1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Designware SPI core controller driver (refer pxa2xx_spi.c)
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8#include <linux/dma-mapping.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/preempt.h>
12#include <linux/highmem.h>
13#include <linux/delay.h>
14#include <linux/slab.h>
15#include <linux/spi/spi.h>
16#include <linux/spi/spi-mem.h>
17#include <linux/string.h>
18#include <linux/of.h>
19
20#include "spi-dw.h"
21
22#ifdef CONFIG_DEBUG_FS
23#include <linux/debugfs.h>
24#endif
25
26/* Slave spi_device related */
27struct chip_data {
28	u32 cr0;
29	u32 rx_sample_dly;	/* RX sample delay */
30};
31
32#ifdef CONFIG_DEBUG_FS
33
34#define DW_SPI_DBGFS_REG(_name, _off)	\
35{					\
36	.name = _name,			\
37	.offset = _off,			\
38}
39
40static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
41	DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
42	DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
43	DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
44	DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
45	DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
46	DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
47	DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
48	DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
49	DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
50	DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
51	DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
52	DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
53	DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
54	DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
55	DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
56	DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
57};
58
59static int dw_spi_debugfs_init(struct dw_spi *dws)
60{
61	char name[32];
62
63	snprintf(name, 32, "dw_spi%d", dws->master->bus_num);
64	dws->debugfs = debugfs_create_dir(name, NULL);
65	if (!dws->debugfs)
66		return -ENOMEM;
67
68	dws->regset.regs = dw_spi_dbgfs_regs;
69	dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
70	dws->regset.base = dws->regs;
71	debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
72
73	return 0;
74}
75
76static void dw_spi_debugfs_remove(struct dw_spi *dws)
77{
78	debugfs_remove_recursive(dws->debugfs);
79}
80
81#else
82static inline int dw_spi_debugfs_init(struct dw_spi *dws)
83{
84	return 0;
85}
86
87static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
88{
89}
90#endif /* CONFIG_DEBUG_FS */
91
92void dw_spi_set_cs(struct spi_device *spi, bool enable)
93{
94	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
95	bool cs_high = !!(spi->mode & SPI_CS_HIGH);
96
97	/*
98	 * DW SPI controller demands any native CS being set in order to
99	 * proceed with data transfer. So in order to activate the SPI
100	 * communications we must set a corresponding bit in the Slave
101	 * Enable register no matter whether the SPI core is configured to
102	 * support active-high or active-low CS level.
103	 */
104	if (cs_high == enable)
105		dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
106	else
107		dw_writel(dws, DW_SPI_SER, 0);
108}
109EXPORT_SYMBOL_GPL(dw_spi_set_cs);
110
111/* Return the max entries we can fill into tx fifo */
112static inline u32 tx_max(struct dw_spi *dws)
113{
114	u32 tx_room, rxtx_gap;
115
116	tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
117
118	/*
119	 * Another concern is about the tx/rx mismatch, we
120	 * though to use (dws->fifo_len - rxflr - txflr) as
121	 * one maximum value for tx, but it doesn't cover the
122	 * data which is out of tx/rx fifo and inside the
123	 * shift registers. So a control from sw point of
124	 * view is taken.
125	 */
126	rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
127
128	return min3((u32)dws->tx_len, tx_room, rxtx_gap);
129}
130
131/* Return the max entries we should read out of rx fifo */
132static inline u32 rx_max(struct dw_spi *dws)
133{
134	return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
135}
136
137static void dw_writer(struct dw_spi *dws)
138{
139	u32 max = tx_max(dws);
140	u16 txw = 0;
141
142	while (max--) {
143		if (dws->tx) {
144			if (dws->n_bytes == 1)
145				txw = *(u8 *)(dws->tx);
146			else
147				txw = *(u16 *)(dws->tx);
148
149			dws->tx += dws->n_bytes;
150		}
151		dw_write_io_reg(dws, DW_SPI_DR, txw);
152		--dws->tx_len;
153	}
154}
155
156static void dw_reader(struct dw_spi *dws)
157{
158	u32 max = rx_max(dws);
159	u16 rxw;
160
161	while (max--) {
162		rxw = dw_read_io_reg(dws, DW_SPI_DR);
163		if (dws->rx) {
164			if (dws->n_bytes == 1)
165				*(u8 *)(dws->rx) = rxw;
166			else
167				*(u16 *)(dws->rx) = rxw;
168
169			dws->rx += dws->n_bytes;
170		}
171		--dws->rx_len;
172	}
173}
174
175int dw_spi_check_status(struct dw_spi *dws, bool raw)
176{
177	u32 irq_status;
178	int ret = 0;
179
180	if (raw)
181		irq_status = dw_readl(dws, DW_SPI_RISR);
182	else
183		irq_status = dw_readl(dws, DW_SPI_ISR);
184
185	if (irq_status & SPI_INT_RXOI) {
186		dev_err(&dws->master->dev, "RX FIFO overflow detected\n");
187		ret = -EIO;
188	}
189
190	if (irq_status & SPI_INT_RXUI) {
191		dev_err(&dws->master->dev, "RX FIFO underflow detected\n");
192		ret = -EIO;
193	}
194
195	if (irq_status & SPI_INT_TXOI) {
196		dev_err(&dws->master->dev, "TX FIFO overflow detected\n");
197		ret = -EIO;
198	}
199
200	/* Generically handle the erroneous situation */
201	if (ret) {
202		spi_reset_chip(dws);
203		if (dws->master->cur_msg)
204			dws->master->cur_msg->status = ret;
205	}
206
207	return ret;
208}
209EXPORT_SYMBOL_GPL(dw_spi_check_status);
210
211static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
212{
213	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
214
215	if (dw_spi_check_status(dws, false)) {
216		spi_finalize_current_transfer(dws->master);
217		return IRQ_HANDLED;
218	}
219
220	/*
221	 * Read data from the Rx FIFO every time we've got a chance executing
222	 * this method. If there is nothing left to receive, terminate the
223	 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
224	 * final stage of the transfer. By doing so we'll get the next IRQ
225	 * right when the leftover incoming data is received.
226	 */
227	dw_reader(dws);
228	if (!dws->rx_len) {
229		spi_mask_intr(dws, 0xff);
230		spi_finalize_current_transfer(dws->master);
231	} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
232		dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
233	}
234
235	/*
236	 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
237	 * disabled after the data transmission is finished so not to
238	 * have the TXE IRQ flood at the final stage of the transfer.
239	 */
240	if (irq_status & SPI_INT_TXEI) {
241		dw_writer(dws);
242		if (!dws->tx_len)
243			spi_mask_intr(dws, SPI_INT_TXEI);
244	}
245
246	return IRQ_HANDLED;
247}
248
249static irqreturn_t dw_spi_irq(int irq, void *dev_id)
250{
251	struct spi_controller *master = dev_id;
252	struct dw_spi *dws = spi_controller_get_devdata(master);
253	u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f;
254
255	if (!irq_status)
256		return IRQ_NONE;
257
258	if (!master->cur_msg) {
259		spi_mask_intr(dws, 0xff);
260		return IRQ_HANDLED;
261	}
262
263	return dws->transfer_handler(dws);
264}
265
266static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
267{
268	u32 cr0 = 0;
269
270	if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) {
271		/* CTRLR0[ 5: 4] Frame Format */
272		cr0 |= SSI_MOTO_SPI << SPI_FRF_OFFSET;
273
274		/*
275		 * SPI mode (SCPOL|SCPH)
276		 * CTRLR0[ 6] Serial Clock Phase
277		 * CTRLR0[ 7] Serial Clock Polarity
278		 */
279		cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << SPI_SCOL_OFFSET;
280		cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << SPI_SCPH_OFFSET;
281
282		/* CTRLR0[11] Shift Register Loop */
283		cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << SPI_SRL_OFFSET;
284	} else {
285		/* CTRLR0[ 7: 6] Frame Format */
286		cr0 |= SSI_MOTO_SPI << DWC_SSI_CTRLR0_FRF_OFFSET;
287
288		/*
289		 * SPI mode (SCPOL|SCPH)
290		 * CTRLR0[ 8] Serial Clock Phase
291		 * CTRLR0[ 9] Serial Clock Polarity
292		 */
293		cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << DWC_SSI_CTRLR0_SCPOL_OFFSET;
294		cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << DWC_SSI_CTRLR0_SCPH_OFFSET;
295
296		/* CTRLR0[13] Shift Register Loop */
297		cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << DWC_SSI_CTRLR0_SRL_OFFSET;
298
299		if (dws->caps & DW_SPI_CAP_KEEMBAY_MST)
300			cr0 |= DWC_SSI_CTRLR0_KEEMBAY_MST;
301	}
302
303	return cr0;
304}
305
306void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
307			  struct dw_spi_cfg *cfg)
308{
309	struct chip_data *chip = spi_get_ctldata(spi);
310	u32 cr0 = chip->cr0;
311	u32 speed_hz;
312	u16 clk_div;
313
314	/* CTRLR0[ 4/3: 0] Data Frame Size */
315	cr0 |= (cfg->dfs - 1);
316
317	if (!(dws->caps & DW_SPI_CAP_DWC_SSI))
318		/* CTRLR0[ 9:8] Transfer Mode */
319		cr0 |= cfg->tmode << SPI_TMOD_OFFSET;
320	else
321		/* CTRLR0[11:10] Transfer Mode */
322		cr0 |= cfg->tmode << DWC_SSI_CTRLR0_TMOD_OFFSET;
323
324	dw_writel(dws, DW_SPI_CTRLR0, cr0);
325
326	if (cfg->tmode == SPI_TMOD_EPROMREAD || cfg->tmode == SPI_TMOD_RO)
327		dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
328
329	/* Note DW APB SSI clock divider doesn't support odd numbers */
330	clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
331	speed_hz = dws->max_freq / clk_div;
332
333	if (dws->current_freq != speed_hz) {
334		spi_set_clk(dws, clk_div);
335		dws->current_freq = speed_hz;
336	}
337
338	/* Update RX sample delay if required */
339	if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
340		dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
341		dws->cur_rx_sample_dly = chip->rx_sample_dly;
342	}
343}
344EXPORT_SYMBOL_GPL(dw_spi_update_config);
345
346static void dw_spi_irq_setup(struct dw_spi *dws)
347{
348	u16 level;
349	u8 imask;
350
351	/*
352	 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
353	 * will be adjusted at the final stage of the IRQ-based SPI transfer
354	 * execution so not to lose the leftover of the incoming data.
355	 */
356	level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
357	dw_writel(dws, DW_SPI_TXFTLR, level);
358	dw_writel(dws, DW_SPI_RXFTLR, level - 1);
359
360	dws->transfer_handler = dw_spi_transfer_handler;
361
362	imask = SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI |
363		SPI_INT_RXFI;
364	spi_umask_intr(dws, imask);
365}
366
367/*
368 * The iterative procedure of the poll-based transfer is simple: write as much
369 * as possible to the Tx FIFO, wait until the pending to receive data is ready
370 * to be read, read it from the Rx FIFO and check whether the performed
371 * procedure has been successful.
372 *
373 * Note this method the same way as the IRQ-based transfer won't work well for
374 * the SPI devices connected to the controller with native CS due to the
375 * automatic CS assertion/de-assertion.
376 */
377static int dw_spi_poll_transfer(struct dw_spi *dws,
378				struct spi_transfer *transfer)
379{
380	struct spi_delay delay;
381	u16 nbits;
382	int ret;
383
384	delay.unit = SPI_DELAY_UNIT_SCK;
385	nbits = dws->n_bytes * BITS_PER_BYTE;
386
387	do {
388		dw_writer(dws);
389
390		delay.value = nbits * (dws->rx_len - dws->tx_len);
391		spi_delay_exec(&delay, transfer);
392
393		dw_reader(dws);
394
395		ret = dw_spi_check_status(dws, true);
396		if (ret)
397			return ret;
398	} while (dws->rx_len);
399
400	return 0;
401}
402
403static int dw_spi_transfer_one(struct spi_controller *master,
404		struct spi_device *spi, struct spi_transfer *transfer)
405{
406	struct dw_spi *dws = spi_controller_get_devdata(master);
407	struct dw_spi_cfg cfg = {
408		.tmode = SPI_TMOD_TR,
409		.dfs = transfer->bits_per_word,
410		.freq = transfer->speed_hz,
411	};
412	int ret;
413
414	dws->dma_mapped = 0;
415	dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE);
416	dws->tx = (void *)transfer->tx_buf;
417	dws->tx_len = transfer->len / dws->n_bytes;
418	dws->rx = transfer->rx_buf;
419	dws->rx_len = dws->tx_len;
420
421	/* Ensure the data above is visible for all CPUs */
422	smp_mb();
423
424	spi_enable_chip(dws, 0);
425
426	dw_spi_update_config(dws, spi, &cfg);
427
428	transfer->effective_speed_hz = dws->current_freq;
429
430	/* Check if current transfer is a DMA transaction */
431	if (master->can_dma && master->can_dma(master, spi, transfer))
432		dws->dma_mapped = master->cur_msg_mapped;
433
434	/* For poll mode just disable all interrupts */
435	spi_mask_intr(dws, 0xff);
436
437	if (dws->dma_mapped) {
438		ret = dws->dma_ops->dma_setup(dws, transfer);
439		if (ret)
440			return ret;
441	}
442
443	spi_enable_chip(dws, 1);
444
445	if (dws->dma_mapped)
446		return dws->dma_ops->dma_transfer(dws, transfer);
447	else if (dws->irq == IRQ_NOTCONNECTED)
448		return dw_spi_poll_transfer(dws, transfer);
449
450	dw_spi_irq_setup(dws);
451
452	return 1;
453}
454
455static void dw_spi_handle_err(struct spi_controller *master,
456		struct spi_message *msg)
457{
458	struct dw_spi *dws = spi_controller_get_devdata(master);
459
460	if (dws->dma_mapped)
461		dws->dma_ops->dma_stop(dws);
462
463	spi_reset_chip(dws);
464}
465
466static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
467{
468	if (op->data.dir == SPI_MEM_DATA_IN)
469		op->data.nbytes = clamp_val(op->data.nbytes, 0, SPI_NDF_MASK + 1);
470
471	return 0;
472}
473
474static bool dw_spi_supports_mem_op(struct spi_mem *mem,
475				   const struct spi_mem_op *op)
476{
477	if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
478	    op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
479		return false;
480
481	return spi_mem_default_supports_op(mem, op);
482}
483
484static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
485{
486	unsigned int i, j, len;
487	u8 *out;
488
489	/*
490	 * Calculate the total length of the EEPROM command transfer and
491	 * either use the pre-allocated buffer or create a temporary one.
492	 */
493	len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
494	if (op->data.dir == SPI_MEM_DATA_OUT)
495		len += op->data.nbytes;
496
497	if (len <= SPI_BUF_SIZE) {
498		out = dws->buf;
499	} else {
500		out = kzalloc(len, GFP_KERNEL);
501		if (!out)
502			return -ENOMEM;
503	}
504
505	/*
506	 * Collect the operation code, address and dummy bytes into the single
507	 * buffer. If it's a transfer with data to be sent, also copy it into the
508	 * single buffer in order to speed the data transmission up.
509	 */
510	for (i = 0; i < op->cmd.nbytes; ++i)
511		out[i] = SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
512	for (j = 0; j < op->addr.nbytes; ++i, ++j)
513		out[i] = SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
514	for (j = 0; j < op->dummy.nbytes; ++i, ++j)
515		out[i] = 0x0;
516
517	if (op->data.dir == SPI_MEM_DATA_OUT)
518		memcpy(&out[i], op->data.buf.out, op->data.nbytes);
519
520	dws->n_bytes = 1;
521	dws->tx = out;
522	dws->tx_len = len;
523	if (op->data.dir == SPI_MEM_DATA_IN) {
524		dws->rx = op->data.buf.in;
525		dws->rx_len = op->data.nbytes;
526	} else {
527		dws->rx = NULL;
528		dws->rx_len = 0;
529	}
530
531	return 0;
532}
533
534static void dw_spi_free_mem_buf(struct dw_spi *dws)
535{
536	if (dws->tx != dws->buf)
537		kfree(dws->tx);
538}
539
540static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
541{
542	u32 room, entries, sts;
543	unsigned int len;
544	u8 *buf;
545
546	/*
547	 * At initial stage we just pre-fill the Tx FIFO in with no rush,
548	 * since native CS hasn't been enabled yet and the automatic data
549	 * transmission won't start til we do that.
550	 */
551	len = min(dws->fifo_len, dws->tx_len);
552	buf = dws->tx;
553	while (len--)
554		dw_write_io_reg(dws, DW_SPI_DR, *buf++);
555
556	/*
557	 * After setting any bit in the SER register the transmission will
558	 * start automatically. We have to keep up with that procedure
559	 * otherwise the CS de-assertion will happen whereupon the memory
560	 * operation will be pre-terminated.
561	 */
562	len = dws->tx_len - ((void *)buf - dws->tx);
563	dw_spi_set_cs(spi, false);
564	while (len) {
565		entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
566		if (!entries) {
567			dev_err(&dws->master->dev, "CS de-assertion on Tx\n");
568			return -EIO;
569		}
570		room = min(dws->fifo_len - entries, len);
571		for (; room; --room, --len)
572			dw_write_io_reg(dws, DW_SPI_DR, *buf++);
573	}
574
575	/*
576	 * Data fetching will start automatically if the EEPROM-read mode is
577	 * activated. We have to keep up with the incoming data pace to
578	 * prevent the Rx FIFO overflow causing the inbound data loss.
579	 */
580	len = dws->rx_len;
581	buf = dws->rx;
582	while (len) {
583		entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
584		if (!entries) {
585			sts = readl_relaxed(dws->regs + DW_SPI_RISR);
586			if (sts & SPI_INT_RXOI) {
587				dev_err(&dws->master->dev, "FIFO overflow on Rx\n");
588				return -EIO;
589			}
590			continue;
591		}
592		entries = min(entries, len);
593		for (; entries; --entries, --len)
594			*buf++ = dw_read_io_reg(dws, DW_SPI_DR);
595	}
596
597	return 0;
598}
599
600static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
601{
602	return dw_readl(dws, DW_SPI_SR) & SR_BUSY;
603}
604
605static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
606{
607	int retry = SPI_WAIT_RETRIES;
608	struct spi_delay delay;
609	unsigned long ns, us;
610	u32 nents;
611
612	nents = dw_readl(dws, DW_SPI_TXFLR);
613	ns = NSEC_PER_SEC / dws->current_freq * nents;
614	ns *= dws->n_bytes * BITS_PER_BYTE;
615	if (ns <= NSEC_PER_USEC) {
616		delay.unit = SPI_DELAY_UNIT_NSECS;
617		delay.value = ns;
618	} else {
619		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
620		delay.unit = SPI_DELAY_UNIT_USECS;
621		delay.value = clamp_val(us, 0, USHRT_MAX);
622	}
623
624	while (dw_spi_ctlr_busy(dws) && retry--)
625		spi_delay_exec(&delay, NULL);
626
627	if (retry < 0) {
628		dev_err(&dws->master->dev, "Mem op hanged up\n");
629		return -EIO;
630	}
631
632	return 0;
633}
634
635static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
636{
637	spi_enable_chip(dws, 0);
638	dw_spi_set_cs(spi, true);
639	spi_enable_chip(dws, 1);
640}
641
642/*
643 * The SPI memory operation implementation below is the best choice for the
644 * devices, which are selected by the native chip-select lane. It's
645 * specifically developed to workaround the problem with automatic chip-select
646 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
647 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
648 * unavailable.
649 */
650static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
651{
652	struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
653	struct dw_spi_cfg cfg;
654	unsigned long flags;
655	int ret;
656
657	/*
658	 * Collect the outbound data into a single buffer to speed the
659	 * transmission up at least on the initial stage.
660	 */
661	ret = dw_spi_init_mem_buf(dws, op);
662	if (ret)
663		return ret;
664
665	/*
666	 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
667	 * operation. Transmit-only mode is suitable for the rest of them.
668	 */
669	cfg.dfs = 8;
670	cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
671	if (op->data.dir == SPI_MEM_DATA_IN) {
672		cfg.tmode = SPI_TMOD_EPROMREAD;
673		cfg.ndf = op->data.nbytes;
674	} else {
675		cfg.tmode = SPI_TMOD_TO;
676	}
677
678	spi_enable_chip(dws, 0);
679
680	dw_spi_update_config(dws, mem->spi, &cfg);
681
682	spi_mask_intr(dws, 0xff);
683
684	spi_enable_chip(dws, 1);
685
686	/*
687	 * DW APB SSI controller has very nasty peculiarities. First originally
688	 * (without any vendor-specific modifications) it doesn't provide a
689	 * direct way to set and clear the native chip-select signal. Instead
690	 * the controller asserts the CS lane if Tx FIFO isn't empty and a
691	 * transmission is going on, and automatically de-asserts it back to
692	 * the high level if the Tx FIFO doesn't have anything to be pushed
693	 * out. Due to that a multi-tasking or heavy IRQs activity might be
694	 * fatal, since the transfer procedure preemption may cause the Tx FIFO
695	 * getting empty and sudden CS de-assertion, which in the middle of the
696	 * transfer will most likely cause the data loss. Secondly the
697	 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
698	 * data being automatically pulled in into the Rx FIFO. So if the
699	 * driver software is late in fetching the data from the FIFO before
700	 * it's overflown, new incoming data will be lost. In order to make
701	 * sure the executed memory operations are CS-atomic and to prevent the
702	 * Rx FIFO overflow we have to disable the local interrupts so to block
703	 * any preemption during the subsequent IO operations.
704	 *
705	 * Note. At some circumstances disabling IRQs may not help to prevent
706	 * the problems described above. The CS de-assertion and Rx FIFO
707	 * overflow may still happen due to the relatively slow system bus or
708	 * CPU not working fast enough, so the write-then-read algo implemented
709	 * here just won't keep up with the SPI bus data transfer. Such
710	 * situation is highly platform specific and is supposed to be fixed by
711	 * manually restricting the SPI bus frequency using the
712	 * dws->max_mem_freq parameter.
713	 */
714	local_irq_save(flags);
715	preempt_disable();
716
717	ret = dw_spi_write_then_read(dws, mem->spi);
718
719	local_irq_restore(flags);
720	preempt_enable();
721
722	/*
723	 * Wait for the operation being finished and check the controller
724	 * status only if there hasn't been any run-time error detected. In the
725	 * former case it's just pointless. In the later one to prevent an
726	 * additional error message printing since any hw error flag being set
727	 * would be due to an error detected on the data transfer.
728	 */
729	if (!ret) {
730		ret = dw_spi_wait_mem_op_done(dws);
731		if (!ret)
732			ret = dw_spi_check_status(dws, true);
733	}
734
735	dw_spi_stop_mem_op(dws, mem->spi);
736
737	dw_spi_free_mem_buf(dws);
738
739	return ret;
740}
741
742/*
743 * Initialize the default memory operations if a glue layer hasn't specified
744 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
745 * controller doesn't have an embedded dirmap interface. Note the memory
746 * operations implemented in this driver is the best choice only for the DW APB
747 * SSI controller with standard native CS functionality. If a hardware vendor
748 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
749 * be safer to use the normal SPI-messages-based transfers implementation.
750 */
751static void dw_spi_init_mem_ops(struct dw_spi *dws)
752{
753	if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
754	    !dws->set_cs) {
755		dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
756		dws->mem_ops.supports_op = dw_spi_supports_mem_op;
757		dws->mem_ops.exec_op = dw_spi_exec_mem_op;
758		if (!dws->max_mem_freq)
759			dws->max_mem_freq = dws->max_freq;
760	}
761}
762
763/* This may be called twice for each spi dev */
764static int dw_spi_setup(struct spi_device *spi)
765{
766	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
767	struct chip_data *chip;
768
769	/* Only alloc on first setup */
770	chip = spi_get_ctldata(spi);
771	if (!chip) {
772		struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
773		u32 rx_sample_dly_ns;
774
775		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
776		if (!chip)
777			return -ENOMEM;
778		spi_set_ctldata(spi, chip);
779		/* Get specific / default rx-sample-delay */
780		if (device_property_read_u32(&spi->dev,
781					     "rx-sample-delay-ns",
782					     &rx_sample_dly_ns) != 0)
783			/* Use default controller value */
784			rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
785		chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
786							NSEC_PER_SEC /
787							dws->max_freq);
788	}
789
790	/*
791	 * Update CR0 data each time the setup callback is invoked since
792	 * the device parameters could have been changed, for instance, by
793	 * the MMC SPI driver or something else.
794	 */
795	chip->cr0 = dw_spi_prepare_cr0(dws, spi);
796
797	return 0;
798}
799
800static void dw_spi_cleanup(struct spi_device *spi)
801{
802	struct chip_data *chip = spi_get_ctldata(spi);
803
804	kfree(chip);
805	spi_set_ctldata(spi, NULL);
806}
807
808/* Restart the controller, disable all interrupts, clean rx fifo */
809static void spi_hw_init(struct device *dev, struct dw_spi *dws)
810{
811	spi_reset_chip(dws);
812
813	/*
814	 * Try to detect the FIFO depth if not set by interface driver,
815	 * the depth could be from 2 to 256 from HW spec
816	 */
817	if (!dws->fifo_len) {
818		u32 fifo;
819
820		for (fifo = 1; fifo < 256; fifo++) {
821			dw_writel(dws, DW_SPI_TXFTLR, fifo);
822			if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
823				break;
824		}
825		dw_writel(dws, DW_SPI_TXFTLR, 0);
826
827		dws->fifo_len = (fifo == 1) ? 0 : fifo;
828		dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
829	}
830
831	/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
832	if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
833		dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
834}
835
836int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
837{
838	struct spi_controller *master;
839	int ret;
840
841	if (!dws)
842		return -EINVAL;
843
844	master = spi_alloc_master(dev, 0);
845	if (!master)
846		return -ENOMEM;
847
848	dws->master = master;
849	dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
850
851	spi_controller_set_devdata(master, dws);
852
853	/* Basic HW init */
854	spi_hw_init(dev, dws);
855
856	ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
857			  master);
858	if (ret < 0 && ret != -ENOTCONN) {
859		dev_err(dev, "can not get IRQ\n");
860		goto err_free_master;
861	}
862
863	dw_spi_init_mem_ops(dws);
864
865	master->use_gpio_descriptors = true;
866	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
867	master->bits_per_word_mask =  SPI_BPW_RANGE_MASK(4, 16);
868	master->bus_num = dws->bus_num;
869	master->num_chipselect = dws->num_cs;
870	master->setup = dw_spi_setup;
871	master->cleanup = dw_spi_cleanup;
872	if (dws->set_cs)
873		master->set_cs = dws->set_cs;
874	else
875		master->set_cs = dw_spi_set_cs;
876	master->transfer_one = dw_spi_transfer_one;
877	master->handle_err = dw_spi_handle_err;
878	if (dws->mem_ops.exec_op)
879		master->mem_ops = &dws->mem_ops;
880	master->max_speed_hz = dws->max_freq;
881	master->dev.of_node = dev->of_node;
882	master->dev.fwnode = dev->fwnode;
883	master->flags = SPI_MASTER_GPIO_SS;
884	master->auto_runtime_pm = true;
885
886	/* Get default rx sample delay */
887	device_property_read_u32(dev, "rx-sample-delay-ns",
888				 &dws->def_rx_sample_dly_ns);
889
890	if (dws->dma_ops && dws->dma_ops->dma_init) {
891		ret = dws->dma_ops->dma_init(dev, dws);
892		if (ret) {
893			dev_warn(dev, "DMA init failed\n");
894		} else {
895			master->can_dma = dws->dma_ops->can_dma;
896			master->flags |= SPI_CONTROLLER_MUST_TX;
897		}
898	}
899
900	ret = spi_register_controller(master);
901	if (ret) {
902		dev_err(&master->dev, "problem registering spi master\n");
903		goto err_dma_exit;
904	}
905
906	dw_spi_debugfs_init(dws);
907	return 0;
908
909err_dma_exit:
910	if (dws->dma_ops && dws->dma_ops->dma_exit)
911		dws->dma_ops->dma_exit(dws);
912	spi_enable_chip(dws, 0);
913	free_irq(dws->irq, master);
914err_free_master:
915	spi_controller_put(master);
916	return ret;
917}
918EXPORT_SYMBOL_GPL(dw_spi_add_host);
919
920void dw_spi_remove_host(struct dw_spi *dws)
921{
922	dw_spi_debugfs_remove(dws);
923
924	spi_unregister_controller(dws->master);
925
926	if (dws->dma_ops && dws->dma_ops->dma_exit)
927		dws->dma_ops->dma_exit(dws);
928
929	spi_shutdown_chip(dws);
930
931	free_irq(dws->irq, dws->master);
932}
933EXPORT_SYMBOL_GPL(dw_spi_remove_host);
934
935int dw_spi_suspend_host(struct dw_spi *dws)
936{
937	int ret;
938
939	ret = spi_controller_suspend(dws->master);
940	if (ret)
941		return ret;
942
943	spi_shutdown_chip(dws);
944	return 0;
945}
946EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
947
948int dw_spi_resume_host(struct dw_spi *dws)
949{
950	spi_hw_init(&dws->master->dev, dws);
951	return spi_controller_resume(dws->master);
952}
953EXPORT_SYMBOL_GPL(dw_spi_resume_host);
954
955MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
956MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
957MODULE_LICENSE("GPL v2");
958