1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8#include <linux/kernel.h>
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/spi/spi.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20
21#include <linux/io.h>
22#include <linux/gpio/consumer.h>
23#include <linux/pinctrl/consumer.h>
24#include <linux/pm_runtime.h>
25#include <trace/events/spi.h>
26
27/* SPI register offsets */
28#define SPI_CR					0x0000
29#define SPI_MR					0x0004
30#define SPI_RDR					0x0008
31#define SPI_TDR					0x000c
32#define SPI_SR					0x0010
33#define SPI_IER					0x0014
34#define SPI_IDR					0x0018
35#define SPI_IMR					0x001c
36#define SPI_CSR0				0x0030
37#define SPI_CSR1				0x0034
38#define SPI_CSR2				0x0038
39#define SPI_CSR3				0x003c
40#define SPI_FMR					0x0040
41#define SPI_FLR					0x0044
42#define SPI_VERSION				0x00fc
43#define SPI_RPR					0x0100
44#define SPI_RCR					0x0104
45#define SPI_TPR					0x0108
46#define SPI_TCR					0x010c
47#define SPI_RNPR				0x0110
48#define SPI_RNCR				0x0114
49#define SPI_TNPR				0x0118
50#define SPI_TNCR				0x011c
51#define SPI_PTCR				0x0120
52#define SPI_PTSR				0x0124
53
54/* Bitfields in CR */
55#define SPI_SPIEN_OFFSET			0
56#define SPI_SPIEN_SIZE				1
57#define SPI_SPIDIS_OFFSET			1
58#define SPI_SPIDIS_SIZE				1
59#define SPI_SWRST_OFFSET			7
60#define SPI_SWRST_SIZE				1
61#define SPI_LASTXFER_OFFSET			24
62#define SPI_LASTXFER_SIZE			1
63#define SPI_TXFCLR_OFFSET			16
64#define SPI_TXFCLR_SIZE				1
65#define SPI_RXFCLR_OFFSET			17
66#define SPI_RXFCLR_SIZE				1
67#define SPI_FIFOEN_OFFSET			30
68#define SPI_FIFOEN_SIZE				1
69#define SPI_FIFODIS_OFFSET			31
70#define SPI_FIFODIS_SIZE			1
71
72/* Bitfields in MR */
73#define SPI_MSTR_OFFSET				0
74#define SPI_MSTR_SIZE				1
75#define SPI_PS_OFFSET				1
76#define SPI_PS_SIZE				1
77#define SPI_PCSDEC_OFFSET			2
78#define SPI_PCSDEC_SIZE				1
79#define SPI_FDIV_OFFSET				3
80#define SPI_FDIV_SIZE				1
81#define SPI_MODFDIS_OFFSET			4
82#define SPI_MODFDIS_SIZE			1
83#define SPI_WDRBT_OFFSET			5
84#define SPI_WDRBT_SIZE				1
85#define SPI_LLB_OFFSET				7
86#define SPI_LLB_SIZE				1
87#define SPI_PCS_OFFSET				16
88#define SPI_PCS_SIZE				4
89#define SPI_DLYBCS_OFFSET			24
90#define SPI_DLYBCS_SIZE				8
91
92/* Bitfields in RDR */
93#define SPI_RD_OFFSET				0
94#define SPI_RD_SIZE				16
95
96/* Bitfields in TDR */
97#define SPI_TD_OFFSET				0
98#define SPI_TD_SIZE				16
99
100/* Bitfields in SR */
101#define SPI_RDRF_OFFSET				0
102#define SPI_RDRF_SIZE				1
103#define SPI_TDRE_OFFSET				1
104#define SPI_TDRE_SIZE				1
105#define SPI_MODF_OFFSET				2
106#define SPI_MODF_SIZE				1
107#define SPI_OVRES_OFFSET			3
108#define SPI_OVRES_SIZE				1
109#define SPI_ENDRX_OFFSET			4
110#define SPI_ENDRX_SIZE				1
111#define SPI_ENDTX_OFFSET			5
112#define SPI_ENDTX_SIZE				1
113#define SPI_RXBUFF_OFFSET			6
114#define SPI_RXBUFF_SIZE				1
115#define SPI_TXBUFE_OFFSET			7
116#define SPI_TXBUFE_SIZE				1
117#define SPI_NSSR_OFFSET				8
118#define SPI_NSSR_SIZE				1
119#define SPI_TXEMPTY_OFFSET			9
120#define SPI_TXEMPTY_SIZE			1
121#define SPI_SPIENS_OFFSET			16
122#define SPI_SPIENS_SIZE				1
123#define SPI_TXFEF_OFFSET			24
124#define SPI_TXFEF_SIZE				1
125#define SPI_TXFFF_OFFSET			25
126#define SPI_TXFFF_SIZE				1
127#define SPI_TXFTHF_OFFSET			26
128#define SPI_TXFTHF_SIZE				1
129#define SPI_RXFEF_OFFSET			27
130#define SPI_RXFEF_SIZE				1
131#define SPI_RXFFF_OFFSET			28
132#define SPI_RXFFF_SIZE				1
133#define SPI_RXFTHF_OFFSET			29
134#define SPI_RXFTHF_SIZE				1
135#define SPI_TXFPTEF_OFFSET			30
136#define SPI_TXFPTEF_SIZE			1
137#define SPI_RXFPTEF_OFFSET			31
138#define SPI_RXFPTEF_SIZE			1
139
140/* Bitfields in CSR0 */
141#define SPI_CPOL_OFFSET				0
142#define SPI_CPOL_SIZE				1
143#define SPI_NCPHA_OFFSET			1
144#define SPI_NCPHA_SIZE				1
145#define SPI_CSAAT_OFFSET			3
146#define SPI_CSAAT_SIZE				1
147#define SPI_BITS_OFFSET				4
148#define SPI_BITS_SIZE				4
149#define SPI_SCBR_OFFSET				8
150#define SPI_SCBR_SIZE				8
151#define SPI_DLYBS_OFFSET			16
152#define SPI_DLYBS_SIZE				8
153#define SPI_DLYBCT_OFFSET			24
154#define SPI_DLYBCT_SIZE				8
155
156/* Bitfields in RCR */
157#define SPI_RXCTR_OFFSET			0
158#define SPI_RXCTR_SIZE				16
159
160/* Bitfields in TCR */
161#define SPI_TXCTR_OFFSET			0
162#define SPI_TXCTR_SIZE				16
163
164/* Bitfields in RNCR */
165#define SPI_RXNCR_OFFSET			0
166#define SPI_RXNCR_SIZE				16
167
168/* Bitfields in TNCR */
169#define SPI_TXNCR_OFFSET			0
170#define SPI_TXNCR_SIZE				16
171
172/* Bitfields in PTCR */
173#define SPI_RXTEN_OFFSET			0
174#define SPI_RXTEN_SIZE				1
175#define SPI_RXTDIS_OFFSET			1
176#define SPI_RXTDIS_SIZE				1
177#define SPI_TXTEN_OFFSET			8
178#define SPI_TXTEN_SIZE				1
179#define SPI_TXTDIS_OFFSET			9
180#define SPI_TXTDIS_SIZE				1
181
182/* Bitfields in FMR */
183#define SPI_TXRDYM_OFFSET			0
184#define SPI_TXRDYM_SIZE				2
185#define SPI_RXRDYM_OFFSET			4
186#define SPI_RXRDYM_SIZE				2
187#define SPI_TXFTHRES_OFFSET			16
188#define SPI_TXFTHRES_SIZE			6
189#define SPI_RXFTHRES_OFFSET			24
190#define SPI_RXFTHRES_SIZE			6
191
192/* Bitfields in FLR */
193#define SPI_TXFL_OFFSET				0
194#define SPI_TXFL_SIZE				6
195#define SPI_RXFL_OFFSET				16
196#define SPI_RXFL_SIZE				6
197
198/* Constants for BITS */
199#define SPI_BITS_8_BPT				0
200#define SPI_BITS_9_BPT				1
201#define SPI_BITS_10_BPT				2
202#define SPI_BITS_11_BPT				3
203#define SPI_BITS_12_BPT				4
204#define SPI_BITS_13_BPT				5
205#define SPI_BITS_14_BPT				6
206#define SPI_BITS_15_BPT				7
207#define SPI_BITS_16_BPT				8
208#define SPI_ONE_DATA				0
209#define SPI_TWO_DATA				1
210#define SPI_FOUR_DATA				2
211
212/* Bit manipulation macros */
213#define SPI_BIT(name) \
214	(1 << SPI_##name##_OFFSET)
215#define SPI_BF(name, value) \
216	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217#define SPI_BFEXT(name, value) \
218	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219#define SPI_BFINS(name, value, old) \
220	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221	  | SPI_BF(name, value))
222
223/* Register access macros */
224#define spi_readl(port, reg) \
225	readl_relaxed((port)->regs + SPI_##reg)
226#define spi_writel(port, reg, value) \
227	writel_relaxed((value), (port)->regs + SPI_##reg)
228#define spi_writew(port, reg, value) \
229	writew_relaxed((value), (port)->regs + SPI_##reg)
230
231/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232 * cache operations; better heuristics consider wordsize and bitrate.
233 */
234#define DMA_MIN_BYTES	16
235
236#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
237
238#define AUTOSUSPEND_TIMEOUT	2000
239
240struct atmel_spi_caps {
241	bool	is_spi2;
242	bool	has_wdrbt;
243	bool	has_dma_support;
244	bool	has_pdc_support;
245};
246
247/*
248 * The core SPI transfer engine just talks to a register bank to set up
249 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
250 * framework provides the base clock, subdivided for each spi_device.
251 */
252struct atmel_spi {
253	spinlock_t		lock;
254	unsigned long		flags;
255
256	phys_addr_t		phybase;
257	void __iomem		*regs;
258	int			irq;
259	struct clk		*clk;
260	struct platform_device	*pdev;
261	unsigned long		spi_clk;
262
263	struct spi_transfer	*current_transfer;
264	int			current_remaining_bytes;
265	int			done_status;
266	dma_addr_t		dma_addr_rx_bbuf;
267	dma_addr_t		dma_addr_tx_bbuf;
268	void			*addr_rx_bbuf;
269	void			*addr_tx_bbuf;
270
271	struct completion	xfer_completion;
272
273	struct atmel_spi_caps	caps;
274
275	bool			use_dma;
276	bool			use_pdc;
277
278	bool			keep_cs;
279
280	u32			fifo_size;
281	u8			native_cs_free;
282	u8			native_cs_for_gpio;
283};
284
285/* Controller-specific per-slave state */
286struct atmel_spi_device {
287	u32			csr;
288};
289
290#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
291#define INVALID_DMA_ADDRESS	0xffffffff
292
293/*
294 * Version 2 of the SPI controller has
295 *  - CR.LASTXFER
296 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298 *  - SPI_CSRx.CSAAT
299 *  - SPI_CSRx.SBCR allows faster clocking
300 */
301static bool atmel_spi_is_v2(struct atmel_spi *as)
302{
303	return as->caps.is_spi2;
304}
305
306/*
307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308 * they assume that spi slave device state will not change on deselect, so
309 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
310 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
311 * controllers have CSAAT and friends.
312 *
313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
314 * it lets us support active-high chipselects despite the controller's
315 * belief that only active-low devices/systems exists.
316 *
317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318 * right when driven with GPIO.  ("Mode Fault does not allow more than one
319 * Master on Chip Select 0.")  No workaround exists for that ... so for
320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321 * and (c) will trigger that first erratum in some cases.
322 */
323
324static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325{
326	struct atmel_spi_device *asd = spi->controller_state;
327	int chip_select;
328	u32 mr;
329
330	if (spi->cs_gpiod)
331		chip_select = as->native_cs_for_gpio;
332	else
333		chip_select = spi->chip_select;
334
335	if (atmel_spi_is_v2(as)) {
336		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337		/* For the low SPI version, there is a issue that PDC transfer
338		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339		 */
340		spi_writel(as, CSR0, asd->csr);
341		if (as->caps.has_wdrbt) {
342			spi_writel(as, MR,
343					SPI_BF(PCS, ~(0x01 << chip_select))
344					| SPI_BIT(WDRBT)
345					| SPI_BIT(MODFDIS)
346					| SPI_BIT(MSTR));
347		} else {
348			spi_writel(as, MR,
349					SPI_BF(PCS, ~(0x01 << chip_select))
350					| SPI_BIT(MODFDIS)
351					| SPI_BIT(MSTR));
352		}
353
354		mr = spi_readl(as, MR);
355	} else {
356		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
357		int i;
358		u32 csr;
359
360		/* Make sure clock polarity is correct */
361		for (i = 0; i < spi->master->num_chipselect; i++) {
362			csr = spi_readl(as, CSR0 + 4 * i);
363			if ((csr ^ cpol) & SPI_BIT(CPOL))
364				spi_writel(as, CSR0 + 4 * i,
365						csr ^ SPI_BIT(CPOL));
366		}
367
368		mr = spi_readl(as, MR);
369		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
370		spi_writel(as, MR, mr);
371	}
372
373	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
374}
375
376static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
377{
378	int chip_select;
379	u32 mr;
380
381	if (spi->cs_gpiod)
382		chip_select = as->native_cs_for_gpio;
383	else
384		chip_select = spi->chip_select;
385
386	/* only deactivate *this* device; sometimes transfers to
387	 * another device may be active when this routine is called.
388	 */
389	mr = spi_readl(as, MR);
390	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
391		mr = SPI_BFINS(PCS, 0xf, mr);
392		spi_writel(as, MR, mr);
393	}
394
395	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
396
397	if (!spi->cs_gpiod)
398		spi_writel(as, CR, SPI_BIT(LASTXFER));
399}
400
401static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
402{
403	spin_lock_irqsave(&as->lock, as->flags);
404}
405
406static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
407{
408	spin_unlock_irqrestore(&as->lock, as->flags);
409}
410
411static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
412{
413	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
414}
415
416static inline bool atmel_spi_use_dma(struct atmel_spi *as,
417				struct spi_transfer *xfer)
418{
419	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
420}
421
422static bool atmel_spi_can_dma(struct spi_master *master,
423			      struct spi_device *spi,
424			      struct spi_transfer *xfer)
425{
426	struct atmel_spi *as = spi_master_get_devdata(master);
427
428	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
429		return atmel_spi_use_dma(as, xfer) &&
430			!atmel_spi_is_vmalloc_xfer(xfer);
431	else
432		return atmel_spi_use_dma(as, xfer);
433
434}
435
436static int atmel_spi_dma_slave_config(struct atmel_spi *as,
437				struct dma_slave_config *slave_config,
438				u8 bits_per_word)
439{
440	struct spi_master *master = platform_get_drvdata(as->pdev);
441	int err = 0;
442
443	if (bits_per_word > 8) {
444		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
446	} else {
447		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
449	}
450
451	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
452	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
453	slave_config->src_maxburst = 1;
454	slave_config->dst_maxburst = 1;
455	slave_config->device_fc = false;
456
457	/*
458	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
459	 * the Mode Register).
460	 * So according to the datasheet, when FIFOs are available (and
461	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
462	 * In this mode, up to 2 data, not 4, can be written into the Transmit
463	 * Data Register in a single access.
464	 * However, the first data has to be written into the lowest 16 bits and
465	 * the second data into the highest 16 bits of the Transmit
466	 * Data Register. For 8bit data (the most frequent case), it would
467	 * require to rework tx_buf so each data would actualy fit 16 bits.
468	 * So we'd rather write only one data at the time. Hence the transmit
469	 * path works the same whether FIFOs are available (and enabled) or not.
470	 */
471	slave_config->direction = DMA_MEM_TO_DEV;
472	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
473		dev_err(&as->pdev->dev,
474			"failed to configure tx dma channel\n");
475		err = -EINVAL;
476	}
477
478	/*
479	 * This driver configures the spi controller for master mode (MSTR bit
480	 * set to '1' in the Mode Register).
481	 * So according to the datasheet, when FIFOs are available (and
482	 * enabled), the Receive FIFO operates in Single Data Mode.
483	 * So the receive path works the same whether FIFOs are available (and
484	 * enabled) or not.
485	 */
486	slave_config->direction = DMA_DEV_TO_MEM;
487	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
488		dev_err(&as->pdev->dev,
489			"failed to configure rx dma channel\n");
490		err = -EINVAL;
491	}
492
493	return err;
494}
495
496static int atmel_spi_configure_dma(struct spi_master *master,
497				   struct atmel_spi *as)
498{
499	struct dma_slave_config	slave_config;
500	struct device *dev = &as->pdev->dev;
501	int err;
502
503	dma_cap_mask_t mask;
504	dma_cap_zero(mask);
505	dma_cap_set(DMA_SLAVE, mask);
506
507	master->dma_tx = dma_request_chan(dev, "tx");
508	if (IS_ERR(master->dma_tx)) {
509		err = dev_err_probe(dev, PTR_ERR(master->dma_tx),
510				    "No TX DMA channel, DMA is disabled\n");
511		goto error_clear;
512	}
513
514	master->dma_rx = dma_request_chan(dev, "rx");
515	if (IS_ERR(master->dma_rx)) {
516		err = PTR_ERR(master->dma_rx);
517		/*
518		 * No reason to check EPROBE_DEFER here since we have already
519		 * requested tx channel.
520		 */
521		dev_err(dev, "No RX DMA channel, DMA is disabled\n");
522		goto error;
523	}
524
525	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
526	if (err)
527		goto error;
528
529	dev_info(&as->pdev->dev,
530			"Using %s (tx) and %s (rx) for DMA transfers\n",
531			dma_chan_name(master->dma_tx),
532			dma_chan_name(master->dma_rx));
533
534	return 0;
535error:
536	if (!IS_ERR(master->dma_rx))
537		dma_release_channel(master->dma_rx);
538	if (!IS_ERR(master->dma_tx))
539		dma_release_channel(master->dma_tx);
540error_clear:
541	master->dma_tx = master->dma_rx = NULL;
542	return err;
543}
544
545static void atmel_spi_stop_dma(struct spi_master *master)
546{
547	if (master->dma_rx)
548		dmaengine_terminate_all(master->dma_rx);
549	if (master->dma_tx)
550		dmaengine_terminate_all(master->dma_tx);
551}
552
553static void atmel_spi_release_dma(struct spi_master *master)
554{
555	if (master->dma_rx) {
556		dma_release_channel(master->dma_rx);
557		master->dma_rx = NULL;
558	}
559	if (master->dma_tx) {
560		dma_release_channel(master->dma_tx);
561		master->dma_tx = NULL;
562	}
563}
564
565/* This function is called by the DMA driver from tasklet context */
566static void dma_callback(void *data)
567{
568	struct spi_master	*master = data;
569	struct atmel_spi	*as = spi_master_get_devdata(master);
570
571	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
572	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
573		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
574		       as->current_transfer->len);
575	}
576	complete(&as->xfer_completion);
577}
578
579/*
580 * Next transfer using PIO without FIFO.
581 */
582static void atmel_spi_next_xfer_single(struct spi_master *master,
583				       struct spi_transfer *xfer)
584{
585	struct atmel_spi	*as = spi_master_get_devdata(master);
586	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
587
588	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
589
590	/* Make sure data is not remaining in RDR */
591	spi_readl(as, RDR);
592	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
593		spi_readl(as, RDR);
594		cpu_relax();
595	}
596
597	if (xfer->bits_per_word > 8)
598		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
599	else
600		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
601
602	dev_dbg(master->dev.parent,
603		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
604		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
605		xfer->bits_per_word);
606
607	/* Enable relevant interrupts */
608	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
609}
610
611/*
612 * Next transfer using PIO with FIFO.
613 */
614static void atmel_spi_next_xfer_fifo(struct spi_master *master,
615				     struct spi_transfer *xfer)
616{
617	struct atmel_spi *as = spi_master_get_devdata(master);
618	u32 current_remaining_data, num_data;
619	u32 offset = xfer->len - as->current_remaining_bytes;
620	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
621	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
622	u16 td0, td1;
623	u32 fifomr;
624
625	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
626
627	/* Compute the number of data to transfer in the current iteration */
628	current_remaining_data = ((xfer->bits_per_word > 8) ?
629				  ((u32)as->current_remaining_bytes >> 1) :
630				  (u32)as->current_remaining_bytes);
631	num_data = min(current_remaining_data, as->fifo_size);
632
633	/* Flush RX and TX FIFOs */
634	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
635	while (spi_readl(as, FLR))
636		cpu_relax();
637
638	/* Set RX FIFO Threshold to the number of data to transfer */
639	fifomr = spi_readl(as, FMR);
640	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
641
642	/* Clear FIFO flags in the Status Register, especially RXFTHF */
643	(void)spi_readl(as, SR);
644
645	/* Fill TX FIFO */
646	while (num_data >= 2) {
647		if (xfer->bits_per_word > 8) {
648			td0 = *words++;
649			td1 = *words++;
650		} else {
651			td0 = *bytes++;
652			td1 = *bytes++;
653		}
654
655		spi_writel(as, TDR, (td1 << 16) | td0);
656		num_data -= 2;
657	}
658
659	if (num_data) {
660		if (xfer->bits_per_word > 8)
661			td0 = *words++;
662		else
663			td0 = *bytes++;
664
665		spi_writew(as, TDR, td0);
666		num_data--;
667	}
668
669	dev_dbg(master->dev.parent,
670		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
671		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
672		xfer->bits_per_word);
673
674	/*
675	 * Enable RX FIFO Threshold Flag interrupt to be notified about
676	 * transfer completion.
677	 */
678	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
679}
680
681/*
682 * Next transfer using PIO.
683 */
684static void atmel_spi_next_xfer_pio(struct spi_master *master,
685				    struct spi_transfer *xfer)
686{
687	struct atmel_spi *as = spi_master_get_devdata(master);
688
689	if (as->fifo_size)
690		atmel_spi_next_xfer_fifo(master, xfer);
691	else
692		atmel_spi_next_xfer_single(master, xfer);
693}
694
695/*
696 * Submit next transfer for DMA.
697 */
698static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
699				struct spi_transfer *xfer,
700				u32 *plen)
701	__must_hold(&as->lock)
702{
703	struct atmel_spi	*as = spi_master_get_devdata(master);
704	struct dma_chan		*rxchan = master->dma_rx;
705	struct dma_chan		*txchan = master->dma_tx;
706	struct dma_async_tx_descriptor *rxdesc;
707	struct dma_async_tx_descriptor *txdesc;
708	struct dma_slave_config	slave_config;
709	dma_cookie_t		cookie;
710
711	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
712
713	/* Check that the channels are available */
714	if (!rxchan || !txchan)
715		return -ENODEV;
716
717	/* release lock for DMA operations */
718	atmel_spi_unlock(as);
719
720	*plen = xfer->len;
721
722	if (atmel_spi_dma_slave_config(as, &slave_config,
723				       xfer->bits_per_word))
724		goto err_exit;
725
726	/* Send both scatterlists */
727	if (atmel_spi_is_vmalloc_xfer(xfer) &&
728	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
729		rxdesc = dmaengine_prep_slave_single(rxchan,
730						     as->dma_addr_rx_bbuf,
731						     xfer->len,
732						     DMA_DEV_TO_MEM,
733						     DMA_PREP_INTERRUPT |
734						     DMA_CTRL_ACK);
735	} else {
736		rxdesc = dmaengine_prep_slave_sg(rxchan,
737						 xfer->rx_sg.sgl,
738						 xfer->rx_sg.nents,
739						 DMA_DEV_TO_MEM,
740						 DMA_PREP_INTERRUPT |
741						 DMA_CTRL_ACK);
742	}
743	if (!rxdesc)
744		goto err_dma;
745
746	if (atmel_spi_is_vmalloc_xfer(xfer) &&
747	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
748		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
749		txdesc = dmaengine_prep_slave_single(txchan,
750						     as->dma_addr_tx_bbuf,
751						     xfer->len, DMA_MEM_TO_DEV,
752						     DMA_PREP_INTERRUPT |
753						     DMA_CTRL_ACK);
754	} else {
755		txdesc = dmaengine_prep_slave_sg(txchan,
756						 xfer->tx_sg.sgl,
757						 xfer->tx_sg.nents,
758						 DMA_MEM_TO_DEV,
759						 DMA_PREP_INTERRUPT |
760						 DMA_CTRL_ACK);
761	}
762	if (!txdesc)
763		goto err_dma;
764
765	dev_dbg(master->dev.parent,
766		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
767		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
768		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
769
770	/* Enable relevant interrupts */
771	spi_writel(as, IER, SPI_BIT(OVRES));
772
773	/* Put the callback on the RX transfer only, that should finish last */
774	rxdesc->callback = dma_callback;
775	rxdesc->callback_param = master;
776
777	/* Submit and fire RX and TX with TX last so we're ready to read! */
778	cookie = rxdesc->tx_submit(rxdesc);
779	if (dma_submit_error(cookie))
780		goto err_dma;
781	cookie = txdesc->tx_submit(txdesc);
782	if (dma_submit_error(cookie))
783		goto err_dma;
784	rxchan->device->device_issue_pending(rxchan);
785	txchan->device->device_issue_pending(txchan);
786
787	/* take back lock */
788	atmel_spi_lock(as);
789	return 0;
790
791err_dma:
792	spi_writel(as, IDR, SPI_BIT(OVRES));
793	atmel_spi_stop_dma(master);
794err_exit:
795	atmel_spi_lock(as);
796	return -ENOMEM;
797}
798
799static void atmel_spi_next_xfer_data(struct spi_master *master,
800				struct spi_transfer *xfer,
801				dma_addr_t *tx_dma,
802				dma_addr_t *rx_dma,
803				u32 *plen)
804{
805	*rx_dma = xfer->rx_dma + xfer->len - *plen;
806	*tx_dma = xfer->tx_dma + xfer->len - *plen;
807	if (*plen > master->max_dma_len)
808		*plen = master->max_dma_len;
809}
810
811static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
812				    struct spi_device *spi,
813				    struct spi_transfer *xfer)
814{
815	u32			scbr, csr;
816	unsigned long		bus_hz;
817	int chip_select;
818
819	if (spi->cs_gpiod)
820		chip_select = as->native_cs_for_gpio;
821	else
822		chip_select = spi->chip_select;
823
824	/* v1 chips start out at half the peripheral bus speed. */
825	bus_hz = as->spi_clk;
826	if (!atmel_spi_is_v2(as))
827		bus_hz /= 2;
828
829	/*
830	 * Calculate the lowest divider that satisfies the
831	 * constraint, assuming div32/fdiv/mbz == 0.
832	 */
833	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
834
835	/*
836	 * If the resulting divider doesn't fit into the
837	 * register bitfield, we can't satisfy the constraint.
838	 */
839	if (scbr >= (1 << SPI_SCBR_SIZE)) {
840		dev_err(&spi->dev,
841			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
842			xfer->speed_hz, scbr, bus_hz/255);
843		return -EINVAL;
844	}
845	if (scbr == 0) {
846		dev_err(&spi->dev,
847			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
848			xfer->speed_hz, scbr, bus_hz);
849		return -EINVAL;
850	}
851	csr = spi_readl(as, CSR0 + 4 * chip_select);
852	csr = SPI_BFINS(SCBR, scbr, csr);
853	spi_writel(as, CSR0 + 4 * chip_select, csr);
854	xfer->effective_speed_hz = bus_hz / scbr;
855
856	return 0;
857}
858
859/*
860 * Submit next transfer for PDC.
861 * lock is held, spi irq is blocked
862 */
863static void atmel_spi_pdc_next_xfer(struct spi_master *master,
864					struct spi_transfer *xfer)
865{
866	struct atmel_spi	*as = spi_master_get_devdata(master);
867	u32			len;
868	dma_addr_t		tx_dma, rx_dma;
869
870	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
871
872	len = as->current_remaining_bytes;
873	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
874	as->current_remaining_bytes -= len;
875
876	spi_writel(as, RPR, rx_dma);
877	spi_writel(as, TPR, tx_dma);
878
879	if (xfer->bits_per_word > 8)
880		len >>= 1;
881	spi_writel(as, RCR, len);
882	spi_writel(as, TCR, len);
883
884	dev_dbg(&master->dev,
885		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
886		xfer, xfer->len, xfer->tx_buf,
887		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
888		(unsigned long long)xfer->rx_dma);
889
890	if (as->current_remaining_bytes) {
891		len = as->current_remaining_bytes;
892		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
893		as->current_remaining_bytes -= len;
894
895		spi_writel(as, RNPR, rx_dma);
896		spi_writel(as, TNPR, tx_dma);
897
898		if (xfer->bits_per_word > 8)
899			len >>= 1;
900		spi_writel(as, RNCR, len);
901		spi_writel(as, TNCR, len);
902
903		dev_dbg(&master->dev,
904			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
905			xfer, xfer->len, xfer->tx_buf,
906			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
907			(unsigned long long)xfer->rx_dma);
908	}
909
910	/* REVISIT: We're waiting for RXBUFF before we start the next
911	 * transfer because we need to handle some difficult timing
912	 * issues otherwise. If we wait for TXBUFE in one transfer and
913	 * then starts waiting for RXBUFF in the next, it's difficult
914	 * to tell the difference between the RXBUFF interrupt we're
915	 * actually waiting for and the RXBUFF interrupt of the
916	 * previous transfer.
917	 *
918	 * It should be doable, though. Just not now...
919	 */
920	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
921	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
922}
923
924/*
925 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
926 *  - The buffer is either valid for CPU access, else NULL
927 *  - If the buffer is valid, so is its DMA address
928 *
929 * This driver manages the dma address unless message->is_dma_mapped.
930 */
931static int
932atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
933{
934	struct device	*dev = &as->pdev->dev;
935
936	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
937	if (xfer->tx_buf) {
938		/* tx_buf is a const void* where we need a void * for the dma
939		 * mapping */
940		void *nonconst_tx = (void *)xfer->tx_buf;
941
942		xfer->tx_dma = dma_map_single(dev,
943				nonconst_tx, xfer->len,
944				DMA_TO_DEVICE);
945		if (dma_mapping_error(dev, xfer->tx_dma))
946			return -ENOMEM;
947	}
948	if (xfer->rx_buf) {
949		xfer->rx_dma = dma_map_single(dev,
950				xfer->rx_buf, xfer->len,
951				DMA_FROM_DEVICE);
952		if (dma_mapping_error(dev, xfer->rx_dma)) {
953			if (xfer->tx_buf)
954				dma_unmap_single(dev,
955						xfer->tx_dma, xfer->len,
956						DMA_TO_DEVICE);
957			return -ENOMEM;
958		}
959	}
960	return 0;
961}
962
963static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
964				     struct spi_transfer *xfer)
965{
966	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
967		dma_unmap_single(master->dev.parent, xfer->tx_dma,
968				 xfer->len, DMA_TO_DEVICE);
969	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
970		dma_unmap_single(master->dev.parent, xfer->rx_dma,
971				 xfer->len, DMA_FROM_DEVICE);
972}
973
974static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
975{
976	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
977}
978
979static void
980atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
981{
982	u8		*rxp;
983	u16		*rxp16;
984	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
985
986	if (xfer->bits_per_word > 8) {
987		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
988		*rxp16 = spi_readl(as, RDR);
989	} else {
990		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
991		*rxp = spi_readl(as, RDR);
992	}
993	if (xfer->bits_per_word > 8) {
994		if (as->current_remaining_bytes > 2)
995			as->current_remaining_bytes -= 2;
996		else
997			as->current_remaining_bytes = 0;
998	} else {
999		as->current_remaining_bytes--;
1000	}
1001}
1002
1003static void
1004atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005{
1006	u32 fifolr = spi_readl(as, FLR);
1007	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1008	u32 offset = xfer->len - as->current_remaining_bytes;
1009	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1010	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1011	u16 rd; /* RD field is the lowest 16 bits of RDR */
1012
1013	/* Update the number of remaining bytes to transfer */
1014	num_bytes = ((xfer->bits_per_word > 8) ?
1015		     (num_data << 1) :
1016		     num_data);
1017
1018	if (as->current_remaining_bytes > num_bytes)
1019		as->current_remaining_bytes -= num_bytes;
1020	else
1021		as->current_remaining_bytes = 0;
1022
1023	/* Handle odd number of bytes when data are more than 8bit width */
1024	if (xfer->bits_per_word > 8)
1025		as->current_remaining_bytes &= ~0x1;
1026
1027	/* Read data */
1028	while (num_data) {
1029		rd = spi_readl(as, RDR);
1030		if (xfer->bits_per_word > 8)
1031			*words++ = rd;
1032		else
1033			*bytes++ = rd;
1034		num_data--;
1035	}
1036}
1037
1038/* Called from IRQ
1039 *
1040 * Must update "current_remaining_bytes" to keep track of data
1041 * to transfer.
1042 */
1043static void
1044atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1045{
1046	if (as->fifo_size)
1047		atmel_spi_pump_fifo_data(as, xfer);
1048	else
1049		atmel_spi_pump_single_data(as, xfer);
1050}
1051
1052/* Interrupt
1053 *
1054 * No need for locking in this Interrupt handler: done_status is the
1055 * only information modified.
1056 */
1057static irqreturn_t
1058atmel_spi_pio_interrupt(int irq, void *dev_id)
1059{
1060	struct spi_master	*master = dev_id;
1061	struct atmel_spi	*as = spi_master_get_devdata(master);
1062	u32			status, pending, imr;
1063	struct spi_transfer	*xfer;
1064	int			ret = IRQ_NONE;
1065
1066	imr = spi_readl(as, IMR);
1067	status = spi_readl(as, SR);
1068	pending = status & imr;
1069
1070	if (pending & SPI_BIT(OVRES)) {
1071		ret = IRQ_HANDLED;
1072		spi_writel(as, IDR, SPI_BIT(OVRES));
1073		dev_warn(master->dev.parent, "overrun\n");
1074
1075		/*
1076		 * When we get an overrun, we disregard the current
1077		 * transfer. Data will not be copied back from any
1078		 * bounce buffer and msg->actual_len will not be
1079		 * updated with the last xfer.
1080		 *
1081		 * We will also not process any remaning transfers in
1082		 * the message.
1083		 */
1084		as->done_status = -EIO;
1085		smp_wmb();
1086
1087		/* Clear any overrun happening while cleaning up */
1088		spi_readl(as, SR);
1089
1090		complete(&as->xfer_completion);
1091
1092	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1093		atmel_spi_lock(as);
1094
1095		if (as->current_remaining_bytes) {
1096			ret = IRQ_HANDLED;
1097			xfer = as->current_transfer;
1098			atmel_spi_pump_pio_data(as, xfer);
1099			if (!as->current_remaining_bytes)
1100				spi_writel(as, IDR, pending);
1101
1102			complete(&as->xfer_completion);
1103		}
1104
1105		atmel_spi_unlock(as);
1106	} else {
1107		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1108		ret = IRQ_HANDLED;
1109		spi_writel(as, IDR, pending);
1110	}
1111
1112	return ret;
1113}
1114
1115static irqreturn_t
1116atmel_spi_pdc_interrupt(int irq, void *dev_id)
1117{
1118	struct spi_master	*master = dev_id;
1119	struct atmel_spi	*as = spi_master_get_devdata(master);
1120	u32			status, pending, imr;
1121	int			ret = IRQ_NONE;
1122
1123	imr = spi_readl(as, IMR);
1124	status = spi_readl(as, SR);
1125	pending = status & imr;
1126
1127	if (pending & SPI_BIT(OVRES)) {
1128
1129		ret = IRQ_HANDLED;
1130
1131		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1132				     | SPI_BIT(OVRES)));
1133
1134		/* Clear any overrun happening while cleaning up */
1135		spi_readl(as, SR);
1136
1137		as->done_status = -EIO;
1138
1139		complete(&as->xfer_completion);
1140
1141	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1142		ret = IRQ_HANDLED;
1143
1144		spi_writel(as, IDR, pending);
1145
1146		complete(&as->xfer_completion);
1147	}
1148
1149	return ret;
1150}
1151
1152static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1153{
1154	struct spi_delay *delay = &spi->word_delay;
1155	u32 value = delay->value;
1156
1157	switch (delay->unit) {
1158	case SPI_DELAY_UNIT_NSECS:
1159		value /= 1000;
1160		break;
1161	case SPI_DELAY_UNIT_USECS:
1162		break;
1163	default:
1164		return -EINVAL;
1165	}
1166
1167	return (as->spi_clk / 1000000 * value) >> 5;
1168}
1169
1170static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1171{
1172	int i;
1173	struct spi_master *master = platform_get_drvdata(as->pdev);
1174
1175	if (!as->native_cs_free)
1176		return; /* already initialized */
1177
1178	if (!master->cs_gpiods)
1179		return; /* No CS GPIO */
1180
1181	/*
1182	 * On the first version of the controller (AT91RM9200), CS0
1183	 * can't be used associated with GPIO
1184	 */
1185	if (atmel_spi_is_v2(as))
1186		i = 0;
1187	else
1188		i = 1;
1189
1190	for (; i < 4; i++)
1191		if (master->cs_gpiods[i])
1192			as->native_cs_free |= BIT(i);
1193
1194	if (as->native_cs_free)
1195		as->native_cs_for_gpio = ffs(as->native_cs_free);
1196}
1197
1198static int atmel_spi_setup(struct spi_device *spi)
1199{
1200	struct atmel_spi	*as;
1201	struct atmel_spi_device	*asd;
1202	u32			csr;
1203	unsigned int		bits = spi->bits_per_word;
1204	int chip_select;
1205	int			word_delay_csr;
1206
1207	as = spi_master_get_devdata(spi->master);
1208
1209	/* see notes above re chipselect */
1210	if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1211		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1212		return -EINVAL;
1213	}
1214
1215	/* Setup() is called during spi_register_controller(aka
1216	 * spi_register_master) but after all membmers of the cs_gpiod
1217	 * array have been filled, so we can looked for which native
1218	 * CS will be free for using with GPIO
1219	 */
1220	initialize_native_cs_for_gpio(as);
1221
1222	if (spi->cs_gpiod && as->native_cs_free) {
1223		dev_err(&spi->dev,
1224			"No native CS available to support this GPIO CS\n");
1225		return -EBUSY;
1226	}
1227
1228	if (spi->cs_gpiod)
1229		chip_select = as->native_cs_for_gpio;
1230	else
1231		chip_select = spi->chip_select;
1232
1233	csr = SPI_BF(BITS, bits - 8);
1234	if (spi->mode & SPI_CPOL)
1235		csr |= SPI_BIT(CPOL);
1236	if (!(spi->mode & SPI_CPHA))
1237		csr |= SPI_BIT(NCPHA);
1238
1239	if (!spi->cs_gpiod)
1240		csr |= SPI_BIT(CSAAT);
1241	csr |= SPI_BF(DLYBS, 0);
1242
1243	word_delay_csr = atmel_word_delay_csr(spi, as);
1244	if (word_delay_csr < 0)
1245		return word_delay_csr;
1246
1247	/* DLYBCT adds delays between words.  This is useful for slow devices
1248	 * that need a bit of time to setup the next transfer.
1249	 */
1250	csr |= SPI_BF(DLYBCT, word_delay_csr);
1251
1252	asd = spi->controller_state;
1253	if (!asd) {
1254		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1255		if (!asd)
1256			return -ENOMEM;
1257
1258		spi->controller_state = asd;
1259	}
1260
1261	asd->csr = csr;
1262
1263	dev_dbg(&spi->dev,
1264		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1265		bits, spi->mode, spi->chip_select, csr);
1266
1267	if (!atmel_spi_is_v2(as))
1268		spi_writel(as, CSR0 + 4 * chip_select, csr);
1269
1270	return 0;
1271}
1272
1273static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1274{
1275	struct atmel_spi *as = spi_master_get_devdata(spi->master);
1276	/* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1277	 * since we already have routines for activate/deactivate translate
1278	 * high/low to active/inactive
1279	 */
1280	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1281
1282	if (enable) {
1283		cs_activate(as, spi);
1284	} else {
1285		cs_deactivate(as, spi);
1286	}
1287
1288}
1289
1290static int atmel_spi_one_transfer(struct spi_master *master,
1291					struct spi_device *spi,
1292					struct spi_transfer *xfer)
1293{
1294	struct atmel_spi	*as;
1295	u8			bits;
1296	u32			len;
1297	struct atmel_spi_device	*asd;
1298	int			timeout;
1299	int			ret;
1300	unsigned long		dma_timeout;
1301
1302	as = spi_master_get_devdata(master);
1303	/* This lock was orignally taken in atmel_spi_trasfer_one_message */
1304	atmel_spi_lock(as);
1305
1306	asd = spi->controller_state;
1307	bits = (asd->csr >> 4) & 0xf;
1308	if (bits != xfer->bits_per_word - 8) {
1309		dev_dbg(&spi->dev,
1310			"you can't yet change bits_per_word in transfers\n");
1311		return -ENOPROTOOPT;
1312	}
1313
1314	/*
1315	 * DMA map early, for performance (empties dcache ASAP) and
1316	 * better fault reporting.
1317	 */
1318	if ((!master->cur_msg->is_dma_mapped)
1319		&& as->use_pdc) {
1320		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1321			return -ENOMEM;
1322	}
1323
1324	atmel_spi_set_xfer_speed(as, spi, xfer);
1325
1326	as->done_status = 0;
1327	as->current_transfer = xfer;
1328	as->current_remaining_bytes = xfer->len;
1329	while (as->current_remaining_bytes) {
1330		reinit_completion(&as->xfer_completion);
1331
1332		if (as->use_pdc) {
1333			atmel_spi_pdc_next_xfer(master, xfer);
1334		} else if (atmel_spi_use_dma(as, xfer)) {
1335			len = as->current_remaining_bytes;
1336			ret = atmel_spi_next_xfer_dma_submit(master,
1337								xfer, &len);
1338			if (ret) {
1339				dev_err(&spi->dev,
1340					"unable to use DMA, fallback to PIO\n");
1341				as->done_status = ret;
1342				break;
1343			} else {
1344				as->current_remaining_bytes -= len;
1345				if (as->current_remaining_bytes < 0)
1346					as->current_remaining_bytes = 0;
1347			}
1348		} else {
1349			atmel_spi_next_xfer_pio(master, xfer);
1350		}
1351
1352		/* interrupts are disabled, so free the lock for schedule */
1353		atmel_spi_unlock(as);
1354		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1355							  SPI_DMA_TIMEOUT);
1356		atmel_spi_lock(as);
1357		if (WARN_ON(dma_timeout == 0)) {
1358			dev_err(&spi->dev, "spi transfer timeout\n");
1359			as->done_status = -EIO;
1360		}
1361
1362		if (as->done_status)
1363			break;
1364	}
1365
1366	if (as->done_status) {
1367		if (as->use_pdc) {
1368			dev_warn(master->dev.parent,
1369				"overrun (%u/%u remaining)\n",
1370				spi_readl(as, TCR), spi_readl(as, RCR));
1371
1372			/*
1373			 * Clean up DMA registers and make sure the data
1374			 * registers are empty.
1375			 */
1376			spi_writel(as, RNCR, 0);
1377			spi_writel(as, TNCR, 0);
1378			spi_writel(as, RCR, 0);
1379			spi_writel(as, TCR, 0);
1380			for (timeout = 1000; timeout; timeout--)
1381				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1382					break;
1383			if (!timeout)
1384				dev_warn(master->dev.parent,
1385					 "timeout waiting for TXEMPTY");
1386			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1387				spi_readl(as, RDR);
1388
1389			/* Clear any overrun happening while cleaning up */
1390			spi_readl(as, SR);
1391
1392		} else if (atmel_spi_use_dma(as, xfer)) {
1393			atmel_spi_stop_dma(master);
1394		}
1395	}
1396
1397	if (!master->cur_msg->is_dma_mapped
1398		&& as->use_pdc)
1399		atmel_spi_dma_unmap_xfer(master, xfer);
1400
1401	if (as->use_pdc)
1402		atmel_spi_disable_pdc_transfer(as);
1403
1404	atmel_spi_unlock(as);
1405
1406	return as->done_status;
1407}
1408
1409static void atmel_spi_cleanup(struct spi_device *spi)
1410{
1411	struct atmel_spi_device	*asd = spi->controller_state;
1412
1413	if (!asd)
1414		return;
1415
1416	spi->controller_state = NULL;
1417	kfree(asd);
1418}
1419
1420static inline unsigned int atmel_get_version(struct atmel_spi *as)
1421{
1422	return spi_readl(as, VERSION) & 0x00000fff;
1423}
1424
1425static void atmel_get_caps(struct atmel_spi *as)
1426{
1427	unsigned int version;
1428
1429	version = atmel_get_version(as);
1430
1431	as->caps.is_spi2 = version > 0x121;
1432	as->caps.has_wdrbt = version >= 0x210;
1433	as->caps.has_dma_support = version >= 0x212;
1434	as->caps.has_pdc_support = version < 0x212;
1435}
1436
1437static void atmel_spi_init(struct atmel_spi *as)
1438{
1439	spi_writel(as, CR, SPI_BIT(SWRST));
1440	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1441
1442	/* It is recommended to enable FIFOs first thing after reset */
1443	if (as->fifo_size)
1444		spi_writel(as, CR, SPI_BIT(FIFOEN));
1445
1446	if (as->caps.has_wdrbt) {
1447		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1448				| SPI_BIT(MSTR));
1449	} else {
1450		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1451	}
1452
1453	if (as->use_pdc)
1454		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1455	spi_writel(as, CR, SPI_BIT(SPIEN));
1456}
1457
1458static int atmel_spi_probe(struct platform_device *pdev)
1459{
1460	struct resource		*regs;
1461	int			irq;
1462	struct clk		*clk;
1463	int			ret;
1464	struct spi_master	*master;
1465	struct atmel_spi	*as;
1466
1467	/* Select default pin state */
1468	pinctrl_pm_select_default_state(&pdev->dev);
1469
1470	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1471	if (!regs)
1472		return -ENXIO;
1473
1474	irq = platform_get_irq(pdev, 0);
1475	if (irq < 0)
1476		return irq;
1477
1478	clk = devm_clk_get(&pdev->dev, "spi_clk");
1479	if (IS_ERR(clk))
1480		return PTR_ERR(clk);
1481
1482	/* setup spi core then atmel-specific driver state */
1483	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1484	if (!master)
1485		return -ENOMEM;
1486
1487	/* the spi->mode bits understood by this driver: */
1488	master->use_gpio_descriptors = true;
1489	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1490	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1491	master->dev.of_node = pdev->dev.of_node;
1492	master->bus_num = pdev->id;
1493	master->num_chipselect = 4;
1494	master->setup = atmel_spi_setup;
1495	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1496			SPI_MASTER_GPIO_SS);
1497	master->transfer_one = atmel_spi_one_transfer;
1498	master->set_cs = atmel_spi_set_cs;
1499	master->cleanup = atmel_spi_cleanup;
1500	master->auto_runtime_pm = true;
1501	master->max_dma_len = SPI_MAX_DMA_XFER;
1502	master->can_dma = atmel_spi_can_dma;
1503	platform_set_drvdata(pdev, master);
1504
1505	as = spi_master_get_devdata(master);
1506
1507	spin_lock_init(&as->lock);
1508
1509	as->pdev = pdev;
1510	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1511	if (IS_ERR(as->regs)) {
1512		ret = PTR_ERR(as->regs);
1513		goto out_unmap_regs;
1514	}
1515	as->phybase = regs->start;
1516	as->irq = irq;
1517	as->clk = clk;
1518
1519	init_completion(&as->xfer_completion);
1520
1521	atmel_get_caps(as);
1522
1523	as->use_dma = false;
1524	as->use_pdc = false;
1525	if (as->caps.has_dma_support) {
1526		ret = atmel_spi_configure_dma(master, as);
1527		if (ret == 0) {
1528			as->use_dma = true;
1529		} else if (ret == -EPROBE_DEFER) {
1530			goto out_unmap_regs;
1531		}
1532	} else if (as->caps.has_pdc_support) {
1533		as->use_pdc = true;
1534	}
1535
1536	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1537		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1538						      SPI_MAX_DMA_XFER,
1539						      &as->dma_addr_rx_bbuf,
1540						      GFP_KERNEL | GFP_DMA);
1541		if (!as->addr_rx_bbuf) {
1542			as->use_dma = false;
1543		} else {
1544			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1545					SPI_MAX_DMA_XFER,
1546					&as->dma_addr_tx_bbuf,
1547					GFP_KERNEL | GFP_DMA);
1548			if (!as->addr_tx_bbuf) {
1549				as->use_dma = false;
1550				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1551						  as->addr_rx_bbuf,
1552						  as->dma_addr_rx_bbuf);
1553			}
1554		}
1555		if (!as->use_dma)
1556			dev_info(master->dev.parent,
1557				 "  can not allocate dma coherent memory\n");
1558	}
1559
1560	if (as->caps.has_dma_support && !as->use_dma)
1561		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1562
1563	if (as->use_pdc) {
1564		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1565					0, dev_name(&pdev->dev), master);
1566	} else {
1567		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1568					0, dev_name(&pdev->dev), master);
1569	}
1570	if (ret)
1571		goto out_unmap_regs;
1572
1573	/* Initialize the hardware */
1574	ret = clk_prepare_enable(clk);
1575	if (ret)
1576		goto out_free_irq;
1577
1578	as->spi_clk = clk_get_rate(clk);
1579
1580	as->fifo_size = 0;
1581	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1582				  &as->fifo_size)) {
1583		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1584	}
1585
1586	atmel_spi_init(as);
1587
1588	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1589	pm_runtime_use_autosuspend(&pdev->dev);
1590	pm_runtime_set_active(&pdev->dev);
1591	pm_runtime_enable(&pdev->dev);
1592
1593	ret = devm_spi_register_master(&pdev->dev, master);
1594	if (ret)
1595		goto out_free_dma;
1596
1597	/* go! */
1598	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1599			atmel_get_version(as), (unsigned long)regs->start,
1600			irq);
1601
1602	return 0;
1603
1604out_free_dma:
1605	pm_runtime_disable(&pdev->dev);
1606	pm_runtime_set_suspended(&pdev->dev);
1607
1608	if (as->use_dma)
1609		atmel_spi_release_dma(master);
1610
1611	spi_writel(as, CR, SPI_BIT(SWRST));
1612	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1613	clk_disable_unprepare(clk);
1614out_free_irq:
1615out_unmap_regs:
1616	spi_master_put(master);
1617	return ret;
1618}
1619
1620static int atmel_spi_remove(struct platform_device *pdev)
1621{
1622	struct spi_master	*master = platform_get_drvdata(pdev);
1623	struct atmel_spi	*as = spi_master_get_devdata(master);
1624
1625	pm_runtime_get_sync(&pdev->dev);
1626
1627	/* reset the hardware and block queue progress */
1628	if (as->use_dma) {
1629		atmel_spi_stop_dma(master);
1630		atmel_spi_release_dma(master);
1631		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1632			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1633					  as->addr_tx_bbuf,
1634					  as->dma_addr_tx_bbuf);
1635			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1636					  as->addr_rx_bbuf,
1637					  as->dma_addr_rx_bbuf);
1638		}
1639	}
1640
1641	spin_lock_irq(&as->lock);
1642	spi_writel(as, CR, SPI_BIT(SWRST));
1643	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1644	spi_readl(as, SR);
1645	spin_unlock_irq(&as->lock);
1646
1647	clk_disable_unprepare(as->clk);
1648
1649	pm_runtime_put_noidle(&pdev->dev);
1650	pm_runtime_disable(&pdev->dev);
1651
1652	return 0;
1653}
1654
1655#ifdef CONFIG_PM
1656static int atmel_spi_runtime_suspend(struct device *dev)
1657{
1658	struct spi_master *master = dev_get_drvdata(dev);
1659	struct atmel_spi *as = spi_master_get_devdata(master);
1660
1661	clk_disable_unprepare(as->clk);
1662	pinctrl_pm_select_sleep_state(dev);
1663
1664	return 0;
1665}
1666
1667static int atmel_spi_runtime_resume(struct device *dev)
1668{
1669	struct spi_master *master = dev_get_drvdata(dev);
1670	struct atmel_spi *as = spi_master_get_devdata(master);
1671
1672	pinctrl_pm_select_default_state(dev);
1673
1674	return clk_prepare_enable(as->clk);
1675}
1676
1677#ifdef CONFIG_PM_SLEEP
1678static int atmel_spi_suspend(struct device *dev)
1679{
1680	struct spi_master *master = dev_get_drvdata(dev);
1681	int ret;
1682
1683	/* Stop the queue running */
1684	ret = spi_master_suspend(master);
1685	if (ret)
1686		return ret;
1687
1688	if (!pm_runtime_suspended(dev))
1689		atmel_spi_runtime_suspend(dev);
1690
1691	return 0;
1692}
1693
1694static int atmel_spi_resume(struct device *dev)
1695{
1696	struct spi_master *master = dev_get_drvdata(dev);
1697	struct atmel_spi *as = spi_master_get_devdata(master);
1698	int ret;
1699
1700	ret = clk_prepare_enable(as->clk);
1701	if (ret)
1702		return ret;
1703
1704	atmel_spi_init(as);
1705
1706	clk_disable_unprepare(as->clk);
1707
1708	if (!pm_runtime_suspended(dev)) {
1709		ret = atmel_spi_runtime_resume(dev);
1710		if (ret)
1711			return ret;
1712	}
1713
1714	/* Start the queue running */
1715	return spi_master_resume(master);
1716}
1717#endif
1718
1719static const struct dev_pm_ops atmel_spi_pm_ops = {
1720	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1721	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1722			   atmel_spi_runtime_resume, NULL)
1723};
1724#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1725#else
1726#define ATMEL_SPI_PM_OPS	NULL
1727#endif
1728
1729static const struct of_device_id atmel_spi_dt_ids[] = {
1730	{ .compatible = "atmel,at91rm9200-spi" },
1731	{ /* sentinel */ }
1732};
1733
1734MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1735
1736static struct platform_driver atmel_spi_driver = {
1737	.driver		= {
1738		.name	= "atmel_spi",
1739		.pm	= ATMEL_SPI_PM_OPS,
1740		.of_match_table	= atmel_spi_dt_ids,
1741	},
1742	.probe		= atmel_spi_probe,
1743	.remove		= atmel_spi_remove,
1744};
1745module_platform_driver(atmel_spi_driver);
1746
1747MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1748MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1749MODULE_LICENSE("GPL");
1750MODULE_ALIAS("platform:atmel_spi");
1751