1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Keystone Queue Manager subsystem driver
4 *
5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6 * Authors:	Sandeep Nair <sandeep_n@ti.com>
7 *		Cyril Chemparathy <cyril@ti.com>
8 *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9 */
10
11#include <linux/debugfs.h>
12#include <linux/dma-mapping.h>
13#include <linux/firmware.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/module.h>
17#include <linux/of_address.h>
18#include <linux/of_device.h>
19#include <linux/of_irq.h>
20#include <linux/pm_runtime.h>
21#include <linux/slab.h>
22#include <linux/soc/ti/knav_qmss.h>
23
24#include "knav_qmss.h"
25
26static struct knav_device *kdev;
27static DEFINE_MUTEX(knav_dev_lock);
28#define knav_dev_lock_held() \
29	lockdep_is_held(&knav_dev_lock)
30
31/* Queue manager register indices in DTS */
32#define KNAV_QUEUE_PEEK_REG_INDEX	0
33#define KNAV_QUEUE_STATUS_REG_INDEX	1
34#define KNAV_QUEUE_CONFIG_REG_INDEX	2
35#define KNAV_QUEUE_REGION_REG_INDEX	3
36#define KNAV_QUEUE_PUSH_REG_INDEX	4
37#define KNAV_QUEUE_POP_REG_INDEX	5
38
39/* Queue manager register indices in DTS for QMSS in K2G NAVSS.
40 * There are no status and vbusm push registers on this version
41 * of QMSS. Push registers are same as pop, So all indices above 1
42 * are to be re-defined
43 */
44#define KNAV_L_QUEUE_CONFIG_REG_INDEX	1
45#define KNAV_L_QUEUE_REGION_REG_INDEX	2
46#define KNAV_L_QUEUE_PUSH_REG_INDEX	3
47
48/* PDSP register indices in DTS */
49#define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
50#define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
51#define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
52#define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
53
54#define knav_queue_idx_to_inst(kdev, idx)			\
55	(kdev->instances + (idx << kdev->inst_shift))
56
57#define for_each_handle_rcu(qh, inst)				\
58	list_for_each_entry_rcu(qh, &inst->handles, list,	\
59				knav_dev_lock_held())
60
61#define for_each_instance(idx, inst, kdev)		\
62	for (idx = 0, inst = kdev->instances;		\
63	     idx < (kdev)->num_queues_in_use;			\
64	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
65
66/* All firmware file names end up here. List the firmware file names below.
67 * Newest followed by older ones. Search is done from start of the array
68 * until a firmware file is found.
69 */
70static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
71
72static bool device_ready;
73bool knav_qmss_device_ready(void)
74{
75	return device_ready;
76}
77EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
78
79/**
80 * knav_queue_notify: qmss queue notfier call
81 *
82 * @inst:		qmss queue instance like accumulator
83 */
84void knav_queue_notify(struct knav_queue_inst *inst)
85{
86	struct knav_queue *qh;
87
88	if (!inst)
89		return;
90
91	rcu_read_lock();
92	for_each_handle_rcu(qh, inst) {
93		if (atomic_read(&qh->notifier_enabled) <= 0)
94			continue;
95		if (WARN_ON(!qh->notifier_fn))
96			continue;
97		this_cpu_inc(qh->stats->notifies);
98		qh->notifier_fn(qh->notifier_fn_arg);
99	}
100	rcu_read_unlock();
101}
102EXPORT_SYMBOL_GPL(knav_queue_notify);
103
104static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
105{
106	struct knav_queue_inst *inst = _instdata;
107
108	knav_queue_notify(inst);
109	return IRQ_HANDLED;
110}
111
112static int knav_queue_setup_irq(struct knav_range_info *range,
113			  struct knav_queue_inst *inst)
114{
115	unsigned queue = inst->id - range->queue_base;
116	int ret = 0, irq;
117
118	if (range->flags & RANGE_HAS_IRQ) {
119		irq = range->irqs[queue].irq;
120		ret = request_irq(irq, knav_queue_int_handler, 0,
121					inst->irq_name, inst);
122		if (ret)
123			return ret;
124		disable_irq(irq);
125		if (range->irqs[queue].cpu_mask) {
126			ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
127			if (ret) {
128				dev_warn(range->kdev->dev,
129					 "Failed to set IRQ affinity\n");
130				return ret;
131			}
132		}
133	}
134	return ret;
135}
136
137static void knav_queue_free_irq(struct knav_queue_inst *inst)
138{
139	struct knav_range_info *range = inst->range;
140	unsigned queue = inst->id - inst->range->queue_base;
141	int irq;
142
143	if (range->flags & RANGE_HAS_IRQ) {
144		irq = range->irqs[queue].irq;
145		irq_set_affinity_hint(irq, NULL);
146		free_irq(irq, inst);
147	}
148}
149
150static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
151{
152	return !list_empty(&inst->handles);
153}
154
155static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
156{
157	return inst->range->flags & RANGE_RESERVED;
158}
159
160static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
161{
162	struct knav_queue *tmp;
163
164	rcu_read_lock();
165	for_each_handle_rcu(tmp, inst) {
166		if (tmp->flags & KNAV_QUEUE_SHARED) {
167			rcu_read_unlock();
168			return true;
169		}
170	}
171	rcu_read_unlock();
172	return false;
173}
174
175static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176						unsigned type)
177{
178	if ((type == KNAV_QUEUE_QPEND) &&
179	    (inst->range->flags & RANGE_HAS_IRQ)) {
180		return true;
181	} else if ((type == KNAV_QUEUE_ACC) &&
182		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183		return true;
184	} else if ((type == KNAV_QUEUE_GP) &&
185		!(inst->range->flags &
186			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187		return true;
188	}
189	return false;
190}
191
192static inline struct knav_queue_inst *
193knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
194{
195	struct knav_queue_inst *inst;
196	int idx;
197
198	for_each_instance(idx, inst, kdev) {
199		if (inst->id == id)
200			return inst;
201	}
202	return NULL;
203}
204
205static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
206{
207	if (kdev->base_id <= id &&
208	    kdev->base_id + kdev->num_queues > id) {
209		id -= kdev->base_id;
210		return knav_queue_match_id_to_inst(kdev, id);
211	}
212	return NULL;
213}
214
215static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216				      const char *name, unsigned flags)
217{
218	struct knav_queue *qh;
219	unsigned id;
220	int ret = 0;
221
222	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223	if (!qh)
224		return ERR_PTR(-ENOMEM);
225
226	qh->stats = alloc_percpu(struct knav_queue_stats);
227	if (!qh->stats) {
228		ret = -ENOMEM;
229		goto err;
230	}
231
232	qh->flags = flags;
233	qh->inst = inst;
234	id = inst->id - inst->qmgr->start_queue;
235	qh->reg_push = &inst->qmgr->reg_push[id];
236	qh->reg_pop = &inst->qmgr->reg_pop[id];
237	qh->reg_peek = &inst->qmgr->reg_peek[id];
238
239	/* first opener? */
240	if (!knav_queue_is_busy(inst)) {
241		struct knav_range_info *range = inst->range;
242
243		inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
244		if (range->ops && range->ops->open_queue)
245			ret = range->ops->open_queue(range, inst, flags);
246
247		if (ret)
248			goto err;
249	}
250	list_add_tail_rcu(&qh->list, &inst->handles);
251	return qh;
252
253err:
254	if (qh->stats)
255		free_percpu(qh->stats);
256	devm_kfree(inst->kdev->dev, qh);
257	return ERR_PTR(ret);
258}
259
260static struct knav_queue *
261knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
262{
263	struct knav_queue_inst *inst;
264	struct knav_queue *qh;
265
266	mutex_lock(&knav_dev_lock);
267
268	qh = ERR_PTR(-ENODEV);
269	inst = knav_queue_find_by_id(id);
270	if (!inst)
271		goto unlock_ret;
272
273	qh = ERR_PTR(-EEXIST);
274	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
275		goto unlock_ret;
276
277	qh = ERR_PTR(-EBUSY);
278	if ((flags & KNAV_QUEUE_SHARED) &&
279	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
280		goto unlock_ret;
281
282	qh = __knav_queue_open(inst, name, flags);
283
284unlock_ret:
285	mutex_unlock(&knav_dev_lock);
286
287	return qh;
288}
289
290static struct knav_queue *knav_queue_open_by_type(const char *name,
291						unsigned type, unsigned flags)
292{
293	struct knav_queue_inst *inst;
294	struct knav_queue *qh = ERR_PTR(-EINVAL);
295	int idx;
296
297	mutex_lock(&knav_dev_lock);
298
299	for_each_instance(idx, inst, kdev) {
300		if (knav_queue_is_reserved(inst))
301			continue;
302		if (!knav_queue_match_type(inst, type))
303			continue;
304		if (knav_queue_is_busy(inst))
305			continue;
306		qh = __knav_queue_open(inst, name, flags);
307		goto unlock_ret;
308	}
309
310unlock_ret:
311	mutex_unlock(&knav_dev_lock);
312	return qh;
313}
314
315static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
316{
317	struct knav_range_info *range = inst->range;
318
319	if (range->ops && range->ops->set_notify)
320		range->ops->set_notify(range, inst, enabled);
321}
322
323static int knav_queue_enable_notifier(struct knav_queue *qh)
324{
325	struct knav_queue_inst *inst = qh->inst;
326	bool first;
327
328	if (WARN_ON(!qh->notifier_fn))
329		return -EINVAL;
330
331	/* Adjust the per handle notifier count */
332	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
333	if (!first)
334		return 0; /* nothing to do */
335
336	/* Now adjust the per instance notifier count */
337	first = (atomic_inc_return(&inst->num_notifiers) == 1);
338	if (first)
339		knav_queue_set_notify(inst, true);
340
341	return 0;
342}
343
344static int knav_queue_disable_notifier(struct knav_queue *qh)
345{
346	struct knav_queue_inst *inst = qh->inst;
347	bool last;
348
349	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
350	if (!last)
351		return 0; /* nothing to do */
352
353	last = (atomic_dec_return(&inst->num_notifiers) == 0);
354	if (last)
355		knav_queue_set_notify(inst, false);
356
357	return 0;
358}
359
360static int knav_queue_set_notifier(struct knav_queue *qh,
361				struct knav_queue_notify_config *cfg)
362{
363	knav_queue_notify_fn old_fn = qh->notifier_fn;
364
365	if (!cfg)
366		return -EINVAL;
367
368	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
369		return -ENOTSUPP;
370
371	if (!cfg->fn && old_fn)
372		knav_queue_disable_notifier(qh);
373
374	qh->notifier_fn = cfg->fn;
375	qh->notifier_fn_arg = cfg->fn_arg;
376
377	if (cfg->fn && !old_fn)
378		knav_queue_enable_notifier(qh);
379
380	return 0;
381}
382
383static int knav_gp_set_notify(struct knav_range_info *range,
384			       struct knav_queue_inst *inst,
385			       bool enabled)
386{
387	unsigned queue;
388
389	if (range->flags & RANGE_HAS_IRQ) {
390		queue = inst->id - range->queue_base;
391		if (enabled)
392			enable_irq(range->irqs[queue].irq);
393		else
394			disable_irq_nosync(range->irqs[queue].irq);
395	}
396	return 0;
397}
398
399static int knav_gp_open_queue(struct knav_range_info *range,
400				struct knav_queue_inst *inst, unsigned flags)
401{
402	return knav_queue_setup_irq(range, inst);
403}
404
405static int knav_gp_close_queue(struct knav_range_info *range,
406				struct knav_queue_inst *inst)
407{
408	knav_queue_free_irq(inst);
409	return 0;
410}
411
412static struct knav_range_ops knav_gp_range_ops = {
413	.set_notify	= knav_gp_set_notify,
414	.open_queue	= knav_gp_open_queue,
415	.close_queue	= knav_gp_close_queue,
416};
417
418
419static int knav_queue_get_count(void *qhandle)
420{
421	struct knav_queue *qh = qhandle;
422	struct knav_queue_inst *inst = qh->inst;
423
424	return readl_relaxed(&qh->reg_peek[0].entry_count) +
425		atomic_read(&inst->desc_count);
426}
427
428static void knav_queue_debug_show_instance(struct seq_file *s,
429					struct knav_queue_inst *inst)
430{
431	struct knav_device *kdev = inst->kdev;
432	struct knav_queue *qh;
433	int cpu = 0;
434	int pushes = 0;
435	int pops = 0;
436	int push_errors = 0;
437	int pop_errors = 0;
438	int notifies = 0;
439
440	if (!knav_queue_is_busy(inst))
441		return;
442
443	seq_printf(s, "\tqueue id %d (%s)\n",
444		   kdev->base_id + inst->id, inst->name);
445	for_each_handle_rcu(qh, inst) {
446		for_each_possible_cpu(cpu) {
447			pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
448			pops += per_cpu_ptr(qh->stats, cpu)->pops;
449			push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
450			pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
451			notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
452		}
453
454		seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
455				qh,
456				pushes,
457				pops,
458				knav_queue_get_count(qh),
459				notifies,
460				push_errors,
461				pop_errors);
462	}
463}
464
465static int knav_queue_debug_show(struct seq_file *s, void *v)
466{
467	struct knav_queue_inst *inst;
468	int idx;
469
470	mutex_lock(&knav_dev_lock);
471	seq_printf(s, "%s: %u-%u\n",
472		   dev_name(kdev->dev), kdev->base_id,
473		   kdev->base_id + kdev->num_queues - 1);
474	for_each_instance(idx, inst, kdev)
475		knav_queue_debug_show_instance(s, inst);
476	mutex_unlock(&knav_dev_lock);
477
478	return 0;
479}
480
481DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
482
483static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
484					u32 flags)
485{
486	unsigned long end;
487	u32 val = 0;
488
489	end = jiffies + msecs_to_jiffies(timeout);
490	while (time_after(end, jiffies)) {
491		val = readl_relaxed(addr);
492		if (flags)
493			val &= flags;
494		if (!val)
495			break;
496		cpu_relax();
497	}
498	return val ? -ETIMEDOUT : 0;
499}
500
501
502static int knav_queue_flush(struct knav_queue *qh)
503{
504	struct knav_queue_inst *inst = qh->inst;
505	unsigned id = inst->id - inst->qmgr->start_queue;
506
507	atomic_set(&inst->desc_count, 0);
508	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
509	return 0;
510}
511
512/**
513 * knav_queue_open()	- open a hardware queue
514 * @name		- name to give the queue handle
515 * @id			- desired queue number if any or specifes the type
516 *			  of queue
517 * @flags		- the following flags are applicable to queues:
518 *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
519 *			     exclusive by default.
520 *			     Subsequent attempts to open a shared queue should
521 *			     also have this flag.
522 *
523 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
524 * to check the returned value for error codes.
525 */
526void *knav_queue_open(const char *name, unsigned id,
527					unsigned flags)
528{
529	struct knav_queue *qh = ERR_PTR(-EINVAL);
530
531	switch (id) {
532	case KNAV_QUEUE_QPEND:
533	case KNAV_QUEUE_ACC:
534	case KNAV_QUEUE_GP:
535		qh = knav_queue_open_by_type(name, id, flags);
536		break;
537
538	default:
539		qh = knav_queue_open_by_id(name, id, flags);
540		break;
541	}
542	return qh;
543}
544EXPORT_SYMBOL_GPL(knav_queue_open);
545
546/**
547 * knav_queue_close()	- close a hardware queue handle
548 * @qh			- handle to close
549 */
550void knav_queue_close(void *qhandle)
551{
552	struct knav_queue *qh = qhandle;
553	struct knav_queue_inst *inst = qh->inst;
554
555	while (atomic_read(&qh->notifier_enabled) > 0)
556		knav_queue_disable_notifier(qh);
557
558	mutex_lock(&knav_dev_lock);
559	list_del_rcu(&qh->list);
560	mutex_unlock(&knav_dev_lock);
561	synchronize_rcu();
562	if (!knav_queue_is_busy(inst)) {
563		struct knav_range_info *range = inst->range;
564
565		if (range->ops && range->ops->close_queue)
566			range->ops->close_queue(range, inst);
567	}
568	free_percpu(qh->stats);
569	devm_kfree(inst->kdev->dev, qh);
570}
571EXPORT_SYMBOL_GPL(knav_queue_close);
572
573/**
574 * knav_queue_device_control()	- Perform control operations on a queue
575 * @qh				- queue handle
576 * @cmd				- control commands
577 * @arg				- command argument
578 *
579 * Returns 0 on success, errno otherwise.
580 */
581int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
582				unsigned long arg)
583{
584	struct knav_queue *qh = qhandle;
585	struct knav_queue_notify_config *cfg;
586	int ret;
587
588	switch ((int)cmd) {
589	case KNAV_QUEUE_GET_ID:
590		ret = qh->inst->kdev->base_id + qh->inst->id;
591		break;
592
593	case KNAV_QUEUE_FLUSH:
594		ret = knav_queue_flush(qh);
595		break;
596
597	case KNAV_QUEUE_SET_NOTIFIER:
598		cfg = (void *)arg;
599		ret = knav_queue_set_notifier(qh, cfg);
600		break;
601
602	case KNAV_QUEUE_ENABLE_NOTIFY:
603		ret = knav_queue_enable_notifier(qh);
604		break;
605
606	case KNAV_QUEUE_DISABLE_NOTIFY:
607		ret = knav_queue_disable_notifier(qh);
608		break;
609
610	case KNAV_QUEUE_GET_COUNT:
611		ret = knav_queue_get_count(qh);
612		break;
613
614	default:
615		ret = -ENOTSUPP;
616		break;
617	}
618	return ret;
619}
620EXPORT_SYMBOL_GPL(knav_queue_device_control);
621
622
623
624/**
625 * knav_queue_push()	- push data (or descriptor) to the tail of a queue
626 * @qh			- hardware queue handle
627 * @data		- data to push
628 * @size		- size of data to push
629 * @flags		- can be used to pass additional information
630 *
631 * Returns 0 on success, errno otherwise.
632 */
633int knav_queue_push(void *qhandle, dma_addr_t dma,
634					unsigned size, unsigned flags)
635{
636	struct knav_queue *qh = qhandle;
637	u32 val;
638
639	val = (u32)dma | ((size / 16) - 1);
640	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
641
642	this_cpu_inc(qh->stats->pushes);
643	return 0;
644}
645EXPORT_SYMBOL_GPL(knav_queue_push);
646
647/**
648 * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
649 * @qh			- hardware queue handle
650 * @size		- (optional) size of the data pop'ed.
651 *
652 * Returns a DMA address on success, 0 on failure.
653 */
654dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
655{
656	struct knav_queue *qh = qhandle;
657	struct knav_queue_inst *inst = qh->inst;
658	dma_addr_t dma;
659	u32 val, idx;
660
661	/* are we accumulated? */
662	if (inst->descs) {
663		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
664			atomic_inc(&inst->desc_count);
665			return 0;
666		}
667		idx  = atomic_inc_return(&inst->desc_head);
668		idx &= ACC_DESCS_MASK;
669		val = inst->descs[idx];
670	} else {
671		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
672		if (unlikely(!val))
673			return 0;
674	}
675
676	dma = val & DESC_PTR_MASK;
677	if (size)
678		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
679
680	this_cpu_inc(qh->stats->pops);
681	return dma;
682}
683EXPORT_SYMBOL_GPL(knav_queue_pop);
684
685/* carve out descriptors and push into queue */
686static void kdesc_fill_pool(struct knav_pool *pool)
687{
688	struct knav_region *region;
689	int i;
690
691	region = pool->region;
692	pool->desc_size = region->desc_size;
693	for (i = 0; i < pool->num_desc; i++) {
694		int index = pool->region_offset + i;
695		dma_addr_t dma_addr;
696		unsigned dma_size;
697		dma_addr = region->dma_start + (region->desc_size * index);
698		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
699		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
700					   DMA_TO_DEVICE);
701		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
702	}
703}
704
705/* pop out descriptors and close the queue */
706static void kdesc_empty_pool(struct knav_pool *pool)
707{
708	dma_addr_t dma;
709	unsigned size;
710	void *desc;
711	int i;
712
713	if (!pool->queue)
714		return;
715
716	for (i = 0;; i++) {
717		dma = knav_queue_pop(pool->queue, &size);
718		if (!dma)
719			break;
720		desc = knav_pool_desc_dma_to_virt(pool, dma);
721		if (!desc) {
722			dev_dbg(pool->kdev->dev,
723				"couldn't unmap desc, continuing\n");
724			continue;
725		}
726	}
727	WARN_ON(i != pool->num_desc);
728	knav_queue_close(pool->queue);
729}
730
731
732/* Get the DMA address of a descriptor */
733dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
734{
735	struct knav_pool *pool = ph;
736	return pool->region->dma_start + (virt - pool->region->virt_start);
737}
738EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
739
740void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
741{
742	struct knav_pool *pool = ph;
743	return pool->region->virt_start + (dma - pool->region->dma_start);
744}
745EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
746
747/**
748 * knav_pool_create()	- Create a pool of descriptors
749 * @name		- name to give the pool handle
750 * @num_desc		- numbers of descriptors in the pool
751 * @region_id		- QMSS region id from which the descriptors are to be
752 *			  allocated.
753 *
754 * Returns a pool handle on success.
755 * Use IS_ERR_OR_NULL() to identify error values on return.
756 */
757void *knav_pool_create(const char *name,
758					int num_desc, int region_id)
759{
760	struct knav_region *reg_itr, *region = NULL;
761	struct knav_pool *pool, *pi;
762	struct list_head *node;
763	unsigned last_offset;
764	bool slot_found;
765	int ret;
766
767	if (!kdev)
768		return ERR_PTR(-EPROBE_DEFER);
769
770	if (!kdev->dev)
771		return ERR_PTR(-ENODEV);
772
773	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
774	if (!pool) {
775		dev_err(kdev->dev, "out of memory allocating pool\n");
776		return ERR_PTR(-ENOMEM);
777	}
778
779	for_each_region(kdev, reg_itr) {
780		if (reg_itr->id != region_id)
781			continue;
782		region = reg_itr;
783		break;
784	}
785
786	if (!region) {
787		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
788		ret = -EINVAL;
789		goto err;
790	}
791
792	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
793	if (IS_ERR_OR_NULL(pool->queue)) {
794		dev_err(kdev->dev,
795			"failed to open queue for pool(%s), error %ld\n",
796			name, PTR_ERR(pool->queue));
797		ret = PTR_ERR(pool->queue);
798		goto err;
799	}
800
801	pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
802	pool->kdev = kdev;
803	pool->dev = kdev->dev;
804
805	mutex_lock(&knav_dev_lock);
806
807	if (num_desc > (region->num_desc - region->used_desc)) {
808		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
809			region_id, name);
810		ret = -ENOMEM;
811		goto err_unlock;
812	}
813
814	/* Region maintains a sorted (by region offset) list of pools
815	 * use the first free slot which is large enough to accomodate
816	 * the request
817	 */
818	last_offset = 0;
819	slot_found = false;
820	node = &region->pools;
821	list_for_each_entry(pi, &region->pools, region_inst) {
822		if ((pi->region_offset - last_offset) >= num_desc) {
823			slot_found = true;
824			break;
825		}
826		last_offset = pi->region_offset + pi->num_desc;
827	}
828	node = &pi->region_inst;
829
830	if (slot_found) {
831		pool->region = region;
832		pool->num_desc = num_desc;
833		pool->region_offset = last_offset;
834		region->used_desc += num_desc;
835		list_add_tail(&pool->list, &kdev->pools);
836		list_add_tail(&pool->region_inst, node);
837	} else {
838		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
839			name, region_id);
840		ret = -ENOMEM;
841		goto err_unlock;
842	}
843
844	mutex_unlock(&knav_dev_lock);
845	kdesc_fill_pool(pool);
846	return pool;
847
848err_unlock:
849	mutex_unlock(&knav_dev_lock);
850err:
851	kfree(pool->name);
852	devm_kfree(kdev->dev, pool);
853	return ERR_PTR(ret);
854}
855EXPORT_SYMBOL_GPL(knav_pool_create);
856
857/**
858 * knav_pool_destroy()	- Free a pool of descriptors
859 * @pool		- pool handle
860 */
861void knav_pool_destroy(void *ph)
862{
863	struct knav_pool *pool = ph;
864
865	if (!pool)
866		return;
867
868	if (!pool->region)
869		return;
870
871	kdesc_empty_pool(pool);
872	mutex_lock(&knav_dev_lock);
873
874	pool->region->used_desc -= pool->num_desc;
875	list_del(&pool->region_inst);
876	list_del(&pool->list);
877
878	mutex_unlock(&knav_dev_lock);
879	kfree(pool->name);
880	devm_kfree(kdev->dev, pool);
881}
882EXPORT_SYMBOL_GPL(knav_pool_destroy);
883
884
885/**
886 * knav_pool_desc_get()	- Get a descriptor from the pool
887 * @pool			- pool handle
888 *
889 * Returns descriptor from the pool.
890 */
891void *knav_pool_desc_get(void *ph)
892{
893	struct knav_pool *pool = ph;
894	dma_addr_t dma;
895	unsigned size;
896	void *data;
897
898	dma = knav_queue_pop(pool->queue, &size);
899	if (unlikely(!dma))
900		return ERR_PTR(-ENOMEM);
901	data = knav_pool_desc_dma_to_virt(pool, dma);
902	return data;
903}
904EXPORT_SYMBOL_GPL(knav_pool_desc_get);
905
906/**
907 * knav_pool_desc_put()	- return a descriptor to the pool
908 * @pool			- pool handle
909 */
910void knav_pool_desc_put(void *ph, void *desc)
911{
912	struct knav_pool *pool = ph;
913	dma_addr_t dma;
914	dma = knav_pool_desc_virt_to_dma(pool, desc);
915	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
916}
917EXPORT_SYMBOL_GPL(knav_pool_desc_put);
918
919/**
920 * knav_pool_desc_map()	- Map descriptor for DMA transfer
921 * @pool			- pool handle
922 * @desc			- address of descriptor to map
923 * @size			- size of descriptor to map
924 * @dma				- DMA address return pointer
925 * @dma_sz			- adjusted return pointer
926 *
927 * Returns 0 on success, errno otherwise.
928 */
929int knav_pool_desc_map(void *ph, void *desc, unsigned size,
930					dma_addr_t *dma, unsigned *dma_sz)
931{
932	struct knav_pool *pool = ph;
933	*dma = knav_pool_desc_virt_to_dma(pool, desc);
934	size = min(size, pool->region->desc_size);
935	size = ALIGN(size, SMP_CACHE_BYTES);
936	*dma_sz = size;
937	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
938
939	/* Ensure the descriptor reaches to the memory */
940	__iowmb();
941
942	return 0;
943}
944EXPORT_SYMBOL_GPL(knav_pool_desc_map);
945
946/**
947 * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
948 * @pool			- pool handle
949 * @dma				- DMA address of descriptor to unmap
950 * @dma_sz			- size of descriptor to unmap
951 *
952 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
953 * error values on return.
954 */
955void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
956{
957	struct knav_pool *pool = ph;
958	unsigned desc_sz;
959	void *desc;
960
961	desc_sz = min(dma_sz, pool->region->desc_size);
962	desc = knav_pool_desc_dma_to_virt(pool, dma);
963	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
964	prefetch(desc);
965	return desc;
966}
967EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
968
969/**
970 * knav_pool_count()	- Get the number of descriptors in pool.
971 * @pool		- pool handle
972 * Returns number of elements in the pool.
973 */
974int knav_pool_count(void *ph)
975{
976	struct knav_pool *pool = ph;
977	return knav_queue_get_count(pool->queue);
978}
979EXPORT_SYMBOL_GPL(knav_pool_count);
980
981static void knav_queue_setup_region(struct knav_device *kdev,
982					struct knav_region *region)
983{
984	unsigned hw_num_desc, hw_desc_size, size;
985	struct knav_reg_region __iomem  *regs;
986	struct knav_qmgr_info *qmgr;
987	struct knav_pool *pool;
988	int id = region->id;
989	struct page *page;
990
991	/* unused region? */
992	if (!region->num_desc) {
993		dev_warn(kdev->dev, "unused region %s\n", region->name);
994		return;
995	}
996
997	/* get hardware descriptor value */
998	hw_num_desc = ilog2(region->num_desc - 1) + 1;
999
1000	/* did we force fit ourselves into nothingness? */
1001	if (region->num_desc < 32) {
1002		region->num_desc = 0;
1003		dev_warn(kdev->dev, "too few descriptors in region %s\n",
1004			 region->name);
1005		return;
1006	}
1007
1008	size = region->num_desc * region->desc_size;
1009	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1010						GFP_DMA32);
1011	if (!region->virt_start) {
1012		region->num_desc = 0;
1013		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1014			region->name);
1015		return;
1016	}
1017	region->virt_end = region->virt_start + size;
1018	page = virt_to_page(region->virt_start);
1019
1020	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1021					 DMA_BIDIRECTIONAL);
1022	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1023		dev_err(kdev->dev, "dma map failed for region %s\n",
1024			region->name);
1025		goto fail;
1026	}
1027	region->dma_end = region->dma_start + size;
1028
1029	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1030	if (!pool) {
1031		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1032		goto fail;
1033	}
1034	pool->num_desc = 0;
1035	pool->region_offset = region->num_desc;
1036	list_add(&pool->region_inst, &region->pools);
1037
1038	dev_dbg(kdev->dev,
1039		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1040		region->name, id, region->desc_size, region->num_desc,
1041		region->link_index, &region->dma_start, &region->dma_end,
1042		region->virt_start, region->virt_end);
1043
1044	hw_desc_size = (region->desc_size / 16) - 1;
1045	hw_num_desc -= 5;
1046
1047	for_each_qmgr(kdev, qmgr) {
1048		regs = qmgr->reg_region + id;
1049		writel_relaxed((u32)region->dma_start, &regs->base);
1050		writel_relaxed(region->link_index, &regs->start_index);
1051		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1052			       &regs->size_count);
1053	}
1054	return;
1055
1056fail:
1057	if (region->dma_start)
1058		dma_unmap_page(kdev->dev, region->dma_start, size,
1059				DMA_BIDIRECTIONAL);
1060	if (region->virt_start)
1061		free_pages_exact(region->virt_start, size);
1062	region->num_desc = 0;
1063	return;
1064}
1065
1066static const char *knav_queue_find_name(struct device_node *node)
1067{
1068	const char *name;
1069
1070	if (of_property_read_string(node, "label", &name) < 0)
1071		name = node->name;
1072	if (!name)
1073		name = "unknown";
1074	return name;
1075}
1076
1077static int knav_queue_setup_regions(struct knav_device *kdev,
1078					struct device_node *regions)
1079{
1080	struct device *dev = kdev->dev;
1081	struct knav_region *region;
1082	struct device_node *child;
1083	u32 temp[2];
1084	int ret;
1085
1086	for_each_child_of_node(regions, child) {
1087		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1088		if (!region) {
1089			dev_err(dev, "out of memory allocating region\n");
1090			return -ENOMEM;
1091		}
1092
1093		region->name = knav_queue_find_name(child);
1094		of_property_read_u32(child, "id", &region->id);
1095		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1096		if (!ret) {
1097			region->num_desc  = temp[0];
1098			region->desc_size = temp[1];
1099		} else {
1100			dev_err(dev, "invalid region info %s\n", region->name);
1101			devm_kfree(dev, region);
1102			continue;
1103		}
1104
1105		if (!of_get_property(child, "link-index", NULL)) {
1106			dev_err(dev, "No link info for %s\n", region->name);
1107			devm_kfree(dev, region);
1108			continue;
1109		}
1110		ret = of_property_read_u32(child, "link-index",
1111					   &region->link_index);
1112		if (ret) {
1113			dev_err(dev, "link index not found for %s\n",
1114				region->name);
1115			devm_kfree(dev, region);
1116			continue;
1117		}
1118
1119		INIT_LIST_HEAD(&region->pools);
1120		list_add_tail(&region->list, &kdev->regions);
1121	}
1122	if (list_empty(&kdev->regions)) {
1123		dev_err(dev, "no valid region information found\n");
1124		return -ENODEV;
1125	}
1126
1127	/* Next, we run through the regions and set things up */
1128	for_each_region(kdev, region)
1129		knav_queue_setup_region(kdev, region);
1130
1131	return 0;
1132}
1133
1134static int knav_get_link_ram(struct knav_device *kdev,
1135				       const char *name,
1136				       struct knav_link_ram_block *block)
1137{
1138	struct platform_device *pdev = to_platform_device(kdev->dev);
1139	struct device_node *node = pdev->dev.of_node;
1140	u32 temp[2];
1141
1142	/*
1143	 * Note: link ram resources are specified in "entry" sized units. In
1144	 * reality, although entries are ~40bits in hardware, we treat them as
1145	 * 64-bit entities here.
1146	 *
1147	 * For example, to specify the internal link ram for Keystone-I class
1148	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1149	 *
1150	 * This gets a bit weird when other link rams are used.  For example,
1151	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1152	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1153	 * which accounts for 64-bits per entry, for 16K entries.
1154	 */
1155	if (!of_property_read_u32_array(node, name , temp, 2)) {
1156		if (temp[0]) {
1157			/*
1158			 * queue_base specified => using internal or onchip
1159			 * link ram WARNING - we do not "reserve" this block
1160			 */
1161			block->dma = (dma_addr_t)temp[0];
1162			block->virt = NULL;
1163			block->size = temp[1];
1164		} else {
1165			block->size = temp[1];
1166			/* queue_base not specific => allocate requested size */
1167			block->virt = dmam_alloc_coherent(kdev->dev,
1168						  8 * block->size, &block->dma,
1169						  GFP_KERNEL);
1170			if (!block->virt) {
1171				dev_err(kdev->dev, "failed to alloc linkram\n");
1172				return -ENOMEM;
1173			}
1174		}
1175	} else {
1176		return -ENODEV;
1177	}
1178	return 0;
1179}
1180
1181static int knav_queue_setup_link_ram(struct knav_device *kdev)
1182{
1183	struct knav_link_ram_block *block;
1184	struct knav_qmgr_info *qmgr;
1185
1186	for_each_qmgr(kdev, qmgr) {
1187		block = &kdev->link_rams[0];
1188		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1189			&block->dma, block->virt, block->size);
1190		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1191		if (kdev->version == QMSS_66AK2G)
1192			writel_relaxed(block->size,
1193				       &qmgr->reg_config->link_ram_size0);
1194		else
1195			writel_relaxed(block->size - 1,
1196				       &qmgr->reg_config->link_ram_size0);
1197		block++;
1198		if (!block->size)
1199			continue;
1200
1201		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1202			&block->dma, block->virt, block->size);
1203		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1204	}
1205
1206	return 0;
1207}
1208
1209static int knav_setup_queue_range(struct knav_device *kdev,
1210					struct device_node *node)
1211{
1212	struct device *dev = kdev->dev;
1213	struct knav_range_info *range;
1214	struct knav_qmgr_info *qmgr;
1215	u32 temp[2], start, end, id, index;
1216	int ret, i;
1217
1218	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1219	if (!range) {
1220		dev_err(dev, "out of memory allocating range\n");
1221		return -ENOMEM;
1222	}
1223
1224	range->kdev = kdev;
1225	range->name = knav_queue_find_name(node);
1226	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1227	if (!ret) {
1228		range->queue_base = temp[0] - kdev->base_id;
1229		range->num_queues = temp[1];
1230	} else {
1231		dev_err(dev, "invalid queue range %s\n", range->name);
1232		devm_kfree(dev, range);
1233		return -EINVAL;
1234	}
1235
1236	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1237		struct of_phandle_args oirq;
1238
1239		if (of_irq_parse_one(node, i, &oirq))
1240			break;
1241
1242		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1243		if (range->irqs[i].irq == IRQ_NONE)
1244			break;
1245
1246		range->num_irqs++;
1247
1248		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1249			unsigned long mask;
1250			int bit;
1251
1252			range->irqs[i].cpu_mask = devm_kzalloc(dev,
1253							       cpumask_size(), GFP_KERNEL);
1254			if (!range->irqs[i].cpu_mask)
1255				return -ENOMEM;
1256
1257			mask = (oirq.args[2] & 0x0000ff00) >> 8;
1258			for_each_set_bit(bit, &mask, BITS_PER_LONG)
1259				cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1260		}
1261	}
1262
1263	range->num_irqs = min(range->num_irqs, range->num_queues);
1264	if (range->num_irqs)
1265		range->flags |= RANGE_HAS_IRQ;
1266
1267	if (of_get_property(node, "qalloc-by-id", NULL))
1268		range->flags |= RANGE_RESERVED;
1269
1270	if (of_get_property(node, "accumulator", NULL)) {
1271		ret = knav_init_acc_range(kdev, node, range);
1272		if (ret < 0) {
1273			devm_kfree(dev, range);
1274			return ret;
1275		}
1276	} else {
1277		range->ops = &knav_gp_range_ops;
1278	}
1279
1280	/* set threshold to 1, and flush out the queues */
1281	for_each_qmgr(kdev, qmgr) {
1282		start = max(qmgr->start_queue, range->queue_base);
1283		end   = min(qmgr->start_queue + qmgr->num_queues,
1284			    range->queue_base + range->num_queues);
1285		for (id = start; id < end; id++) {
1286			index = id - qmgr->start_queue;
1287			writel_relaxed(THRESH_GTE | 1,
1288				       &qmgr->reg_peek[index].ptr_size_thresh);
1289			writel_relaxed(0,
1290				       &qmgr->reg_push[index].ptr_size_thresh);
1291		}
1292	}
1293
1294	list_add_tail(&range->list, &kdev->queue_ranges);
1295	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1296		range->name, range->queue_base,
1297		range->queue_base + range->num_queues - 1,
1298		range->num_irqs,
1299		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1300		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1301		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1302	kdev->num_queues_in_use += range->num_queues;
1303	return 0;
1304}
1305
1306static int knav_setup_queue_pools(struct knav_device *kdev,
1307				   struct device_node *queue_pools)
1308{
1309	struct device_node *type, *range;
1310	int ret;
1311
1312	for_each_child_of_node(queue_pools, type) {
1313		for_each_child_of_node(type, range) {
1314			ret = knav_setup_queue_range(kdev, range);
1315			/* return value ignored, we init the rest... */
1316		}
1317	}
1318
1319	/* ... and barf if they all failed! */
1320	if (list_empty(&kdev->queue_ranges)) {
1321		dev_err(kdev->dev, "no valid queue range found\n");
1322		return -ENODEV;
1323	}
1324	return 0;
1325}
1326
1327static void knav_free_queue_range(struct knav_device *kdev,
1328				  struct knav_range_info *range)
1329{
1330	if (range->ops && range->ops->free_range)
1331		range->ops->free_range(range);
1332	list_del(&range->list);
1333	devm_kfree(kdev->dev, range);
1334}
1335
1336static void knav_free_queue_ranges(struct knav_device *kdev)
1337{
1338	struct knav_range_info *range;
1339
1340	for (;;) {
1341		range = first_queue_range(kdev);
1342		if (!range)
1343			break;
1344		knav_free_queue_range(kdev, range);
1345	}
1346}
1347
1348static void knav_queue_free_regions(struct knav_device *kdev)
1349{
1350	struct knav_region *region;
1351	struct knav_pool *pool, *tmp;
1352	unsigned size;
1353
1354	for (;;) {
1355		region = first_region(kdev);
1356		if (!region)
1357			break;
1358		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1359			knav_pool_destroy(pool);
1360
1361		size = region->virt_end - region->virt_start;
1362		if (size)
1363			free_pages_exact(region->virt_start, size);
1364		list_del(&region->list);
1365		devm_kfree(kdev->dev, region);
1366	}
1367}
1368
1369static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1370					struct device_node *node, int index)
1371{
1372	struct resource res;
1373	void __iomem *regs;
1374	int ret;
1375
1376	ret = of_address_to_resource(node, index, &res);
1377	if (ret) {
1378		dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1379			node, index);
1380		return ERR_PTR(ret);
1381	}
1382
1383	regs = devm_ioremap_resource(kdev->dev, &res);
1384	if (IS_ERR(regs))
1385		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1386			index, node);
1387	return regs;
1388}
1389
1390static int knav_queue_init_qmgrs(struct knav_device *kdev,
1391					struct device_node *qmgrs)
1392{
1393	struct device *dev = kdev->dev;
1394	struct knav_qmgr_info *qmgr;
1395	struct device_node *child;
1396	u32 temp[2];
1397	int ret;
1398
1399	for_each_child_of_node(qmgrs, child) {
1400		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1401		if (!qmgr) {
1402			dev_err(dev, "out of memory allocating qmgr\n");
1403			return -ENOMEM;
1404		}
1405
1406		ret = of_property_read_u32_array(child, "managed-queues",
1407						 temp, 2);
1408		if (!ret) {
1409			qmgr->start_queue = temp[0];
1410			qmgr->num_queues = temp[1];
1411		} else {
1412			dev_err(dev, "invalid qmgr queue range\n");
1413			devm_kfree(dev, qmgr);
1414			continue;
1415		}
1416
1417		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1418			 qmgr->start_queue, qmgr->num_queues);
1419
1420		qmgr->reg_peek =
1421			knav_queue_map_reg(kdev, child,
1422					   KNAV_QUEUE_PEEK_REG_INDEX);
1423
1424		if (kdev->version == QMSS) {
1425			qmgr->reg_status =
1426				knav_queue_map_reg(kdev, child,
1427						   KNAV_QUEUE_STATUS_REG_INDEX);
1428		}
1429
1430		qmgr->reg_config =
1431			knav_queue_map_reg(kdev, child,
1432					   (kdev->version == QMSS_66AK2G) ?
1433					   KNAV_L_QUEUE_CONFIG_REG_INDEX :
1434					   KNAV_QUEUE_CONFIG_REG_INDEX);
1435		qmgr->reg_region =
1436			knav_queue_map_reg(kdev, child,
1437					   (kdev->version == QMSS_66AK2G) ?
1438					   KNAV_L_QUEUE_REGION_REG_INDEX :
1439					   KNAV_QUEUE_REGION_REG_INDEX);
1440
1441		qmgr->reg_push =
1442			knav_queue_map_reg(kdev, child,
1443					   (kdev->version == QMSS_66AK2G) ?
1444					    KNAV_L_QUEUE_PUSH_REG_INDEX :
1445					    KNAV_QUEUE_PUSH_REG_INDEX);
1446
1447		if (kdev->version == QMSS) {
1448			qmgr->reg_pop =
1449				knav_queue_map_reg(kdev, child,
1450						   KNAV_QUEUE_POP_REG_INDEX);
1451		}
1452
1453		if (IS_ERR(qmgr->reg_peek) ||
1454		    ((kdev->version == QMSS) &&
1455		    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1456		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1457		    IS_ERR(qmgr->reg_push)) {
1458			dev_err(dev, "failed to map qmgr regs\n");
1459			if (kdev->version == QMSS) {
1460				if (!IS_ERR(qmgr->reg_status))
1461					devm_iounmap(dev, qmgr->reg_status);
1462				if (!IS_ERR(qmgr->reg_pop))
1463					devm_iounmap(dev, qmgr->reg_pop);
1464			}
1465			if (!IS_ERR(qmgr->reg_peek))
1466				devm_iounmap(dev, qmgr->reg_peek);
1467			if (!IS_ERR(qmgr->reg_config))
1468				devm_iounmap(dev, qmgr->reg_config);
1469			if (!IS_ERR(qmgr->reg_region))
1470				devm_iounmap(dev, qmgr->reg_region);
1471			if (!IS_ERR(qmgr->reg_push))
1472				devm_iounmap(dev, qmgr->reg_push);
1473			devm_kfree(dev, qmgr);
1474			continue;
1475		}
1476
1477		/* Use same push register for pop as well */
1478		if (kdev->version == QMSS_66AK2G)
1479			qmgr->reg_pop = qmgr->reg_push;
1480
1481		list_add_tail(&qmgr->list, &kdev->qmgrs);
1482		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1483			 qmgr->start_queue, qmgr->num_queues,
1484			 qmgr->reg_peek, qmgr->reg_status,
1485			 qmgr->reg_config, qmgr->reg_region,
1486			 qmgr->reg_push, qmgr->reg_pop);
1487	}
1488	return 0;
1489}
1490
1491static int knav_queue_init_pdsps(struct knav_device *kdev,
1492					struct device_node *pdsps)
1493{
1494	struct device *dev = kdev->dev;
1495	struct knav_pdsp_info *pdsp;
1496	struct device_node *child;
1497
1498	for_each_child_of_node(pdsps, child) {
1499		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1500		if (!pdsp) {
1501			dev_err(dev, "out of memory allocating pdsp\n");
1502			return -ENOMEM;
1503		}
1504		pdsp->name = knav_queue_find_name(child);
1505		pdsp->iram =
1506			knav_queue_map_reg(kdev, child,
1507					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1508		pdsp->regs =
1509			knav_queue_map_reg(kdev, child,
1510					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1511		pdsp->intd =
1512			knav_queue_map_reg(kdev, child,
1513					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1514		pdsp->command =
1515			knav_queue_map_reg(kdev, child,
1516					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1517
1518		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1519		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1520			dev_err(dev, "failed to map pdsp %s regs\n",
1521				pdsp->name);
1522			if (!IS_ERR(pdsp->command))
1523				devm_iounmap(dev, pdsp->command);
1524			if (!IS_ERR(pdsp->iram))
1525				devm_iounmap(dev, pdsp->iram);
1526			if (!IS_ERR(pdsp->regs))
1527				devm_iounmap(dev, pdsp->regs);
1528			if (!IS_ERR(pdsp->intd))
1529				devm_iounmap(dev, pdsp->intd);
1530			devm_kfree(dev, pdsp);
1531			continue;
1532		}
1533		of_property_read_u32(child, "id", &pdsp->id);
1534		list_add_tail(&pdsp->list, &kdev->pdsps);
1535		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1536			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1537			pdsp->intd);
1538	}
1539	return 0;
1540}
1541
1542static int knav_queue_stop_pdsp(struct knav_device *kdev,
1543			  struct knav_pdsp_info *pdsp)
1544{
1545	u32 val, timeout = 1000;
1546	int ret;
1547
1548	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1549	writel_relaxed(val, &pdsp->regs->control);
1550	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1551					PDSP_CTRL_RUNNING);
1552	if (ret < 0) {
1553		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1554		return ret;
1555	}
1556	pdsp->loaded = false;
1557	pdsp->started = false;
1558	return 0;
1559}
1560
1561static int knav_queue_load_pdsp(struct knav_device *kdev,
1562			  struct knav_pdsp_info *pdsp)
1563{
1564	int i, ret, fwlen;
1565	const struct firmware *fw;
1566	bool found = false;
1567	u32 *fwdata;
1568
1569	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1570		if (knav_acc_firmwares[i]) {
1571			ret = request_firmware_direct(&fw,
1572						      knav_acc_firmwares[i],
1573						      kdev->dev);
1574			if (!ret) {
1575				found = true;
1576				break;
1577			}
1578		}
1579	}
1580
1581	if (!found) {
1582		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1583		return -ENODEV;
1584	}
1585
1586	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1587		 knav_acc_firmwares[i]);
1588
1589	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1590	/* download the firmware */
1591	fwdata = (u32 *)fw->data;
1592	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1593	for (i = 0; i < fwlen; i++)
1594		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1595
1596	release_firmware(fw);
1597	return 0;
1598}
1599
1600static int knav_queue_start_pdsp(struct knav_device *kdev,
1601			   struct knav_pdsp_info *pdsp)
1602{
1603	u32 val, timeout = 1000;
1604	int ret;
1605
1606	/* write a command for sync */
1607	writel_relaxed(0xffffffff, pdsp->command);
1608	while (readl_relaxed(pdsp->command) != 0xffffffff)
1609		cpu_relax();
1610
1611	/* soft reset the PDSP */
1612	val  = readl_relaxed(&pdsp->regs->control);
1613	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1614	writel_relaxed(val, &pdsp->regs->control);
1615
1616	/* enable pdsp */
1617	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1618	writel_relaxed(val, &pdsp->regs->control);
1619
1620	/* wait for command register to clear */
1621	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1622	if (ret < 0) {
1623		dev_err(kdev->dev,
1624			"timed out on pdsp %s command register wait\n",
1625			pdsp->name);
1626		return ret;
1627	}
1628	return 0;
1629}
1630
1631static void knav_queue_stop_pdsps(struct knav_device *kdev)
1632{
1633	struct knav_pdsp_info *pdsp;
1634
1635	/* disable all pdsps */
1636	for_each_pdsp(kdev, pdsp)
1637		knav_queue_stop_pdsp(kdev, pdsp);
1638}
1639
1640static int knav_queue_start_pdsps(struct knav_device *kdev)
1641{
1642	struct knav_pdsp_info *pdsp;
1643	int ret;
1644
1645	knav_queue_stop_pdsps(kdev);
1646	/* now load them all. We return success even if pdsp
1647	 * is not loaded as acc channels are optional on having
1648	 * firmware availability in the system. We set the loaded
1649	 * and stated flag and when initialize the acc range, check
1650	 * it and init the range only if pdsp is started.
1651	 */
1652	for_each_pdsp(kdev, pdsp) {
1653		ret = knav_queue_load_pdsp(kdev, pdsp);
1654		if (!ret)
1655			pdsp->loaded = true;
1656	}
1657
1658	for_each_pdsp(kdev, pdsp) {
1659		if (pdsp->loaded) {
1660			ret = knav_queue_start_pdsp(kdev, pdsp);
1661			if (!ret)
1662				pdsp->started = true;
1663		}
1664	}
1665	return 0;
1666}
1667
1668static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1669{
1670	struct knav_qmgr_info *qmgr;
1671
1672	for_each_qmgr(kdev, qmgr) {
1673		if ((id >= qmgr->start_queue) &&
1674		    (id < qmgr->start_queue + qmgr->num_queues))
1675			return qmgr;
1676	}
1677	return NULL;
1678}
1679
1680static int knav_queue_init_queue(struct knav_device *kdev,
1681					struct knav_range_info *range,
1682					struct knav_queue_inst *inst,
1683					unsigned id)
1684{
1685	char irq_name[KNAV_NAME_SIZE];
1686	inst->qmgr = knav_find_qmgr(id);
1687	if (!inst->qmgr)
1688		return -1;
1689
1690	INIT_LIST_HEAD(&inst->handles);
1691	inst->kdev = kdev;
1692	inst->range = range;
1693	inst->irq_num = -1;
1694	inst->id = id;
1695	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1696	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1697
1698	if (range->ops && range->ops->init_queue)
1699		return range->ops->init_queue(range, inst);
1700	else
1701		return 0;
1702}
1703
1704static int knav_queue_init_queues(struct knav_device *kdev)
1705{
1706	struct knav_range_info *range;
1707	int size, id, base_idx;
1708	int idx = 0, ret = 0;
1709
1710	/* how much do we need for instance data? */
1711	size = sizeof(struct knav_queue_inst);
1712
1713	/* round this up to a power of 2, keep the index to instance
1714	 * arithmetic fast.
1715	 * */
1716	kdev->inst_shift = order_base_2(size);
1717	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1718	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1719	if (!kdev->instances)
1720		return -ENOMEM;
1721
1722	for_each_queue_range(kdev, range) {
1723		if (range->ops && range->ops->init_range)
1724			range->ops->init_range(range);
1725		base_idx = idx;
1726		for (id = range->queue_base;
1727		     id < range->queue_base + range->num_queues; id++, idx++) {
1728			ret = knav_queue_init_queue(kdev, range,
1729					knav_queue_idx_to_inst(kdev, idx), id);
1730			if (ret < 0)
1731				return ret;
1732		}
1733		range->queue_base_inst =
1734			knav_queue_idx_to_inst(kdev, base_idx);
1735	}
1736	return 0;
1737}
1738
1739/* Match table for of_platform binding */
1740static const struct of_device_id keystone_qmss_of_match[] = {
1741	{
1742		.compatible = "ti,keystone-navigator-qmss",
1743	},
1744	{
1745		.compatible = "ti,66ak2g-navss-qm",
1746		.data	= (void *)QMSS_66AK2G,
1747	},
1748	{},
1749};
1750MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1751
1752static int knav_queue_probe(struct platform_device *pdev)
1753{
1754	struct device_node *node = pdev->dev.of_node;
1755	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1756	const struct of_device_id *match;
1757	struct device *dev = &pdev->dev;
1758	u32 temp[2];
1759	int ret;
1760
1761	if (!node) {
1762		dev_err(dev, "device tree info unavailable\n");
1763		return -ENODEV;
1764	}
1765
1766	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1767	if (!kdev) {
1768		dev_err(dev, "memory allocation failed\n");
1769		return -ENOMEM;
1770	}
1771
1772	match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1773	if (match && match->data)
1774		kdev->version = QMSS_66AK2G;
1775
1776	platform_set_drvdata(pdev, kdev);
1777	kdev->dev = dev;
1778	INIT_LIST_HEAD(&kdev->queue_ranges);
1779	INIT_LIST_HEAD(&kdev->qmgrs);
1780	INIT_LIST_HEAD(&kdev->pools);
1781	INIT_LIST_HEAD(&kdev->regions);
1782	INIT_LIST_HEAD(&kdev->pdsps);
1783
1784	pm_runtime_enable(&pdev->dev);
1785	ret = pm_runtime_resume_and_get(&pdev->dev);
1786	if (ret < 0) {
1787		pm_runtime_disable(&pdev->dev);
1788		dev_err(dev, "Failed to enable QMSS\n");
1789		return ret;
1790	}
1791
1792	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1793		dev_err(dev, "queue-range not specified\n");
1794		ret = -ENODEV;
1795		goto err;
1796	}
1797	kdev->base_id    = temp[0];
1798	kdev->num_queues = temp[1];
1799
1800	/* Initialize queue managers using device tree configuration */
1801	qmgrs =  of_get_child_by_name(node, "qmgrs");
1802	if (!qmgrs) {
1803		dev_err(dev, "queue manager info not specified\n");
1804		ret = -ENODEV;
1805		goto err;
1806	}
1807	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1808	of_node_put(qmgrs);
1809	if (ret)
1810		goto err;
1811
1812	/* get pdsp configuration values from device tree */
1813	pdsps =  of_get_child_by_name(node, "pdsps");
1814	if (pdsps) {
1815		ret = knav_queue_init_pdsps(kdev, pdsps);
1816		if (ret)
1817			goto err;
1818
1819		ret = knav_queue_start_pdsps(kdev);
1820		if (ret)
1821			goto err;
1822	}
1823	of_node_put(pdsps);
1824
1825	/* get usable queue range values from device tree */
1826	queue_pools = of_get_child_by_name(node, "queue-pools");
1827	if (!queue_pools) {
1828		dev_err(dev, "queue-pools not specified\n");
1829		ret = -ENODEV;
1830		goto err;
1831	}
1832	ret = knav_setup_queue_pools(kdev, queue_pools);
1833	of_node_put(queue_pools);
1834	if (ret)
1835		goto err;
1836
1837	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1838	if (ret) {
1839		dev_err(kdev->dev, "could not setup linking ram\n");
1840		goto err;
1841	}
1842
1843	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1844	if (ret) {
1845		/*
1846		 * nothing really, we have one linking ram already, so we just
1847		 * live within our means
1848		 */
1849	}
1850
1851	ret = knav_queue_setup_link_ram(kdev);
1852	if (ret)
1853		goto err;
1854
1855	regions = of_get_child_by_name(node, "descriptor-regions");
1856	if (!regions) {
1857		dev_err(dev, "descriptor-regions not specified\n");
1858		ret = -ENODEV;
1859		goto err;
1860	}
1861	ret = knav_queue_setup_regions(kdev, regions);
1862	of_node_put(regions);
1863	if (ret)
1864		goto err;
1865
1866	ret = knav_queue_init_queues(kdev);
1867	if (ret < 0) {
1868		dev_err(dev, "hwqueue initialization failed\n");
1869		goto err;
1870	}
1871
1872	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1873			    &knav_queue_debug_fops);
1874	device_ready = true;
1875	return 0;
1876
1877err:
1878	knav_queue_stop_pdsps(kdev);
1879	knav_queue_free_regions(kdev);
1880	knav_free_queue_ranges(kdev);
1881	pm_runtime_put_sync(&pdev->dev);
1882	pm_runtime_disable(&pdev->dev);
1883	return ret;
1884}
1885
1886static int knav_queue_remove(struct platform_device *pdev)
1887{
1888	/* TODO: Free resources */
1889	pm_runtime_put_sync(&pdev->dev);
1890	pm_runtime_disable(&pdev->dev);
1891	return 0;
1892}
1893
1894static struct platform_driver keystone_qmss_driver = {
1895	.probe		= knav_queue_probe,
1896	.remove		= knav_queue_remove,
1897	.driver		= {
1898		.name	= "keystone-navigator-qmss",
1899		.of_match_table = keystone_qmss_of_match,
1900	},
1901};
1902module_platform_driver(keystone_qmss_driver);
1903
1904MODULE_LICENSE("GPL v2");
1905MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1906MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1907MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1908