1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for Broadcom BCM2835 SPI Controllers
4 *
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
7 * Copyright (C) 2015 Martin Sperl
8 *
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12 */
13
14#include <linux/clk.h>
15#include <linux/completion.h>
16#include <linux/debugfs.h>
17#include <linux/delay.h>
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
20#include <linux/err.h>
21#include <linux/interrupt.h>
22#include <linux/io.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/of_address.h>
27#include <linux/of_device.h>
28#include <linux/gpio/consumer.h>
29#include <linux/gpio/machine.h> /* FIXME: using chip internals */
30#include <linux/gpio/driver.h> /* FIXME: using chip internals */
31#include <linux/of_irq.h>
32#include <linux/spi/spi.h>
33
34/* SPI register offsets */
35#define BCM2835_SPI_CS			0x00
36#define BCM2835_SPI_FIFO		0x04
37#define BCM2835_SPI_CLK			0x08
38#define BCM2835_SPI_DLEN		0x0c
39#define BCM2835_SPI_LTOH		0x10
40#define BCM2835_SPI_DC			0x14
41
42/* Bitfields in CS */
43#define BCM2835_SPI_CS_LEN_LONG		0x02000000
44#define BCM2835_SPI_CS_DMA_LEN		0x01000000
45#define BCM2835_SPI_CS_CSPOL2		0x00800000
46#define BCM2835_SPI_CS_CSPOL1		0x00400000
47#define BCM2835_SPI_CS_CSPOL0		0x00200000
48#define BCM2835_SPI_CS_RXF		0x00100000
49#define BCM2835_SPI_CS_RXR		0x00080000
50#define BCM2835_SPI_CS_TXD		0x00040000
51#define BCM2835_SPI_CS_RXD		0x00020000
52#define BCM2835_SPI_CS_DONE		0x00010000
53#define BCM2835_SPI_CS_LEN		0x00002000
54#define BCM2835_SPI_CS_REN		0x00001000
55#define BCM2835_SPI_CS_ADCS		0x00000800
56#define BCM2835_SPI_CS_INTR		0x00000400
57#define BCM2835_SPI_CS_INTD		0x00000200
58#define BCM2835_SPI_CS_DMAEN		0x00000100
59#define BCM2835_SPI_CS_TA		0x00000080
60#define BCM2835_SPI_CS_CSPOL		0x00000040
61#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
62#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
63#define BCM2835_SPI_CS_CPOL		0x00000008
64#define BCM2835_SPI_CS_CPHA		0x00000004
65#define BCM2835_SPI_CS_CS_10		0x00000002
66#define BCM2835_SPI_CS_CS_01		0x00000001
67
68#define BCM2835_SPI_FIFO_SIZE		64
69#define BCM2835_SPI_FIFO_SIZE_3_4	48
70#define BCM2835_SPI_DMA_MIN_LENGTH	96
71#define BCM2835_SPI_NUM_CS		24  /* raise as necessary */
72#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
73				| SPI_NO_CS | SPI_3WIRE)
74
75#define DRV_NAME	"spi-bcm2835"
76
77/* define polling limits */
78static unsigned int polling_limit_us = 30;
79module_param(polling_limit_us, uint, 0664);
80MODULE_PARM_DESC(polling_limit_us,
81		 "time in us to run a transfer in polling mode\n");
82
83/**
84 * struct bcm2835_spi - BCM2835 SPI controller
85 * @regs: base address of register map
86 * @clk: core clock, divided to calculate serial clock
87 * @clk_hz: core clock cached speed
88 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
89 * @tfr: SPI transfer currently processed
90 * @ctlr: SPI controller reverse lookup
91 * @tx_buf: pointer whence next transmitted byte is read
92 * @rx_buf: pointer where next received byte is written
93 * @tx_len: remaining bytes to transmit
94 * @rx_len: remaining bytes to receive
95 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
96 *	length is not a multiple of 4 (to overcome hardware limitation)
97 * @rx_prologue: bytes received without DMA if first RX sglist entry's
98 *	length is not a multiple of 4 (to overcome hardware limitation)
99 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
100 * @prepare_cs: precalculated CS register value for ->prepare_message()
101 *	(uses slave-specific clock polarity and phase settings)
102 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
103 *      unloading the module
104 * @count_transfer_polling: count of how often polling mode is used
105 * @count_transfer_irq: count of how often interrupt mode is used
106 * @count_transfer_irq_after_polling: count of how often we fall back to
107 *      interrupt mode after starting in polling mode.
108 *      These are counted as well in @count_transfer_polling and
109 *      @count_transfer_irq
110 * @count_transfer_dma: count how often dma mode is used
111 * @chip_select: SPI slave currently selected
112 *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
113 * @tx_dma_active: whether a TX DMA descriptor is in progress
114 * @rx_dma_active: whether a RX DMA descriptor is in progress
115 *	(used by bcm2835_spi_dma_tx_done() to handle a race)
116 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
117 *	(cyclically copies from zero page to TX FIFO)
118 * @fill_tx_addr: bus address of zero page
119 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
120 *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
121 * @clear_rx_addr: bus address of @clear_rx_cs
122 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
123 *	(uses slave-specific clock polarity and phase settings)
124 */
125struct bcm2835_spi {
126	void __iomem *regs;
127	struct clk *clk;
128	unsigned long clk_hz;
129	int irq;
130	struct spi_transfer *tfr;
131	struct spi_controller *ctlr;
132	const u8 *tx_buf;
133	u8 *rx_buf;
134	int tx_len;
135	int rx_len;
136	int tx_prologue;
137	int rx_prologue;
138	unsigned int tx_spillover;
139	u32 prepare_cs[BCM2835_SPI_NUM_CS];
140
141	struct dentry *debugfs_dir;
142	u64 count_transfer_polling;
143	u64 count_transfer_irq;
144	u64 count_transfer_irq_after_polling;
145	u64 count_transfer_dma;
146
147	u8 chip_select;
148	unsigned int tx_dma_active;
149	unsigned int rx_dma_active;
150	struct dma_async_tx_descriptor *fill_tx_desc;
151	dma_addr_t fill_tx_addr;
152	struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS];
153	dma_addr_t clear_rx_addr;
154	u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned;
155};
156
157#if defined(CONFIG_DEBUG_FS)
158static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
159				   const char *dname)
160{
161	char name[64];
162	struct dentry *dir;
163
164	/* get full name */
165	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
166
167	/* the base directory */
168	dir = debugfs_create_dir(name, NULL);
169	bs->debugfs_dir = dir;
170
171	/* the counters */
172	debugfs_create_u64("count_transfer_polling", 0444, dir,
173			   &bs->count_transfer_polling);
174	debugfs_create_u64("count_transfer_irq", 0444, dir,
175			   &bs->count_transfer_irq);
176	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
177			   &bs->count_transfer_irq_after_polling);
178	debugfs_create_u64("count_transfer_dma", 0444, dir,
179			   &bs->count_transfer_dma);
180}
181
182static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
183{
184	debugfs_remove_recursive(bs->debugfs_dir);
185	bs->debugfs_dir = NULL;
186}
187#else
188static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
189				   const char *dname)
190{
191}
192
193static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
194{
195}
196#endif /* CONFIG_DEBUG_FS */
197
198static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
199{
200	return readl(bs->regs + reg);
201}
202
203static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
204{
205	writel(val, bs->regs + reg);
206}
207
208static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
209{
210	u8 byte;
211
212	while ((bs->rx_len) &&
213	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
214		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
215		if (bs->rx_buf)
216			*bs->rx_buf++ = byte;
217		bs->rx_len--;
218	}
219}
220
221static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
222{
223	u8 byte;
224
225	while ((bs->tx_len) &&
226	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
227		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
228		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
229		bs->tx_len--;
230	}
231}
232
233/**
234 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
235 * @bs: BCM2835 SPI controller
236 * @count: bytes to read from RX FIFO
237 *
238 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
239 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
240 * in the CS register is set (such that a read from the FIFO register receives
241 * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
242 */
243static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
244{
245	u32 val;
246	int len;
247
248	bs->rx_len -= count;
249
250	do {
251		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
252		len = min(count, 4);
253		memcpy(bs->rx_buf, &val, len);
254		bs->rx_buf += len;
255		count -= 4;
256	} while (count > 0);
257}
258
259/**
260 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
261 * @bs: BCM2835 SPI controller
262 * @count: bytes to write to TX FIFO
263 *
264 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
265 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
266 * in the CS register is set (such that a write to the FIFO register transmits
267 * 32-bit instead of just 8-bit).
268 */
269static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
270{
271	u32 val;
272	int len;
273
274	bs->tx_len -= count;
275
276	do {
277		if (bs->tx_buf) {
278			len = min(count, 4);
279			memcpy(&val, bs->tx_buf, len);
280			bs->tx_buf += len;
281		} else {
282			val = 0;
283		}
284		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
285		count -= 4;
286	} while (count > 0);
287}
288
289/**
290 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
291 * @bs: BCM2835 SPI controller
292 *
293 * The caller must ensure that the RX FIFO can accommodate as many bytes
294 * as have been written to the TX FIFO:  Transmission is halted once the
295 * RX FIFO is full, causing this function to spin forever.
296 */
297static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
298{
299	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
300		cpu_relax();
301}
302
303/**
304 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
305 * @bs: BCM2835 SPI controller
306 * @count: bytes available for reading in RX FIFO
307 */
308static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
309{
310	u8 val;
311
312	count = min(count, bs->rx_len);
313	bs->rx_len -= count;
314
315	do {
316		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
317		if (bs->rx_buf)
318			*bs->rx_buf++ = val;
319	} while (--count);
320}
321
322/**
323 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
324 * @bs: BCM2835 SPI controller
325 * @count: bytes available for writing in TX FIFO
326 */
327static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
328{
329	u8 val;
330
331	count = min(count, bs->tx_len);
332	bs->tx_len -= count;
333
334	do {
335		val = bs->tx_buf ? *bs->tx_buf++ : 0;
336		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
337	} while (--count);
338}
339
340static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
341{
342	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
343
344	/* Disable SPI interrupts and transfer */
345	cs &= ~(BCM2835_SPI_CS_INTR |
346		BCM2835_SPI_CS_INTD |
347		BCM2835_SPI_CS_DMAEN |
348		BCM2835_SPI_CS_TA);
349	/*
350	 * Transmission sometimes breaks unless the DONE bit is written at the
351	 * end of every transfer.  The spec says it's a RO bit.  Either the
352	 * spec is wrong and the bit is actually of type RW1C, or it's a
353	 * hardware erratum.
354	 */
355	cs |= BCM2835_SPI_CS_DONE;
356	/* and reset RX/TX FIFOS */
357	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
358
359	/* and reset the SPI_HW */
360	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
361	/* as well as DLEN */
362	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
363}
364
365static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
366{
367	struct bcm2835_spi *bs = dev_id;
368	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
369
370	/*
371	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
372	 * or if RXR is set (RX FIFO >= ¾ full).
373	 */
374	if (cs & BCM2835_SPI_CS_RXF)
375		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
376	else if (cs & BCM2835_SPI_CS_RXR)
377		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
378
379	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
380		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
381
382	/* Read as many bytes as possible from FIFO */
383	bcm2835_rd_fifo(bs);
384	/* Write as many bytes as possible to FIFO */
385	bcm2835_wr_fifo(bs);
386
387	if (!bs->rx_len) {
388		/* Transfer complete - reset SPI HW */
389		bcm2835_spi_reset_hw(bs);
390		/* wake up the framework */
391		complete(&bs->ctlr->xfer_completion);
392	}
393
394	return IRQ_HANDLED;
395}
396
397static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
398					struct spi_device *spi,
399					struct spi_transfer *tfr,
400					u32 cs, bool fifo_empty)
401{
402	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
403
404	/* update usage statistics */
405	bs->count_transfer_irq++;
406
407	/*
408	 * Enable HW block, but with interrupts still disabled.
409	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
410	 */
411	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
412
413	/* fill TX FIFO as much as possible */
414	if (fifo_empty)
415		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
416	bcm2835_wr_fifo(bs);
417
418	/* enable interrupts */
419	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
420	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
421
422	/* signal that we need to wait for completion */
423	return 1;
424}
425
426/**
427 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
428 * @ctlr: SPI master controller
429 * @tfr: SPI transfer
430 * @bs: BCM2835 SPI controller
431 * @cs: CS register
432 *
433 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
434 * Only the final write access is permitted to transmit less than 4 bytes, the
435 * SPI controller deduces its intended size from the DLEN register.
436 *
437 * If a TX or RX sglist contains multiple entries, one per page, and the first
438 * entry starts in the middle of a page, that first entry's length may not be
439 * a multiple of 4.  Subsequent entries are fine because they span an entire
440 * page, hence do have a length that's a multiple of 4.
441 *
442 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
443 * because they are contiguous in physical memory and therefore not split on
444 * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
445 * buffers.
446 *
447 * The DMA engine is incapable of combining sglist entries into a continuous
448 * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
449 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
450 * entry is rounded up by throwing away received bytes.
451 *
452 * Overcome this limitation by transferring the first few bytes without DMA:
453 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
454 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
455 * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
456 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
457 *
458 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
459 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
460 * Caution, the additional 4 bytes spill over to the second TX sglist entry
461 * if the length of the first is *exactly* 1.
462 *
463 * At most 6 bytes are written and at most 3 bytes read.  Do we know the
464 * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
465 *
466 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
467 * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
468 * the width but also garbles the FIFO's contents.  The prologue must therefore
469 * be transmitted in 32-bit width to ensure that the following DMA transfer can
470 * pick up the residue in the RX FIFO in ungarbled form.
471 */
472static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
473					  struct spi_transfer *tfr,
474					  struct bcm2835_spi *bs,
475					  u32 cs)
476{
477	int tx_remaining;
478
479	bs->tfr		 = tfr;
480	bs->tx_prologue  = 0;
481	bs->rx_prologue  = 0;
482	bs->tx_spillover = false;
483
484	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
485		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
486
487	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
488		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
489
490		if (bs->rx_prologue > bs->tx_prologue) {
491			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
492				bs->tx_prologue  = bs->rx_prologue;
493			} else {
494				bs->tx_prologue += 4;
495				bs->tx_spillover =
496					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
497			}
498		}
499	}
500
501	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
502	if (!bs->tx_prologue)
503		return;
504
505	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
506	if (bs->rx_prologue) {
507		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
508		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
509						  | BCM2835_SPI_CS_DMAEN);
510		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
511		bcm2835_wait_tx_fifo_empty(bs);
512		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
513		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
514						  | BCM2835_SPI_CS_CLEAR_TX
515						  | BCM2835_SPI_CS_DONE);
516
517		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
518					   sg_dma_address(&tfr->rx_sg.sgl[0]),
519					   bs->rx_prologue, DMA_FROM_DEVICE);
520
521		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
522		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
523	}
524
525	if (!bs->tx_buf)
526		return;
527
528	/*
529	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
530	 * Also adjust second entry if prologue spills over to it.
531	 */
532	tx_remaining = bs->tx_prologue - bs->rx_prologue;
533	if (tx_remaining) {
534		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
535		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
536						  | BCM2835_SPI_CS_DMAEN);
537		bcm2835_wr_fifo_count(bs, tx_remaining);
538		bcm2835_wait_tx_fifo_empty(bs);
539		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
540						  | BCM2835_SPI_CS_DONE);
541	}
542
543	if (likely(!bs->tx_spillover)) {
544		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
545		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
546	} else {
547		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
548		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
549		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
550	}
551}
552
553/**
554 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
555 * @bs: BCM2835 SPI controller
556 *
557 * Undo changes which were made to an SPI transfer's sglist when transmitting
558 * the prologue.  This is necessary to ensure the same memory ranges are
559 * unmapped that were originally mapped.
560 */
561static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
562{
563	struct spi_transfer *tfr = bs->tfr;
564
565	if (!bs->tx_prologue)
566		return;
567
568	if (bs->rx_prologue) {
569		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
570		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
571	}
572
573	if (!bs->tx_buf)
574		goto out;
575
576	if (likely(!bs->tx_spillover)) {
577		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
578		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
579	} else {
580		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
581		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
582		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
583	}
584out:
585	bs->tx_prologue = 0;
586}
587
588/**
589 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
590 * @data: SPI master controller
591 *
592 * Used for bidirectional and RX-only transfers.
593 */
594static void bcm2835_spi_dma_rx_done(void *data)
595{
596	struct spi_controller *ctlr = data;
597	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
598
599	/* terminate tx-dma as we do not have an irq for it
600	 * because when the rx dma will terminate and this callback
601	 * is called the tx-dma must have finished - can't get to this
602	 * situation otherwise...
603	 */
604	dmaengine_terminate_async(ctlr->dma_tx);
605	bs->tx_dma_active = false;
606	bs->rx_dma_active = false;
607	bcm2835_spi_undo_prologue(bs);
608
609	/* reset fifo and HW */
610	bcm2835_spi_reset_hw(bs);
611
612	/* and mark as completed */;
613	complete(&ctlr->xfer_completion);
614}
615
616/**
617 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
618 * @data: SPI master controller
619 *
620 * Used for TX-only transfers.
621 */
622static void bcm2835_spi_dma_tx_done(void *data)
623{
624	struct spi_controller *ctlr = data;
625	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
626
627	/* busy-wait for TX FIFO to empty */
628	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
629		bcm2835_wr(bs, BCM2835_SPI_CS,
630			   bs->clear_rx_cs[bs->chip_select]);
631
632	bs->tx_dma_active = false;
633	smp_wmb();
634
635	/*
636	 * In case of a very short transfer, RX DMA may not have been
637	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
638	 * to terminate it immediately after issuing.
639	 */
640	if (cmpxchg(&bs->rx_dma_active, true, false))
641		dmaengine_terminate_async(ctlr->dma_rx);
642
643	bcm2835_spi_undo_prologue(bs);
644	bcm2835_spi_reset_hw(bs);
645	complete(&ctlr->xfer_completion);
646}
647
648/**
649 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
650 * @ctlr: SPI master controller
651 * @spi: SPI slave
652 * @tfr: SPI transfer
653 * @bs: BCM2835 SPI controller
654 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
655 *
656 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
657 * Return 0 on success or a negative error number.
658 */
659static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
660				  struct spi_device *spi,
661				  struct spi_transfer *tfr,
662				  struct bcm2835_spi *bs,
663				  bool is_tx)
664{
665	struct dma_chan *chan;
666	struct scatterlist *sgl;
667	unsigned int nents;
668	enum dma_transfer_direction dir;
669	unsigned long flags;
670
671	struct dma_async_tx_descriptor *desc;
672	dma_cookie_t cookie;
673
674	if (is_tx) {
675		dir   = DMA_MEM_TO_DEV;
676		chan  = ctlr->dma_tx;
677		nents = tfr->tx_sg.nents;
678		sgl   = tfr->tx_sg.sgl;
679		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
680	} else {
681		dir   = DMA_DEV_TO_MEM;
682		chan  = ctlr->dma_rx;
683		nents = tfr->rx_sg.nents;
684		sgl   = tfr->rx_sg.sgl;
685		flags = DMA_PREP_INTERRUPT;
686	}
687	/* prepare the channel */
688	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
689	if (!desc)
690		return -EINVAL;
691
692	/*
693	 * Completion is signaled by the RX channel for bidirectional and
694	 * RX-only transfers; else by the TX channel for TX-only transfers.
695	 */
696	if (!is_tx) {
697		desc->callback = bcm2835_spi_dma_rx_done;
698		desc->callback_param = ctlr;
699	} else if (!tfr->rx_buf) {
700		desc->callback = bcm2835_spi_dma_tx_done;
701		desc->callback_param = ctlr;
702		bs->chip_select = spi->chip_select;
703	}
704
705	/* submit it to DMA-engine */
706	cookie = dmaengine_submit(desc);
707
708	return dma_submit_error(cookie);
709}
710
711/**
712 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
713 * @ctlr: SPI master controller
714 * @spi: SPI slave
715 * @tfr: SPI transfer
716 * @cs: CS register
717 *
718 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
719 * the TX and RX DMA channel to copy between memory and FIFO register.
720 *
721 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
722 * memory is pointless.  However not reading the RX FIFO isn't an option either
723 * because transmission is halted once it's full.  As a workaround, cyclically
724 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
725 *
726 * The CS register value is precalculated in bcm2835_spi_setup().  Normally
727 * this is called only once, on slave registration.  A DMA descriptor to write
728 * this value is preallocated in bcm2835_dma_init().  All that's left to do
729 * when performing a TX-only transfer is to submit this descriptor to the RX
730 * DMA channel.  Latency is thereby minimized.  The descriptor does not
731 * generate any interrupts while running.  It must be terminated once the
732 * TX DMA channel is done.
733 *
734 * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
735 * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
736 * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
737 * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
738 * reduction in bus traffic and thus energy consumption is achieved.
739 *
740 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
741 * copying from the zero page.  The DMA descriptor to do this is preallocated
742 * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
743 * done and can then be reused.
744 *
745 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
746 * page and utilizes the DMA controller's ability to synthesize zeroes instead
747 * of copying them from memory.  This reduces traffic on the memory bus.  The
748 * feature is not available on so-called "lite" channels, but normally TX DMA
749 * is backed by a full-featured channel.
750 *
751 * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
752 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
753 * has been counted down to zero (hardware erratum).  Thus, when the transfer
754 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
755 * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
756 * performed at the end of an RX-only transfer.
757 */
758static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
759					struct spi_device *spi,
760					struct spi_transfer *tfr,
761					u32 cs)
762{
763	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
764	dma_cookie_t cookie;
765	int ret;
766
767	/* update usage statistics */
768	bs->count_transfer_dma++;
769
770	/*
771	 * Transfer first few bytes without DMA if length of first TX or RX
772	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
773	 */
774	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
775
776	/* setup tx-DMA */
777	if (bs->tx_buf) {
778		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true);
779	} else {
780		cookie = dmaengine_submit(bs->fill_tx_desc);
781		ret = dma_submit_error(cookie);
782	}
783	if (ret)
784		goto err_reset_hw;
785
786	/* set the DMA length */
787	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
788
789	/* start the HW */
790	bcm2835_wr(bs, BCM2835_SPI_CS,
791		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
792
793	bs->tx_dma_active = true;
794	smp_wmb();
795
796	/* start TX early */
797	dma_async_issue_pending(ctlr->dma_tx);
798
799	/* setup rx-DMA late - to run transfers while
800	 * mapping of the rx buffers still takes place
801	 * this saves 10us or more.
802	 */
803	if (bs->rx_buf) {
804		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false);
805	} else {
806		cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]);
807		ret = dma_submit_error(cookie);
808	}
809	if (ret) {
810		/* need to reset on errors */
811		dmaengine_terminate_sync(ctlr->dma_tx);
812		bs->tx_dma_active = false;
813		goto err_reset_hw;
814	}
815
816	/* start rx dma late */
817	dma_async_issue_pending(ctlr->dma_rx);
818	bs->rx_dma_active = true;
819	smp_mb();
820
821	/*
822	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
823	 * may run before RX DMA is issued.  Terminate RX DMA if so.
824	 */
825	if (!bs->rx_buf && !bs->tx_dma_active &&
826	    cmpxchg(&bs->rx_dma_active, true, false)) {
827		dmaengine_terminate_async(ctlr->dma_rx);
828		bcm2835_spi_reset_hw(bs);
829	}
830
831	/* wait for wakeup in framework */
832	return 1;
833
834err_reset_hw:
835	bcm2835_spi_reset_hw(bs);
836	bcm2835_spi_undo_prologue(bs);
837	return ret;
838}
839
840static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
841				struct spi_device *spi,
842				struct spi_transfer *tfr)
843{
844	/* we start DMA efforts only on bigger transfers */
845	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
846		return false;
847
848	/* return OK */
849	return true;
850}
851
852static void bcm2835_dma_release(struct spi_controller *ctlr,
853				struct bcm2835_spi *bs)
854{
855	int i;
856
857	if (ctlr->dma_tx) {
858		dmaengine_terminate_sync(ctlr->dma_tx);
859
860		if (bs->fill_tx_desc)
861			dmaengine_desc_free(bs->fill_tx_desc);
862
863		if (bs->fill_tx_addr)
864			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
865					     bs->fill_tx_addr, sizeof(u32),
866					     DMA_TO_DEVICE,
867					     DMA_ATTR_SKIP_CPU_SYNC);
868
869		dma_release_channel(ctlr->dma_tx);
870		ctlr->dma_tx = NULL;
871	}
872
873	if (ctlr->dma_rx) {
874		dmaengine_terminate_sync(ctlr->dma_rx);
875
876		for (i = 0; i < BCM2835_SPI_NUM_CS; i++)
877			if (bs->clear_rx_desc[i])
878				dmaengine_desc_free(bs->clear_rx_desc[i]);
879
880		if (bs->clear_rx_addr)
881			dma_unmap_single(ctlr->dma_rx->device->dev,
882					 bs->clear_rx_addr,
883					 sizeof(bs->clear_rx_cs),
884					 DMA_TO_DEVICE);
885
886		dma_release_channel(ctlr->dma_rx);
887		ctlr->dma_rx = NULL;
888	}
889}
890
891static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
892			    struct bcm2835_spi *bs)
893{
894	struct dma_slave_config slave_config;
895	const __be32 *addr;
896	dma_addr_t dma_reg_base;
897	int ret, i;
898
899	/* base address in dma-space */
900	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
901	if (!addr) {
902		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
903		/* Fall back to interrupt mode */
904		return 0;
905	}
906	dma_reg_base = be32_to_cpup(addr);
907
908	/* get tx/rx dma */
909	ctlr->dma_tx = dma_request_chan(dev, "tx");
910	if (IS_ERR(ctlr->dma_tx)) {
911		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
912		ret = PTR_ERR(ctlr->dma_tx);
913		ctlr->dma_tx = NULL;
914		goto err;
915	}
916	ctlr->dma_rx = dma_request_chan(dev, "rx");
917	if (IS_ERR(ctlr->dma_rx)) {
918		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
919		ret = PTR_ERR(ctlr->dma_rx);
920		ctlr->dma_rx = NULL;
921		goto err_release;
922	}
923
924	/*
925	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
926	 * or, in case of an RX-only transfer, cyclically copies from the zero
927	 * page to the FIFO using a preallocated, reusable descriptor.
928	 */
929	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
930	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
931
932	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
933	if (ret)
934		goto err_config;
935
936	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
937					      ZERO_PAGE(0), 0, sizeof(u32),
938					      DMA_TO_DEVICE,
939					      DMA_ATTR_SKIP_CPU_SYNC);
940	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
941		dev_err(dev, "cannot map zero page - not using DMA mode\n");
942		bs->fill_tx_addr = 0;
943		ret = -ENOMEM;
944		goto err_release;
945	}
946
947	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
948						     bs->fill_tx_addr,
949						     sizeof(u32), 0,
950						     DMA_MEM_TO_DEV, 0);
951	if (!bs->fill_tx_desc) {
952		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
953		ret = -ENOMEM;
954		goto err_release;
955	}
956
957	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
958	if (ret) {
959		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
960		goto err_release;
961	}
962
963	/*
964	 * The RX DMA channel is used bidirectionally:  It either reads the
965	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
966	 * precalculated value to the CS register to clear the RX FIFO.
967	 */
968	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
969	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
970	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
971	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
972
973	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
974	if (ret)
975		goto err_config;
976
977	bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
978					   bs->clear_rx_cs,
979					   sizeof(bs->clear_rx_cs),
980					   DMA_TO_DEVICE);
981	if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) {
982		dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n");
983		bs->clear_rx_addr = 0;
984		ret = -ENOMEM;
985		goto err_release;
986	}
987
988	for (i = 0; i < BCM2835_SPI_NUM_CS; i++) {
989		bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
990					   bs->clear_rx_addr + i * sizeof(u32),
991					   sizeof(u32), 0,
992					   DMA_MEM_TO_DEV, 0);
993		if (!bs->clear_rx_desc[i]) {
994			dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n");
995			ret = -ENOMEM;
996			goto err_release;
997		}
998
999		ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]);
1000		if (ret) {
1001			dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n");
1002			goto err_release;
1003		}
1004	}
1005
1006	/* all went well, so set can_dma */
1007	ctlr->can_dma = bcm2835_spi_can_dma;
1008
1009	return 0;
1010
1011err_config:
1012	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
1013		ret);
1014err_release:
1015	bcm2835_dma_release(ctlr, bs);
1016err:
1017	/*
1018	 * Only report error for deferred probing, otherwise fall back to
1019	 * interrupt mode
1020	 */
1021	if (ret != -EPROBE_DEFER)
1022		ret = 0;
1023
1024	return ret;
1025}
1026
1027static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
1028					 struct spi_device *spi,
1029					 struct spi_transfer *tfr,
1030					 u32 cs)
1031{
1032	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1033	unsigned long timeout;
1034
1035	/* update usage statistics */
1036	bs->count_transfer_polling++;
1037
1038	/* enable HW block without interrupts */
1039	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1040
1041	/* fill in the fifo before timeout calculations
1042	 * if we are interrupted here, then the data is
1043	 * getting transferred by the HW while we are interrupted
1044	 */
1045	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1046
1047	/* set the timeout to at least 2 jiffies */
1048	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1049
1050	/* loop until finished the transfer */
1051	while (bs->rx_len) {
1052		/* fill in tx fifo with remaining data */
1053		bcm2835_wr_fifo(bs);
1054
1055		/* read from fifo as much as possible */
1056		bcm2835_rd_fifo(bs);
1057
1058		/* if there is still data pending to read
1059		 * then check the timeout
1060		 */
1061		if (bs->rx_len && time_after(jiffies, timeout)) {
1062			dev_dbg_ratelimited(&spi->dev,
1063					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1064					    jiffies - timeout,
1065					    bs->tx_len, bs->rx_len);
1066			/* fall back to interrupt mode */
1067
1068			/* update usage statistics */
1069			bs->count_transfer_irq_after_polling++;
1070
1071			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1072							    tfr, cs, false);
1073		}
1074	}
1075
1076	/* Transfer complete - reset SPI HW */
1077	bcm2835_spi_reset_hw(bs);
1078	/* and return without waiting for completion */
1079	return 0;
1080}
1081
1082static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1083				    struct spi_device *spi,
1084				    struct spi_transfer *tfr)
1085{
1086	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1087	unsigned long spi_hz, cdiv;
1088	unsigned long hz_per_byte, byte_limit;
1089	u32 cs = bs->prepare_cs[spi->chip_select];
1090
1091	/* set clock */
1092	spi_hz = tfr->speed_hz;
1093
1094	if (spi_hz >= bs->clk_hz / 2) {
1095		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1096	} else if (spi_hz) {
1097		/* CDIV must be a multiple of two */
1098		cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1099		cdiv += (cdiv % 2);
1100
1101		if (cdiv >= 65536)
1102			cdiv = 0; /* 0 is the slowest we can go */
1103	} else {
1104		cdiv = 0; /* 0 is the slowest we can go */
1105	}
1106	tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1107	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1108
1109	/* handle all the 3-wire mode */
1110	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1111		cs |= BCM2835_SPI_CS_REN;
1112
1113	/* set transmit buffers and length */
1114	bs->tx_buf = tfr->tx_buf;
1115	bs->rx_buf = tfr->rx_buf;
1116	bs->tx_len = tfr->len;
1117	bs->rx_len = tfr->len;
1118
1119	/* Calculate the estimated time in us the transfer runs.  Note that
1120	 * there is 1 idle clocks cycles after each byte getting transferred
1121	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1122	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1123	 * per 300,000 Hz of bus clock.
1124	 */
1125	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1126	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1127
1128	/* run in polling mode for short transfers */
1129	if (tfr->len < byte_limit)
1130		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1131
1132	/* run in dma mode if conditions are right
1133	 * Note that unlike poll or interrupt mode DMA mode does not have
1134	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1135	 */
1136	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1137		return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);
1138
1139	/* run in interrupt-mode */
1140	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1141}
1142
1143static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1144				       struct spi_message *msg)
1145{
1146	struct spi_device *spi = msg->spi;
1147	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1148	int ret;
1149
1150	if (ctlr->can_dma) {
1151		/*
1152		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1153		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1154		 * aligned) if the limit is exceeded.
1155		 */
1156		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1157						  GFP_KERNEL | GFP_DMA);
1158		if (ret)
1159			return ret;
1160	}
1161
1162	/*
1163	 * Set up clock polarity before spi_transfer_one_message() asserts
1164	 * chip select to avoid a gratuitous clock signal edge.
1165	 */
1166	bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]);
1167
1168	return 0;
1169}
1170
1171static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1172				   struct spi_message *msg)
1173{
1174	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1175
1176	/* if an error occurred and we have an active dma, then terminate */
1177	if (ctlr->dma_tx) {
1178		dmaengine_terminate_sync(ctlr->dma_tx);
1179		bs->tx_dma_active = false;
1180	}
1181	if (ctlr->dma_rx) {
1182		dmaengine_terminate_sync(ctlr->dma_rx);
1183		bs->rx_dma_active = false;
1184	}
1185	bcm2835_spi_undo_prologue(bs);
1186
1187	/* and reset */
1188	bcm2835_spi_reset_hw(bs);
1189}
1190
1191static int chip_match_name(struct gpio_chip *chip, void *data)
1192{
1193	return !strcmp(chip->label, data);
1194}
1195
1196static int bcm2835_spi_setup(struct spi_device *spi)
1197{
1198	struct spi_controller *ctlr = spi->controller;
1199	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1200	struct gpio_chip *chip;
1201	u32 cs;
1202
1203	if (spi->chip_select >= BCM2835_SPI_NUM_CS) {
1204		dev_err(&spi->dev, "only %d chip-selects supported\n",
1205			BCM2835_SPI_NUM_CS - 1);
1206		return -EINVAL;
1207	}
1208
1209	/*
1210	 * Precalculate SPI slave's CS register value for ->prepare_message():
1211	 * The driver always uses software-controlled GPIO chip select, hence
1212	 * set the hardware-controlled native chip select to an invalid value
1213	 * to prevent it from interfering.
1214	 */
1215	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1216	if (spi->mode & SPI_CPOL)
1217		cs |= BCM2835_SPI_CS_CPOL;
1218	if (spi->mode & SPI_CPHA)
1219		cs |= BCM2835_SPI_CS_CPHA;
1220	bs->prepare_cs[spi->chip_select] = cs;
1221
1222	/*
1223	 * Precalculate SPI slave's CS register value to clear RX FIFO
1224	 * in case of a TX-only DMA transfer.
1225	 */
1226	if (ctlr->dma_rx) {
1227		bs->clear_rx_cs[spi->chip_select] = cs |
1228						    BCM2835_SPI_CS_TA |
1229						    BCM2835_SPI_CS_DMAEN |
1230						    BCM2835_SPI_CS_CLEAR_RX;
1231		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1232					   bs->clear_rx_addr,
1233					   sizeof(bs->clear_rx_cs),
1234					   DMA_TO_DEVICE);
1235	}
1236
1237	/*
1238	 * sanity checking the native-chipselects
1239	 */
1240	if (spi->mode & SPI_NO_CS)
1241		return 0;
1242	/*
1243	 * The SPI core has successfully requested the CS GPIO line from the
1244	 * device tree, so we are done.
1245	 */
1246	if (spi->cs_gpiod)
1247		return 0;
1248	if (spi->chip_select > 1) {
1249		/* error in the case of native CS requested with CS > 1
1250		 * officially there is a CS2, but it is not documented
1251		 * which GPIO is connected with that...
1252		 */
1253		dev_err(&spi->dev,
1254			"setup: only two native chip-selects are supported\n");
1255		return -EINVAL;
1256	}
1257
1258	/*
1259	 * Translate native CS to GPIO
1260	 *
1261	 * FIXME: poking around in the gpiolib internals like this is
1262	 * not very good practice. Find a way to locate the real problem
1263	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1264	 * sometimes not assigned correctly? Erroneous device trees?
1265	 */
1266
1267	/* get the gpio chip for the base */
1268	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1269	if (!chip)
1270		return 0;
1271
1272	spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1273						  DRV_NAME,
1274						  GPIO_LOOKUP_FLAGS_DEFAULT,
1275						  GPIOD_OUT_LOW);
1276	if (IS_ERR(spi->cs_gpiod))
1277		return PTR_ERR(spi->cs_gpiod);
1278
1279	/* and set up the "mode" and level */
1280	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1281		 spi->chip_select);
1282
1283	return 0;
1284}
1285
1286static int bcm2835_spi_probe(struct platform_device *pdev)
1287{
1288	struct spi_controller *ctlr;
1289	struct bcm2835_spi *bs;
1290	int err;
1291
1292	ctlr = devm_spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs),
1293						  dma_get_cache_alignment()));
1294	if (!ctlr)
1295		return -ENOMEM;
1296
1297	platform_set_drvdata(pdev, ctlr);
1298
1299	ctlr->use_gpio_descriptors = true;
1300	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1301	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1302	ctlr->num_chipselect = 3;
1303	ctlr->setup = bcm2835_spi_setup;
1304	ctlr->transfer_one = bcm2835_spi_transfer_one;
1305	ctlr->handle_err = bcm2835_spi_handle_err;
1306	ctlr->prepare_message = bcm2835_spi_prepare_message;
1307	ctlr->dev.of_node = pdev->dev.of_node;
1308
1309	bs = spi_controller_get_devdata(ctlr);
1310	bs->ctlr = ctlr;
1311
1312	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1313	if (IS_ERR(bs->regs))
1314		return PTR_ERR(bs->regs);
1315
1316	bs->clk = devm_clk_get(&pdev->dev, NULL);
1317	if (IS_ERR(bs->clk))
1318		return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1319				     "could not get clk\n");
1320
1321	bs->irq = platform_get_irq(pdev, 0);
1322	if (bs->irq <= 0)
1323		return bs->irq ? bs->irq : -ENODEV;
1324
1325	clk_prepare_enable(bs->clk);
1326	bs->clk_hz = clk_get_rate(bs->clk);
1327
1328	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1329	if (err)
1330		goto out_clk_disable;
1331
1332	/* initialise the hardware with the default polarities */
1333	bcm2835_wr(bs, BCM2835_SPI_CS,
1334		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1335
1336	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1337			       dev_name(&pdev->dev), bs);
1338	if (err) {
1339		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1340		goto out_dma_release;
1341	}
1342
1343	err = spi_register_controller(ctlr);
1344	if (err) {
1345		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1346			err);
1347		goto out_dma_release;
1348	}
1349
1350	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1351
1352	return 0;
1353
1354out_dma_release:
1355	bcm2835_dma_release(ctlr, bs);
1356out_clk_disable:
1357	clk_disable_unprepare(bs->clk);
1358	return err;
1359}
1360
1361static int bcm2835_spi_remove(struct platform_device *pdev)
1362{
1363	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1364	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1365
1366	bcm2835_debugfs_remove(bs);
1367
1368	spi_unregister_controller(ctlr);
1369
1370	bcm2835_dma_release(ctlr, bs);
1371
1372	/* Clear FIFOs, and disable the HW block */
1373	bcm2835_wr(bs, BCM2835_SPI_CS,
1374		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1375
1376	clk_disable_unprepare(bs->clk);
1377
1378	return 0;
1379}
1380
1381static void bcm2835_spi_shutdown(struct platform_device *pdev)
1382{
1383	int ret;
1384
1385	ret = bcm2835_spi_remove(pdev);
1386	if (ret)
1387		dev_err(&pdev->dev, "failed to shutdown\n");
1388}
1389
1390static const struct of_device_id bcm2835_spi_match[] = {
1391	{ .compatible = "brcm,bcm2835-spi", },
1392	{}
1393};
1394MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1395
1396static struct platform_driver bcm2835_spi_driver = {
1397	.driver		= {
1398		.name		= DRV_NAME,
1399		.of_match_table	= bcm2835_spi_match,
1400	},
1401	.probe		= bcm2835_spi_probe,
1402	.remove		= bcm2835_spi_remove,
1403	.shutdown	= bcm2835_spi_shutdown,
1404};
1405module_platform_driver(bcm2835_spi_driver);
1406
1407MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1408MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1409MODULE_LICENSE("GPL");
1410