18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * Driver for Cirrus Logic EP93xx SPI controller. 48c2ecf20Sopenharmony_ci * 58c2ecf20Sopenharmony_ci * Copyright (C) 2010-2011 Mika Westerberg 68c2ecf20Sopenharmony_ci * 78c2ecf20Sopenharmony_ci * Explicit FIFO handling code was inspired by amba-pl022 driver. 88c2ecf20Sopenharmony_ci * 98c2ecf20Sopenharmony_ci * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. 108c2ecf20Sopenharmony_ci * 118c2ecf20Sopenharmony_ci * For more information about the SPI controller see documentation on Cirrus 128c2ecf20Sopenharmony_ci * Logic web site: 138c2ecf20Sopenharmony_ci * https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf 148c2ecf20Sopenharmony_ci */ 158c2ecf20Sopenharmony_ci 168c2ecf20Sopenharmony_ci#include <linux/io.h> 178c2ecf20Sopenharmony_ci#include <linux/clk.h> 188c2ecf20Sopenharmony_ci#include <linux/err.h> 198c2ecf20Sopenharmony_ci#include <linux/delay.h> 208c2ecf20Sopenharmony_ci#include <linux/device.h> 218c2ecf20Sopenharmony_ci#include <linux/dmaengine.h> 228c2ecf20Sopenharmony_ci#include <linux/bitops.h> 238c2ecf20Sopenharmony_ci#include <linux/interrupt.h> 248c2ecf20Sopenharmony_ci#include <linux/module.h> 258c2ecf20Sopenharmony_ci#include <linux/platform_device.h> 268c2ecf20Sopenharmony_ci#include <linux/sched.h> 278c2ecf20Sopenharmony_ci#include <linux/scatterlist.h> 288c2ecf20Sopenharmony_ci#include <linux/spi/spi.h> 298c2ecf20Sopenharmony_ci 308c2ecf20Sopenharmony_ci#include <linux/platform_data/dma-ep93xx.h> 318c2ecf20Sopenharmony_ci#include <linux/platform_data/spi-ep93xx.h> 328c2ecf20Sopenharmony_ci 338c2ecf20Sopenharmony_ci#define SSPCR0 0x0000 348c2ecf20Sopenharmony_ci#define SSPCR0_SPO BIT(6) 358c2ecf20Sopenharmony_ci#define SSPCR0_SPH BIT(7) 368c2ecf20Sopenharmony_ci#define SSPCR0_SCR_SHIFT 8 378c2ecf20Sopenharmony_ci 388c2ecf20Sopenharmony_ci#define SSPCR1 0x0004 398c2ecf20Sopenharmony_ci#define SSPCR1_RIE BIT(0) 408c2ecf20Sopenharmony_ci#define SSPCR1_TIE BIT(1) 418c2ecf20Sopenharmony_ci#define SSPCR1_RORIE BIT(2) 428c2ecf20Sopenharmony_ci#define SSPCR1_LBM BIT(3) 438c2ecf20Sopenharmony_ci#define SSPCR1_SSE BIT(4) 448c2ecf20Sopenharmony_ci#define SSPCR1_MS BIT(5) 458c2ecf20Sopenharmony_ci#define SSPCR1_SOD BIT(6) 468c2ecf20Sopenharmony_ci 478c2ecf20Sopenharmony_ci#define SSPDR 0x0008 488c2ecf20Sopenharmony_ci 498c2ecf20Sopenharmony_ci#define SSPSR 0x000c 508c2ecf20Sopenharmony_ci#define SSPSR_TFE BIT(0) 518c2ecf20Sopenharmony_ci#define SSPSR_TNF BIT(1) 528c2ecf20Sopenharmony_ci#define SSPSR_RNE BIT(2) 538c2ecf20Sopenharmony_ci#define SSPSR_RFF BIT(3) 548c2ecf20Sopenharmony_ci#define SSPSR_BSY BIT(4) 558c2ecf20Sopenharmony_ci#define SSPCPSR 0x0010 568c2ecf20Sopenharmony_ci 578c2ecf20Sopenharmony_ci#define SSPIIR 0x0014 588c2ecf20Sopenharmony_ci#define SSPIIR_RIS BIT(0) 598c2ecf20Sopenharmony_ci#define SSPIIR_TIS BIT(1) 608c2ecf20Sopenharmony_ci#define SSPIIR_RORIS BIT(2) 618c2ecf20Sopenharmony_ci#define SSPICR SSPIIR 628c2ecf20Sopenharmony_ci 638c2ecf20Sopenharmony_ci/* timeout in milliseconds */ 648c2ecf20Sopenharmony_ci#define SPI_TIMEOUT 5 658c2ecf20Sopenharmony_ci/* maximum depth of RX/TX FIFO */ 668c2ecf20Sopenharmony_ci#define SPI_FIFO_SIZE 8 678c2ecf20Sopenharmony_ci 688c2ecf20Sopenharmony_ci/** 698c2ecf20Sopenharmony_ci * struct ep93xx_spi - EP93xx SPI controller structure 708c2ecf20Sopenharmony_ci * @clk: clock for the controller 718c2ecf20Sopenharmony_ci * @mmio: pointer to ioremap()'d registers 728c2ecf20Sopenharmony_ci * @sspdr_phys: physical address of the SSPDR register 738c2ecf20Sopenharmony_ci * @tx: current byte in transfer to transmit 748c2ecf20Sopenharmony_ci * @rx: current byte in transfer to receive 758c2ecf20Sopenharmony_ci * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one 768c2ecf20Sopenharmony_ci * frame decreases this level and sending one frame increases it. 778c2ecf20Sopenharmony_ci * @dma_rx: RX DMA channel 788c2ecf20Sopenharmony_ci * @dma_tx: TX DMA channel 798c2ecf20Sopenharmony_ci * @dma_rx_data: RX parameters passed to the DMA engine 808c2ecf20Sopenharmony_ci * @dma_tx_data: TX parameters passed to the DMA engine 818c2ecf20Sopenharmony_ci * @rx_sgt: sg table for RX transfers 828c2ecf20Sopenharmony_ci * @tx_sgt: sg table for TX transfers 838c2ecf20Sopenharmony_ci * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by 848c2ecf20Sopenharmony_ci * the client 858c2ecf20Sopenharmony_ci */ 868c2ecf20Sopenharmony_cistruct ep93xx_spi { 878c2ecf20Sopenharmony_ci struct clk *clk; 888c2ecf20Sopenharmony_ci void __iomem *mmio; 898c2ecf20Sopenharmony_ci unsigned long sspdr_phys; 908c2ecf20Sopenharmony_ci size_t tx; 918c2ecf20Sopenharmony_ci size_t rx; 928c2ecf20Sopenharmony_ci size_t fifo_level; 938c2ecf20Sopenharmony_ci struct dma_chan *dma_rx; 948c2ecf20Sopenharmony_ci struct dma_chan *dma_tx; 958c2ecf20Sopenharmony_ci struct ep93xx_dma_data dma_rx_data; 968c2ecf20Sopenharmony_ci struct ep93xx_dma_data dma_tx_data; 978c2ecf20Sopenharmony_ci struct sg_table rx_sgt; 988c2ecf20Sopenharmony_ci struct sg_table tx_sgt; 998c2ecf20Sopenharmony_ci void *zeropage; 1008c2ecf20Sopenharmony_ci}; 1018c2ecf20Sopenharmony_ci 1028c2ecf20Sopenharmony_ci/* converts bits per word to CR0.DSS value */ 1038c2ecf20Sopenharmony_ci#define bits_per_word_to_dss(bpw) ((bpw) - 1) 1048c2ecf20Sopenharmony_ci 1058c2ecf20Sopenharmony_ci/** 1068c2ecf20Sopenharmony_ci * ep93xx_spi_calc_divisors() - calculates SPI clock divisors 1078c2ecf20Sopenharmony_ci * @master: SPI master 1088c2ecf20Sopenharmony_ci * @rate: desired SPI output clock rate 1098c2ecf20Sopenharmony_ci * @div_cpsr: pointer to return the cpsr (pre-scaler) divider 1108c2ecf20Sopenharmony_ci * @div_scr: pointer to return the scr divider 1118c2ecf20Sopenharmony_ci */ 1128c2ecf20Sopenharmony_cistatic int ep93xx_spi_calc_divisors(struct spi_master *master, 1138c2ecf20Sopenharmony_ci u32 rate, u8 *div_cpsr, u8 *div_scr) 1148c2ecf20Sopenharmony_ci{ 1158c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 1168c2ecf20Sopenharmony_ci unsigned long spi_clk_rate = clk_get_rate(espi->clk); 1178c2ecf20Sopenharmony_ci int cpsr, scr; 1188c2ecf20Sopenharmony_ci 1198c2ecf20Sopenharmony_ci /* 1208c2ecf20Sopenharmony_ci * Make sure that max value is between values supported by the 1218c2ecf20Sopenharmony_ci * controller. 1228c2ecf20Sopenharmony_ci */ 1238c2ecf20Sopenharmony_ci rate = clamp(rate, master->min_speed_hz, master->max_speed_hz); 1248c2ecf20Sopenharmony_ci 1258c2ecf20Sopenharmony_ci /* 1268c2ecf20Sopenharmony_ci * Calculate divisors so that we can get speed according the 1278c2ecf20Sopenharmony_ci * following formula: 1288c2ecf20Sopenharmony_ci * rate = spi_clock_rate / (cpsr * (1 + scr)) 1298c2ecf20Sopenharmony_ci * 1308c2ecf20Sopenharmony_ci * cpsr must be even number and starts from 2, scr can be any number 1318c2ecf20Sopenharmony_ci * between 0 and 255. 1328c2ecf20Sopenharmony_ci */ 1338c2ecf20Sopenharmony_ci for (cpsr = 2; cpsr <= 254; cpsr += 2) { 1348c2ecf20Sopenharmony_ci for (scr = 0; scr <= 255; scr++) { 1358c2ecf20Sopenharmony_ci if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { 1368c2ecf20Sopenharmony_ci *div_scr = (u8)scr; 1378c2ecf20Sopenharmony_ci *div_cpsr = (u8)cpsr; 1388c2ecf20Sopenharmony_ci return 0; 1398c2ecf20Sopenharmony_ci } 1408c2ecf20Sopenharmony_ci } 1418c2ecf20Sopenharmony_ci } 1428c2ecf20Sopenharmony_ci 1438c2ecf20Sopenharmony_ci return -EINVAL; 1448c2ecf20Sopenharmony_ci} 1458c2ecf20Sopenharmony_ci 1468c2ecf20Sopenharmony_cistatic int ep93xx_spi_chip_setup(struct spi_master *master, 1478c2ecf20Sopenharmony_ci struct spi_device *spi, 1488c2ecf20Sopenharmony_ci struct spi_transfer *xfer) 1498c2ecf20Sopenharmony_ci{ 1508c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 1518c2ecf20Sopenharmony_ci u8 dss = bits_per_word_to_dss(xfer->bits_per_word); 1528c2ecf20Sopenharmony_ci u8 div_cpsr = 0; 1538c2ecf20Sopenharmony_ci u8 div_scr = 0; 1548c2ecf20Sopenharmony_ci u16 cr0; 1558c2ecf20Sopenharmony_ci int err; 1568c2ecf20Sopenharmony_ci 1578c2ecf20Sopenharmony_ci err = ep93xx_spi_calc_divisors(master, xfer->speed_hz, 1588c2ecf20Sopenharmony_ci &div_cpsr, &div_scr); 1598c2ecf20Sopenharmony_ci if (err) 1608c2ecf20Sopenharmony_ci return err; 1618c2ecf20Sopenharmony_ci 1628c2ecf20Sopenharmony_ci cr0 = div_scr << SSPCR0_SCR_SHIFT; 1638c2ecf20Sopenharmony_ci if (spi->mode & SPI_CPOL) 1648c2ecf20Sopenharmony_ci cr0 |= SSPCR0_SPO; 1658c2ecf20Sopenharmony_ci if (spi->mode & SPI_CPHA) 1668c2ecf20Sopenharmony_ci cr0 |= SSPCR0_SPH; 1678c2ecf20Sopenharmony_ci cr0 |= dss; 1688c2ecf20Sopenharmony_ci 1698c2ecf20Sopenharmony_ci dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", 1708c2ecf20Sopenharmony_ci spi->mode, div_cpsr, div_scr, dss); 1718c2ecf20Sopenharmony_ci dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0); 1728c2ecf20Sopenharmony_ci 1738c2ecf20Sopenharmony_ci writel(div_cpsr, espi->mmio + SSPCPSR); 1748c2ecf20Sopenharmony_ci writel(cr0, espi->mmio + SSPCR0); 1758c2ecf20Sopenharmony_ci 1768c2ecf20Sopenharmony_ci return 0; 1778c2ecf20Sopenharmony_ci} 1788c2ecf20Sopenharmony_ci 1798c2ecf20Sopenharmony_cistatic void ep93xx_do_write(struct spi_master *master) 1808c2ecf20Sopenharmony_ci{ 1818c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 1828c2ecf20Sopenharmony_ci struct spi_transfer *xfer = master->cur_msg->state; 1838c2ecf20Sopenharmony_ci u32 val = 0; 1848c2ecf20Sopenharmony_ci 1858c2ecf20Sopenharmony_ci if (xfer->bits_per_word > 8) { 1868c2ecf20Sopenharmony_ci if (xfer->tx_buf) 1878c2ecf20Sopenharmony_ci val = ((u16 *)xfer->tx_buf)[espi->tx]; 1888c2ecf20Sopenharmony_ci espi->tx += 2; 1898c2ecf20Sopenharmony_ci } else { 1908c2ecf20Sopenharmony_ci if (xfer->tx_buf) 1918c2ecf20Sopenharmony_ci val = ((u8 *)xfer->tx_buf)[espi->tx]; 1928c2ecf20Sopenharmony_ci espi->tx += 1; 1938c2ecf20Sopenharmony_ci } 1948c2ecf20Sopenharmony_ci writel(val, espi->mmio + SSPDR); 1958c2ecf20Sopenharmony_ci} 1968c2ecf20Sopenharmony_ci 1978c2ecf20Sopenharmony_cistatic void ep93xx_do_read(struct spi_master *master) 1988c2ecf20Sopenharmony_ci{ 1998c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 2008c2ecf20Sopenharmony_ci struct spi_transfer *xfer = master->cur_msg->state; 2018c2ecf20Sopenharmony_ci u32 val; 2028c2ecf20Sopenharmony_ci 2038c2ecf20Sopenharmony_ci val = readl(espi->mmio + SSPDR); 2048c2ecf20Sopenharmony_ci if (xfer->bits_per_word > 8) { 2058c2ecf20Sopenharmony_ci if (xfer->rx_buf) 2068c2ecf20Sopenharmony_ci ((u16 *)xfer->rx_buf)[espi->rx] = val; 2078c2ecf20Sopenharmony_ci espi->rx += 2; 2088c2ecf20Sopenharmony_ci } else { 2098c2ecf20Sopenharmony_ci if (xfer->rx_buf) 2108c2ecf20Sopenharmony_ci ((u8 *)xfer->rx_buf)[espi->rx] = val; 2118c2ecf20Sopenharmony_ci espi->rx += 1; 2128c2ecf20Sopenharmony_ci } 2138c2ecf20Sopenharmony_ci} 2148c2ecf20Sopenharmony_ci 2158c2ecf20Sopenharmony_ci/** 2168c2ecf20Sopenharmony_ci * ep93xx_spi_read_write() - perform next RX/TX transfer 2178c2ecf20Sopenharmony_ci * @master: SPI master 2188c2ecf20Sopenharmony_ci * 2198c2ecf20Sopenharmony_ci * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If 2208c2ecf20Sopenharmony_ci * called several times, the whole transfer will be completed. Returns 2218c2ecf20Sopenharmony_ci * %-EINPROGRESS when current transfer was not yet completed otherwise %0. 2228c2ecf20Sopenharmony_ci * 2238c2ecf20Sopenharmony_ci * When this function is finished, RX FIFO should be empty and TX FIFO should be 2248c2ecf20Sopenharmony_ci * full. 2258c2ecf20Sopenharmony_ci */ 2268c2ecf20Sopenharmony_cistatic int ep93xx_spi_read_write(struct spi_master *master) 2278c2ecf20Sopenharmony_ci{ 2288c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 2298c2ecf20Sopenharmony_ci struct spi_transfer *xfer = master->cur_msg->state; 2308c2ecf20Sopenharmony_ci 2318c2ecf20Sopenharmony_ci /* read as long as RX FIFO has frames in it */ 2328c2ecf20Sopenharmony_ci while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) { 2338c2ecf20Sopenharmony_ci ep93xx_do_read(master); 2348c2ecf20Sopenharmony_ci espi->fifo_level--; 2358c2ecf20Sopenharmony_ci } 2368c2ecf20Sopenharmony_ci 2378c2ecf20Sopenharmony_ci /* write as long as TX FIFO has room */ 2388c2ecf20Sopenharmony_ci while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) { 2398c2ecf20Sopenharmony_ci ep93xx_do_write(master); 2408c2ecf20Sopenharmony_ci espi->fifo_level++; 2418c2ecf20Sopenharmony_ci } 2428c2ecf20Sopenharmony_ci 2438c2ecf20Sopenharmony_ci if (espi->rx == xfer->len) 2448c2ecf20Sopenharmony_ci return 0; 2458c2ecf20Sopenharmony_ci 2468c2ecf20Sopenharmony_ci return -EINPROGRESS; 2478c2ecf20Sopenharmony_ci} 2488c2ecf20Sopenharmony_ci 2498c2ecf20Sopenharmony_cistatic enum dma_transfer_direction 2508c2ecf20Sopenharmony_ciep93xx_dma_data_to_trans_dir(enum dma_data_direction dir) 2518c2ecf20Sopenharmony_ci{ 2528c2ecf20Sopenharmony_ci switch (dir) { 2538c2ecf20Sopenharmony_ci case DMA_TO_DEVICE: 2548c2ecf20Sopenharmony_ci return DMA_MEM_TO_DEV; 2558c2ecf20Sopenharmony_ci case DMA_FROM_DEVICE: 2568c2ecf20Sopenharmony_ci return DMA_DEV_TO_MEM; 2578c2ecf20Sopenharmony_ci default: 2588c2ecf20Sopenharmony_ci return DMA_TRANS_NONE; 2598c2ecf20Sopenharmony_ci } 2608c2ecf20Sopenharmony_ci} 2618c2ecf20Sopenharmony_ci 2628c2ecf20Sopenharmony_ci/** 2638c2ecf20Sopenharmony_ci * ep93xx_spi_dma_prepare() - prepares a DMA transfer 2648c2ecf20Sopenharmony_ci * @master: SPI master 2658c2ecf20Sopenharmony_ci * @dir: DMA transfer direction 2668c2ecf20Sopenharmony_ci * 2678c2ecf20Sopenharmony_ci * Function configures the DMA, maps the buffer and prepares the DMA 2688c2ecf20Sopenharmony_ci * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR 2698c2ecf20Sopenharmony_ci * in case of failure. 2708c2ecf20Sopenharmony_ci */ 2718c2ecf20Sopenharmony_cistatic struct dma_async_tx_descriptor * 2728c2ecf20Sopenharmony_ciep93xx_spi_dma_prepare(struct spi_master *master, 2738c2ecf20Sopenharmony_ci enum dma_data_direction dir) 2748c2ecf20Sopenharmony_ci{ 2758c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 2768c2ecf20Sopenharmony_ci struct spi_transfer *xfer = master->cur_msg->state; 2778c2ecf20Sopenharmony_ci struct dma_async_tx_descriptor *txd; 2788c2ecf20Sopenharmony_ci enum dma_slave_buswidth buswidth; 2798c2ecf20Sopenharmony_ci struct dma_slave_config conf; 2808c2ecf20Sopenharmony_ci struct scatterlist *sg; 2818c2ecf20Sopenharmony_ci struct sg_table *sgt; 2828c2ecf20Sopenharmony_ci struct dma_chan *chan; 2838c2ecf20Sopenharmony_ci const void *buf, *pbuf; 2848c2ecf20Sopenharmony_ci size_t len = xfer->len; 2858c2ecf20Sopenharmony_ci int i, ret, nents; 2868c2ecf20Sopenharmony_ci 2878c2ecf20Sopenharmony_ci if (xfer->bits_per_word > 8) 2888c2ecf20Sopenharmony_ci buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 2898c2ecf20Sopenharmony_ci else 2908c2ecf20Sopenharmony_ci buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 2918c2ecf20Sopenharmony_ci 2928c2ecf20Sopenharmony_ci memset(&conf, 0, sizeof(conf)); 2938c2ecf20Sopenharmony_ci conf.direction = ep93xx_dma_data_to_trans_dir(dir); 2948c2ecf20Sopenharmony_ci 2958c2ecf20Sopenharmony_ci if (dir == DMA_FROM_DEVICE) { 2968c2ecf20Sopenharmony_ci chan = espi->dma_rx; 2978c2ecf20Sopenharmony_ci buf = xfer->rx_buf; 2988c2ecf20Sopenharmony_ci sgt = &espi->rx_sgt; 2998c2ecf20Sopenharmony_ci 3008c2ecf20Sopenharmony_ci conf.src_addr = espi->sspdr_phys; 3018c2ecf20Sopenharmony_ci conf.src_addr_width = buswidth; 3028c2ecf20Sopenharmony_ci } else { 3038c2ecf20Sopenharmony_ci chan = espi->dma_tx; 3048c2ecf20Sopenharmony_ci buf = xfer->tx_buf; 3058c2ecf20Sopenharmony_ci sgt = &espi->tx_sgt; 3068c2ecf20Sopenharmony_ci 3078c2ecf20Sopenharmony_ci conf.dst_addr = espi->sspdr_phys; 3088c2ecf20Sopenharmony_ci conf.dst_addr_width = buswidth; 3098c2ecf20Sopenharmony_ci } 3108c2ecf20Sopenharmony_ci 3118c2ecf20Sopenharmony_ci ret = dmaengine_slave_config(chan, &conf); 3128c2ecf20Sopenharmony_ci if (ret) 3138c2ecf20Sopenharmony_ci return ERR_PTR(ret); 3148c2ecf20Sopenharmony_ci 3158c2ecf20Sopenharmony_ci /* 3168c2ecf20Sopenharmony_ci * We need to split the transfer into PAGE_SIZE'd chunks. This is 3178c2ecf20Sopenharmony_ci * because we are using @espi->zeropage to provide a zero RX buffer 3188c2ecf20Sopenharmony_ci * for the TX transfers and we have only allocated one page for that. 3198c2ecf20Sopenharmony_ci * 3208c2ecf20Sopenharmony_ci * For performance reasons we allocate a new sg_table only when 3218c2ecf20Sopenharmony_ci * needed. Otherwise we will re-use the current one. Eventually the 3228c2ecf20Sopenharmony_ci * last sg_table is released in ep93xx_spi_release_dma(). 3238c2ecf20Sopenharmony_ci */ 3248c2ecf20Sopenharmony_ci 3258c2ecf20Sopenharmony_ci nents = DIV_ROUND_UP(len, PAGE_SIZE); 3268c2ecf20Sopenharmony_ci if (nents != sgt->nents) { 3278c2ecf20Sopenharmony_ci sg_free_table(sgt); 3288c2ecf20Sopenharmony_ci 3298c2ecf20Sopenharmony_ci ret = sg_alloc_table(sgt, nents, GFP_KERNEL); 3308c2ecf20Sopenharmony_ci if (ret) 3318c2ecf20Sopenharmony_ci return ERR_PTR(ret); 3328c2ecf20Sopenharmony_ci } 3338c2ecf20Sopenharmony_ci 3348c2ecf20Sopenharmony_ci pbuf = buf; 3358c2ecf20Sopenharmony_ci for_each_sg(sgt->sgl, sg, sgt->nents, i) { 3368c2ecf20Sopenharmony_ci size_t bytes = min_t(size_t, len, PAGE_SIZE); 3378c2ecf20Sopenharmony_ci 3388c2ecf20Sopenharmony_ci if (buf) { 3398c2ecf20Sopenharmony_ci sg_set_page(sg, virt_to_page(pbuf), bytes, 3408c2ecf20Sopenharmony_ci offset_in_page(pbuf)); 3418c2ecf20Sopenharmony_ci } else { 3428c2ecf20Sopenharmony_ci sg_set_page(sg, virt_to_page(espi->zeropage), 3438c2ecf20Sopenharmony_ci bytes, 0); 3448c2ecf20Sopenharmony_ci } 3458c2ecf20Sopenharmony_ci 3468c2ecf20Sopenharmony_ci pbuf += bytes; 3478c2ecf20Sopenharmony_ci len -= bytes; 3488c2ecf20Sopenharmony_ci } 3498c2ecf20Sopenharmony_ci 3508c2ecf20Sopenharmony_ci if (WARN_ON(len)) { 3518c2ecf20Sopenharmony_ci dev_warn(&master->dev, "len = %zu expected 0!\n", len); 3528c2ecf20Sopenharmony_ci return ERR_PTR(-EINVAL); 3538c2ecf20Sopenharmony_ci } 3548c2ecf20Sopenharmony_ci 3558c2ecf20Sopenharmony_ci nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 3568c2ecf20Sopenharmony_ci if (!nents) 3578c2ecf20Sopenharmony_ci return ERR_PTR(-ENOMEM); 3588c2ecf20Sopenharmony_ci 3598c2ecf20Sopenharmony_ci txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction, 3608c2ecf20Sopenharmony_ci DMA_CTRL_ACK); 3618c2ecf20Sopenharmony_ci if (!txd) { 3628c2ecf20Sopenharmony_ci dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 3638c2ecf20Sopenharmony_ci return ERR_PTR(-ENOMEM); 3648c2ecf20Sopenharmony_ci } 3658c2ecf20Sopenharmony_ci return txd; 3668c2ecf20Sopenharmony_ci} 3678c2ecf20Sopenharmony_ci 3688c2ecf20Sopenharmony_ci/** 3698c2ecf20Sopenharmony_ci * ep93xx_spi_dma_finish() - finishes with a DMA transfer 3708c2ecf20Sopenharmony_ci * @master: SPI master 3718c2ecf20Sopenharmony_ci * @dir: DMA transfer direction 3728c2ecf20Sopenharmony_ci * 3738c2ecf20Sopenharmony_ci * Function finishes with the DMA transfer. After this, the DMA buffer is 3748c2ecf20Sopenharmony_ci * unmapped. 3758c2ecf20Sopenharmony_ci */ 3768c2ecf20Sopenharmony_cistatic void ep93xx_spi_dma_finish(struct spi_master *master, 3778c2ecf20Sopenharmony_ci enum dma_data_direction dir) 3788c2ecf20Sopenharmony_ci{ 3798c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 3808c2ecf20Sopenharmony_ci struct dma_chan *chan; 3818c2ecf20Sopenharmony_ci struct sg_table *sgt; 3828c2ecf20Sopenharmony_ci 3838c2ecf20Sopenharmony_ci if (dir == DMA_FROM_DEVICE) { 3848c2ecf20Sopenharmony_ci chan = espi->dma_rx; 3858c2ecf20Sopenharmony_ci sgt = &espi->rx_sgt; 3868c2ecf20Sopenharmony_ci } else { 3878c2ecf20Sopenharmony_ci chan = espi->dma_tx; 3888c2ecf20Sopenharmony_ci sgt = &espi->tx_sgt; 3898c2ecf20Sopenharmony_ci } 3908c2ecf20Sopenharmony_ci 3918c2ecf20Sopenharmony_ci dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 3928c2ecf20Sopenharmony_ci} 3938c2ecf20Sopenharmony_ci 3948c2ecf20Sopenharmony_cistatic void ep93xx_spi_dma_callback(void *callback_param) 3958c2ecf20Sopenharmony_ci{ 3968c2ecf20Sopenharmony_ci struct spi_master *master = callback_param; 3978c2ecf20Sopenharmony_ci 3988c2ecf20Sopenharmony_ci ep93xx_spi_dma_finish(master, DMA_TO_DEVICE); 3998c2ecf20Sopenharmony_ci ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE); 4008c2ecf20Sopenharmony_ci 4018c2ecf20Sopenharmony_ci spi_finalize_current_transfer(master); 4028c2ecf20Sopenharmony_ci} 4038c2ecf20Sopenharmony_ci 4048c2ecf20Sopenharmony_cistatic int ep93xx_spi_dma_transfer(struct spi_master *master) 4058c2ecf20Sopenharmony_ci{ 4068c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 4078c2ecf20Sopenharmony_ci struct dma_async_tx_descriptor *rxd, *txd; 4088c2ecf20Sopenharmony_ci 4098c2ecf20Sopenharmony_ci rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE); 4108c2ecf20Sopenharmony_ci if (IS_ERR(rxd)) { 4118c2ecf20Sopenharmony_ci dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); 4128c2ecf20Sopenharmony_ci return PTR_ERR(rxd); 4138c2ecf20Sopenharmony_ci } 4148c2ecf20Sopenharmony_ci 4158c2ecf20Sopenharmony_ci txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE); 4168c2ecf20Sopenharmony_ci if (IS_ERR(txd)) { 4178c2ecf20Sopenharmony_ci ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE); 4188c2ecf20Sopenharmony_ci dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd)); 4198c2ecf20Sopenharmony_ci return PTR_ERR(txd); 4208c2ecf20Sopenharmony_ci } 4218c2ecf20Sopenharmony_ci 4228c2ecf20Sopenharmony_ci /* We are ready when RX is done */ 4238c2ecf20Sopenharmony_ci rxd->callback = ep93xx_spi_dma_callback; 4248c2ecf20Sopenharmony_ci rxd->callback_param = master; 4258c2ecf20Sopenharmony_ci 4268c2ecf20Sopenharmony_ci /* Now submit both descriptors and start DMA */ 4278c2ecf20Sopenharmony_ci dmaengine_submit(rxd); 4288c2ecf20Sopenharmony_ci dmaengine_submit(txd); 4298c2ecf20Sopenharmony_ci 4308c2ecf20Sopenharmony_ci dma_async_issue_pending(espi->dma_rx); 4318c2ecf20Sopenharmony_ci dma_async_issue_pending(espi->dma_tx); 4328c2ecf20Sopenharmony_ci 4338c2ecf20Sopenharmony_ci /* signal that we need to wait for completion */ 4348c2ecf20Sopenharmony_ci return 1; 4358c2ecf20Sopenharmony_ci} 4368c2ecf20Sopenharmony_ci 4378c2ecf20Sopenharmony_cistatic irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) 4388c2ecf20Sopenharmony_ci{ 4398c2ecf20Sopenharmony_ci struct spi_master *master = dev_id; 4408c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 4418c2ecf20Sopenharmony_ci u32 val; 4428c2ecf20Sopenharmony_ci 4438c2ecf20Sopenharmony_ci /* 4448c2ecf20Sopenharmony_ci * If we got ROR (receive overrun) interrupt we know that something is 4458c2ecf20Sopenharmony_ci * wrong. Just abort the message. 4468c2ecf20Sopenharmony_ci */ 4478c2ecf20Sopenharmony_ci if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) { 4488c2ecf20Sopenharmony_ci /* clear the overrun interrupt */ 4498c2ecf20Sopenharmony_ci writel(0, espi->mmio + SSPICR); 4508c2ecf20Sopenharmony_ci dev_warn(&master->dev, 4518c2ecf20Sopenharmony_ci "receive overrun, aborting the message\n"); 4528c2ecf20Sopenharmony_ci master->cur_msg->status = -EIO; 4538c2ecf20Sopenharmony_ci } else { 4548c2ecf20Sopenharmony_ci /* 4558c2ecf20Sopenharmony_ci * Interrupt is either RX (RIS) or TX (TIS). For both cases we 4568c2ecf20Sopenharmony_ci * simply execute next data transfer. 4578c2ecf20Sopenharmony_ci */ 4588c2ecf20Sopenharmony_ci if (ep93xx_spi_read_write(master)) { 4598c2ecf20Sopenharmony_ci /* 4608c2ecf20Sopenharmony_ci * In normal case, there still is some processing left 4618c2ecf20Sopenharmony_ci * for current transfer. Let's wait for the next 4628c2ecf20Sopenharmony_ci * interrupt then. 4638c2ecf20Sopenharmony_ci */ 4648c2ecf20Sopenharmony_ci return IRQ_HANDLED; 4658c2ecf20Sopenharmony_ci } 4668c2ecf20Sopenharmony_ci } 4678c2ecf20Sopenharmony_ci 4688c2ecf20Sopenharmony_ci /* 4698c2ecf20Sopenharmony_ci * Current transfer is finished, either with error or with success. In 4708c2ecf20Sopenharmony_ci * any case we disable interrupts and notify the worker to handle 4718c2ecf20Sopenharmony_ci * any post-processing of the message. 4728c2ecf20Sopenharmony_ci */ 4738c2ecf20Sopenharmony_ci val = readl(espi->mmio + SSPCR1); 4748c2ecf20Sopenharmony_ci val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 4758c2ecf20Sopenharmony_ci writel(val, espi->mmio + SSPCR1); 4768c2ecf20Sopenharmony_ci 4778c2ecf20Sopenharmony_ci spi_finalize_current_transfer(master); 4788c2ecf20Sopenharmony_ci 4798c2ecf20Sopenharmony_ci return IRQ_HANDLED; 4808c2ecf20Sopenharmony_ci} 4818c2ecf20Sopenharmony_ci 4828c2ecf20Sopenharmony_cistatic int ep93xx_spi_transfer_one(struct spi_master *master, 4838c2ecf20Sopenharmony_ci struct spi_device *spi, 4848c2ecf20Sopenharmony_ci struct spi_transfer *xfer) 4858c2ecf20Sopenharmony_ci{ 4868c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 4878c2ecf20Sopenharmony_ci u32 val; 4888c2ecf20Sopenharmony_ci int ret; 4898c2ecf20Sopenharmony_ci 4908c2ecf20Sopenharmony_ci ret = ep93xx_spi_chip_setup(master, spi, xfer); 4918c2ecf20Sopenharmony_ci if (ret) { 4928c2ecf20Sopenharmony_ci dev_err(&master->dev, "failed to setup chip for transfer\n"); 4938c2ecf20Sopenharmony_ci return ret; 4948c2ecf20Sopenharmony_ci } 4958c2ecf20Sopenharmony_ci 4968c2ecf20Sopenharmony_ci master->cur_msg->state = xfer; 4978c2ecf20Sopenharmony_ci espi->rx = 0; 4988c2ecf20Sopenharmony_ci espi->tx = 0; 4998c2ecf20Sopenharmony_ci 5008c2ecf20Sopenharmony_ci /* 5018c2ecf20Sopenharmony_ci * There is no point of setting up DMA for the transfers which will 5028c2ecf20Sopenharmony_ci * fit into the FIFO and can be transferred with a single interrupt. 5038c2ecf20Sopenharmony_ci * So in these cases we will be using PIO and don't bother for DMA. 5048c2ecf20Sopenharmony_ci */ 5058c2ecf20Sopenharmony_ci if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE) 5068c2ecf20Sopenharmony_ci return ep93xx_spi_dma_transfer(master); 5078c2ecf20Sopenharmony_ci 5088c2ecf20Sopenharmony_ci /* Using PIO so prime the TX FIFO and enable interrupts */ 5098c2ecf20Sopenharmony_ci ep93xx_spi_read_write(master); 5108c2ecf20Sopenharmony_ci 5118c2ecf20Sopenharmony_ci val = readl(espi->mmio + SSPCR1); 5128c2ecf20Sopenharmony_ci val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 5138c2ecf20Sopenharmony_ci writel(val, espi->mmio + SSPCR1); 5148c2ecf20Sopenharmony_ci 5158c2ecf20Sopenharmony_ci /* signal that we need to wait for completion */ 5168c2ecf20Sopenharmony_ci return 1; 5178c2ecf20Sopenharmony_ci} 5188c2ecf20Sopenharmony_ci 5198c2ecf20Sopenharmony_cistatic int ep93xx_spi_prepare_message(struct spi_master *master, 5208c2ecf20Sopenharmony_ci struct spi_message *msg) 5218c2ecf20Sopenharmony_ci{ 5228c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 5238c2ecf20Sopenharmony_ci unsigned long timeout; 5248c2ecf20Sopenharmony_ci 5258c2ecf20Sopenharmony_ci /* 5268c2ecf20Sopenharmony_ci * Just to be sure: flush any data from RX FIFO. 5278c2ecf20Sopenharmony_ci */ 5288c2ecf20Sopenharmony_ci timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); 5298c2ecf20Sopenharmony_ci while (readl(espi->mmio + SSPSR) & SSPSR_RNE) { 5308c2ecf20Sopenharmony_ci if (time_after(jiffies, timeout)) { 5318c2ecf20Sopenharmony_ci dev_warn(&master->dev, 5328c2ecf20Sopenharmony_ci "timeout while flushing RX FIFO\n"); 5338c2ecf20Sopenharmony_ci return -ETIMEDOUT; 5348c2ecf20Sopenharmony_ci } 5358c2ecf20Sopenharmony_ci readl(espi->mmio + SSPDR); 5368c2ecf20Sopenharmony_ci } 5378c2ecf20Sopenharmony_ci 5388c2ecf20Sopenharmony_ci /* 5398c2ecf20Sopenharmony_ci * We explicitly handle FIFO level. This way we don't have to check TX 5408c2ecf20Sopenharmony_ci * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. 5418c2ecf20Sopenharmony_ci */ 5428c2ecf20Sopenharmony_ci espi->fifo_level = 0; 5438c2ecf20Sopenharmony_ci 5448c2ecf20Sopenharmony_ci return 0; 5458c2ecf20Sopenharmony_ci} 5468c2ecf20Sopenharmony_ci 5478c2ecf20Sopenharmony_cistatic int ep93xx_spi_prepare_hardware(struct spi_master *master) 5488c2ecf20Sopenharmony_ci{ 5498c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 5508c2ecf20Sopenharmony_ci u32 val; 5518c2ecf20Sopenharmony_ci int ret; 5528c2ecf20Sopenharmony_ci 5538c2ecf20Sopenharmony_ci ret = clk_enable(espi->clk); 5548c2ecf20Sopenharmony_ci if (ret) 5558c2ecf20Sopenharmony_ci return ret; 5568c2ecf20Sopenharmony_ci 5578c2ecf20Sopenharmony_ci val = readl(espi->mmio + SSPCR1); 5588c2ecf20Sopenharmony_ci val |= SSPCR1_SSE; 5598c2ecf20Sopenharmony_ci writel(val, espi->mmio + SSPCR1); 5608c2ecf20Sopenharmony_ci 5618c2ecf20Sopenharmony_ci return 0; 5628c2ecf20Sopenharmony_ci} 5638c2ecf20Sopenharmony_ci 5648c2ecf20Sopenharmony_cistatic int ep93xx_spi_unprepare_hardware(struct spi_master *master) 5658c2ecf20Sopenharmony_ci{ 5668c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 5678c2ecf20Sopenharmony_ci u32 val; 5688c2ecf20Sopenharmony_ci 5698c2ecf20Sopenharmony_ci val = readl(espi->mmio + SSPCR1); 5708c2ecf20Sopenharmony_ci val &= ~SSPCR1_SSE; 5718c2ecf20Sopenharmony_ci writel(val, espi->mmio + SSPCR1); 5728c2ecf20Sopenharmony_ci 5738c2ecf20Sopenharmony_ci clk_disable(espi->clk); 5748c2ecf20Sopenharmony_ci 5758c2ecf20Sopenharmony_ci return 0; 5768c2ecf20Sopenharmony_ci} 5778c2ecf20Sopenharmony_ci 5788c2ecf20Sopenharmony_cistatic bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) 5798c2ecf20Sopenharmony_ci{ 5808c2ecf20Sopenharmony_ci if (ep93xx_dma_chan_is_m2p(chan)) 5818c2ecf20Sopenharmony_ci return false; 5828c2ecf20Sopenharmony_ci 5838c2ecf20Sopenharmony_ci chan->private = filter_param; 5848c2ecf20Sopenharmony_ci return true; 5858c2ecf20Sopenharmony_ci} 5868c2ecf20Sopenharmony_ci 5878c2ecf20Sopenharmony_cistatic int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) 5888c2ecf20Sopenharmony_ci{ 5898c2ecf20Sopenharmony_ci dma_cap_mask_t mask; 5908c2ecf20Sopenharmony_ci int ret; 5918c2ecf20Sopenharmony_ci 5928c2ecf20Sopenharmony_ci espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); 5938c2ecf20Sopenharmony_ci if (!espi->zeropage) 5948c2ecf20Sopenharmony_ci return -ENOMEM; 5958c2ecf20Sopenharmony_ci 5968c2ecf20Sopenharmony_ci dma_cap_zero(mask); 5978c2ecf20Sopenharmony_ci dma_cap_set(DMA_SLAVE, mask); 5988c2ecf20Sopenharmony_ci 5998c2ecf20Sopenharmony_ci espi->dma_rx_data.port = EP93XX_DMA_SSP; 6008c2ecf20Sopenharmony_ci espi->dma_rx_data.direction = DMA_DEV_TO_MEM; 6018c2ecf20Sopenharmony_ci espi->dma_rx_data.name = "ep93xx-spi-rx"; 6028c2ecf20Sopenharmony_ci 6038c2ecf20Sopenharmony_ci espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, 6048c2ecf20Sopenharmony_ci &espi->dma_rx_data); 6058c2ecf20Sopenharmony_ci if (!espi->dma_rx) { 6068c2ecf20Sopenharmony_ci ret = -ENODEV; 6078c2ecf20Sopenharmony_ci goto fail_free_page; 6088c2ecf20Sopenharmony_ci } 6098c2ecf20Sopenharmony_ci 6108c2ecf20Sopenharmony_ci espi->dma_tx_data.port = EP93XX_DMA_SSP; 6118c2ecf20Sopenharmony_ci espi->dma_tx_data.direction = DMA_MEM_TO_DEV; 6128c2ecf20Sopenharmony_ci espi->dma_tx_data.name = "ep93xx-spi-tx"; 6138c2ecf20Sopenharmony_ci 6148c2ecf20Sopenharmony_ci espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, 6158c2ecf20Sopenharmony_ci &espi->dma_tx_data); 6168c2ecf20Sopenharmony_ci if (!espi->dma_tx) { 6178c2ecf20Sopenharmony_ci ret = -ENODEV; 6188c2ecf20Sopenharmony_ci goto fail_release_rx; 6198c2ecf20Sopenharmony_ci } 6208c2ecf20Sopenharmony_ci 6218c2ecf20Sopenharmony_ci return 0; 6228c2ecf20Sopenharmony_ci 6238c2ecf20Sopenharmony_cifail_release_rx: 6248c2ecf20Sopenharmony_ci dma_release_channel(espi->dma_rx); 6258c2ecf20Sopenharmony_ci espi->dma_rx = NULL; 6268c2ecf20Sopenharmony_cifail_free_page: 6278c2ecf20Sopenharmony_ci free_page((unsigned long)espi->zeropage); 6288c2ecf20Sopenharmony_ci 6298c2ecf20Sopenharmony_ci return ret; 6308c2ecf20Sopenharmony_ci} 6318c2ecf20Sopenharmony_ci 6328c2ecf20Sopenharmony_cistatic void ep93xx_spi_release_dma(struct ep93xx_spi *espi) 6338c2ecf20Sopenharmony_ci{ 6348c2ecf20Sopenharmony_ci if (espi->dma_rx) { 6358c2ecf20Sopenharmony_ci dma_release_channel(espi->dma_rx); 6368c2ecf20Sopenharmony_ci sg_free_table(&espi->rx_sgt); 6378c2ecf20Sopenharmony_ci } 6388c2ecf20Sopenharmony_ci if (espi->dma_tx) { 6398c2ecf20Sopenharmony_ci dma_release_channel(espi->dma_tx); 6408c2ecf20Sopenharmony_ci sg_free_table(&espi->tx_sgt); 6418c2ecf20Sopenharmony_ci } 6428c2ecf20Sopenharmony_ci 6438c2ecf20Sopenharmony_ci if (espi->zeropage) 6448c2ecf20Sopenharmony_ci free_page((unsigned long)espi->zeropage); 6458c2ecf20Sopenharmony_ci} 6468c2ecf20Sopenharmony_ci 6478c2ecf20Sopenharmony_cistatic int ep93xx_spi_probe(struct platform_device *pdev) 6488c2ecf20Sopenharmony_ci{ 6498c2ecf20Sopenharmony_ci struct spi_master *master; 6508c2ecf20Sopenharmony_ci struct ep93xx_spi_info *info; 6518c2ecf20Sopenharmony_ci struct ep93xx_spi *espi; 6528c2ecf20Sopenharmony_ci struct resource *res; 6538c2ecf20Sopenharmony_ci int irq; 6548c2ecf20Sopenharmony_ci int error; 6558c2ecf20Sopenharmony_ci 6568c2ecf20Sopenharmony_ci info = dev_get_platdata(&pdev->dev); 6578c2ecf20Sopenharmony_ci if (!info) { 6588c2ecf20Sopenharmony_ci dev_err(&pdev->dev, "missing platform data\n"); 6598c2ecf20Sopenharmony_ci return -EINVAL; 6608c2ecf20Sopenharmony_ci } 6618c2ecf20Sopenharmony_ci 6628c2ecf20Sopenharmony_ci irq = platform_get_irq(pdev, 0); 6638c2ecf20Sopenharmony_ci if (irq < 0) 6648c2ecf20Sopenharmony_ci return -EBUSY; 6658c2ecf20Sopenharmony_ci 6668c2ecf20Sopenharmony_ci res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 6678c2ecf20Sopenharmony_ci if (!res) { 6688c2ecf20Sopenharmony_ci dev_err(&pdev->dev, "unable to get iomem resource\n"); 6698c2ecf20Sopenharmony_ci return -ENODEV; 6708c2ecf20Sopenharmony_ci } 6718c2ecf20Sopenharmony_ci 6728c2ecf20Sopenharmony_ci master = spi_alloc_master(&pdev->dev, sizeof(*espi)); 6738c2ecf20Sopenharmony_ci if (!master) 6748c2ecf20Sopenharmony_ci return -ENOMEM; 6758c2ecf20Sopenharmony_ci 6768c2ecf20Sopenharmony_ci master->use_gpio_descriptors = true; 6778c2ecf20Sopenharmony_ci master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware; 6788c2ecf20Sopenharmony_ci master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware; 6798c2ecf20Sopenharmony_ci master->prepare_message = ep93xx_spi_prepare_message; 6808c2ecf20Sopenharmony_ci master->transfer_one = ep93xx_spi_transfer_one; 6818c2ecf20Sopenharmony_ci master->bus_num = pdev->id; 6828c2ecf20Sopenharmony_ci master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 6838c2ecf20Sopenharmony_ci master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 6848c2ecf20Sopenharmony_ci /* 6858c2ecf20Sopenharmony_ci * The SPI core will count the number of GPIO descriptors to figure 6868c2ecf20Sopenharmony_ci * out the number of chip selects available on the platform. 6878c2ecf20Sopenharmony_ci */ 6888c2ecf20Sopenharmony_ci master->num_chipselect = 0; 6898c2ecf20Sopenharmony_ci 6908c2ecf20Sopenharmony_ci platform_set_drvdata(pdev, master); 6918c2ecf20Sopenharmony_ci 6928c2ecf20Sopenharmony_ci espi = spi_master_get_devdata(master); 6938c2ecf20Sopenharmony_ci 6948c2ecf20Sopenharmony_ci espi->clk = devm_clk_get(&pdev->dev, NULL); 6958c2ecf20Sopenharmony_ci if (IS_ERR(espi->clk)) { 6968c2ecf20Sopenharmony_ci dev_err(&pdev->dev, "unable to get spi clock\n"); 6978c2ecf20Sopenharmony_ci error = PTR_ERR(espi->clk); 6988c2ecf20Sopenharmony_ci goto fail_release_master; 6998c2ecf20Sopenharmony_ci } 7008c2ecf20Sopenharmony_ci 7018c2ecf20Sopenharmony_ci /* 7028c2ecf20Sopenharmony_ci * Calculate maximum and minimum supported clock rates 7038c2ecf20Sopenharmony_ci * for the controller. 7048c2ecf20Sopenharmony_ci */ 7058c2ecf20Sopenharmony_ci master->max_speed_hz = clk_get_rate(espi->clk) / 2; 7068c2ecf20Sopenharmony_ci master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256); 7078c2ecf20Sopenharmony_ci 7088c2ecf20Sopenharmony_ci espi->sspdr_phys = res->start + SSPDR; 7098c2ecf20Sopenharmony_ci 7108c2ecf20Sopenharmony_ci espi->mmio = devm_ioremap_resource(&pdev->dev, res); 7118c2ecf20Sopenharmony_ci if (IS_ERR(espi->mmio)) { 7128c2ecf20Sopenharmony_ci error = PTR_ERR(espi->mmio); 7138c2ecf20Sopenharmony_ci goto fail_release_master; 7148c2ecf20Sopenharmony_ci } 7158c2ecf20Sopenharmony_ci 7168c2ecf20Sopenharmony_ci error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt, 7178c2ecf20Sopenharmony_ci 0, "ep93xx-spi", master); 7188c2ecf20Sopenharmony_ci if (error) { 7198c2ecf20Sopenharmony_ci dev_err(&pdev->dev, "failed to request irq\n"); 7208c2ecf20Sopenharmony_ci goto fail_release_master; 7218c2ecf20Sopenharmony_ci } 7228c2ecf20Sopenharmony_ci 7238c2ecf20Sopenharmony_ci if (info->use_dma && ep93xx_spi_setup_dma(espi)) 7248c2ecf20Sopenharmony_ci dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); 7258c2ecf20Sopenharmony_ci 7268c2ecf20Sopenharmony_ci /* make sure that the hardware is disabled */ 7278c2ecf20Sopenharmony_ci writel(0, espi->mmio + SSPCR1); 7288c2ecf20Sopenharmony_ci 7298c2ecf20Sopenharmony_ci error = devm_spi_register_master(&pdev->dev, master); 7308c2ecf20Sopenharmony_ci if (error) { 7318c2ecf20Sopenharmony_ci dev_err(&pdev->dev, "failed to register SPI master\n"); 7328c2ecf20Sopenharmony_ci goto fail_free_dma; 7338c2ecf20Sopenharmony_ci } 7348c2ecf20Sopenharmony_ci 7358c2ecf20Sopenharmony_ci dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", 7368c2ecf20Sopenharmony_ci (unsigned long)res->start, irq); 7378c2ecf20Sopenharmony_ci 7388c2ecf20Sopenharmony_ci return 0; 7398c2ecf20Sopenharmony_ci 7408c2ecf20Sopenharmony_cifail_free_dma: 7418c2ecf20Sopenharmony_ci ep93xx_spi_release_dma(espi); 7428c2ecf20Sopenharmony_cifail_release_master: 7438c2ecf20Sopenharmony_ci spi_master_put(master); 7448c2ecf20Sopenharmony_ci 7458c2ecf20Sopenharmony_ci return error; 7468c2ecf20Sopenharmony_ci} 7478c2ecf20Sopenharmony_ci 7488c2ecf20Sopenharmony_cistatic int ep93xx_spi_remove(struct platform_device *pdev) 7498c2ecf20Sopenharmony_ci{ 7508c2ecf20Sopenharmony_ci struct spi_master *master = platform_get_drvdata(pdev); 7518c2ecf20Sopenharmony_ci struct ep93xx_spi *espi = spi_master_get_devdata(master); 7528c2ecf20Sopenharmony_ci 7538c2ecf20Sopenharmony_ci ep93xx_spi_release_dma(espi); 7548c2ecf20Sopenharmony_ci 7558c2ecf20Sopenharmony_ci return 0; 7568c2ecf20Sopenharmony_ci} 7578c2ecf20Sopenharmony_ci 7588c2ecf20Sopenharmony_cistatic struct platform_driver ep93xx_spi_driver = { 7598c2ecf20Sopenharmony_ci .driver = { 7608c2ecf20Sopenharmony_ci .name = "ep93xx-spi", 7618c2ecf20Sopenharmony_ci }, 7628c2ecf20Sopenharmony_ci .probe = ep93xx_spi_probe, 7638c2ecf20Sopenharmony_ci .remove = ep93xx_spi_remove, 7648c2ecf20Sopenharmony_ci}; 7658c2ecf20Sopenharmony_cimodule_platform_driver(ep93xx_spi_driver); 7668c2ecf20Sopenharmony_ci 7678c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("EP93xx SPI Controller driver"); 7688c2ecf20Sopenharmony_ciMODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); 7698c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL"); 7708c2ecf20Sopenharmony_ciMODULE_ALIAS("platform:ep93xx-spi"); 771