18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Driver for Broadcom BCM2835 SPI Controllers
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright (C) 2012 Chris Boot
68c2ecf20Sopenharmony_ci * Copyright (C) 2013 Stephen Warren
78c2ecf20Sopenharmony_ci * Copyright (C) 2015 Martin Sperl
88c2ecf20Sopenharmony_ci *
98c2ecf20Sopenharmony_ci * This driver is inspired by:
108c2ecf20Sopenharmony_ci * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
118c2ecf20Sopenharmony_ci * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
128c2ecf20Sopenharmony_ci */
138c2ecf20Sopenharmony_ci
148c2ecf20Sopenharmony_ci#include <linux/clk.h>
158c2ecf20Sopenharmony_ci#include <linux/completion.h>
168c2ecf20Sopenharmony_ci#include <linux/debugfs.h>
178c2ecf20Sopenharmony_ci#include <linux/delay.h>
188c2ecf20Sopenharmony_ci#include <linux/dma-mapping.h>
198c2ecf20Sopenharmony_ci#include <linux/dmaengine.h>
208c2ecf20Sopenharmony_ci#include <linux/err.h>
218c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
228c2ecf20Sopenharmony_ci#include <linux/io.h>
238c2ecf20Sopenharmony_ci#include <linux/kernel.h>
248c2ecf20Sopenharmony_ci#include <linux/module.h>
258c2ecf20Sopenharmony_ci#include <linux/of.h>
268c2ecf20Sopenharmony_ci#include <linux/of_address.h>
278c2ecf20Sopenharmony_ci#include <linux/of_device.h>
288c2ecf20Sopenharmony_ci#include <linux/gpio/consumer.h>
298c2ecf20Sopenharmony_ci#include <linux/gpio/machine.h> /* FIXME: using chip internals */
308c2ecf20Sopenharmony_ci#include <linux/gpio/driver.h> /* FIXME: using chip internals */
318c2ecf20Sopenharmony_ci#include <linux/of_irq.h>
328c2ecf20Sopenharmony_ci#include <linux/spi/spi.h>
338c2ecf20Sopenharmony_ci
348c2ecf20Sopenharmony_ci/* SPI register offsets */
358c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS			0x00
368c2ecf20Sopenharmony_ci#define BCM2835_SPI_FIFO		0x04
378c2ecf20Sopenharmony_ci#define BCM2835_SPI_CLK			0x08
388c2ecf20Sopenharmony_ci#define BCM2835_SPI_DLEN		0x0c
398c2ecf20Sopenharmony_ci#define BCM2835_SPI_LTOH		0x10
408c2ecf20Sopenharmony_ci#define BCM2835_SPI_DC			0x14
418c2ecf20Sopenharmony_ci
428c2ecf20Sopenharmony_ci/* Bitfields in CS */
438c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_LEN_LONG		0x02000000
448c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_DMA_LEN		0x01000000
458c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_CSPOL2		0x00800000
468c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_CSPOL1		0x00400000
478c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_CSPOL0		0x00200000
488c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_RXF		0x00100000
498c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_RXR		0x00080000
508c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_TXD		0x00040000
518c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_RXD		0x00020000
528c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_DONE		0x00010000
538c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_LEN		0x00002000
548c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_REN		0x00001000
558c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_ADCS		0x00000800
568c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_INTR		0x00000400
578c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_INTD		0x00000200
588c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_DMAEN		0x00000100
598c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_TA		0x00000080
608c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_CSPOL		0x00000040
618c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
628c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
638c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_CPOL		0x00000008
648c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_CPHA		0x00000004
658c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_CS_10		0x00000002
668c2ecf20Sopenharmony_ci#define BCM2835_SPI_CS_CS_01		0x00000001
678c2ecf20Sopenharmony_ci
688c2ecf20Sopenharmony_ci#define BCM2835_SPI_FIFO_SIZE		64
698c2ecf20Sopenharmony_ci#define BCM2835_SPI_FIFO_SIZE_3_4	48
708c2ecf20Sopenharmony_ci#define BCM2835_SPI_DMA_MIN_LENGTH	96
718c2ecf20Sopenharmony_ci#define BCM2835_SPI_NUM_CS		24  /* raise as necessary */
728c2ecf20Sopenharmony_ci#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
738c2ecf20Sopenharmony_ci				| SPI_NO_CS | SPI_3WIRE)
748c2ecf20Sopenharmony_ci
758c2ecf20Sopenharmony_ci#define DRV_NAME	"spi-bcm2835"
768c2ecf20Sopenharmony_ci
778c2ecf20Sopenharmony_ci/* define polling limits */
788c2ecf20Sopenharmony_cistatic unsigned int polling_limit_us = 30;
798c2ecf20Sopenharmony_cimodule_param(polling_limit_us, uint, 0664);
808c2ecf20Sopenharmony_ciMODULE_PARM_DESC(polling_limit_us,
818c2ecf20Sopenharmony_ci		 "time in us to run a transfer in polling mode\n");
828c2ecf20Sopenharmony_ci
838c2ecf20Sopenharmony_ci/**
848c2ecf20Sopenharmony_ci * struct bcm2835_spi - BCM2835 SPI controller
858c2ecf20Sopenharmony_ci * @regs: base address of register map
868c2ecf20Sopenharmony_ci * @clk: core clock, divided to calculate serial clock
878c2ecf20Sopenharmony_ci * @clk_hz: core clock cached speed
888c2ecf20Sopenharmony_ci * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
898c2ecf20Sopenharmony_ci * @tfr: SPI transfer currently processed
908c2ecf20Sopenharmony_ci * @ctlr: SPI controller reverse lookup
918c2ecf20Sopenharmony_ci * @tx_buf: pointer whence next transmitted byte is read
928c2ecf20Sopenharmony_ci * @rx_buf: pointer where next received byte is written
938c2ecf20Sopenharmony_ci * @tx_len: remaining bytes to transmit
948c2ecf20Sopenharmony_ci * @rx_len: remaining bytes to receive
958c2ecf20Sopenharmony_ci * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
968c2ecf20Sopenharmony_ci *	length is not a multiple of 4 (to overcome hardware limitation)
978c2ecf20Sopenharmony_ci * @rx_prologue: bytes received without DMA if first RX sglist entry's
988c2ecf20Sopenharmony_ci *	length is not a multiple of 4 (to overcome hardware limitation)
998c2ecf20Sopenharmony_ci * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
1008c2ecf20Sopenharmony_ci * @prepare_cs: precalculated CS register value for ->prepare_message()
1018c2ecf20Sopenharmony_ci *	(uses slave-specific clock polarity and phase settings)
1028c2ecf20Sopenharmony_ci * @debugfs_dir: the debugfs directory - neede to remove debugfs when
1038c2ecf20Sopenharmony_ci *      unloading the module
1048c2ecf20Sopenharmony_ci * @count_transfer_polling: count of how often polling mode is used
1058c2ecf20Sopenharmony_ci * @count_transfer_irq: count of how often interrupt mode is used
1068c2ecf20Sopenharmony_ci * @count_transfer_irq_after_polling: count of how often we fall back to
1078c2ecf20Sopenharmony_ci *      interrupt mode after starting in polling mode.
1088c2ecf20Sopenharmony_ci *      These are counted as well in @count_transfer_polling and
1098c2ecf20Sopenharmony_ci *      @count_transfer_irq
1108c2ecf20Sopenharmony_ci * @count_transfer_dma: count how often dma mode is used
1118c2ecf20Sopenharmony_ci * @chip_select: SPI slave currently selected
1128c2ecf20Sopenharmony_ci *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
1138c2ecf20Sopenharmony_ci * @tx_dma_active: whether a TX DMA descriptor is in progress
1148c2ecf20Sopenharmony_ci * @rx_dma_active: whether a RX DMA descriptor is in progress
1158c2ecf20Sopenharmony_ci *	(used by bcm2835_spi_dma_tx_done() to handle a race)
1168c2ecf20Sopenharmony_ci * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
1178c2ecf20Sopenharmony_ci *	(cyclically copies from zero page to TX FIFO)
1188c2ecf20Sopenharmony_ci * @fill_tx_addr: bus address of zero page
1198c2ecf20Sopenharmony_ci * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
1208c2ecf20Sopenharmony_ci *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
1218c2ecf20Sopenharmony_ci * @clear_rx_addr: bus address of @clear_rx_cs
1228c2ecf20Sopenharmony_ci * @clear_rx_cs: precalculated CS register value to clear RX FIFO
1238c2ecf20Sopenharmony_ci *	(uses slave-specific clock polarity and phase settings)
1248c2ecf20Sopenharmony_ci */
1258c2ecf20Sopenharmony_cistruct bcm2835_spi {
1268c2ecf20Sopenharmony_ci	void __iomem *regs;
1278c2ecf20Sopenharmony_ci	struct clk *clk;
1288c2ecf20Sopenharmony_ci	unsigned long clk_hz;
1298c2ecf20Sopenharmony_ci	int irq;
1308c2ecf20Sopenharmony_ci	struct spi_transfer *tfr;
1318c2ecf20Sopenharmony_ci	struct spi_controller *ctlr;
1328c2ecf20Sopenharmony_ci	const u8 *tx_buf;
1338c2ecf20Sopenharmony_ci	u8 *rx_buf;
1348c2ecf20Sopenharmony_ci	int tx_len;
1358c2ecf20Sopenharmony_ci	int rx_len;
1368c2ecf20Sopenharmony_ci	int tx_prologue;
1378c2ecf20Sopenharmony_ci	int rx_prologue;
1388c2ecf20Sopenharmony_ci	unsigned int tx_spillover;
1398c2ecf20Sopenharmony_ci	u32 prepare_cs[BCM2835_SPI_NUM_CS];
1408c2ecf20Sopenharmony_ci
1418c2ecf20Sopenharmony_ci	struct dentry *debugfs_dir;
1428c2ecf20Sopenharmony_ci	u64 count_transfer_polling;
1438c2ecf20Sopenharmony_ci	u64 count_transfer_irq;
1448c2ecf20Sopenharmony_ci	u64 count_transfer_irq_after_polling;
1458c2ecf20Sopenharmony_ci	u64 count_transfer_dma;
1468c2ecf20Sopenharmony_ci
1478c2ecf20Sopenharmony_ci	u8 chip_select;
1488c2ecf20Sopenharmony_ci	unsigned int tx_dma_active;
1498c2ecf20Sopenharmony_ci	unsigned int rx_dma_active;
1508c2ecf20Sopenharmony_ci	struct dma_async_tx_descriptor *fill_tx_desc;
1518c2ecf20Sopenharmony_ci	dma_addr_t fill_tx_addr;
1528c2ecf20Sopenharmony_ci	struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS];
1538c2ecf20Sopenharmony_ci	dma_addr_t clear_rx_addr;
1548c2ecf20Sopenharmony_ci	u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned;
1558c2ecf20Sopenharmony_ci};
1568c2ecf20Sopenharmony_ci
1578c2ecf20Sopenharmony_ci#if defined(CONFIG_DEBUG_FS)
1588c2ecf20Sopenharmony_cistatic void bcm2835_debugfs_create(struct bcm2835_spi *bs,
1598c2ecf20Sopenharmony_ci				   const char *dname)
1608c2ecf20Sopenharmony_ci{
1618c2ecf20Sopenharmony_ci	char name[64];
1628c2ecf20Sopenharmony_ci	struct dentry *dir;
1638c2ecf20Sopenharmony_ci
1648c2ecf20Sopenharmony_ci	/* get full name */
1658c2ecf20Sopenharmony_ci	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
1668c2ecf20Sopenharmony_ci
1678c2ecf20Sopenharmony_ci	/* the base directory */
1688c2ecf20Sopenharmony_ci	dir = debugfs_create_dir(name, NULL);
1698c2ecf20Sopenharmony_ci	bs->debugfs_dir = dir;
1708c2ecf20Sopenharmony_ci
1718c2ecf20Sopenharmony_ci	/* the counters */
1728c2ecf20Sopenharmony_ci	debugfs_create_u64("count_transfer_polling", 0444, dir,
1738c2ecf20Sopenharmony_ci			   &bs->count_transfer_polling);
1748c2ecf20Sopenharmony_ci	debugfs_create_u64("count_transfer_irq", 0444, dir,
1758c2ecf20Sopenharmony_ci			   &bs->count_transfer_irq);
1768c2ecf20Sopenharmony_ci	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
1778c2ecf20Sopenharmony_ci			   &bs->count_transfer_irq_after_polling);
1788c2ecf20Sopenharmony_ci	debugfs_create_u64("count_transfer_dma", 0444, dir,
1798c2ecf20Sopenharmony_ci			   &bs->count_transfer_dma);
1808c2ecf20Sopenharmony_ci}
1818c2ecf20Sopenharmony_ci
1828c2ecf20Sopenharmony_cistatic void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
1838c2ecf20Sopenharmony_ci{
1848c2ecf20Sopenharmony_ci	debugfs_remove_recursive(bs->debugfs_dir);
1858c2ecf20Sopenharmony_ci	bs->debugfs_dir = NULL;
1868c2ecf20Sopenharmony_ci}
1878c2ecf20Sopenharmony_ci#else
1888c2ecf20Sopenharmony_cistatic void bcm2835_debugfs_create(struct bcm2835_spi *bs,
1898c2ecf20Sopenharmony_ci				   const char *dname)
1908c2ecf20Sopenharmony_ci{
1918c2ecf20Sopenharmony_ci}
1928c2ecf20Sopenharmony_ci
1938c2ecf20Sopenharmony_cistatic void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
1948c2ecf20Sopenharmony_ci{
1958c2ecf20Sopenharmony_ci}
1968c2ecf20Sopenharmony_ci#endif /* CONFIG_DEBUG_FS */
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_cistatic inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
1998c2ecf20Sopenharmony_ci{
2008c2ecf20Sopenharmony_ci	return readl(bs->regs + reg);
2018c2ecf20Sopenharmony_ci}
2028c2ecf20Sopenharmony_ci
2038c2ecf20Sopenharmony_cistatic inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
2048c2ecf20Sopenharmony_ci{
2058c2ecf20Sopenharmony_ci	writel(val, bs->regs + reg);
2068c2ecf20Sopenharmony_ci}
2078c2ecf20Sopenharmony_ci
2088c2ecf20Sopenharmony_cistatic inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
2098c2ecf20Sopenharmony_ci{
2108c2ecf20Sopenharmony_ci	u8 byte;
2118c2ecf20Sopenharmony_ci
2128c2ecf20Sopenharmony_ci	while ((bs->rx_len) &&
2138c2ecf20Sopenharmony_ci	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
2148c2ecf20Sopenharmony_ci		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
2158c2ecf20Sopenharmony_ci		if (bs->rx_buf)
2168c2ecf20Sopenharmony_ci			*bs->rx_buf++ = byte;
2178c2ecf20Sopenharmony_ci		bs->rx_len--;
2188c2ecf20Sopenharmony_ci	}
2198c2ecf20Sopenharmony_ci}
2208c2ecf20Sopenharmony_ci
2218c2ecf20Sopenharmony_cistatic inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
2228c2ecf20Sopenharmony_ci{
2238c2ecf20Sopenharmony_ci	u8 byte;
2248c2ecf20Sopenharmony_ci
2258c2ecf20Sopenharmony_ci	while ((bs->tx_len) &&
2268c2ecf20Sopenharmony_ci	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
2278c2ecf20Sopenharmony_ci		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
2288c2ecf20Sopenharmony_ci		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
2298c2ecf20Sopenharmony_ci		bs->tx_len--;
2308c2ecf20Sopenharmony_ci	}
2318c2ecf20Sopenharmony_ci}
2328c2ecf20Sopenharmony_ci
2338c2ecf20Sopenharmony_ci/**
2348c2ecf20Sopenharmony_ci * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
2358c2ecf20Sopenharmony_ci * @bs: BCM2835 SPI controller
2368c2ecf20Sopenharmony_ci * @count: bytes to read from RX FIFO
2378c2ecf20Sopenharmony_ci *
2388c2ecf20Sopenharmony_ci * The caller must ensure that @bs->rx_len is greater than or equal to @count,
2398c2ecf20Sopenharmony_ci * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
2408c2ecf20Sopenharmony_ci * in the CS register is set (such that a read from the FIFO register receives
2418c2ecf20Sopenharmony_ci * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
2428c2ecf20Sopenharmony_ci */
2438c2ecf20Sopenharmony_cistatic inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
2448c2ecf20Sopenharmony_ci{
2458c2ecf20Sopenharmony_ci	u32 val;
2468c2ecf20Sopenharmony_ci	int len;
2478c2ecf20Sopenharmony_ci
2488c2ecf20Sopenharmony_ci	bs->rx_len -= count;
2498c2ecf20Sopenharmony_ci
2508c2ecf20Sopenharmony_ci	do {
2518c2ecf20Sopenharmony_ci		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
2528c2ecf20Sopenharmony_ci		len = min(count, 4);
2538c2ecf20Sopenharmony_ci		memcpy(bs->rx_buf, &val, len);
2548c2ecf20Sopenharmony_ci		bs->rx_buf += len;
2558c2ecf20Sopenharmony_ci		count -= 4;
2568c2ecf20Sopenharmony_ci	} while (count > 0);
2578c2ecf20Sopenharmony_ci}
2588c2ecf20Sopenharmony_ci
2598c2ecf20Sopenharmony_ci/**
2608c2ecf20Sopenharmony_ci * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
2618c2ecf20Sopenharmony_ci * @bs: BCM2835 SPI controller
2628c2ecf20Sopenharmony_ci * @count: bytes to write to TX FIFO
2638c2ecf20Sopenharmony_ci *
2648c2ecf20Sopenharmony_ci * The caller must ensure that @bs->tx_len is greater than or equal to @count,
2658c2ecf20Sopenharmony_ci * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
2668c2ecf20Sopenharmony_ci * in the CS register is set (such that a write to the FIFO register transmits
2678c2ecf20Sopenharmony_ci * 32-bit instead of just 8-bit).
2688c2ecf20Sopenharmony_ci */
2698c2ecf20Sopenharmony_cistatic inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
2708c2ecf20Sopenharmony_ci{
2718c2ecf20Sopenharmony_ci	u32 val;
2728c2ecf20Sopenharmony_ci	int len;
2738c2ecf20Sopenharmony_ci
2748c2ecf20Sopenharmony_ci	bs->tx_len -= count;
2758c2ecf20Sopenharmony_ci
2768c2ecf20Sopenharmony_ci	do {
2778c2ecf20Sopenharmony_ci		if (bs->tx_buf) {
2788c2ecf20Sopenharmony_ci			len = min(count, 4);
2798c2ecf20Sopenharmony_ci			memcpy(&val, bs->tx_buf, len);
2808c2ecf20Sopenharmony_ci			bs->tx_buf += len;
2818c2ecf20Sopenharmony_ci		} else {
2828c2ecf20Sopenharmony_ci			val = 0;
2838c2ecf20Sopenharmony_ci		}
2848c2ecf20Sopenharmony_ci		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
2858c2ecf20Sopenharmony_ci		count -= 4;
2868c2ecf20Sopenharmony_ci	} while (count > 0);
2878c2ecf20Sopenharmony_ci}
2888c2ecf20Sopenharmony_ci
2898c2ecf20Sopenharmony_ci/**
2908c2ecf20Sopenharmony_ci * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
2918c2ecf20Sopenharmony_ci * @bs: BCM2835 SPI controller
2928c2ecf20Sopenharmony_ci *
2938c2ecf20Sopenharmony_ci * The caller must ensure that the RX FIFO can accommodate as many bytes
2948c2ecf20Sopenharmony_ci * as have been written to the TX FIFO:  Transmission is halted once the
2958c2ecf20Sopenharmony_ci * RX FIFO is full, causing this function to spin forever.
2968c2ecf20Sopenharmony_ci */
2978c2ecf20Sopenharmony_cistatic inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
2988c2ecf20Sopenharmony_ci{
2998c2ecf20Sopenharmony_ci	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
3008c2ecf20Sopenharmony_ci		cpu_relax();
3018c2ecf20Sopenharmony_ci}
3028c2ecf20Sopenharmony_ci
3038c2ecf20Sopenharmony_ci/**
3048c2ecf20Sopenharmony_ci * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
3058c2ecf20Sopenharmony_ci * @bs: BCM2835 SPI controller
3068c2ecf20Sopenharmony_ci * @count: bytes available for reading in RX FIFO
3078c2ecf20Sopenharmony_ci */
3088c2ecf20Sopenharmony_cistatic inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
3098c2ecf20Sopenharmony_ci{
3108c2ecf20Sopenharmony_ci	u8 val;
3118c2ecf20Sopenharmony_ci
3128c2ecf20Sopenharmony_ci	count = min(count, bs->rx_len);
3138c2ecf20Sopenharmony_ci	bs->rx_len -= count;
3148c2ecf20Sopenharmony_ci
3158c2ecf20Sopenharmony_ci	do {
3168c2ecf20Sopenharmony_ci		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
3178c2ecf20Sopenharmony_ci		if (bs->rx_buf)
3188c2ecf20Sopenharmony_ci			*bs->rx_buf++ = val;
3198c2ecf20Sopenharmony_ci	} while (--count);
3208c2ecf20Sopenharmony_ci}
3218c2ecf20Sopenharmony_ci
3228c2ecf20Sopenharmony_ci/**
3238c2ecf20Sopenharmony_ci * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
3248c2ecf20Sopenharmony_ci * @bs: BCM2835 SPI controller
3258c2ecf20Sopenharmony_ci * @count: bytes available for writing in TX FIFO
3268c2ecf20Sopenharmony_ci */
3278c2ecf20Sopenharmony_cistatic inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
3288c2ecf20Sopenharmony_ci{
3298c2ecf20Sopenharmony_ci	u8 val;
3308c2ecf20Sopenharmony_ci
3318c2ecf20Sopenharmony_ci	count = min(count, bs->tx_len);
3328c2ecf20Sopenharmony_ci	bs->tx_len -= count;
3338c2ecf20Sopenharmony_ci
3348c2ecf20Sopenharmony_ci	do {
3358c2ecf20Sopenharmony_ci		val = bs->tx_buf ? *bs->tx_buf++ : 0;
3368c2ecf20Sopenharmony_ci		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
3378c2ecf20Sopenharmony_ci	} while (--count);
3388c2ecf20Sopenharmony_ci}
3398c2ecf20Sopenharmony_ci
3408c2ecf20Sopenharmony_cistatic void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
3418c2ecf20Sopenharmony_ci{
3428c2ecf20Sopenharmony_ci	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
3438c2ecf20Sopenharmony_ci
3448c2ecf20Sopenharmony_ci	/* Disable SPI interrupts and transfer */
3458c2ecf20Sopenharmony_ci	cs &= ~(BCM2835_SPI_CS_INTR |
3468c2ecf20Sopenharmony_ci		BCM2835_SPI_CS_INTD |
3478c2ecf20Sopenharmony_ci		BCM2835_SPI_CS_DMAEN |
3488c2ecf20Sopenharmony_ci		BCM2835_SPI_CS_TA);
3498c2ecf20Sopenharmony_ci	/*
3508c2ecf20Sopenharmony_ci	 * Transmission sometimes breaks unless the DONE bit is written at the
3518c2ecf20Sopenharmony_ci	 * end of every transfer.  The spec says it's a RO bit.  Either the
3528c2ecf20Sopenharmony_ci	 * spec is wrong and the bit is actually of type RW1C, or it's a
3538c2ecf20Sopenharmony_ci	 * hardware erratum.
3548c2ecf20Sopenharmony_ci	 */
3558c2ecf20Sopenharmony_ci	cs |= BCM2835_SPI_CS_DONE;
3568c2ecf20Sopenharmony_ci	/* and reset RX/TX FIFOS */
3578c2ecf20Sopenharmony_ci	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
3588c2ecf20Sopenharmony_ci
3598c2ecf20Sopenharmony_ci	/* and reset the SPI_HW */
3608c2ecf20Sopenharmony_ci	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
3618c2ecf20Sopenharmony_ci	/* as well as DLEN */
3628c2ecf20Sopenharmony_ci	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
3638c2ecf20Sopenharmony_ci}
3648c2ecf20Sopenharmony_ci
3658c2ecf20Sopenharmony_cistatic irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
3668c2ecf20Sopenharmony_ci{
3678c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs = dev_id;
3688c2ecf20Sopenharmony_ci	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
3698c2ecf20Sopenharmony_ci
3708c2ecf20Sopenharmony_ci	/*
3718c2ecf20Sopenharmony_ci	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
3728c2ecf20Sopenharmony_ci	 * or if RXR is set (RX FIFO >= ¾ full).
3738c2ecf20Sopenharmony_ci	 */
3748c2ecf20Sopenharmony_ci	if (cs & BCM2835_SPI_CS_RXF)
3758c2ecf20Sopenharmony_ci		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
3768c2ecf20Sopenharmony_ci	else if (cs & BCM2835_SPI_CS_RXR)
3778c2ecf20Sopenharmony_ci		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
3788c2ecf20Sopenharmony_ci
3798c2ecf20Sopenharmony_ci	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
3808c2ecf20Sopenharmony_ci		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
3818c2ecf20Sopenharmony_ci
3828c2ecf20Sopenharmony_ci	/* Read as many bytes as possible from FIFO */
3838c2ecf20Sopenharmony_ci	bcm2835_rd_fifo(bs);
3848c2ecf20Sopenharmony_ci	/* Write as many bytes as possible to FIFO */
3858c2ecf20Sopenharmony_ci	bcm2835_wr_fifo(bs);
3868c2ecf20Sopenharmony_ci
3878c2ecf20Sopenharmony_ci	if (!bs->rx_len) {
3888c2ecf20Sopenharmony_ci		/* Transfer complete - reset SPI HW */
3898c2ecf20Sopenharmony_ci		bcm2835_spi_reset_hw(bs);
3908c2ecf20Sopenharmony_ci		/* wake up the framework */
3918c2ecf20Sopenharmony_ci		complete(&bs->ctlr->xfer_completion);
3928c2ecf20Sopenharmony_ci	}
3938c2ecf20Sopenharmony_ci
3948c2ecf20Sopenharmony_ci	return IRQ_HANDLED;
3958c2ecf20Sopenharmony_ci}
3968c2ecf20Sopenharmony_ci
3978c2ecf20Sopenharmony_cistatic int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
3988c2ecf20Sopenharmony_ci					struct spi_device *spi,
3998c2ecf20Sopenharmony_ci					struct spi_transfer *tfr,
4008c2ecf20Sopenharmony_ci					u32 cs, bool fifo_empty)
4018c2ecf20Sopenharmony_ci{
4028c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
4038c2ecf20Sopenharmony_ci
4048c2ecf20Sopenharmony_ci	/* update usage statistics */
4058c2ecf20Sopenharmony_ci	bs->count_transfer_irq++;
4068c2ecf20Sopenharmony_ci
4078c2ecf20Sopenharmony_ci	/*
4088c2ecf20Sopenharmony_ci	 * Enable HW block, but with interrupts still disabled.
4098c2ecf20Sopenharmony_ci	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
4108c2ecf20Sopenharmony_ci	 */
4118c2ecf20Sopenharmony_ci	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
4128c2ecf20Sopenharmony_ci
4138c2ecf20Sopenharmony_ci	/* fill TX FIFO as much as possible */
4148c2ecf20Sopenharmony_ci	if (fifo_empty)
4158c2ecf20Sopenharmony_ci		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
4168c2ecf20Sopenharmony_ci	bcm2835_wr_fifo(bs);
4178c2ecf20Sopenharmony_ci
4188c2ecf20Sopenharmony_ci	/* enable interrupts */
4198c2ecf20Sopenharmony_ci	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
4208c2ecf20Sopenharmony_ci	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
4218c2ecf20Sopenharmony_ci
4228c2ecf20Sopenharmony_ci	/* signal that we need to wait for completion */
4238c2ecf20Sopenharmony_ci	return 1;
4248c2ecf20Sopenharmony_ci}
4258c2ecf20Sopenharmony_ci
4268c2ecf20Sopenharmony_ci/**
4278c2ecf20Sopenharmony_ci * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
4288c2ecf20Sopenharmony_ci * @ctlr: SPI master controller
4298c2ecf20Sopenharmony_ci * @tfr: SPI transfer
4308c2ecf20Sopenharmony_ci * @bs: BCM2835 SPI controller
4318c2ecf20Sopenharmony_ci * @cs: CS register
4328c2ecf20Sopenharmony_ci *
4338c2ecf20Sopenharmony_ci * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
4348c2ecf20Sopenharmony_ci * Only the final write access is permitted to transmit less than 4 bytes, the
4358c2ecf20Sopenharmony_ci * SPI controller deduces its intended size from the DLEN register.
4368c2ecf20Sopenharmony_ci *
4378c2ecf20Sopenharmony_ci * If a TX or RX sglist contains multiple entries, one per page, and the first
4388c2ecf20Sopenharmony_ci * entry starts in the middle of a page, that first entry's length may not be
4398c2ecf20Sopenharmony_ci * a multiple of 4.  Subsequent entries are fine because they span an entire
4408c2ecf20Sopenharmony_ci * page, hence do have a length that's a multiple of 4.
4418c2ecf20Sopenharmony_ci *
4428c2ecf20Sopenharmony_ci * This cannot happen with kmalloc'ed buffers (which is what most clients use)
4438c2ecf20Sopenharmony_ci * because they are contiguous in physical memory and therefore not split on
4448c2ecf20Sopenharmony_ci * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
4458c2ecf20Sopenharmony_ci * buffers.
4468c2ecf20Sopenharmony_ci *
4478c2ecf20Sopenharmony_ci * The DMA engine is incapable of combining sglist entries into a continuous
4488c2ecf20Sopenharmony_ci * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
4498c2ecf20Sopenharmony_ci * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
4508c2ecf20Sopenharmony_ci * entry is rounded up by throwing away received bytes.
4518c2ecf20Sopenharmony_ci *
4528c2ecf20Sopenharmony_ci * Overcome this limitation by transferring the first few bytes without DMA:
4538c2ecf20Sopenharmony_ci * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
4548c2ecf20Sopenharmony_ci * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
4558c2ecf20Sopenharmony_ci * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
4568c2ecf20Sopenharmony_ci * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
4578c2ecf20Sopenharmony_ci *
4588c2ecf20Sopenharmony_ci * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
4598c2ecf20Sopenharmony_ci * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
4608c2ecf20Sopenharmony_ci * Caution, the additional 4 bytes spill over to the second TX sglist entry
4618c2ecf20Sopenharmony_ci * if the length of the first is *exactly* 1.
4628c2ecf20Sopenharmony_ci *
4638c2ecf20Sopenharmony_ci * At most 6 bytes are written and at most 3 bytes read.  Do we know the
4648c2ecf20Sopenharmony_ci * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
4658c2ecf20Sopenharmony_ci *
4668c2ecf20Sopenharmony_ci * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
4678c2ecf20Sopenharmony_ci * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
4688c2ecf20Sopenharmony_ci * the width but also garbles the FIFO's contents.  The prologue must therefore
4698c2ecf20Sopenharmony_ci * be transmitted in 32-bit width to ensure that the following DMA transfer can
4708c2ecf20Sopenharmony_ci * pick up the residue in the RX FIFO in ungarbled form.
4718c2ecf20Sopenharmony_ci */
4728c2ecf20Sopenharmony_cistatic void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
4738c2ecf20Sopenharmony_ci					  struct spi_transfer *tfr,
4748c2ecf20Sopenharmony_ci					  struct bcm2835_spi *bs,
4758c2ecf20Sopenharmony_ci					  u32 cs)
4768c2ecf20Sopenharmony_ci{
4778c2ecf20Sopenharmony_ci	int tx_remaining;
4788c2ecf20Sopenharmony_ci
4798c2ecf20Sopenharmony_ci	bs->tfr		 = tfr;
4808c2ecf20Sopenharmony_ci	bs->tx_prologue  = 0;
4818c2ecf20Sopenharmony_ci	bs->rx_prologue  = 0;
4828c2ecf20Sopenharmony_ci	bs->tx_spillover = false;
4838c2ecf20Sopenharmony_ci
4848c2ecf20Sopenharmony_ci	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
4858c2ecf20Sopenharmony_ci		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
4868c2ecf20Sopenharmony_ci
4878c2ecf20Sopenharmony_ci	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
4888c2ecf20Sopenharmony_ci		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
4898c2ecf20Sopenharmony_ci
4908c2ecf20Sopenharmony_ci		if (bs->rx_prologue > bs->tx_prologue) {
4918c2ecf20Sopenharmony_ci			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
4928c2ecf20Sopenharmony_ci				bs->tx_prologue  = bs->rx_prologue;
4938c2ecf20Sopenharmony_ci			} else {
4948c2ecf20Sopenharmony_ci				bs->tx_prologue += 4;
4958c2ecf20Sopenharmony_ci				bs->tx_spillover =
4968c2ecf20Sopenharmony_ci					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
4978c2ecf20Sopenharmony_ci			}
4988c2ecf20Sopenharmony_ci		}
4998c2ecf20Sopenharmony_ci	}
5008c2ecf20Sopenharmony_ci
5018c2ecf20Sopenharmony_ci	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
5028c2ecf20Sopenharmony_ci	if (!bs->tx_prologue)
5038c2ecf20Sopenharmony_ci		return;
5048c2ecf20Sopenharmony_ci
5058c2ecf20Sopenharmony_ci	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
5068c2ecf20Sopenharmony_ci	if (bs->rx_prologue) {
5078c2ecf20Sopenharmony_ci		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
5088c2ecf20Sopenharmony_ci		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
5098c2ecf20Sopenharmony_ci						  | BCM2835_SPI_CS_DMAEN);
5108c2ecf20Sopenharmony_ci		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
5118c2ecf20Sopenharmony_ci		bcm2835_wait_tx_fifo_empty(bs);
5128c2ecf20Sopenharmony_ci		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
5138c2ecf20Sopenharmony_ci		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
5148c2ecf20Sopenharmony_ci						  | BCM2835_SPI_CS_CLEAR_TX
5158c2ecf20Sopenharmony_ci						  | BCM2835_SPI_CS_DONE);
5168c2ecf20Sopenharmony_ci
5178c2ecf20Sopenharmony_ci		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
5188c2ecf20Sopenharmony_ci					   sg_dma_address(&tfr->rx_sg.sgl[0]),
5198c2ecf20Sopenharmony_ci					   bs->rx_prologue, DMA_FROM_DEVICE);
5208c2ecf20Sopenharmony_ci
5218c2ecf20Sopenharmony_ci		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
5228c2ecf20Sopenharmony_ci		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
5238c2ecf20Sopenharmony_ci	}
5248c2ecf20Sopenharmony_ci
5258c2ecf20Sopenharmony_ci	if (!bs->tx_buf)
5268c2ecf20Sopenharmony_ci		return;
5278c2ecf20Sopenharmony_ci
5288c2ecf20Sopenharmony_ci	/*
5298c2ecf20Sopenharmony_ci	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
5308c2ecf20Sopenharmony_ci	 * Also adjust second entry if prologue spills over to it.
5318c2ecf20Sopenharmony_ci	 */
5328c2ecf20Sopenharmony_ci	tx_remaining = bs->tx_prologue - bs->rx_prologue;
5338c2ecf20Sopenharmony_ci	if (tx_remaining) {
5348c2ecf20Sopenharmony_ci		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
5358c2ecf20Sopenharmony_ci		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
5368c2ecf20Sopenharmony_ci						  | BCM2835_SPI_CS_DMAEN);
5378c2ecf20Sopenharmony_ci		bcm2835_wr_fifo_count(bs, tx_remaining);
5388c2ecf20Sopenharmony_ci		bcm2835_wait_tx_fifo_empty(bs);
5398c2ecf20Sopenharmony_ci		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
5408c2ecf20Sopenharmony_ci						  | BCM2835_SPI_CS_DONE);
5418c2ecf20Sopenharmony_ci	}
5428c2ecf20Sopenharmony_ci
5438c2ecf20Sopenharmony_ci	if (likely(!bs->tx_spillover)) {
5448c2ecf20Sopenharmony_ci		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
5458c2ecf20Sopenharmony_ci		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
5468c2ecf20Sopenharmony_ci	} else {
5478c2ecf20Sopenharmony_ci		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
5488c2ecf20Sopenharmony_ci		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
5498c2ecf20Sopenharmony_ci		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
5508c2ecf20Sopenharmony_ci	}
5518c2ecf20Sopenharmony_ci}
5528c2ecf20Sopenharmony_ci
5538c2ecf20Sopenharmony_ci/**
5548c2ecf20Sopenharmony_ci * bcm2835_spi_undo_prologue() - reconstruct original sglist state
5558c2ecf20Sopenharmony_ci * @bs: BCM2835 SPI controller
5568c2ecf20Sopenharmony_ci *
5578c2ecf20Sopenharmony_ci * Undo changes which were made to an SPI transfer's sglist when transmitting
5588c2ecf20Sopenharmony_ci * the prologue.  This is necessary to ensure the same memory ranges are
5598c2ecf20Sopenharmony_ci * unmapped that were originally mapped.
5608c2ecf20Sopenharmony_ci */
5618c2ecf20Sopenharmony_cistatic void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
5628c2ecf20Sopenharmony_ci{
5638c2ecf20Sopenharmony_ci	struct spi_transfer *tfr = bs->tfr;
5648c2ecf20Sopenharmony_ci
5658c2ecf20Sopenharmony_ci	if (!bs->tx_prologue)
5668c2ecf20Sopenharmony_ci		return;
5678c2ecf20Sopenharmony_ci
5688c2ecf20Sopenharmony_ci	if (bs->rx_prologue) {
5698c2ecf20Sopenharmony_ci		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
5708c2ecf20Sopenharmony_ci		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
5718c2ecf20Sopenharmony_ci	}
5728c2ecf20Sopenharmony_ci
5738c2ecf20Sopenharmony_ci	if (!bs->tx_buf)
5748c2ecf20Sopenharmony_ci		goto out;
5758c2ecf20Sopenharmony_ci
5768c2ecf20Sopenharmony_ci	if (likely(!bs->tx_spillover)) {
5778c2ecf20Sopenharmony_ci		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
5788c2ecf20Sopenharmony_ci		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
5798c2ecf20Sopenharmony_ci	} else {
5808c2ecf20Sopenharmony_ci		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
5818c2ecf20Sopenharmony_ci		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
5828c2ecf20Sopenharmony_ci		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
5838c2ecf20Sopenharmony_ci	}
5848c2ecf20Sopenharmony_ciout:
5858c2ecf20Sopenharmony_ci	bs->tx_prologue = 0;
5868c2ecf20Sopenharmony_ci}
5878c2ecf20Sopenharmony_ci
5888c2ecf20Sopenharmony_ci/**
5898c2ecf20Sopenharmony_ci * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
5908c2ecf20Sopenharmony_ci * @data: SPI master controller
5918c2ecf20Sopenharmony_ci *
5928c2ecf20Sopenharmony_ci * Used for bidirectional and RX-only transfers.
5938c2ecf20Sopenharmony_ci */
5948c2ecf20Sopenharmony_cistatic void bcm2835_spi_dma_rx_done(void *data)
5958c2ecf20Sopenharmony_ci{
5968c2ecf20Sopenharmony_ci	struct spi_controller *ctlr = data;
5978c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
5988c2ecf20Sopenharmony_ci
5998c2ecf20Sopenharmony_ci	/* terminate tx-dma as we do not have an irq for it
6008c2ecf20Sopenharmony_ci	 * because when the rx dma will terminate and this callback
6018c2ecf20Sopenharmony_ci	 * is called the tx-dma must have finished - can't get to this
6028c2ecf20Sopenharmony_ci	 * situation otherwise...
6038c2ecf20Sopenharmony_ci	 */
6048c2ecf20Sopenharmony_ci	dmaengine_terminate_async(ctlr->dma_tx);
6058c2ecf20Sopenharmony_ci	bs->tx_dma_active = false;
6068c2ecf20Sopenharmony_ci	bs->rx_dma_active = false;
6078c2ecf20Sopenharmony_ci	bcm2835_spi_undo_prologue(bs);
6088c2ecf20Sopenharmony_ci
6098c2ecf20Sopenharmony_ci	/* reset fifo and HW */
6108c2ecf20Sopenharmony_ci	bcm2835_spi_reset_hw(bs);
6118c2ecf20Sopenharmony_ci
6128c2ecf20Sopenharmony_ci	/* and mark as completed */;
6138c2ecf20Sopenharmony_ci	complete(&ctlr->xfer_completion);
6148c2ecf20Sopenharmony_ci}
6158c2ecf20Sopenharmony_ci
6168c2ecf20Sopenharmony_ci/**
6178c2ecf20Sopenharmony_ci * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
6188c2ecf20Sopenharmony_ci * @data: SPI master controller
6198c2ecf20Sopenharmony_ci *
6208c2ecf20Sopenharmony_ci * Used for TX-only transfers.
6218c2ecf20Sopenharmony_ci */
6228c2ecf20Sopenharmony_cistatic void bcm2835_spi_dma_tx_done(void *data)
6238c2ecf20Sopenharmony_ci{
6248c2ecf20Sopenharmony_ci	struct spi_controller *ctlr = data;
6258c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
6268c2ecf20Sopenharmony_ci
6278c2ecf20Sopenharmony_ci	/* busy-wait for TX FIFO to empty */
6288c2ecf20Sopenharmony_ci	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
6298c2ecf20Sopenharmony_ci		bcm2835_wr(bs, BCM2835_SPI_CS,
6308c2ecf20Sopenharmony_ci			   bs->clear_rx_cs[bs->chip_select]);
6318c2ecf20Sopenharmony_ci
6328c2ecf20Sopenharmony_ci	bs->tx_dma_active = false;
6338c2ecf20Sopenharmony_ci	smp_wmb();
6348c2ecf20Sopenharmony_ci
6358c2ecf20Sopenharmony_ci	/*
6368c2ecf20Sopenharmony_ci	 * In case of a very short transfer, RX DMA may not have been
6378c2ecf20Sopenharmony_ci	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
6388c2ecf20Sopenharmony_ci	 * to terminate it immediately after issuing.
6398c2ecf20Sopenharmony_ci	 */
6408c2ecf20Sopenharmony_ci	if (cmpxchg(&bs->rx_dma_active, true, false))
6418c2ecf20Sopenharmony_ci		dmaengine_terminate_async(ctlr->dma_rx);
6428c2ecf20Sopenharmony_ci
6438c2ecf20Sopenharmony_ci	bcm2835_spi_undo_prologue(bs);
6448c2ecf20Sopenharmony_ci	bcm2835_spi_reset_hw(bs);
6458c2ecf20Sopenharmony_ci	complete(&ctlr->xfer_completion);
6468c2ecf20Sopenharmony_ci}
6478c2ecf20Sopenharmony_ci
6488c2ecf20Sopenharmony_ci/**
6498c2ecf20Sopenharmony_ci * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
6508c2ecf20Sopenharmony_ci * @ctlr: SPI master controller
6518c2ecf20Sopenharmony_ci * @spi: SPI slave
6528c2ecf20Sopenharmony_ci * @tfr: SPI transfer
6538c2ecf20Sopenharmony_ci * @bs: BCM2835 SPI controller
6548c2ecf20Sopenharmony_ci * @is_tx: whether to submit DMA descriptor for TX or RX sglist
6558c2ecf20Sopenharmony_ci *
6568c2ecf20Sopenharmony_ci * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
6578c2ecf20Sopenharmony_ci * Return 0 on success or a negative error number.
6588c2ecf20Sopenharmony_ci */
6598c2ecf20Sopenharmony_cistatic int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
6608c2ecf20Sopenharmony_ci				  struct spi_device *spi,
6618c2ecf20Sopenharmony_ci				  struct spi_transfer *tfr,
6628c2ecf20Sopenharmony_ci				  struct bcm2835_spi *bs,
6638c2ecf20Sopenharmony_ci				  bool is_tx)
6648c2ecf20Sopenharmony_ci{
6658c2ecf20Sopenharmony_ci	struct dma_chan *chan;
6668c2ecf20Sopenharmony_ci	struct scatterlist *sgl;
6678c2ecf20Sopenharmony_ci	unsigned int nents;
6688c2ecf20Sopenharmony_ci	enum dma_transfer_direction dir;
6698c2ecf20Sopenharmony_ci	unsigned long flags;
6708c2ecf20Sopenharmony_ci
6718c2ecf20Sopenharmony_ci	struct dma_async_tx_descriptor *desc;
6728c2ecf20Sopenharmony_ci	dma_cookie_t cookie;
6738c2ecf20Sopenharmony_ci
6748c2ecf20Sopenharmony_ci	if (is_tx) {
6758c2ecf20Sopenharmony_ci		dir   = DMA_MEM_TO_DEV;
6768c2ecf20Sopenharmony_ci		chan  = ctlr->dma_tx;
6778c2ecf20Sopenharmony_ci		nents = tfr->tx_sg.nents;
6788c2ecf20Sopenharmony_ci		sgl   = tfr->tx_sg.sgl;
6798c2ecf20Sopenharmony_ci		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
6808c2ecf20Sopenharmony_ci	} else {
6818c2ecf20Sopenharmony_ci		dir   = DMA_DEV_TO_MEM;
6828c2ecf20Sopenharmony_ci		chan  = ctlr->dma_rx;
6838c2ecf20Sopenharmony_ci		nents = tfr->rx_sg.nents;
6848c2ecf20Sopenharmony_ci		sgl   = tfr->rx_sg.sgl;
6858c2ecf20Sopenharmony_ci		flags = DMA_PREP_INTERRUPT;
6868c2ecf20Sopenharmony_ci	}
6878c2ecf20Sopenharmony_ci	/* prepare the channel */
6888c2ecf20Sopenharmony_ci	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
6898c2ecf20Sopenharmony_ci	if (!desc)
6908c2ecf20Sopenharmony_ci		return -EINVAL;
6918c2ecf20Sopenharmony_ci
6928c2ecf20Sopenharmony_ci	/*
6938c2ecf20Sopenharmony_ci	 * Completion is signaled by the RX channel for bidirectional and
6948c2ecf20Sopenharmony_ci	 * RX-only transfers; else by the TX channel for TX-only transfers.
6958c2ecf20Sopenharmony_ci	 */
6968c2ecf20Sopenharmony_ci	if (!is_tx) {
6978c2ecf20Sopenharmony_ci		desc->callback = bcm2835_spi_dma_rx_done;
6988c2ecf20Sopenharmony_ci		desc->callback_param = ctlr;
6998c2ecf20Sopenharmony_ci	} else if (!tfr->rx_buf) {
7008c2ecf20Sopenharmony_ci		desc->callback = bcm2835_spi_dma_tx_done;
7018c2ecf20Sopenharmony_ci		desc->callback_param = ctlr;
7028c2ecf20Sopenharmony_ci		bs->chip_select = spi->chip_select;
7038c2ecf20Sopenharmony_ci	}
7048c2ecf20Sopenharmony_ci
7058c2ecf20Sopenharmony_ci	/* submit it to DMA-engine */
7068c2ecf20Sopenharmony_ci	cookie = dmaengine_submit(desc);
7078c2ecf20Sopenharmony_ci
7088c2ecf20Sopenharmony_ci	return dma_submit_error(cookie);
7098c2ecf20Sopenharmony_ci}
7108c2ecf20Sopenharmony_ci
7118c2ecf20Sopenharmony_ci/**
7128c2ecf20Sopenharmony_ci * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
7138c2ecf20Sopenharmony_ci * @ctlr: SPI master controller
7148c2ecf20Sopenharmony_ci * @spi: SPI slave
7158c2ecf20Sopenharmony_ci * @tfr: SPI transfer
7168c2ecf20Sopenharmony_ci * @cs: CS register
7178c2ecf20Sopenharmony_ci *
7188c2ecf20Sopenharmony_ci * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
7198c2ecf20Sopenharmony_ci * the TX and RX DMA channel to copy between memory and FIFO register.
7208c2ecf20Sopenharmony_ci *
7218c2ecf20Sopenharmony_ci * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
7228c2ecf20Sopenharmony_ci * memory is pointless.  However not reading the RX FIFO isn't an option either
7238c2ecf20Sopenharmony_ci * because transmission is halted once it's full.  As a workaround, cyclically
7248c2ecf20Sopenharmony_ci * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
7258c2ecf20Sopenharmony_ci *
7268c2ecf20Sopenharmony_ci * The CS register value is precalculated in bcm2835_spi_setup().  Normally
7278c2ecf20Sopenharmony_ci * this is called only once, on slave registration.  A DMA descriptor to write
7288c2ecf20Sopenharmony_ci * this value is preallocated in bcm2835_dma_init().  All that's left to do
7298c2ecf20Sopenharmony_ci * when performing a TX-only transfer is to submit this descriptor to the RX
7308c2ecf20Sopenharmony_ci * DMA channel.  Latency is thereby minimized.  The descriptor does not
7318c2ecf20Sopenharmony_ci * generate any interrupts while running.  It must be terminated once the
7328c2ecf20Sopenharmony_ci * TX DMA channel is done.
7338c2ecf20Sopenharmony_ci *
7348c2ecf20Sopenharmony_ci * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
7358c2ecf20Sopenharmony_ci * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
7368c2ecf20Sopenharmony_ci * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
7378c2ecf20Sopenharmony_ci * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
7388c2ecf20Sopenharmony_ci * reduction in bus traffic and thus energy consumption is achieved.
7398c2ecf20Sopenharmony_ci *
7408c2ecf20Sopenharmony_ci * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
7418c2ecf20Sopenharmony_ci * copying from the zero page.  The DMA descriptor to do this is preallocated
7428c2ecf20Sopenharmony_ci * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
7438c2ecf20Sopenharmony_ci * done and can then be reused.
7448c2ecf20Sopenharmony_ci *
7458c2ecf20Sopenharmony_ci * The BCM2835 DMA driver autodetects when a transaction copies from the zero
7468c2ecf20Sopenharmony_ci * page and utilizes the DMA controller's ability to synthesize zeroes instead
7478c2ecf20Sopenharmony_ci * of copying them from memory.  This reduces traffic on the memory bus.  The
7488c2ecf20Sopenharmony_ci * feature is not available on so-called "lite" channels, but normally TX DMA
7498c2ecf20Sopenharmony_ci * is backed by a full-featured channel.
7508c2ecf20Sopenharmony_ci *
7518c2ecf20Sopenharmony_ci * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
7528c2ecf20Sopenharmony_ci * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
7538c2ecf20Sopenharmony_ci * has been counted down to zero (hardware erratum).  Thus, when the transfer
7548c2ecf20Sopenharmony_ci * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
7558c2ecf20Sopenharmony_ci * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
7568c2ecf20Sopenharmony_ci * performed at the end of an RX-only transfer.
7578c2ecf20Sopenharmony_ci */
7588c2ecf20Sopenharmony_cistatic int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
7598c2ecf20Sopenharmony_ci					struct spi_device *spi,
7608c2ecf20Sopenharmony_ci					struct spi_transfer *tfr,
7618c2ecf20Sopenharmony_ci					u32 cs)
7628c2ecf20Sopenharmony_ci{
7638c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
7648c2ecf20Sopenharmony_ci	dma_cookie_t cookie;
7658c2ecf20Sopenharmony_ci	int ret;
7668c2ecf20Sopenharmony_ci
7678c2ecf20Sopenharmony_ci	/* update usage statistics */
7688c2ecf20Sopenharmony_ci	bs->count_transfer_dma++;
7698c2ecf20Sopenharmony_ci
7708c2ecf20Sopenharmony_ci	/*
7718c2ecf20Sopenharmony_ci	 * Transfer first few bytes without DMA if length of first TX or RX
7728c2ecf20Sopenharmony_ci	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
7738c2ecf20Sopenharmony_ci	 */
7748c2ecf20Sopenharmony_ci	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
7758c2ecf20Sopenharmony_ci
7768c2ecf20Sopenharmony_ci	/* setup tx-DMA */
7778c2ecf20Sopenharmony_ci	if (bs->tx_buf) {
7788c2ecf20Sopenharmony_ci		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true);
7798c2ecf20Sopenharmony_ci	} else {
7808c2ecf20Sopenharmony_ci		cookie = dmaengine_submit(bs->fill_tx_desc);
7818c2ecf20Sopenharmony_ci		ret = dma_submit_error(cookie);
7828c2ecf20Sopenharmony_ci	}
7838c2ecf20Sopenharmony_ci	if (ret)
7848c2ecf20Sopenharmony_ci		goto err_reset_hw;
7858c2ecf20Sopenharmony_ci
7868c2ecf20Sopenharmony_ci	/* set the DMA length */
7878c2ecf20Sopenharmony_ci	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
7888c2ecf20Sopenharmony_ci
7898c2ecf20Sopenharmony_ci	/* start the HW */
7908c2ecf20Sopenharmony_ci	bcm2835_wr(bs, BCM2835_SPI_CS,
7918c2ecf20Sopenharmony_ci		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
7928c2ecf20Sopenharmony_ci
7938c2ecf20Sopenharmony_ci	bs->tx_dma_active = true;
7948c2ecf20Sopenharmony_ci	smp_wmb();
7958c2ecf20Sopenharmony_ci
7968c2ecf20Sopenharmony_ci	/* start TX early */
7978c2ecf20Sopenharmony_ci	dma_async_issue_pending(ctlr->dma_tx);
7988c2ecf20Sopenharmony_ci
7998c2ecf20Sopenharmony_ci	/* setup rx-DMA late - to run transfers while
8008c2ecf20Sopenharmony_ci	 * mapping of the rx buffers still takes place
8018c2ecf20Sopenharmony_ci	 * this saves 10us or more.
8028c2ecf20Sopenharmony_ci	 */
8038c2ecf20Sopenharmony_ci	if (bs->rx_buf) {
8048c2ecf20Sopenharmony_ci		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false);
8058c2ecf20Sopenharmony_ci	} else {
8068c2ecf20Sopenharmony_ci		cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]);
8078c2ecf20Sopenharmony_ci		ret = dma_submit_error(cookie);
8088c2ecf20Sopenharmony_ci	}
8098c2ecf20Sopenharmony_ci	if (ret) {
8108c2ecf20Sopenharmony_ci		/* need to reset on errors */
8118c2ecf20Sopenharmony_ci		dmaengine_terminate_sync(ctlr->dma_tx);
8128c2ecf20Sopenharmony_ci		bs->tx_dma_active = false;
8138c2ecf20Sopenharmony_ci		goto err_reset_hw;
8148c2ecf20Sopenharmony_ci	}
8158c2ecf20Sopenharmony_ci
8168c2ecf20Sopenharmony_ci	/* start rx dma late */
8178c2ecf20Sopenharmony_ci	dma_async_issue_pending(ctlr->dma_rx);
8188c2ecf20Sopenharmony_ci	bs->rx_dma_active = true;
8198c2ecf20Sopenharmony_ci	smp_mb();
8208c2ecf20Sopenharmony_ci
8218c2ecf20Sopenharmony_ci	/*
8228c2ecf20Sopenharmony_ci	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
8238c2ecf20Sopenharmony_ci	 * may run before RX DMA is issued.  Terminate RX DMA if so.
8248c2ecf20Sopenharmony_ci	 */
8258c2ecf20Sopenharmony_ci	if (!bs->rx_buf && !bs->tx_dma_active &&
8268c2ecf20Sopenharmony_ci	    cmpxchg(&bs->rx_dma_active, true, false)) {
8278c2ecf20Sopenharmony_ci		dmaengine_terminate_async(ctlr->dma_rx);
8288c2ecf20Sopenharmony_ci		bcm2835_spi_reset_hw(bs);
8298c2ecf20Sopenharmony_ci	}
8308c2ecf20Sopenharmony_ci
8318c2ecf20Sopenharmony_ci	/* wait for wakeup in framework */
8328c2ecf20Sopenharmony_ci	return 1;
8338c2ecf20Sopenharmony_ci
8348c2ecf20Sopenharmony_cierr_reset_hw:
8358c2ecf20Sopenharmony_ci	bcm2835_spi_reset_hw(bs);
8368c2ecf20Sopenharmony_ci	bcm2835_spi_undo_prologue(bs);
8378c2ecf20Sopenharmony_ci	return ret;
8388c2ecf20Sopenharmony_ci}
8398c2ecf20Sopenharmony_ci
8408c2ecf20Sopenharmony_cistatic bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
8418c2ecf20Sopenharmony_ci				struct spi_device *spi,
8428c2ecf20Sopenharmony_ci				struct spi_transfer *tfr)
8438c2ecf20Sopenharmony_ci{
8448c2ecf20Sopenharmony_ci	/* we start DMA efforts only on bigger transfers */
8458c2ecf20Sopenharmony_ci	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
8468c2ecf20Sopenharmony_ci		return false;
8478c2ecf20Sopenharmony_ci
8488c2ecf20Sopenharmony_ci	/* return OK */
8498c2ecf20Sopenharmony_ci	return true;
8508c2ecf20Sopenharmony_ci}
8518c2ecf20Sopenharmony_ci
8528c2ecf20Sopenharmony_cistatic void bcm2835_dma_release(struct spi_controller *ctlr,
8538c2ecf20Sopenharmony_ci				struct bcm2835_spi *bs)
8548c2ecf20Sopenharmony_ci{
8558c2ecf20Sopenharmony_ci	int i;
8568c2ecf20Sopenharmony_ci
8578c2ecf20Sopenharmony_ci	if (ctlr->dma_tx) {
8588c2ecf20Sopenharmony_ci		dmaengine_terminate_sync(ctlr->dma_tx);
8598c2ecf20Sopenharmony_ci
8608c2ecf20Sopenharmony_ci		if (bs->fill_tx_desc)
8618c2ecf20Sopenharmony_ci			dmaengine_desc_free(bs->fill_tx_desc);
8628c2ecf20Sopenharmony_ci
8638c2ecf20Sopenharmony_ci		if (bs->fill_tx_addr)
8648c2ecf20Sopenharmony_ci			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
8658c2ecf20Sopenharmony_ci					     bs->fill_tx_addr, sizeof(u32),
8668c2ecf20Sopenharmony_ci					     DMA_TO_DEVICE,
8678c2ecf20Sopenharmony_ci					     DMA_ATTR_SKIP_CPU_SYNC);
8688c2ecf20Sopenharmony_ci
8698c2ecf20Sopenharmony_ci		dma_release_channel(ctlr->dma_tx);
8708c2ecf20Sopenharmony_ci		ctlr->dma_tx = NULL;
8718c2ecf20Sopenharmony_ci	}
8728c2ecf20Sopenharmony_ci
8738c2ecf20Sopenharmony_ci	if (ctlr->dma_rx) {
8748c2ecf20Sopenharmony_ci		dmaengine_terminate_sync(ctlr->dma_rx);
8758c2ecf20Sopenharmony_ci
8768c2ecf20Sopenharmony_ci		for (i = 0; i < BCM2835_SPI_NUM_CS; i++)
8778c2ecf20Sopenharmony_ci			if (bs->clear_rx_desc[i])
8788c2ecf20Sopenharmony_ci				dmaengine_desc_free(bs->clear_rx_desc[i]);
8798c2ecf20Sopenharmony_ci
8808c2ecf20Sopenharmony_ci		if (bs->clear_rx_addr)
8818c2ecf20Sopenharmony_ci			dma_unmap_single(ctlr->dma_rx->device->dev,
8828c2ecf20Sopenharmony_ci					 bs->clear_rx_addr,
8838c2ecf20Sopenharmony_ci					 sizeof(bs->clear_rx_cs),
8848c2ecf20Sopenharmony_ci					 DMA_TO_DEVICE);
8858c2ecf20Sopenharmony_ci
8868c2ecf20Sopenharmony_ci		dma_release_channel(ctlr->dma_rx);
8878c2ecf20Sopenharmony_ci		ctlr->dma_rx = NULL;
8888c2ecf20Sopenharmony_ci	}
8898c2ecf20Sopenharmony_ci}
8908c2ecf20Sopenharmony_ci
8918c2ecf20Sopenharmony_cistatic int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
8928c2ecf20Sopenharmony_ci			    struct bcm2835_spi *bs)
8938c2ecf20Sopenharmony_ci{
8948c2ecf20Sopenharmony_ci	struct dma_slave_config slave_config;
8958c2ecf20Sopenharmony_ci	const __be32 *addr;
8968c2ecf20Sopenharmony_ci	dma_addr_t dma_reg_base;
8978c2ecf20Sopenharmony_ci	int ret, i;
8988c2ecf20Sopenharmony_ci
8998c2ecf20Sopenharmony_ci	/* base address in dma-space */
9008c2ecf20Sopenharmony_ci	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
9018c2ecf20Sopenharmony_ci	if (!addr) {
9028c2ecf20Sopenharmony_ci		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
9038c2ecf20Sopenharmony_ci		/* Fall back to interrupt mode */
9048c2ecf20Sopenharmony_ci		return 0;
9058c2ecf20Sopenharmony_ci	}
9068c2ecf20Sopenharmony_ci	dma_reg_base = be32_to_cpup(addr);
9078c2ecf20Sopenharmony_ci
9088c2ecf20Sopenharmony_ci	/* get tx/rx dma */
9098c2ecf20Sopenharmony_ci	ctlr->dma_tx = dma_request_chan(dev, "tx");
9108c2ecf20Sopenharmony_ci	if (IS_ERR(ctlr->dma_tx)) {
9118c2ecf20Sopenharmony_ci		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
9128c2ecf20Sopenharmony_ci		ret = PTR_ERR(ctlr->dma_tx);
9138c2ecf20Sopenharmony_ci		ctlr->dma_tx = NULL;
9148c2ecf20Sopenharmony_ci		goto err;
9158c2ecf20Sopenharmony_ci	}
9168c2ecf20Sopenharmony_ci	ctlr->dma_rx = dma_request_chan(dev, "rx");
9178c2ecf20Sopenharmony_ci	if (IS_ERR(ctlr->dma_rx)) {
9188c2ecf20Sopenharmony_ci		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
9198c2ecf20Sopenharmony_ci		ret = PTR_ERR(ctlr->dma_rx);
9208c2ecf20Sopenharmony_ci		ctlr->dma_rx = NULL;
9218c2ecf20Sopenharmony_ci		goto err_release;
9228c2ecf20Sopenharmony_ci	}
9238c2ecf20Sopenharmony_ci
9248c2ecf20Sopenharmony_ci	/*
9258c2ecf20Sopenharmony_ci	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
9268c2ecf20Sopenharmony_ci	 * or, in case of an RX-only transfer, cyclically copies from the zero
9278c2ecf20Sopenharmony_ci	 * page to the FIFO using a preallocated, reusable descriptor.
9288c2ecf20Sopenharmony_ci	 */
9298c2ecf20Sopenharmony_ci	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
9308c2ecf20Sopenharmony_ci	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
9318c2ecf20Sopenharmony_ci
9328c2ecf20Sopenharmony_ci	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
9338c2ecf20Sopenharmony_ci	if (ret)
9348c2ecf20Sopenharmony_ci		goto err_config;
9358c2ecf20Sopenharmony_ci
9368c2ecf20Sopenharmony_ci	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
9378c2ecf20Sopenharmony_ci					      ZERO_PAGE(0), 0, sizeof(u32),
9388c2ecf20Sopenharmony_ci					      DMA_TO_DEVICE,
9398c2ecf20Sopenharmony_ci					      DMA_ATTR_SKIP_CPU_SYNC);
9408c2ecf20Sopenharmony_ci	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
9418c2ecf20Sopenharmony_ci		dev_err(dev, "cannot map zero page - not using DMA mode\n");
9428c2ecf20Sopenharmony_ci		bs->fill_tx_addr = 0;
9438c2ecf20Sopenharmony_ci		ret = -ENOMEM;
9448c2ecf20Sopenharmony_ci		goto err_release;
9458c2ecf20Sopenharmony_ci	}
9468c2ecf20Sopenharmony_ci
9478c2ecf20Sopenharmony_ci	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
9488c2ecf20Sopenharmony_ci						     bs->fill_tx_addr,
9498c2ecf20Sopenharmony_ci						     sizeof(u32), 0,
9508c2ecf20Sopenharmony_ci						     DMA_MEM_TO_DEV, 0);
9518c2ecf20Sopenharmony_ci	if (!bs->fill_tx_desc) {
9528c2ecf20Sopenharmony_ci		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
9538c2ecf20Sopenharmony_ci		ret = -ENOMEM;
9548c2ecf20Sopenharmony_ci		goto err_release;
9558c2ecf20Sopenharmony_ci	}
9568c2ecf20Sopenharmony_ci
9578c2ecf20Sopenharmony_ci	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
9588c2ecf20Sopenharmony_ci	if (ret) {
9598c2ecf20Sopenharmony_ci		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
9608c2ecf20Sopenharmony_ci		goto err_release;
9618c2ecf20Sopenharmony_ci	}
9628c2ecf20Sopenharmony_ci
9638c2ecf20Sopenharmony_ci	/*
9648c2ecf20Sopenharmony_ci	 * The RX DMA channel is used bidirectionally:  It either reads the
9658c2ecf20Sopenharmony_ci	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
9668c2ecf20Sopenharmony_ci	 * precalculated value to the CS register to clear the RX FIFO.
9678c2ecf20Sopenharmony_ci	 */
9688c2ecf20Sopenharmony_ci	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
9698c2ecf20Sopenharmony_ci	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
9708c2ecf20Sopenharmony_ci	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
9718c2ecf20Sopenharmony_ci	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
9728c2ecf20Sopenharmony_ci
9738c2ecf20Sopenharmony_ci	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
9748c2ecf20Sopenharmony_ci	if (ret)
9758c2ecf20Sopenharmony_ci		goto err_config;
9768c2ecf20Sopenharmony_ci
9778c2ecf20Sopenharmony_ci	bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
9788c2ecf20Sopenharmony_ci					   bs->clear_rx_cs,
9798c2ecf20Sopenharmony_ci					   sizeof(bs->clear_rx_cs),
9808c2ecf20Sopenharmony_ci					   DMA_TO_DEVICE);
9818c2ecf20Sopenharmony_ci	if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) {
9828c2ecf20Sopenharmony_ci		dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n");
9838c2ecf20Sopenharmony_ci		bs->clear_rx_addr = 0;
9848c2ecf20Sopenharmony_ci		ret = -ENOMEM;
9858c2ecf20Sopenharmony_ci		goto err_release;
9868c2ecf20Sopenharmony_ci	}
9878c2ecf20Sopenharmony_ci
9888c2ecf20Sopenharmony_ci	for (i = 0; i < BCM2835_SPI_NUM_CS; i++) {
9898c2ecf20Sopenharmony_ci		bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
9908c2ecf20Sopenharmony_ci					   bs->clear_rx_addr + i * sizeof(u32),
9918c2ecf20Sopenharmony_ci					   sizeof(u32), 0,
9928c2ecf20Sopenharmony_ci					   DMA_MEM_TO_DEV, 0);
9938c2ecf20Sopenharmony_ci		if (!bs->clear_rx_desc[i]) {
9948c2ecf20Sopenharmony_ci			dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n");
9958c2ecf20Sopenharmony_ci			ret = -ENOMEM;
9968c2ecf20Sopenharmony_ci			goto err_release;
9978c2ecf20Sopenharmony_ci		}
9988c2ecf20Sopenharmony_ci
9998c2ecf20Sopenharmony_ci		ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]);
10008c2ecf20Sopenharmony_ci		if (ret) {
10018c2ecf20Sopenharmony_ci			dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n");
10028c2ecf20Sopenharmony_ci			goto err_release;
10038c2ecf20Sopenharmony_ci		}
10048c2ecf20Sopenharmony_ci	}
10058c2ecf20Sopenharmony_ci
10068c2ecf20Sopenharmony_ci	/* all went well, so set can_dma */
10078c2ecf20Sopenharmony_ci	ctlr->can_dma = bcm2835_spi_can_dma;
10088c2ecf20Sopenharmony_ci
10098c2ecf20Sopenharmony_ci	return 0;
10108c2ecf20Sopenharmony_ci
10118c2ecf20Sopenharmony_cierr_config:
10128c2ecf20Sopenharmony_ci	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
10138c2ecf20Sopenharmony_ci		ret);
10148c2ecf20Sopenharmony_cierr_release:
10158c2ecf20Sopenharmony_ci	bcm2835_dma_release(ctlr, bs);
10168c2ecf20Sopenharmony_cierr:
10178c2ecf20Sopenharmony_ci	/*
10188c2ecf20Sopenharmony_ci	 * Only report error for deferred probing, otherwise fall back to
10198c2ecf20Sopenharmony_ci	 * interrupt mode
10208c2ecf20Sopenharmony_ci	 */
10218c2ecf20Sopenharmony_ci	if (ret != -EPROBE_DEFER)
10228c2ecf20Sopenharmony_ci		ret = 0;
10238c2ecf20Sopenharmony_ci
10248c2ecf20Sopenharmony_ci	return ret;
10258c2ecf20Sopenharmony_ci}
10268c2ecf20Sopenharmony_ci
10278c2ecf20Sopenharmony_cistatic int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
10288c2ecf20Sopenharmony_ci					 struct spi_device *spi,
10298c2ecf20Sopenharmony_ci					 struct spi_transfer *tfr,
10308c2ecf20Sopenharmony_ci					 u32 cs)
10318c2ecf20Sopenharmony_ci{
10328c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
10338c2ecf20Sopenharmony_ci	unsigned long timeout;
10348c2ecf20Sopenharmony_ci
10358c2ecf20Sopenharmony_ci	/* update usage statistics */
10368c2ecf20Sopenharmony_ci	bs->count_transfer_polling++;
10378c2ecf20Sopenharmony_ci
10388c2ecf20Sopenharmony_ci	/* enable HW block without interrupts */
10398c2ecf20Sopenharmony_ci	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
10408c2ecf20Sopenharmony_ci
10418c2ecf20Sopenharmony_ci	/* fill in the fifo before timeout calculations
10428c2ecf20Sopenharmony_ci	 * if we are interrupted here, then the data is
10438c2ecf20Sopenharmony_ci	 * getting transferred by the HW while we are interrupted
10448c2ecf20Sopenharmony_ci	 */
10458c2ecf20Sopenharmony_ci	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
10468c2ecf20Sopenharmony_ci
10478c2ecf20Sopenharmony_ci	/* set the timeout to at least 2 jiffies */
10488c2ecf20Sopenharmony_ci	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
10498c2ecf20Sopenharmony_ci
10508c2ecf20Sopenharmony_ci	/* loop until finished the transfer */
10518c2ecf20Sopenharmony_ci	while (bs->rx_len) {
10528c2ecf20Sopenharmony_ci		/* fill in tx fifo with remaining data */
10538c2ecf20Sopenharmony_ci		bcm2835_wr_fifo(bs);
10548c2ecf20Sopenharmony_ci
10558c2ecf20Sopenharmony_ci		/* read from fifo as much as possible */
10568c2ecf20Sopenharmony_ci		bcm2835_rd_fifo(bs);
10578c2ecf20Sopenharmony_ci
10588c2ecf20Sopenharmony_ci		/* if there is still data pending to read
10598c2ecf20Sopenharmony_ci		 * then check the timeout
10608c2ecf20Sopenharmony_ci		 */
10618c2ecf20Sopenharmony_ci		if (bs->rx_len && time_after(jiffies, timeout)) {
10628c2ecf20Sopenharmony_ci			dev_dbg_ratelimited(&spi->dev,
10638c2ecf20Sopenharmony_ci					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
10648c2ecf20Sopenharmony_ci					    jiffies - timeout,
10658c2ecf20Sopenharmony_ci					    bs->tx_len, bs->rx_len);
10668c2ecf20Sopenharmony_ci			/* fall back to interrupt mode */
10678c2ecf20Sopenharmony_ci
10688c2ecf20Sopenharmony_ci			/* update usage statistics */
10698c2ecf20Sopenharmony_ci			bs->count_transfer_irq_after_polling++;
10708c2ecf20Sopenharmony_ci
10718c2ecf20Sopenharmony_ci			return bcm2835_spi_transfer_one_irq(ctlr, spi,
10728c2ecf20Sopenharmony_ci							    tfr, cs, false);
10738c2ecf20Sopenharmony_ci		}
10748c2ecf20Sopenharmony_ci	}
10758c2ecf20Sopenharmony_ci
10768c2ecf20Sopenharmony_ci	/* Transfer complete - reset SPI HW */
10778c2ecf20Sopenharmony_ci	bcm2835_spi_reset_hw(bs);
10788c2ecf20Sopenharmony_ci	/* and return without waiting for completion */
10798c2ecf20Sopenharmony_ci	return 0;
10808c2ecf20Sopenharmony_ci}
10818c2ecf20Sopenharmony_ci
10828c2ecf20Sopenharmony_cistatic int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
10838c2ecf20Sopenharmony_ci				    struct spi_device *spi,
10848c2ecf20Sopenharmony_ci				    struct spi_transfer *tfr)
10858c2ecf20Sopenharmony_ci{
10868c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
10878c2ecf20Sopenharmony_ci	unsigned long spi_hz, cdiv;
10888c2ecf20Sopenharmony_ci	unsigned long hz_per_byte, byte_limit;
10898c2ecf20Sopenharmony_ci	u32 cs = bs->prepare_cs[spi->chip_select];
10908c2ecf20Sopenharmony_ci
10918c2ecf20Sopenharmony_ci	/* set clock */
10928c2ecf20Sopenharmony_ci	spi_hz = tfr->speed_hz;
10938c2ecf20Sopenharmony_ci
10948c2ecf20Sopenharmony_ci	if (spi_hz >= bs->clk_hz / 2) {
10958c2ecf20Sopenharmony_ci		cdiv = 2; /* clk_hz/2 is the fastest we can go */
10968c2ecf20Sopenharmony_ci	} else if (spi_hz) {
10978c2ecf20Sopenharmony_ci		/* CDIV must be a multiple of two */
10988c2ecf20Sopenharmony_ci		cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
10998c2ecf20Sopenharmony_ci		cdiv += (cdiv % 2);
11008c2ecf20Sopenharmony_ci
11018c2ecf20Sopenharmony_ci		if (cdiv >= 65536)
11028c2ecf20Sopenharmony_ci			cdiv = 0; /* 0 is the slowest we can go */
11038c2ecf20Sopenharmony_ci	} else {
11048c2ecf20Sopenharmony_ci		cdiv = 0; /* 0 is the slowest we can go */
11058c2ecf20Sopenharmony_ci	}
11068c2ecf20Sopenharmony_ci	tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
11078c2ecf20Sopenharmony_ci	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
11088c2ecf20Sopenharmony_ci
11098c2ecf20Sopenharmony_ci	/* handle all the 3-wire mode */
11108c2ecf20Sopenharmony_ci	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
11118c2ecf20Sopenharmony_ci		cs |= BCM2835_SPI_CS_REN;
11128c2ecf20Sopenharmony_ci
11138c2ecf20Sopenharmony_ci	/* set transmit buffers and length */
11148c2ecf20Sopenharmony_ci	bs->tx_buf = tfr->tx_buf;
11158c2ecf20Sopenharmony_ci	bs->rx_buf = tfr->rx_buf;
11168c2ecf20Sopenharmony_ci	bs->tx_len = tfr->len;
11178c2ecf20Sopenharmony_ci	bs->rx_len = tfr->len;
11188c2ecf20Sopenharmony_ci
11198c2ecf20Sopenharmony_ci	/* Calculate the estimated time in us the transfer runs.  Note that
11208c2ecf20Sopenharmony_ci	 * there is 1 idle clocks cycles after each byte getting transferred
11218c2ecf20Sopenharmony_ci	 * so we have 9 cycles/byte.  This is used to find the number of Hz
11228c2ecf20Sopenharmony_ci	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
11238c2ecf20Sopenharmony_ci	 * per 300,000 Hz of bus clock.
11248c2ecf20Sopenharmony_ci	 */
11258c2ecf20Sopenharmony_ci	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
11268c2ecf20Sopenharmony_ci	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
11278c2ecf20Sopenharmony_ci
11288c2ecf20Sopenharmony_ci	/* run in polling mode for short transfers */
11298c2ecf20Sopenharmony_ci	if (tfr->len < byte_limit)
11308c2ecf20Sopenharmony_ci		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
11318c2ecf20Sopenharmony_ci
11328c2ecf20Sopenharmony_ci	/* run in dma mode if conditions are right
11338c2ecf20Sopenharmony_ci	 * Note that unlike poll or interrupt mode DMA mode does not have
11348c2ecf20Sopenharmony_ci	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
11358c2ecf20Sopenharmony_ci	 */
11368c2ecf20Sopenharmony_ci	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
11378c2ecf20Sopenharmony_ci		return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);
11388c2ecf20Sopenharmony_ci
11398c2ecf20Sopenharmony_ci	/* run in interrupt-mode */
11408c2ecf20Sopenharmony_ci	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
11418c2ecf20Sopenharmony_ci}
11428c2ecf20Sopenharmony_ci
11438c2ecf20Sopenharmony_cistatic int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
11448c2ecf20Sopenharmony_ci				       struct spi_message *msg)
11458c2ecf20Sopenharmony_ci{
11468c2ecf20Sopenharmony_ci	struct spi_device *spi = msg->spi;
11478c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
11488c2ecf20Sopenharmony_ci	int ret;
11498c2ecf20Sopenharmony_ci
11508c2ecf20Sopenharmony_ci	if (ctlr->can_dma) {
11518c2ecf20Sopenharmony_ci		/*
11528c2ecf20Sopenharmony_ci		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
11538c2ecf20Sopenharmony_ci		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
11548c2ecf20Sopenharmony_ci		 * aligned) if the limit is exceeded.
11558c2ecf20Sopenharmony_ci		 */
11568c2ecf20Sopenharmony_ci		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
11578c2ecf20Sopenharmony_ci						  GFP_KERNEL | GFP_DMA);
11588c2ecf20Sopenharmony_ci		if (ret)
11598c2ecf20Sopenharmony_ci			return ret;
11608c2ecf20Sopenharmony_ci	}
11618c2ecf20Sopenharmony_ci
11628c2ecf20Sopenharmony_ci	/*
11638c2ecf20Sopenharmony_ci	 * Set up clock polarity before spi_transfer_one_message() asserts
11648c2ecf20Sopenharmony_ci	 * chip select to avoid a gratuitous clock signal edge.
11658c2ecf20Sopenharmony_ci	 */
11668c2ecf20Sopenharmony_ci	bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]);
11678c2ecf20Sopenharmony_ci
11688c2ecf20Sopenharmony_ci	return 0;
11698c2ecf20Sopenharmony_ci}
11708c2ecf20Sopenharmony_ci
11718c2ecf20Sopenharmony_cistatic void bcm2835_spi_handle_err(struct spi_controller *ctlr,
11728c2ecf20Sopenharmony_ci				   struct spi_message *msg)
11738c2ecf20Sopenharmony_ci{
11748c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
11758c2ecf20Sopenharmony_ci
11768c2ecf20Sopenharmony_ci	/* if an error occurred and we have an active dma, then terminate */
11778c2ecf20Sopenharmony_ci	if (ctlr->dma_tx) {
11788c2ecf20Sopenharmony_ci		dmaengine_terminate_sync(ctlr->dma_tx);
11798c2ecf20Sopenharmony_ci		bs->tx_dma_active = false;
11808c2ecf20Sopenharmony_ci	}
11818c2ecf20Sopenharmony_ci	if (ctlr->dma_rx) {
11828c2ecf20Sopenharmony_ci		dmaengine_terminate_sync(ctlr->dma_rx);
11838c2ecf20Sopenharmony_ci		bs->rx_dma_active = false;
11848c2ecf20Sopenharmony_ci	}
11858c2ecf20Sopenharmony_ci	bcm2835_spi_undo_prologue(bs);
11868c2ecf20Sopenharmony_ci
11878c2ecf20Sopenharmony_ci	/* and reset */
11888c2ecf20Sopenharmony_ci	bcm2835_spi_reset_hw(bs);
11898c2ecf20Sopenharmony_ci}
11908c2ecf20Sopenharmony_ci
11918c2ecf20Sopenharmony_cistatic int chip_match_name(struct gpio_chip *chip, void *data)
11928c2ecf20Sopenharmony_ci{
11938c2ecf20Sopenharmony_ci	return !strcmp(chip->label, data);
11948c2ecf20Sopenharmony_ci}
11958c2ecf20Sopenharmony_ci
11968c2ecf20Sopenharmony_cistatic int bcm2835_spi_setup(struct spi_device *spi)
11978c2ecf20Sopenharmony_ci{
11988c2ecf20Sopenharmony_ci	struct spi_controller *ctlr = spi->controller;
11998c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
12008c2ecf20Sopenharmony_ci	struct gpio_chip *chip;
12018c2ecf20Sopenharmony_ci	u32 cs;
12028c2ecf20Sopenharmony_ci
12038c2ecf20Sopenharmony_ci	if (spi->chip_select >= BCM2835_SPI_NUM_CS) {
12048c2ecf20Sopenharmony_ci		dev_err(&spi->dev, "only %d chip-selects supported\n",
12058c2ecf20Sopenharmony_ci			BCM2835_SPI_NUM_CS - 1);
12068c2ecf20Sopenharmony_ci		return -EINVAL;
12078c2ecf20Sopenharmony_ci	}
12088c2ecf20Sopenharmony_ci
12098c2ecf20Sopenharmony_ci	/*
12108c2ecf20Sopenharmony_ci	 * Precalculate SPI slave's CS register value for ->prepare_message():
12118c2ecf20Sopenharmony_ci	 * The driver always uses software-controlled GPIO chip select, hence
12128c2ecf20Sopenharmony_ci	 * set the hardware-controlled native chip select to an invalid value
12138c2ecf20Sopenharmony_ci	 * to prevent it from interfering.
12148c2ecf20Sopenharmony_ci	 */
12158c2ecf20Sopenharmony_ci	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
12168c2ecf20Sopenharmony_ci	if (spi->mode & SPI_CPOL)
12178c2ecf20Sopenharmony_ci		cs |= BCM2835_SPI_CS_CPOL;
12188c2ecf20Sopenharmony_ci	if (spi->mode & SPI_CPHA)
12198c2ecf20Sopenharmony_ci		cs |= BCM2835_SPI_CS_CPHA;
12208c2ecf20Sopenharmony_ci	bs->prepare_cs[spi->chip_select] = cs;
12218c2ecf20Sopenharmony_ci
12228c2ecf20Sopenharmony_ci	/*
12238c2ecf20Sopenharmony_ci	 * Precalculate SPI slave's CS register value to clear RX FIFO
12248c2ecf20Sopenharmony_ci	 * in case of a TX-only DMA transfer.
12258c2ecf20Sopenharmony_ci	 */
12268c2ecf20Sopenharmony_ci	if (ctlr->dma_rx) {
12278c2ecf20Sopenharmony_ci		bs->clear_rx_cs[spi->chip_select] = cs |
12288c2ecf20Sopenharmony_ci						    BCM2835_SPI_CS_TA |
12298c2ecf20Sopenharmony_ci						    BCM2835_SPI_CS_DMAEN |
12308c2ecf20Sopenharmony_ci						    BCM2835_SPI_CS_CLEAR_RX;
12318c2ecf20Sopenharmony_ci		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
12328c2ecf20Sopenharmony_ci					   bs->clear_rx_addr,
12338c2ecf20Sopenharmony_ci					   sizeof(bs->clear_rx_cs),
12348c2ecf20Sopenharmony_ci					   DMA_TO_DEVICE);
12358c2ecf20Sopenharmony_ci	}
12368c2ecf20Sopenharmony_ci
12378c2ecf20Sopenharmony_ci	/*
12388c2ecf20Sopenharmony_ci	 * sanity checking the native-chipselects
12398c2ecf20Sopenharmony_ci	 */
12408c2ecf20Sopenharmony_ci	if (spi->mode & SPI_NO_CS)
12418c2ecf20Sopenharmony_ci		return 0;
12428c2ecf20Sopenharmony_ci	/*
12438c2ecf20Sopenharmony_ci	 * The SPI core has successfully requested the CS GPIO line from the
12448c2ecf20Sopenharmony_ci	 * device tree, so we are done.
12458c2ecf20Sopenharmony_ci	 */
12468c2ecf20Sopenharmony_ci	if (spi->cs_gpiod)
12478c2ecf20Sopenharmony_ci		return 0;
12488c2ecf20Sopenharmony_ci	if (spi->chip_select > 1) {
12498c2ecf20Sopenharmony_ci		/* error in the case of native CS requested with CS > 1
12508c2ecf20Sopenharmony_ci		 * officially there is a CS2, but it is not documented
12518c2ecf20Sopenharmony_ci		 * which GPIO is connected with that...
12528c2ecf20Sopenharmony_ci		 */
12538c2ecf20Sopenharmony_ci		dev_err(&spi->dev,
12548c2ecf20Sopenharmony_ci			"setup: only two native chip-selects are supported\n");
12558c2ecf20Sopenharmony_ci		return -EINVAL;
12568c2ecf20Sopenharmony_ci	}
12578c2ecf20Sopenharmony_ci
12588c2ecf20Sopenharmony_ci	/*
12598c2ecf20Sopenharmony_ci	 * Translate native CS to GPIO
12608c2ecf20Sopenharmony_ci	 *
12618c2ecf20Sopenharmony_ci	 * FIXME: poking around in the gpiolib internals like this is
12628c2ecf20Sopenharmony_ci	 * not very good practice. Find a way to locate the real problem
12638c2ecf20Sopenharmony_ci	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
12648c2ecf20Sopenharmony_ci	 * sometimes not assigned correctly? Erroneous device trees?
12658c2ecf20Sopenharmony_ci	 */
12668c2ecf20Sopenharmony_ci
12678c2ecf20Sopenharmony_ci	/* get the gpio chip for the base */
12688c2ecf20Sopenharmony_ci	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
12698c2ecf20Sopenharmony_ci	if (!chip)
12708c2ecf20Sopenharmony_ci		return 0;
12718c2ecf20Sopenharmony_ci
12728c2ecf20Sopenharmony_ci	spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
12738c2ecf20Sopenharmony_ci						  DRV_NAME,
12748c2ecf20Sopenharmony_ci						  GPIO_LOOKUP_FLAGS_DEFAULT,
12758c2ecf20Sopenharmony_ci						  GPIOD_OUT_LOW);
12768c2ecf20Sopenharmony_ci	if (IS_ERR(spi->cs_gpiod))
12778c2ecf20Sopenharmony_ci		return PTR_ERR(spi->cs_gpiod);
12788c2ecf20Sopenharmony_ci
12798c2ecf20Sopenharmony_ci	/* and set up the "mode" and level */
12808c2ecf20Sopenharmony_ci	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
12818c2ecf20Sopenharmony_ci		 spi->chip_select);
12828c2ecf20Sopenharmony_ci
12838c2ecf20Sopenharmony_ci	return 0;
12848c2ecf20Sopenharmony_ci}
12858c2ecf20Sopenharmony_ci
12868c2ecf20Sopenharmony_cistatic int bcm2835_spi_probe(struct platform_device *pdev)
12878c2ecf20Sopenharmony_ci{
12888c2ecf20Sopenharmony_ci	struct spi_controller *ctlr;
12898c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs;
12908c2ecf20Sopenharmony_ci	int err;
12918c2ecf20Sopenharmony_ci
12928c2ecf20Sopenharmony_ci	ctlr = devm_spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs),
12938c2ecf20Sopenharmony_ci						  dma_get_cache_alignment()));
12948c2ecf20Sopenharmony_ci	if (!ctlr)
12958c2ecf20Sopenharmony_ci		return -ENOMEM;
12968c2ecf20Sopenharmony_ci
12978c2ecf20Sopenharmony_ci	platform_set_drvdata(pdev, ctlr);
12988c2ecf20Sopenharmony_ci
12998c2ecf20Sopenharmony_ci	ctlr->use_gpio_descriptors = true;
13008c2ecf20Sopenharmony_ci	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
13018c2ecf20Sopenharmony_ci	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
13028c2ecf20Sopenharmony_ci	ctlr->num_chipselect = 3;
13038c2ecf20Sopenharmony_ci	ctlr->setup = bcm2835_spi_setup;
13048c2ecf20Sopenharmony_ci	ctlr->transfer_one = bcm2835_spi_transfer_one;
13058c2ecf20Sopenharmony_ci	ctlr->handle_err = bcm2835_spi_handle_err;
13068c2ecf20Sopenharmony_ci	ctlr->prepare_message = bcm2835_spi_prepare_message;
13078c2ecf20Sopenharmony_ci	ctlr->dev.of_node = pdev->dev.of_node;
13088c2ecf20Sopenharmony_ci
13098c2ecf20Sopenharmony_ci	bs = spi_controller_get_devdata(ctlr);
13108c2ecf20Sopenharmony_ci	bs->ctlr = ctlr;
13118c2ecf20Sopenharmony_ci
13128c2ecf20Sopenharmony_ci	bs->regs = devm_platform_ioremap_resource(pdev, 0);
13138c2ecf20Sopenharmony_ci	if (IS_ERR(bs->regs))
13148c2ecf20Sopenharmony_ci		return PTR_ERR(bs->regs);
13158c2ecf20Sopenharmony_ci
13168c2ecf20Sopenharmony_ci	bs->clk = devm_clk_get(&pdev->dev, NULL);
13178c2ecf20Sopenharmony_ci	if (IS_ERR(bs->clk))
13188c2ecf20Sopenharmony_ci		return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
13198c2ecf20Sopenharmony_ci				     "could not get clk\n");
13208c2ecf20Sopenharmony_ci
13218c2ecf20Sopenharmony_ci	bs->irq = platform_get_irq(pdev, 0);
13228c2ecf20Sopenharmony_ci	if (bs->irq <= 0)
13238c2ecf20Sopenharmony_ci		return bs->irq ? bs->irq : -ENODEV;
13248c2ecf20Sopenharmony_ci
13258c2ecf20Sopenharmony_ci	clk_prepare_enable(bs->clk);
13268c2ecf20Sopenharmony_ci	bs->clk_hz = clk_get_rate(bs->clk);
13278c2ecf20Sopenharmony_ci
13288c2ecf20Sopenharmony_ci	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
13298c2ecf20Sopenharmony_ci	if (err)
13308c2ecf20Sopenharmony_ci		goto out_clk_disable;
13318c2ecf20Sopenharmony_ci
13328c2ecf20Sopenharmony_ci	/* initialise the hardware with the default polarities */
13338c2ecf20Sopenharmony_ci	bcm2835_wr(bs, BCM2835_SPI_CS,
13348c2ecf20Sopenharmony_ci		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
13358c2ecf20Sopenharmony_ci
13368c2ecf20Sopenharmony_ci	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
13378c2ecf20Sopenharmony_ci			       dev_name(&pdev->dev), bs);
13388c2ecf20Sopenharmony_ci	if (err) {
13398c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
13408c2ecf20Sopenharmony_ci		goto out_dma_release;
13418c2ecf20Sopenharmony_ci	}
13428c2ecf20Sopenharmony_ci
13438c2ecf20Sopenharmony_ci	err = spi_register_controller(ctlr);
13448c2ecf20Sopenharmony_ci	if (err) {
13458c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
13468c2ecf20Sopenharmony_ci			err);
13478c2ecf20Sopenharmony_ci		goto out_dma_release;
13488c2ecf20Sopenharmony_ci	}
13498c2ecf20Sopenharmony_ci
13508c2ecf20Sopenharmony_ci	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
13518c2ecf20Sopenharmony_ci
13528c2ecf20Sopenharmony_ci	return 0;
13538c2ecf20Sopenharmony_ci
13548c2ecf20Sopenharmony_ciout_dma_release:
13558c2ecf20Sopenharmony_ci	bcm2835_dma_release(ctlr, bs);
13568c2ecf20Sopenharmony_ciout_clk_disable:
13578c2ecf20Sopenharmony_ci	clk_disable_unprepare(bs->clk);
13588c2ecf20Sopenharmony_ci	return err;
13598c2ecf20Sopenharmony_ci}
13608c2ecf20Sopenharmony_ci
13618c2ecf20Sopenharmony_cistatic int bcm2835_spi_remove(struct platform_device *pdev)
13628c2ecf20Sopenharmony_ci{
13638c2ecf20Sopenharmony_ci	struct spi_controller *ctlr = platform_get_drvdata(pdev);
13648c2ecf20Sopenharmony_ci	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
13658c2ecf20Sopenharmony_ci
13668c2ecf20Sopenharmony_ci	bcm2835_debugfs_remove(bs);
13678c2ecf20Sopenharmony_ci
13688c2ecf20Sopenharmony_ci	spi_unregister_controller(ctlr);
13698c2ecf20Sopenharmony_ci
13708c2ecf20Sopenharmony_ci	bcm2835_dma_release(ctlr, bs);
13718c2ecf20Sopenharmony_ci
13728c2ecf20Sopenharmony_ci	/* Clear FIFOs, and disable the HW block */
13738c2ecf20Sopenharmony_ci	bcm2835_wr(bs, BCM2835_SPI_CS,
13748c2ecf20Sopenharmony_ci		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
13758c2ecf20Sopenharmony_ci
13768c2ecf20Sopenharmony_ci	clk_disable_unprepare(bs->clk);
13778c2ecf20Sopenharmony_ci
13788c2ecf20Sopenharmony_ci	return 0;
13798c2ecf20Sopenharmony_ci}
13808c2ecf20Sopenharmony_ci
13818c2ecf20Sopenharmony_cistatic void bcm2835_spi_shutdown(struct platform_device *pdev)
13828c2ecf20Sopenharmony_ci{
13838c2ecf20Sopenharmony_ci	int ret;
13848c2ecf20Sopenharmony_ci
13858c2ecf20Sopenharmony_ci	ret = bcm2835_spi_remove(pdev);
13868c2ecf20Sopenharmony_ci	if (ret)
13878c2ecf20Sopenharmony_ci		dev_err(&pdev->dev, "failed to shutdown\n");
13888c2ecf20Sopenharmony_ci}
13898c2ecf20Sopenharmony_ci
13908c2ecf20Sopenharmony_cistatic const struct of_device_id bcm2835_spi_match[] = {
13918c2ecf20Sopenharmony_ci	{ .compatible = "brcm,bcm2835-spi", },
13928c2ecf20Sopenharmony_ci	{}
13938c2ecf20Sopenharmony_ci};
13948c2ecf20Sopenharmony_ciMODULE_DEVICE_TABLE(of, bcm2835_spi_match);
13958c2ecf20Sopenharmony_ci
13968c2ecf20Sopenharmony_cistatic struct platform_driver bcm2835_spi_driver = {
13978c2ecf20Sopenharmony_ci	.driver		= {
13988c2ecf20Sopenharmony_ci		.name		= DRV_NAME,
13998c2ecf20Sopenharmony_ci		.of_match_table	= bcm2835_spi_match,
14008c2ecf20Sopenharmony_ci	},
14018c2ecf20Sopenharmony_ci	.probe		= bcm2835_spi_probe,
14028c2ecf20Sopenharmony_ci	.remove		= bcm2835_spi_remove,
14038c2ecf20Sopenharmony_ci	.shutdown	= bcm2835_spi_shutdown,
14048c2ecf20Sopenharmony_ci};
14058c2ecf20Sopenharmony_cimodule_platform_driver(bcm2835_spi_driver);
14068c2ecf20Sopenharmony_ci
14078c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
14088c2ecf20Sopenharmony_ciMODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
14098c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL");
1410