
620	lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
621}
622
623static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
624{
625	struct lantiq_ssc_spi *spi = data;
626	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
627	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
628
629	spin_lock(&spi->lock);
630	if (hwcfg->irq_ack)
631		lantiq_ssc_writel(spi, val, hwcfg->irncr);
632
633	if (spi->tx) {
634		if (spi->rx && spi->rx_todo)
635			rx_fifo_read_full_duplex(spi);
636
637		if (spi->tx_todo)
638			tx_fifo_write(spi);
639		else if (!tx_fifo_level(spi))
640			goto completed;
641	} else if (spi->rx) {
642		if (spi->rx_todo) {
643			rx_fifo_read_half_duplex(spi);
644
645			if (spi->rx_todo)
646				rx_request(spi);
647			else
648				goto completed;
649		} else {
650			goto completed;
651		}
652	}
653
654	spin_unlock(&spi->lock);
655	return IRQ_HANDLED;
656
657completed:
658	queue_work(spi->wq, &spi->work);
659	spin_unlock(&spi->lock);
660
661	return IRQ_HANDLED;
662}
663
664static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
665{
666	struct lantiq_ssc_spi *spi = data;
667	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
668	u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
669	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
670
671	if (!(stat & LTQ_SPI_STAT_ERRORS))
672		return IRQ_NONE;
673
674	spin_lock(&spi->lock);
675	if (hwcfg->irq_ack)
676		lantiq_ssc_writel(spi, val, hwcfg->irncr);
677
678	if (stat & LTQ_SPI_STAT_RUE)
679		dev_err(spi->dev, "receive underflow error\n");
680	if (stat & LTQ_SPI_STAT_TUE)
681		dev_err(spi->dev, "transmit underflow error\n");
682	if (stat & LTQ_SPI_STAT_AE)
683		dev_err(spi->dev, "abort error\n");
684	if (stat & LTQ_SPI_STAT_RE)
685		dev_err(spi->dev, "receive overflow error\n");
686	if (stat & LTQ_SPI_STAT_TE)
687		dev_err(spi->dev, "transmit overflow error\n");
688	if (stat & LTQ_SPI_STAT_ME)
689		dev_err(spi->dev, "mode error\n");
690
691	/* Clear error flags */
692	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
693
694	/* set bad status so it can be retried */
695	if (spi->master->cur_msg)
696		spi->master->cur_msg->status = -EIO;
697	queue_work(spi->wq, &spi->work);
698	spin_unlock(&spi->lock);
699
700	return IRQ_HANDLED;
701}
702
703static irqreturn_t intel_lgm_ssc_isr(int irq, void *data)
704{
705	struct lantiq_ssc_spi *spi = data;
706	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
707	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
708
709	if (!(val & LTQ_SPI_IRNEN_ALL))
710		return IRQ_NONE;
711
712	if (val & LTQ_SPI_IRNEN_E)
713		return lantiq_ssc_err_interrupt(irq, data);
714
715	if ((val & hwcfg->irnen_t) || (val & hwcfg->irnen_r))
716		return lantiq_ssc_xmit_interrupt(irq, data);
717
718	return IRQ_HANDLED;
719}
720
721static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
722			  struct spi_transfer *t)
723{
724	unsigned long flags;
725
726	spin_lock_irqsave(&spi->lock, flags);
727
728	spi->tx = t->tx_buf;
729	spi->rx = t->rx_buf;
730
731	if (t->tx_buf) {
732		spi->tx_todo = t->len;
733
734		/* initially fill TX FIFO */
735		tx_fifo_write(spi);
736	}
737
738	if (spi->rx) {
739		spi->rx_todo = t->len;
740
741		/* start shift clock in RX-only mode */
742		if (!spi->tx)
743			rx_request(spi);
744	}
745
746	spin_unlock_irqrestore(&spi->lock, flags);
747
748	return t->len;
749}
750
751/*
752 * The driver only gets an interrupt when the FIFO is empty, but there
753 * is an additional shift register from which the data is written to
754 * the wire. We get the last interrupt when the controller starts to
755 * write the last word to the wire, not when it is finished. Do busy
756 * waiting till it finishes.
757 */
758static void lantiq_ssc_bussy_work(struct work_struct *work)
759{
760	struct lantiq_ssc_spi *spi;
761	unsigned long long timeout = 8LL * 1000LL;
762	unsigned long end;
763
764	spi = container_of(work, typeof(*spi), work);
765
766	do_div(timeout, spi->speed_hz);
767	timeout += timeout + 100; /* some tolerance */
768
769	end = jiffies + msecs_to_jiffies(timeout);
770	do {
771		u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
772
773		if (!(stat & LTQ_SPI_STAT_BSY)) {
774			spi_finalize_current_transfer(spi->master);
775			return;
776		}
777
778		cond_resched();
779	} while (!time_after_eq(jiffies, end));
780
781	if (spi->master->cur_msg)
782		spi->master->cur_msg->status = -EIO;
783	spi_finalize_current_transfer(spi->master);
784}
785
786static void lantiq_ssc_handle_err(struct spi_master *master,
787				  struct spi_message *message)
788{
789	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
790
791	/* flush FIFOs on timeout */
792	rx_fifo_flush(spi);
793	tx_fifo_flush(spi);
794}
795
796static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
797{
798	struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
799	unsigned int cs = spidev->chip_select;
800	u32 fgpo;
801
802	if (!!(spidev->mode & SPI_CS_HIGH) == enable)
803		fgpo = (1 << (cs - spi->base_cs));
804	else
805		fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));
806
807	lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
808}
809
810static int lantiq_ssc_transfer_one(struct spi_master *master,
811				   struct spi_device *spidev,
812				   struct spi_transfer *t)
813{
814	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
815
816	hw_setup_transfer(spi, spidev, t);
817
818	return transfer_start(spi, spidev, t);
819}
820
821static int intel_lgm_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
822{
823	int irq;
824
825	irq = platform_get_irq(pdev, 0);
826	if (irq < 0)
827		return irq;
828
829	return devm_request_irq(&pdev->dev, irq, intel_lgm_ssc_isr, 0, "spi", spi);
830}
831
832static int lantiq_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
833{
834	int irq, err;
835
836	irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
837	if (irq < 0)
838		return irq;
839
840	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
841			       0, LTQ_SPI_RX_IRQ_NAME, spi);
842	if (err)
843		return err;
844
845	irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
846	if (irq < 0)
847		return irq;
848
849	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
850			       0, LTQ_SPI_TX_IRQ_NAME, spi);
851
852	if (err)
853		return err;
854
855	irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
856	if (irq < 0)
857		return irq;
858
859	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_err_interrupt,
860			       0, LTQ_SPI_ERR_IRQ_NAME, spi);
861	return err;
862}
863
864static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
865	.cfg_irq	= lantiq_cfg_irq,
866	.irnen_r	= LTQ_SPI_IRNEN_R_XWAY,
867	.irnen_t	= LTQ_SPI_IRNEN_T_XWAY,
868	.irnicr		= 0xF8,
869	.irncr		= 0xFC,
870	.fifo_size_mask	= GENMASK(5, 0),
871	.irq_ack	= false,
872};
873
874static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
875	.cfg_irq	= lantiq_cfg_irq,
876	.irnen_r	= LTQ_SPI_IRNEN_R_XRX,
877	.irnen_t	= LTQ_SPI_IRNEN_T_XRX,
878	.irnicr		= 0xF8,
879	.irncr		= 0xFC,
880	.fifo_size_mask	= GENMASK(5, 0),
881	.irq_ack	= false,
882};
883
884static const struct lantiq_ssc_hwcfg intel_ssc_lgm = {
885	.cfg_irq	= intel_lgm_cfg_irq,
886	.irnen_r	= LTQ_SPI_IRNEN_R_XRX,
887	.irnen_t	= LTQ_SPI_IRNEN_T_XRX,
888	.irnicr		= 0xFC,
889	.irncr		= 0xF8,
890	.fifo_size_mask	= GENMASK(7, 0),
891	.irq_ack	= true,
892};
893
894static const struct of_device_id lantiq_ssc_match[] = {
895	{ .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
896	{ .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
897	{ .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
898	{ .compatible = "intel,lgm-spi", .data = &intel_ssc_lgm, },
899	{},
900};
901MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
902
903static int lantiq_ssc_probe(struct platform_device *pdev)
904{
905	struct device *dev = &pdev->dev;
906	struct spi_master *master;
907	struct lantiq_ssc_spi *spi;
908	const struct lantiq_ssc_hwcfg *hwcfg;
909	const struct of_device_id *match;
910	u32 id, supports_dma, revision;
911	unsigned int num_cs;
912	int err;
913
914	match = of_match_device(lantiq_ssc_match, dev);
915	if (!match) {
916		dev_err(dev, "no device match\n");
917		return -EINVAL;
918	}
919	hwcfg = match->data;
920
921	master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
922	if (!master)
923		return -ENOMEM;
924
925	spi = spi_master_get_devdata(master);
926	spi->master = master;
927	spi->dev = dev;
928	spi->hwcfg = hwcfg;
929	platform_set_drvdata(pdev, spi);
930	spi->regbase = devm_platform_ioremap_resource(pdev, 0);
931	if (IS_ERR(spi->regbase)) {
932		err = PTR_ERR(spi->regbase);
933		goto err_master_put;
934	}
935
936	err = hwcfg->cfg_irq(pdev, spi);
937	if (err)
938		goto err_master_put;
939
940	spi->spi_clk = devm_clk_get(dev, "gate");
941	if (IS_ERR(spi->spi_clk)) {
942		err = PTR_ERR(spi->spi_clk);
943		goto err_master_put;
944	}
945	err = clk_prepare_enable(spi->spi_clk);
946	if (err)
947		goto err_master_put;
948
949	/*
950	 * Use the old clk_get_fpi() function on Lantiq platform, till it
951	 * supports common clk.
952	 */
953#if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
954	spi->fpi_clk = clk_get_fpi();
955#else
956	spi->fpi_clk = clk_get(dev, "freq");
957#endif
958	if (IS_ERR(spi->fpi_clk)) {
959		err = PTR_ERR(spi->fpi_clk);
960		goto err_clk_disable;
961	}
962
963	num_cs = 8;
964	of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
965
966	spi->base_cs = 1;
967	of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
968
969	spin_lock_init(&spi->lock);
970	spi->bits_per_word = 8;
971	spi->speed_hz = 0;
972
973	master->dev.of_node = pdev->dev.of_node;
974	master->num_chipselect = num_cs;
975	master->use_gpio_descriptors = true;
976	master->setup = lantiq_ssc_setup;
977	master->set_cs = lantiq_ssc_set_cs;
978	master->handle_err = lantiq_ssc_handle_err;
979	master->prepare_message = lantiq_ssc_prepare_message;
980	master->unprepare_message = lantiq_ssc_unprepare_message;
981	master->transfer_one = lantiq_ssc_transfer_one;
982	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
983				SPI_LOOP;
984	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
985				     SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
986
987	spi->wq = alloc_ordered_workqueue(dev_name(dev), WQ_MEM_RECLAIM);
988	if (!spi->wq) {
989		err = -ENOMEM;
990		goto err_clk_put;
991	}
992	INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
993
994	id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
995	spi->tx_fifo_size = (id >> LTQ_SPI_ID_TXFS_S) & hwcfg->fifo_size_mask;
996	spi->rx_fifo_size = (id >> LTQ_SPI_ID_RXFS_S) & hwcfg->fifo_size_mask;
997	supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
998	revision = id & LTQ_SPI_ID_REV_M;
999
1000	lantiq_ssc_hw_init(spi);
1001
1002	dev_info(dev,
1003		"Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
1004		revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
1005
1006	err = devm_spi_register_master(dev, master);
1007	if (err) {
1008		dev_err(dev, "failed to register spi_master\n");
1009		goto err_wq_destroy;
1010	}
1011
1012	return 0;
1013
1014err_wq_destroy:
1015	destroy_workqueue(spi->wq);
1016err_clk_put:
1017	clk_put(spi->fpi_clk);
1018err_clk_disable:
1019	clk_disable_unprepare(spi->spi_clk);
1020err_master_put:
1021	spi_master_put(master);
1022
1023	return err;
1024}
1025
1026static int lantiq_ssc_remove(struct platform_device *pdev)
1027{
1028	struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
1029
1030	lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
1031	lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
1032	rx_fifo_flush(spi);
1033	tx_fifo_flush(spi);
1034	hw_enter_config_mode(spi);
1035
1036	destroy_workqueue(spi->wq);
1037	clk_disable_unprepare(spi->spi_clk);
1038	clk_put(spi->fpi_clk);
1039
1040	return 0;
1041}
1042
1043static struct platform_driver lantiq_ssc_driver = {
1044	.probe = lantiq_ssc_probe,
1045	.remove = lantiq_ssc_remove,
1046	.driver = {
1047		.name = "spi-lantiq-ssc",
1048		.of_match_table = lantiq_ssc_match,
1049	},
1050};
1051module_platform_driver(lantiq_ssc_driver);
1052
1053MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
1054MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
1055MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1056MODULE_LICENSE("GPL");
1057MODULE_ALIAS("platform:spi-lantiq-ssc");
1058