1// SPDX-License-Identifier: GPL-2.0-only
2//
3// Driver for Cadence QSPI Controller
4//
5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9#include <linux/clk.h>
10#include <linux/completion.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/err.h>
15#include <linux/errno.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
18#include <linux/iopoll.h>
19#include <linux/jiffies.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/of_device.h>
23#include <linux/of.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/reset.h>
27#include <linux/sched.h>
28#include <linux/spi/spi.h>
29#include <linux/spi/spi-mem.h>
30#include <linux/timer.h>
31
32#define CQSPI_NAME			"cadence-qspi"
33#define CQSPI_MAX_CHIPSELECT		16
34
35/* Quirks */
36#define CQSPI_NEEDS_WR_DELAY		BIT(0)
37#define CQSPI_DISABLE_DAC_MODE		BIT(1)
38
39/* Capabilities */
40#define CQSPI_SUPPORTS_OCTAL		BIT(0)
41
42struct cqspi_st;
43
44struct cqspi_flash_pdata {
45	struct cqspi_st	*cqspi;
46	u32		clk_rate;
47	u32		read_delay;
48	u32		tshsl_ns;
49	u32		tsd2d_ns;
50	u32		tchsh_ns;
51	u32		tslch_ns;
52	u8		inst_width;
53	u8		addr_width;
54	u8		data_width;
55	u8		cs;
56};
57
58struct cqspi_st {
59	struct platform_device	*pdev;
60
61	struct clk		*clk;
62	unsigned int		sclk;
63
64	void __iomem		*iobase;
65	void __iomem		*ahb_base;
66	resource_size_t		ahb_size;
67	struct completion	transfer_complete;
68
69	struct dma_chan		*rx_chan;
70	struct completion	rx_dma_complete;
71	dma_addr_t		mmap_phys_base;
72
73	int			current_cs;
74	unsigned long		master_ref_clk_hz;
75	bool			is_decoded_cs;
76	u32			fifo_depth;
77	u32			fifo_width;
78	bool			rclk_en;
79	u32			trigger_address;
80	u32			wr_delay;
81	bool			use_direct_mode;
82	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
83};
84
85struct cqspi_driver_platdata {
86	u32 hwcaps_mask;
87	u8 quirks;
88};
89
90/* Operation timeout value */
91#define CQSPI_TIMEOUT_MS			500
92#define CQSPI_READ_TIMEOUT_MS			10
93
94/* Instruction type */
95#define CQSPI_INST_TYPE_SINGLE			0
96#define CQSPI_INST_TYPE_DUAL			1
97#define CQSPI_INST_TYPE_QUAD			2
98#define CQSPI_INST_TYPE_OCTAL			3
99
100#define CQSPI_DUMMY_CLKS_PER_BYTE		8
101#define CQSPI_DUMMY_BYTES_MAX			4
102#define CQSPI_DUMMY_CLKS_MAX			31
103
104#define CQSPI_STIG_DATA_LEN_MAX			8
105
106/* Register map */
107#define CQSPI_REG_CONFIG			0x00
108#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
109#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
110#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
111#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
112#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
113#define CQSPI_REG_CONFIG_BAUD_LSB		19
114#define CQSPI_REG_CONFIG_IDLE_LSB		31
115#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
116#define CQSPI_REG_CONFIG_BAUD_MASK		0xF
117
118#define CQSPI_REG_RD_INSTR			0x04
119#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
120#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
121#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
122#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
123#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
124#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
125#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
126#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
127#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
128#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
129
130#define CQSPI_REG_WR_INSTR			0x08
131#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
132#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
133#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
134
135#define CQSPI_REG_DELAY				0x0C
136#define CQSPI_REG_DELAY_TSLCH_LSB		0
137#define CQSPI_REG_DELAY_TCHSH_LSB		8
138#define CQSPI_REG_DELAY_TSD2D_LSB		16
139#define CQSPI_REG_DELAY_TSHSL_LSB		24
140#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
141#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
142#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
143#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
144
145#define CQSPI_REG_READCAPTURE			0x10
146#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
147#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
148#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
149
150#define CQSPI_REG_SIZE				0x14
151#define CQSPI_REG_SIZE_ADDRESS_LSB		0
152#define CQSPI_REG_SIZE_PAGE_LSB			4
153#define CQSPI_REG_SIZE_BLOCK_LSB		16
154#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
155#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
156#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
157
158#define CQSPI_REG_SRAMPARTITION			0x18
159#define CQSPI_REG_INDIRECTTRIGGER		0x1C
160
161#define CQSPI_REG_DMA				0x20
162#define CQSPI_REG_DMA_SINGLE_LSB		0
163#define CQSPI_REG_DMA_BURST_LSB			8
164#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
165#define CQSPI_REG_DMA_BURST_MASK		0xFF
166
167#define CQSPI_REG_REMAP				0x24
168#define CQSPI_REG_MODE_BIT			0x28
169
170#define CQSPI_REG_SDRAMLEVEL			0x2C
171#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
172#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
173#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
174#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
175
176#define CQSPI_REG_IRQSTATUS			0x40
177#define CQSPI_REG_IRQMASK			0x44
178
179#define CQSPI_REG_INDIRECTRD			0x60
180#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
181#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
182#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
183
184#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
185#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
186#define CQSPI_REG_INDIRECTRDBYTES		0x6C
187
188#define CQSPI_REG_CMDCTRL			0x90
189#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
190#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
191#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
192#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
193#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
194#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
195#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
196#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
197#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
198#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
199#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
200#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
201
202#define CQSPI_REG_INDIRECTWR			0x70
203#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
204#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
205#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
206
207#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
208#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
209#define CQSPI_REG_INDIRECTWRBYTES		0x7C
210
211#define CQSPI_REG_CMDADDRESS			0x94
212#define CQSPI_REG_CMDREADDATALOWER		0xA0
213#define CQSPI_REG_CMDREADDATAUPPER		0xA4
214#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
215#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
216
217/* Interrupt status bits */
218#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
219#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
220#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
221#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
222#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
223#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
224#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
225#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
226
227#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
228					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
229					 CQSPI_REG_IRQ_IND_COMP)
230
231#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
232					 CQSPI_REG_IRQ_WATERMARK	| \
233					 CQSPI_REG_IRQ_UNDERFLOW)
234
235#define CQSPI_IRQ_STATUS_MASK		0x1FFFF
236
237static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
238{
239	u32 val;
240
241	return readl_relaxed_poll_timeout(reg, val,
242					  (((clr ? ~val : val) & mask) == mask),
243					  10, CQSPI_TIMEOUT_MS * 1000);
244}
245
246static bool cqspi_is_idle(struct cqspi_st *cqspi)
247{
248	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
249
250	return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
251}
252
253static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
254{
255	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
256
257	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
258	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
259}
260
261static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
262{
263	struct cqspi_st *cqspi = dev;
264	unsigned int irq_status;
265
266	/* Read interrupt status */
267	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
268
269	/* Clear interrupt */
270	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
271
272	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
273
274	if (irq_status)
275		complete(&cqspi->transfer_complete);
276
277	return IRQ_HANDLED;
278}
279
280static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
281{
282	u32 rdreg = 0;
283
284	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
285	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
286	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
287
288	return rdreg;
289}
290
291static int cqspi_wait_idle(struct cqspi_st *cqspi)
292{
293	const unsigned int poll_idle_retry = 3;
294	unsigned int count = 0;
295	unsigned long timeout;
296
297	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
298	while (1) {
299		/*
300		 * Read few times in succession to ensure the controller
301		 * is indeed idle, that is, the bit does not transition
302		 * low again.
303		 */
304		if (cqspi_is_idle(cqspi))
305			count++;
306		else
307			count = 0;
308
309		if (count >= poll_idle_retry)
310			return 0;
311
312		if (time_after(jiffies, timeout)) {
313			/* Timeout, in busy mode. */
314			dev_err(&cqspi->pdev->dev,
315				"QSPI is still busy after %dms timeout.\n",
316				CQSPI_TIMEOUT_MS);
317			return -ETIMEDOUT;
318		}
319
320		cpu_relax();
321	}
322}
323
324static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
325{
326	void __iomem *reg_base = cqspi->iobase;
327	int ret;
328
329	/* Write the CMDCTRL without start execution. */
330	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
331	/* Start execute */
332	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
333	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
334
335	/* Polling for completion. */
336	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
337				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
338	if (ret) {
339		dev_err(&cqspi->pdev->dev,
340			"Flash command execution timed out.\n");
341		return ret;
342	}
343
344	/* Polling QSPI idle status. */
345	return cqspi_wait_idle(cqspi);
346}
347
348static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
349			      const struct spi_mem_op *op)
350{
351	struct cqspi_st *cqspi = f_pdata->cqspi;
352	void __iomem *reg_base = cqspi->iobase;
353	u8 *rxbuf = op->data.buf.in;
354	u8 opcode = op->cmd.opcode;
355	size_t n_rx = op->data.nbytes;
356	unsigned int rdreg;
357	unsigned int reg;
358	size_t read_len;
359	int status;
360
361	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
362		dev_err(&cqspi->pdev->dev,
363			"Invalid input argument, len %zu rxbuf 0x%p\n",
364			n_rx, rxbuf);
365		return -EINVAL;
366	}
367
368	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
369
370	rdreg = cqspi_calc_rdreg(f_pdata);
371	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
372
373	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
374
375	/* 0 means 1 byte. */
376	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
377		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
378	status = cqspi_exec_flash_cmd(cqspi, reg);
379	if (status)
380		return status;
381
382	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
383
384	/* Put the read value into rx_buf */
385	read_len = (n_rx > 4) ? 4 : n_rx;
386	memcpy(rxbuf, &reg, read_len);
387	rxbuf += read_len;
388
389	if (n_rx > 4) {
390		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
391
392		read_len = n_rx - read_len;
393		memcpy(rxbuf, &reg, read_len);
394	}
395
396	return 0;
397}
398
399static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
400			       const struct spi_mem_op *op)
401{
402	struct cqspi_st *cqspi = f_pdata->cqspi;
403	void __iomem *reg_base = cqspi->iobase;
404	const u8 opcode = op->cmd.opcode;
405	const u8 *txbuf = op->data.buf.out;
406	size_t n_tx = op->data.nbytes;
407	unsigned int reg;
408	unsigned int data;
409	size_t write_len;
410
411	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
412		dev_err(&cqspi->pdev->dev,
413			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
414			n_tx, txbuf);
415		return -EINVAL;
416	}
417
418	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
419
420	if (op->addr.nbytes) {
421		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
422		reg |= ((op->addr.nbytes - 1) &
423			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
424			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
425
426		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
427	}
428
429	if (n_tx) {
430		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
431		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
432			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
433		data = 0;
434		write_len = (n_tx > 4) ? 4 : n_tx;
435		memcpy(&data, txbuf, write_len);
436		txbuf += write_len;
437		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
438
439		if (n_tx > 4) {
440			data = 0;
441			write_len = n_tx - 4;
442			memcpy(&data, txbuf, write_len);
443			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
444		}
445	}
446
447	return cqspi_exec_flash_cmd(cqspi, reg);
448}
449
450static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
451			    const struct spi_mem_op *op)
452{
453	struct cqspi_st *cqspi = f_pdata->cqspi;
454	void __iomem *reg_base = cqspi->iobase;
455	unsigned int dummy_clk = 0;
456	unsigned int reg;
457
458	reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
459	reg |= cqspi_calc_rdreg(f_pdata);
460
461	/* Setup dummy clock cycles */
462	dummy_clk = op->dummy.nbytes * 8;
463	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
464		return -EOPNOTSUPP;
465
466	if (dummy_clk)
467		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
468		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
469
470	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
471
472	/* Set address width */
473	reg = readl(reg_base + CQSPI_REG_SIZE);
474	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
475	reg |= (op->addr.nbytes - 1);
476	writel(reg, reg_base + CQSPI_REG_SIZE);
477	return 0;
478}
479
480static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
481				       u8 *rxbuf, loff_t from_addr,
482				       const size_t n_rx)
483{
484	struct cqspi_st *cqspi = f_pdata->cqspi;
485	struct device *dev = &cqspi->pdev->dev;
486	void __iomem *reg_base = cqspi->iobase;
487	void __iomem *ahb_base = cqspi->ahb_base;
488	unsigned int remaining = n_rx;
489	unsigned int mod_bytes = n_rx % 4;
490	unsigned int bytes_to_read = 0;
491	u8 *rxbuf_end = rxbuf + n_rx;
492	int ret = 0;
493
494	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
495	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
496
497	/* Clear all interrupts. */
498	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
499
500	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
501
502	reinit_completion(&cqspi->transfer_complete);
503	writel(CQSPI_REG_INDIRECTRD_START_MASK,
504	       reg_base + CQSPI_REG_INDIRECTRD);
505
506	while (remaining > 0) {
507		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
508						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
509			ret = -ETIMEDOUT;
510
511		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
512
513		if (ret && bytes_to_read == 0) {
514			dev_err(dev, "Indirect read timeout, no bytes\n");
515			goto failrd;
516		}
517
518		while (bytes_to_read != 0) {
519			unsigned int word_remain = round_down(remaining, 4);
520
521			bytes_to_read *= cqspi->fifo_width;
522			bytes_to_read = bytes_to_read > remaining ?
523					remaining : bytes_to_read;
524			bytes_to_read = round_down(bytes_to_read, 4);
525			/* Read 4 byte word chunks then single bytes */
526			if (bytes_to_read) {
527				ioread32_rep(ahb_base, rxbuf,
528					     (bytes_to_read / 4));
529			} else if (!word_remain && mod_bytes) {
530				unsigned int temp = ioread32(ahb_base);
531
532				bytes_to_read = mod_bytes;
533				memcpy(rxbuf, &temp, min((unsigned int)
534							 (rxbuf_end - rxbuf),
535							 bytes_to_read));
536			}
537			rxbuf += bytes_to_read;
538			remaining -= bytes_to_read;
539			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
540		}
541
542		if (remaining > 0)
543			reinit_completion(&cqspi->transfer_complete);
544	}
545
546	/* Check indirect done status */
547	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
548				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
549	if (ret) {
550		dev_err(dev, "Indirect read completion error (%i)\n", ret);
551		goto failrd;
552	}
553
554	/* Disable interrupt */
555	writel(0, reg_base + CQSPI_REG_IRQMASK);
556
557	/* Clear indirect completion status */
558	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
559
560	return 0;
561
562failrd:
563	/* Disable interrupt */
564	writel(0, reg_base + CQSPI_REG_IRQMASK);
565
566	/* Cancel the indirect read */
567	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
568	       reg_base + CQSPI_REG_INDIRECTRD);
569	return ret;
570}
571
572static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
573			     const struct spi_mem_op *op)
574{
575	unsigned int reg;
576	struct cqspi_st *cqspi = f_pdata->cqspi;
577	void __iomem *reg_base = cqspi->iobase;
578
579	/* Set opcode. */
580	reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
581	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
582	reg = cqspi_calc_rdreg(f_pdata);
583	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
584
585	reg = readl(reg_base + CQSPI_REG_SIZE);
586	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
587	reg |= (op->addr.nbytes - 1);
588	writel(reg, reg_base + CQSPI_REG_SIZE);
589	return 0;
590}
591
592static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
593					loff_t to_addr, const u8 *txbuf,
594					const size_t n_tx)
595{
596	struct cqspi_st *cqspi = f_pdata->cqspi;
597	struct device *dev = &cqspi->pdev->dev;
598	void __iomem *reg_base = cqspi->iobase;
599	unsigned int remaining = n_tx;
600	unsigned int write_bytes;
601	int ret;
602
603	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
604	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
605
606	/* Clear all interrupts. */
607	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
608
609	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
610
611	reinit_completion(&cqspi->transfer_complete);
612	writel(CQSPI_REG_INDIRECTWR_START_MASK,
613	       reg_base + CQSPI_REG_INDIRECTWR);
614	/*
615	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
616	 * Controller programming sequence, couple of cycles of
617	 * QSPI_REF_CLK delay is required for the above bit to
618	 * be internally synchronized by the QSPI module. Provide 5
619	 * cycles of delay.
620	 */
621	if (cqspi->wr_delay)
622		ndelay(cqspi->wr_delay);
623
624	while (remaining > 0) {
625		size_t write_words, mod_bytes;
626
627		write_bytes = remaining;
628		write_words = write_bytes / 4;
629		mod_bytes = write_bytes % 4;
630		/* Write 4 bytes at a time then single bytes. */
631		if (write_words) {
632			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
633			txbuf += (write_words * 4);
634		}
635		if (mod_bytes) {
636			unsigned int temp = 0xFFFFFFFF;
637
638			memcpy(&temp, txbuf, mod_bytes);
639			iowrite32(temp, cqspi->ahb_base);
640			txbuf += mod_bytes;
641		}
642
643		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
644						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
645			dev_err(dev, "Indirect write timeout\n");
646			ret = -ETIMEDOUT;
647			goto failwr;
648		}
649
650		remaining -= write_bytes;
651
652		if (remaining > 0)
653			reinit_completion(&cqspi->transfer_complete);
654	}
655
656	/* Check indirect done status */
657	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
658				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
659	if (ret) {
660		dev_err(dev, "Indirect write completion error (%i)\n", ret);
661		goto failwr;
662	}
663
664	/* Disable interrupt. */
665	writel(0, reg_base + CQSPI_REG_IRQMASK);
666
667	/* Clear indirect completion status */
668	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
669
670	cqspi_wait_idle(cqspi);
671
672	return 0;
673
674failwr:
675	/* Disable interrupt. */
676	writel(0, reg_base + CQSPI_REG_IRQMASK);
677
678	/* Cancel the indirect write */
679	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
680	       reg_base + CQSPI_REG_INDIRECTWR);
681	return ret;
682}
683
684static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
685{
686	struct cqspi_st *cqspi = f_pdata->cqspi;
687	void __iomem *reg_base = cqspi->iobase;
688	unsigned int chip_select = f_pdata->cs;
689	unsigned int reg;
690
691	reg = readl(reg_base + CQSPI_REG_CONFIG);
692	if (cqspi->is_decoded_cs) {
693		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
694	} else {
695		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
696
697		/* Convert CS if without decoder.
698		 * CS0 to 4b'1110
699		 * CS1 to 4b'1101
700		 * CS2 to 4b'1011
701		 * CS3 to 4b'0111
702		 */
703		chip_select = 0xF & ~(1 << chip_select);
704	}
705
706	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
707		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
708	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
709	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
710	writel(reg, reg_base + CQSPI_REG_CONFIG);
711}
712
713static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
714					   const unsigned int ns_val)
715{
716	unsigned int ticks;
717
718	ticks = ref_clk_hz / 1000;	/* kHz */
719	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
720
721	return ticks;
722}
723
724static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
725{
726	struct cqspi_st *cqspi = f_pdata->cqspi;
727	void __iomem *iobase = cqspi->iobase;
728	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
729	unsigned int tshsl, tchsh, tslch, tsd2d;
730	unsigned int reg;
731	unsigned int tsclk;
732
733	/* calculate the number of ref ticks for one sclk tick */
734	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
735
736	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
737	/* this particular value must be at least one sclk */
738	if (tshsl < tsclk)
739		tshsl = tsclk;
740
741	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
742	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
743	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
744
745	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
746	       << CQSPI_REG_DELAY_TSHSL_LSB;
747	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
748		<< CQSPI_REG_DELAY_TCHSH_LSB;
749	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
750		<< CQSPI_REG_DELAY_TSLCH_LSB;
751	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
752		<< CQSPI_REG_DELAY_TSD2D_LSB;
753	writel(reg, iobase + CQSPI_REG_DELAY);
754}
755
756static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
757{
758	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
759	void __iomem *reg_base = cqspi->iobase;
760	u32 reg, div;
761
762	/* Recalculate the baudrate divisor based on QSPI specification. */
763	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
764
765	reg = readl(reg_base + CQSPI_REG_CONFIG);
766	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
767	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
768	writel(reg, reg_base + CQSPI_REG_CONFIG);
769}
770
771static void cqspi_readdata_capture(struct cqspi_st *cqspi,
772				   const bool bypass,
773				   const unsigned int delay)
774{
775	void __iomem *reg_base = cqspi->iobase;
776	unsigned int reg;
777
778	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
779
780	if (bypass)
781		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
782	else
783		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
784
785	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
786		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
787
788	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
789		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
790
791	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
792}
793
794static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
795{
796	void __iomem *reg_base = cqspi->iobase;
797	unsigned int reg;
798
799	reg = readl(reg_base + CQSPI_REG_CONFIG);
800
801	if (enable)
802		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
803	else
804		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
805
806	writel(reg, reg_base + CQSPI_REG_CONFIG);
807}
808
809static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
810			    unsigned long sclk)
811{
812	struct cqspi_st *cqspi = f_pdata->cqspi;
813	int switch_cs = (cqspi->current_cs != f_pdata->cs);
814	int switch_ck = (cqspi->sclk != sclk);
815
816	if (switch_cs || switch_ck)
817		cqspi_controller_enable(cqspi, 0);
818
819	/* Switch chip select. */
820	if (switch_cs) {
821		cqspi->current_cs = f_pdata->cs;
822		cqspi_chipselect(f_pdata);
823	}
824
825	/* Setup baudrate divisor and delays */
826	if (switch_ck) {
827		cqspi->sclk = sclk;
828		cqspi_config_baudrate_div(cqspi);
829		cqspi_delay(f_pdata);
830		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
831				       f_pdata->read_delay);
832	}
833
834	if (switch_cs || switch_ck)
835		cqspi_controller_enable(cqspi, 1);
836}
837
838static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
839			      const struct spi_mem_op *op)
840{
841	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
842	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
843	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
844
845	if (op->data.dir == SPI_MEM_DATA_IN) {
846		switch (op->data.buswidth) {
847		case 1:
848			f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
849			break;
850		case 2:
851			f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
852			break;
853		case 4:
854			f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
855			break;
856		case 8:
857			f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
858			break;
859		default:
860			return -EINVAL;
861		}
862	}
863
864	return 0;
865}
866
867static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
868			   const struct spi_mem_op *op)
869{
870	struct cqspi_st *cqspi = f_pdata->cqspi;
871	loff_t to = op->addr.val;
872	size_t len = op->data.nbytes;
873	const u_char *buf = op->data.buf.out;
874	int ret;
875
876	ret = cqspi_set_protocol(f_pdata, op);
877	if (ret)
878		return ret;
879
880	ret = cqspi_write_setup(f_pdata, op);
881	if (ret)
882		return ret;
883
884	if (cqspi->use_direct_mode && ((to + len) <= cqspi->ahb_size)) {
885		memcpy_toio(cqspi->ahb_base + to, buf, len);
886		return cqspi_wait_idle(cqspi);
887	}
888
889	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
890}
891
892static void cqspi_rx_dma_callback(void *param)
893{
894	struct cqspi_st *cqspi = param;
895
896	complete(&cqspi->rx_dma_complete);
897}
898
899static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
900				     u_char *buf, loff_t from, size_t len)
901{
902	struct cqspi_st *cqspi = f_pdata->cqspi;
903	struct device *dev = &cqspi->pdev->dev;
904	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
905	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
906	int ret = 0;
907	struct dma_async_tx_descriptor *tx;
908	dma_cookie_t cookie;
909	dma_addr_t dma_dst;
910	struct device *ddev;
911
912	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
913		memcpy_fromio(buf, cqspi->ahb_base + from, len);
914		return 0;
915	}
916
917	ddev = cqspi->rx_chan->device->dev;
918	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
919	if (dma_mapping_error(ddev, dma_dst)) {
920		dev_err(dev, "dma mapping failed\n");
921		return -ENOMEM;
922	}
923	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
924				       len, flags);
925	if (!tx) {
926		dev_err(dev, "device_prep_dma_memcpy error\n");
927		ret = -EIO;
928		goto err_unmap;
929	}
930
931	tx->callback = cqspi_rx_dma_callback;
932	tx->callback_param = cqspi;
933	cookie = tx->tx_submit(tx);
934	reinit_completion(&cqspi->rx_dma_complete);
935
936	ret = dma_submit_error(cookie);
937	if (ret) {
938		dev_err(dev, "dma_submit_error %d\n", cookie);
939		ret = -EIO;
940		goto err_unmap;
941	}
942
943	dma_async_issue_pending(cqspi->rx_chan);
944	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
945					 msecs_to_jiffies(len))) {
946		dmaengine_terminate_sync(cqspi->rx_chan);
947		dev_err(dev, "DMA wait_for_completion_timeout\n");
948		ret = -ETIMEDOUT;
949		goto err_unmap;
950	}
951
952err_unmap:
953	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
954
955	return ret;
956}
957
958static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
959			  const struct spi_mem_op *op)
960{
961	struct cqspi_st *cqspi = f_pdata->cqspi;
962	loff_t from = op->addr.val;
963	size_t len = op->data.nbytes;
964	u_char *buf = op->data.buf.in;
965	int ret;
966
967	ret = cqspi_set_protocol(f_pdata, op);
968	if (ret)
969		return ret;
970
971	ret = cqspi_read_setup(f_pdata, op);
972	if (ret)
973		return ret;
974
975	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
976		return cqspi_direct_read_execute(f_pdata, buf, from, len);
977
978	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
979}
980
981static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
982{
983	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
984	struct cqspi_flash_pdata *f_pdata;
985
986	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
987	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
988
989	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
990		if (!op->addr.nbytes)
991			return cqspi_command_read(f_pdata, op);
992
993		return cqspi_read(f_pdata, op);
994	}
995
996	if (!op->addr.nbytes || !op->data.buf.out)
997		return cqspi_command_write(f_pdata, op);
998
999	return cqspi_write(f_pdata, op);
1000}
1001
1002static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1003{
1004	int ret;
1005
1006	ret = cqspi_mem_process(mem, op);
1007	if (ret)
1008		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1009
1010	return ret;
1011}
1012
1013static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1014				    struct cqspi_flash_pdata *f_pdata,
1015				    struct device_node *np)
1016{
1017	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1018		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1019		return -ENXIO;
1020	}
1021
1022	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1023		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1024		return -ENXIO;
1025	}
1026
1027	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1028		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1029		return -ENXIO;
1030	}
1031
1032	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1033		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1034		return -ENXIO;
1035	}
1036
1037	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1038		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1039		return -ENXIO;
1040	}
1041
1042	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1043		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1044		return -ENXIO;
1045	}
1046
1047	return 0;
1048}
1049
1050static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1051{
1052	struct device *dev = &cqspi->pdev->dev;
1053	struct device_node *np = dev->of_node;
1054
1055	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1056
1057	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1058		dev_err(dev, "couldn't determine fifo-depth\n");
1059		return -ENXIO;
1060	}
1061
1062	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1063		dev_err(dev, "couldn't determine fifo-width\n");
1064		return -ENXIO;
1065	}
1066
1067	if (of_property_read_u32(np, "cdns,trigger-address",
1068				 &cqspi->trigger_address)) {
1069		dev_err(dev, "couldn't determine trigger-address\n");
1070		return -ENXIO;
1071	}
1072
1073	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1074
1075	return 0;
1076}
1077
1078static void cqspi_controller_init(struct cqspi_st *cqspi)
1079{
1080	u32 reg;
1081
1082	cqspi_controller_enable(cqspi, 0);
1083
1084	/* Configure the remap address register, no remap */
1085	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1086
1087	/* Disable all interrupts. */
1088	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1089
1090	/* Configure the SRAM split to 1:1 . */
1091	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1092
1093	/* Load indirect trigger address. */
1094	writel(cqspi->trigger_address,
1095	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1096
1097	/* Program read watermark -- 1/2 of the FIFO. */
1098	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1099	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1100	/* Program write watermark -- 1/8 of the FIFO. */
1101	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1102	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1103
1104	/* Enable Direct Access Controller */
1105	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1106	reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1107	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1108
1109	cqspi_controller_enable(cqspi, 1);
1110}
1111
1112static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1113{
1114	dma_cap_mask_t mask;
1115
1116	dma_cap_zero(mask);
1117	dma_cap_set(DMA_MEMCPY, mask);
1118
1119	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1120	if (IS_ERR(cqspi->rx_chan)) {
1121		int ret = PTR_ERR(cqspi->rx_chan);
1122		cqspi->rx_chan = NULL;
1123		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1124	}
1125	init_completion(&cqspi->rx_dma_complete);
1126
1127	return 0;
1128}
1129
1130static const char *cqspi_get_name(struct spi_mem *mem)
1131{
1132	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1133	struct device *dev = &cqspi->pdev->dev;
1134
1135	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1136}
1137
1138static const struct spi_controller_mem_ops cqspi_mem_ops = {
1139	.exec_op = cqspi_exec_mem_op,
1140	.get_name = cqspi_get_name,
1141};
1142
1143static int cqspi_setup_flash(struct cqspi_st *cqspi)
1144{
1145	struct platform_device *pdev = cqspi->pdev;
1146	struct device *dev = &pdev->dev;
1147	struct device_node *np = dev->of_node;
1148	struct cqspi_flash_pdata *f_pdata;
1149	unsigned int cs;
1150	int ret;
1151
1152	/* Get flash device data */
1153	for_each_available_child_of_node(dev->of_node, np) {
1154		ret = of_property_read_u32(np, "reg", &cs);
1155		if (ret) {
1156			dev_err(dev, "Couldn't determine chip select.\n");
1157			return ret;
1158		}
1159
1160		if (cs >= CQSPI_MAX_CHIPSELECT) {
1161			dev_err(dev, "Chip select %d out of range.\n", cs);
1162			return -EINVAL;
1163		}
1164
1165		f_pdata = &cqspi->f_pdata[cs];
1166		f_pdata->cqspi = cqspi;
1167		f_pdata->cs = cs;
1168
1169		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1170		if (ret)
1171			return ret;
1172	}
1173
1174	return 0;
1175}
1176
1177static int cqspi_probe(struct platform_device *pdev)
1178{
1179	const struct cqspi_driver_platdata *ddata;
1180	struct reset_control *rstc, *rstc_ocp;
1181	struct device *dev = &pdev->dev;
1182	struct spi_master *master;
1183	struct resource *res_ahb;
1184	struct cqspi_st *cqspi;
1185	struct resource *res;
1186	int ret;
1187	int irq;
1188
1189	master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1190	if (!master) {
1191		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1192		return -ENOMEM;
1193	}
1194	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1195	master->mem_ops = &cqspi_mem_ops;
1196	master->dev.of_node = pdev->dev.of_node;
1197
1198	cqspi = spi_master_get_devdata(master);
1199
1200	cqspi->pdev = pdev;
1201	platform_set_drvdata(pdev, cqspi);
1202
1203	/* Obtain configuration from OF. */
1204	ret = cqspi_of_get_pdata(cqspi);
1205	if (ret) {
1206		dev_err(dev, "Cannot get mandatory OF data.\n");
1207		ret = -ENODEV;
1208		goto probe_master_put;
1209	}
1210
1211	/* Obtain QSPI clock. */
1212	cqspi->clk = devm_clk_get(dev, NULL);
1213	if (IS_ERR(cqspi->clk)) {
1214		dev_err(dev, "Cannot claim QSPI clock.\n");
1215		ret = PTR_ERR(cqspi->clk);
1216		goto probe_master_put;
1217	}
1218
1219	/* Obtain and remap controller address. */
1220	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1221	cqspi->iobase = devm_ioremap_resource(dev, res);
1222	if (IS_ERR(cqspi->iobase)) {
1223		dev_err(dev, "Cannot remap controller address.\n");
1224		ret = PTR_ERR(cqspi->iobase);
1225		goto probe_master_put;
1226	}
1227
1228	/* Obtain and remap AHB address. */
1229	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1230	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1231	if (IS_ERR(cqspi->ahb_base)) {
1232		dev_err(dev, "Cannot remap AHB address.\n");
1233		ret = PTR_ERR(cqspi->ahb_base);
1234		goto probe_master_put;
1235	}
1236	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1237	cqspi->ahb_size = resource_size(res_ahb);
1238
1239	init_completion(&cqspi->transfer_complete);
1240
1241	/* Obtain IRQ line. */
1242	irq = platform_get_irq(pdev, 0);
1243	if (irq < 0) {
1244		ret = -ENXIO;
1245		goto probe_master_put;
1246	}
1247
1248	pm_runtime_enable(dev);
1249	ret = pm_runtime_get_sync(dev);
1250	if (ret < 0) {
1251		pm_runtime_put_noidle(dev);
1252		goto probe_master_put;
1253	}
1254
1255	ret = clk_prepare_enable(cqspi->clk);
1256	if (ret) {
1257		dev_err(dev, "Cannot enable QSPI clock.\n");
1258		goto probe_clk_failed;
1259	}
1260
1261	/* Obtain QSPI reset control */
1262	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1263	if (IS_ERR(rstc)) {
1264		ret = PTR_ERR(rstc);
1265		dev_err(dev, "Cannot get QSPI reset.\n");
1266		goto probe_reset_failed;
1267	}
1268
1269	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1270	if (IS_ERR(rstc_ocp)) {
1271		ret = PTR_ERR(rstc_ocp);
1272		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1273		goto probe_reset_failed;
1274	}
1275
1276	reset_control_assert(rstc);
1277	reset_control_deassert(rstc);
1278
1279	reset_control_assert(rstc_ocp);
1280	reset_control_deassert(rstc_ocp);
1281
1282	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1283	ddata  = of_device_get_match_data(dev);
1284	if (ddata) {
1285		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1286			cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
1287						cqspi->master_ref_clk_hz);
1288		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1289			master->mode_bits |= SPI_RX_OCTAL;
1290		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1291			cqspi->use_direct_mode = true;
1292	}
1293
1294	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1295			       pdev->name, cqspi);
1296	if (ret) {
1297		dev_err(dev, "Cannot request IRQ.\n");
1298		goto probe_reset_failed;
1299	}
1300
1301	cqspi_wait_idle(cqspi);
1302	cqspi_controller_init(cqspi);
1303	cqspi->current_cs = -1;
1304	cqspi->sclk = 0;
1305
1306	ret = cqspi_setup_flash(cqspi);
1307	if (ret) {
1308		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1309		goto probe_setup_failed;
1310	}
1311
1312	if (cqspi->use_direct_mode) {
1313		ret = cqspi_request_mmap_dma(cqspi);
1314		if (ret == -EPROBE_DEFER)
1315			goto probe_setup_failed;
1316	}
1317
1318	ret = devm_spi_register_master(dev, master);
1319	if (ret) {
1320		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1321		goto probe_setup_failed;
1322	}
1323
1324	return 0;
1325probe_setup_failed:
1326	cqspi_controller_enable(cqspi, 0);
1327probe_reset_failed:
1328	clk_disable_unprepare(cqspi->clk);
1329probe_clk_failed:
1330	pm_runtime_put_sync(dev);
1331	pm_runtime_disable(dev);
1332probe_master_put:
1333	spi_master_put(master);
1334	return ret;
1335}
1336
1337static int cqspi_remove(struct platform_device *pdev)
1338{
1339	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1340
1341	cqspi_controller_enable(cqspi, 0);
1342
1343	if (cqspi->rx_chan)
1344		dma_release_channel(cqspi->rx_chan);
1345
1346	clk_disable_unprepare(cqspi->clk);
1347
1348	pm_runtime_put_sync(&pdev->dev);
1349	pm_runtime_disable(&pdev->dev);
1350
1351	return 0;
1352}
1353
1354#ifdef CONFIG_PM_SLEEP
1355static int cqspi_suspend(struct device *dev)
1356{
1357	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1358	struct spi_master *master = dev_get_drvdata(dev);
1359	int ret;
1360
1361	ret = spi_master_suspend(master);
1362	cqspi_controller_enable(cqspi, 0);
1363
1364	clk_disable_unprepare(cqspi->clk);
1365
1366	return ret;
1367}
1368
1369static int cqspi_resume(struct device *dev)
1370{
1371	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1372	struct spi_master *master = dev_get_drvdata(dev);
1373
1374	clk_prepare_enable(cqspi->clk);
1375	cqspi_wait_idle(cqspi);
1376	cqspi_controller_init(cqspi);
1377
1378	cqspi->current_cs = -1;
1379	cqspi->sclk = 0;
1380
1381	return spi_master_resume(master);
1382}
1383
1384static const struct dev_pm_ops cqspi__dev_pm_ops = {
1385	.suspend = cqspi_suspend,
1386	.resume = cqspi_resume,
1387};
1388
1389#define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1390#else
1391#define CQSPI_DEV_PM_OPS	NULL
1392#endif
1393
1394static const struct cqspi_driver_platdata cdns_qspi = {
1395	.quirks = CQSPI_DISABLE_DAC_MODE,
1396};
1397
1398static const struct cqspi_driver_platdata k2g_qspi = {
1399	.quirks = CQSPI_NEEDS_WR_DELAY,
1400};
1401
1402static const struct cqspi_driver_platdata am654_ospi = {
1403	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1404	.quirks = CQSPI_NEEDS_WR_DELAY,
1405};
1406
1407static const struct of_device_id cqspi_dt_ids[] = {
1408	{
1409		.compatible = "cdns,qspi-nor",
1410		.data = &cdns_qspi,
1411	},
1412	{
1413		.compatible = "ti,k2g-qspi",
1414		.data = &k2g_qspi,
1415	},
1416	{
1417		.compatible = "ti,am654-ospi",
1418		.data = &am654_ospi,
1419	},
1420	{ /* end of table */ }
1421};
1422
1423MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1424
1425static struct platform_driver cqspi_platform_driver = {
1426	.probe = cqspi_probe,
1427	.remove = cqspi_remove,
1428	.driver = {
1429		.name = CQSPI_NAME,
1430		.pm = CQSPI_DEV_PM_OPS,
1431		.of_match_table = cqspi_dt_ids,
1432	},
1433};
1434
1435module_platform_driver(cqspi_platform_driver);
1436
1437MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1438MODULE_LICENSE("GPL v2");
1439MODULE_ALIAS("platform:" CQSPI_NAME);
1440MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1441MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1442MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1443MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1444