xref: /kernel/linux/linux-5.10/drivers/soc/qcom/smem.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015, Sony Mobile Communications AB.
4 * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5 */
6
7#include <linux/hwspinlock.h>
8#include <linux/io.h>
9#include <linux/module.h>
10#include <linux/of.h>
11#include <linux/of_address.h>
12#include <linux/platform_device.h>
13#include <linux/sizes.h>
14#include <linux/slab.h>
15#include <linux/soc/qcom/smem.h>
16
17/*
18 * The Qualcomm shared memory system is a allocate only heap structure that
19 * consists of one of more memory areas that can be accessed by the processors
20 * in the SoC.
21 *
22 * All systems contains a global heap, accessible by all processors in the SoC,
23 * with a table of contents data structure (@smem_header) at the beginning of
24 * the main shared memory block.
25 *
26 * The global header contains meta data for allocations as well as a fixed list
27 * of 512 entries (@smem_global_entry) that can be initialized to reference
28 * parts of the shared memory space.
29 *
30 *
31 * In addition to this global heap a set of "private" heaps can be set up at
32 * boot time with access restrictions so that only certain processor pairs can
33 * access the data.
34 *
35 * These partitions are referenced from an optional partition table
36 * (@smem_ptable), that is found 4kB from the end of the main smem region. The
37 * partition table entries (@smem_ptable_entry) lists the involved processors
38 * (or hosts) and their location in the main shared memory region.
39 *
40 * Each partition starts with a header (@smem_partition_header) that identifies
41 * the partition and holds properties for the two internal memory regions. The
42 * two regions are cached and non-cached memory respectively. Each region
43 * contain a link list of allocation headers (@smem_private_entry) followed by
44 * their data.
45 *
46 * Items in the non-cached region are allocated from the start of the partition
47 * while items in the cached region are allocated from the end. The free area
48 * is hence the region between the cached and non-cached offsets. The header of
49 * cached items comes after the data.
50 *
51 * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
52 * for the global heap. A new global partition is created from the global heap
53 * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
54 * set by the bootloader.
55 *
56 * To synchronize allocations in the shared memory heaps a remote spinlock must
57 * be held - currently lock number 3 of the sfpb or tcsr is used for this on all
58 * platforms.
59 *
60 */
61
62/*
63 * The version member of the smem header contains an array of versions for the
64 * various software components in the SoC. We verify that the boot loader
65 * version is a valid version as a sanity check.
66 */
67#define SMEM_MASTER_SBL_VERSION_INDEX	7
68#define SMEM_GLOBAL_HEAP_VERSION	11
69#define SMEM_GLOBAL_PART_VERSION	12
70
71/*
72 * The first 8 items are only to be allocated by the boot loader while
73 * initializing the heap.
74 */
75#define SMEM_ITEM_LAST_FIXED	8
76
77/* Highest accepted item number, for both global and private heaps */
78#define SMEM_ITEM_COUNT		512
79
80/* Processor/host identifier for the application processor */
81#define SMEM_HOST_APPS		0
82
83/* Processor/host identifier for the global partition */
84#define SMEM_GLOBAL_HOST	0xfffe
85
86/* Max number of processors/hosts in a system */
87#define SMEM_HOST_COUNT		11
88
89/**
90  * struct smem_proc_comm - proc_comm communication struct (legacy)
91  * @command:	current command to be executed
92  * @status:	status of the currently requested command
93  * @params:	parameters to the command
94  */
95struct smem_proc_comm {
96	__le32 command;
97	__le32 status;
98	__le32 params[2];
99};
100
101/**
102 * struct smem_global_entry - entry to reference smem items on the heap
103 * @allocated:	boolean to indicate if this entry is used
104 * @offset:	offset to the allocated space
105 * @size:	size of the allocated space, 8 byte aligned
106 * @aux_base:	base address for the memory region used by this unit, or 0 for
107 *		the default region. bits 0,1 are reserved
108 */
109struct smem_global_entry {
110	__le32 allocated;
111	__le32 offset;
112	__le32 size;
113	__le32 aux_base; /* bits 1:0 reserved */
114};
115#define AUX_BASE_MASK		0xfffffffc
116
117/**
118 * struct smem_header - header found in beginning of primary smem region
119 * @proc_comm:		proc_comm communication interface (legacy)
120 * @version:		array of versions for the various subsystems
121 * @initialized:	boolean to indicate that smem is initialized
122 * @free_offset:	index of the first unallocated byte in smem
123 * @available:		number of bytes available for allocation
124 * @reserved:		reserved field, must be 0
125 * toc:			array of references to items
126 */
127struct smem_header {
128	struct smem_proc_comm proc_comm[4];
129	__le32 version[32];
130	__le32 initialized;
131	__le32 free_offset;
132	__le32 available;
133	__le32 reserved;
134	struct smem_global_entry toc[SMEM_ITEM_COUNT];
135};
136
137/**
138 * struct smem_ptable_entry - one entry in the @smem_ptable list
139 * @offset:	offset, within the main shared memory region, of the partition
140 * @size:	size of the partition
141 * @flags:	flags for the partition (currently unused)
142 * @host0:	first processor/host with access to this partition
143 * @host1:	second processor/host with access to this partition
144 * @cacheline:	alignment for "cached" entries
145 * @reserved:	reserved entries for later use
146 */
147struct smem_ptable_entry {
148	__le32 offset;
149	__le32 size;
150	__le32 flags;
151	__le16 host0;
152	__le16 host1;
153	__le32 cacheline;
154	__le32 reserved[7];
155};
156
157/**
158 * struct smem_ptable - partition table for the private partitions
159 * @magic:	magic number, must be SMEM_PTABLE_MAGIC
160 * @version:	version of the partition table
161 * @num_entries: number of partitions in the table
162 * @reserved:	for now reserved entries
163 * @entry:	list of @smem_ptable_entry for the @num_entries partitions
164 */
165struct smem_ptable {
166	u8 magic[4];
167	__le32 version;
168	__le32 num_entries;
169	__le32 reserved[5];
170	struct smem_ptable_entry entry[];
171};
172
173static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
174
175/**
176 * struct smem_partition_header - header of the partitions
177 * @magic:	magic number, must be SMEM_PART_MAGIC
178 * @host0:	first processor/host with access to this partition
179 * @host1:	second processor/host with access to this partition
180 * @size:	size of the partition
181 * @offset_free_uncached: offset to the first free byte of uncached memory in
182 *		this partition
183 * @offset_free_cached: offset to the first free byte of cached memory in this
184 *		partition
185 * @reserved:	for now reserved entries
186 */
187struct smem_partition_header {
188	u8 magic[4];
189	__le16 host0;
190	__le16 host1;
191	__le32 size;
192	__le32 offset_free_uncached;
193	__le32 offset_free_cached;
194	__le32 reserved[3];
195};
196
197static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
198
199/**
200 * struct smem_private_entry - header of each item in the private partition
201 * @canary:	magic number, must be SMEM_PRIVATE_CANARY
202 * @item:	identifying number of the smem item
203 * @size:	size of the data, including padding bytes
204 * @padding_data: number of bytes of padding of data
205 * @padding_hdr: number of bytes of padding between the header and the data
206 * @reserved:	for now reserved entry
207 */
208struct smem_private_entry {
209	u16 canary; /* bytes are the same so no swapping needed */
210	__le16 item;
211	__le32 size; /* includes padding bytes */
212	__le16 padding_data;
213	__le16 padding_hdr;
214	__le32 reserved;
215};
216#define SMEM_PRIVATE_CANARY	0xa5a5
217
218/**
219 * struct smem_info - smem region info located after the table of contents
220 * @magic:	magic number, must be SMEM_INFO_MAGIC
221 * @size:	size of the smem region
222 * @base_addr:	base address of the smem region
223 * @reserved:	for now reserved entry
224 * @num_items:	highest accepted item number
225 */
226struct smem_info {
227	u8 magic[4];
228	__le32 size;
229	__le32 base_addr;
230	__le32 reserved;
231	__le16 num_items;
232};
233
234static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
235
236/**
237 * struct smem_region - representation of a chunk of memory used for smem
238 * @aux_base:	identifier of aux_mem base
239 * @virt_base:	virtual base address of memory with this aux_mem identifier
240 * @size:	size of the memory region
241 */
242struct smem_region {
243	u32 aux_base;
244	void __iomem *virt_base;
245	size_t size;
246};
247
248/**
249 * struct qcom_smem - device data for the smem device
250 * @dev:	device pointer
251 * @hwlock:	reference to a hwspinlock
252 * @global_partition:	pointer to global partition when in use
253 * @global_cacheline:	cacheline size for global partition
254 * @partitions:	list of pointers to partitions affecting the current
255 *		processor/host
256 * @cacheline:	list of cacheline sizes for each host
257 * @item_count: max accepted item number
258 * @num_regions: number of @regions
259 * @regions:	list of the memory regions defining the shared memory
260 */
261struct qcom_smem {
262	struct device *dev;
263
264	struct hwspinlock *hwlock;
265
266	struct smem_partition_header *global_partition;
267	size_t global_cacheline;
268	struct smem_partition_header *partitions[SMEM_HOST_COUNT];
269	size_t cacheline[SMEM_HOST_COUNT];
270	u32 item_count;
271	struct platform_device *socinfo;
272
273	unsigned num_regions;
274	struct smem_region regions[];
275};
276
277static void *
278phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
279{
280	void *p = phdr;
281
282	return p + le32_to_cpu(phdr->offset_free_uncached);
283}
284
285static struct smem_private_entry *
286phdr_to_first_cached_entry(struct smem_partition_header *phdr,
287					size_t cacheline)
288{
289	void *p = phdr;
290	struct smem_private_entry *e;
291
292	return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline);
293}
294
295static void *
296phdr_to_last_cached_entry(struct smem_partition_header *phdr)
297{
298	void *p = phdr;
299
300	return p + le32_to_cpu(phdr->offset_free_cached);
301}
302
303static struct smem_private_entry *
304phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
305{
306	void *p = phdr;
307
308	return p + sizeof(*phdr);
309}
310
311static struct smem_private_entry *
312uncached_entry_next(struct smem_private_entry *e)
313{
314	void *p = e;
315
316	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
317	       le32_to_cpu(e->size);
318}
319
320static struct smem_private_entry *
321cached_entry_next(struct smem_private_entry *e, size_t cacheline)
322{
323	void *p = e;
324
325	return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
326}
327
328static void *uncached_entry_to_item(struct smem_private_entry *e)
329{
330	void *p = e;
331
332	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
333}
334
335static void *cached_entry_to_item(struct smem_private_entry *e)
336{
337	void *p = e;
338
339	return p - le32_to_cpu(e->size);
340}
341
342/* Pointer to the one and only smem handle */
343static struct qcom_smem *__smem;
344
345/* Timeout (ms) for the trylock of remote spinlocks */
346#define HWSPINLOCK_TIMEOUT	1000
347
348static int qcom_smem_alloc_private(struct qcom_smem *smem,
349				   struct smem_partition_header *phdr,
350				   unsigned item,
351				   size_t size)
352{
353	struct smem_private_entry *hdr, *end;
354	size_t alloc_size;
355	void *cached;
356
357	hdr = phdr_to_first_uncached_entry(phdr);
358	end = phdr_to_last_uncached_entry(phdr);
359	cached = phdr_to_last_cached_entry(phdr);
360
361	while (hdr < end) {
362		if (hdr->canary != SMEM_PRIVATE_CANARY)
363			goto bad_canary;
364		if (le16_to_cpu(hdr->item) == item)
365			return -EEXIST;
366
367		hdr = uncached_entry_next(hdr);
368	}
369
370	/* Check that we don't grow into the cached region */
371	alloc_size = sizeof(*hdr) + ALIGN(size, 8);
372	if ((void *)hdr + alloc_size > cached) {
373		dev_err(smem->dev, "Out of memory\n");
374		return -ENOSPC;
375	}
376
377	hdr->canary = SMEM_PRIVATE_CANARY;
378	hdr->item = cpu_to_le16(item);
379	hdr->size = cpu_to_le32(ALIGN(size, 8));
380	hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
381	hdr->padding_hdr = 0;
382
383	/*
384	 * Ensure the header is written before we advance the free offset, so
385	 * that remote processors that does not take the remote spinlock still
386	 * gets a consistent view of the linked list.
387	 */
388	wmb();
389	le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
390
391	return 0;
392bad_canary:
393	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
394		le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
395
396	return -EINVAL;
397}
398
399static int qcom_smem_alloc_global(struct qcom_smem *smem,
400				  unsigned item,
401				  size_t size)
402{
403	struct smem_global_entry *entry;
404	struct smem_header *header;
405
406	header = smem->regions[0].virt_base;
407	entry = &header->toc[item];
408	if (entry->allocated)
409		return -EEXIST;
410
411	size = ALIGN(size, 8);
412	if (WARN_ON(size > le32_to_cpu(header->available)))
413		return -ENOMEM;
414
415	entry->offset = header->free_offset;
416	entry->size = cpu_to_le32(size);
417
418	/*
419	 * Ensure the header is consistent before we mark the item allocated,
420	 * so that remote processors will get a consistent view of the item
421	 * even though they do not take the spinlock on read.
422	 */
423	wmb();
424	entry->allocated = cpu_to_le32(1);
425
426	le32_add_cpu(&header->free_offset, size);
427	le32_add_cpu(&header->available, -size);
428
429	return 0;
430}
431
432/**
433 * qcom_smem_alloc() - allocate space for a smem item
434 * @host:	remote processor id, or -1
435 * @item:	smem item handle
436 * @size:	number of bytes to be allocated
437 *
438 * Allocate space for a given smem item of size @size, given that the item is
439 * not yet allocated.
440 */
441int qcom_smem_alloc(unsigned host, unsigned item, size_t size)
442{
443	struct smem_partition_header *phdr;
444	unsigned long flags;
445	int ret;
446
447	if (!__smem)
448		return -EPROBE_DEFER;
449
450	if (item < SMEM_ITEM_LAST_FIXED) {
451		dev_err(__smem->dev,
452			"Rejecting allocation of static entry %d\n", item);
453		return -EINVAL;
454	}
455
456	if (WARN_ON(item >= __smem->item_count))
457		return -EINVAL;
458
459	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
460					  HWSPINLOCK_TIMEOUT,
461					  &flags);
462	if (ret)
463		return ret;
464
465	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
466		phdr = __smem->partitions[host];
467		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
468	} else if (__smem->global_partition) {
469		phdr = __smem->global_partition;
470		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
471	} else {
472		ret = qcom_smem_alloc_global(__smem, item, size);
473	}
474
475	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
476
477	return ret;
478}
479EXPORT_SYMBOL(qcom_smem_alloc);
480
481static void *qcom_smem_get_global(struct qcom_smem *smem,
482				  unsigned item,
483				  size_t *size)
484{
485	struct smem_header *header;
486	struct smem_region *region;
487	struct smem_global_entry *entry;
488	u32 aux_base;
489	unsigned i;
490
491	header = smem->regions[0].virt_base;
492	entry = &header->toc[item];
493	if (!entry->allocated)
494		return ERR_PTR(-ENXIO);
495
496	aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
497
498	for (i = 0; i < smem->num_regions; i++) {
499		region = &smem->regions[i];
500
501		if (region->aux_base == aux_base || !aux_base) {
502			if (size != NULL)
503				*size = le32_to_cpu(entry->size);
504			return region->virt_base + le32_to_cpu(entry->offset);
505		}
506	}
507
508	return ERR_PTR(-ENOENT);
509}
510
511static void *qcom_smem_get_private(struct qcom_smem *smem,
512				   struct smem_partition_header *phdr,
513				   size_t cacheline,
514				   unsigned item,
515				   size_t *size)
516{
517	struct smem_private_entry *e, *end;
518
519	e = phdr_to_first_uncached_entry(phdr);
520	end = phdr_to_last_uncached_entry(phdr);
521
522	while (e < end) {
523		if (e->canary != SMEM_PRIVATE_CANARY)
524			goto invalid_canary;
525
526		if (le16_to_cpu(e->item) == item) {
527			if (size != NULL)
528				*size = le32_to_cpu(e->size) -
529					le16_to_cpu(e->padding_data);
530
531			return uncached_entry_to_item(e);
532		}
533
534		e = uncached_entry_next(e);
535	}
536
537	/* Item was not found in the uncached list, search the cached list */
538
539	e = phdr_to_first_cached_entry(phdr, cacheline);
540	end = phdr_to_last_cached_entry(phdr);
541
542	while (e > end) {
543		if (e->canary != SMEM_PRIVATE_CANARY)
544			goto invalid_canary;
545
546		if (le16_to_cpu(e->item) == item) {
547			if (size != NULL)
548				*size = le32_to_cpu(e->size) -
549					le16_to_cpu(e->padding_data);
550
551			return cached_entry_to_item(e);
552		}
553
554		e = cached_entry_next(e, cacheline);
555	}
556
557	return ERR_PTR(-ENOENT);
558
559invalid_canary:
560	dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n",
561			le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1));
562
563	return ERR_PTR(-EINVAL);
564}
565
566/**
567 * qcom_smem_get() - resolve ptr of size of a smem item
568 * @host:	the remote processor, or -1
569 * @item:	smem item handle
570 * @size:	pointer to be filled out with size of the item
571 *
572 * Looks up smem item and returns pointer to it. Size of smem
573 * item is returned in @size.
574 */
575void *qcom_smem_get(unsigned host, unsigned item, size_t *size)
576{
577	struct smem_partition_header *phdr;
578	unsigned long flags;
579	size_t cacheln;
580	int ret;
581	void *ptr = ERR_PTR(-EPROBE_DEFER);
582
583	if (!__smem)
584		return ptr;
585
586	if (WARN_ON(item >= __smem->item_count))
587		return ERR_PTR(-EINVAL);
588
589	ret = hwspin_lock_timeout_irqsave(__smem->hwlock,
590					  HWSPINLOCK_TIMEOUT,
591					  &flags);
592	if (ret)
593		return ERR_PTR(ret);
594
595	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
596		phdr = __smem->partitions[host];
597		cacheln = __smem->cacheline[host];
598		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
599	} else if (__smem->global_partition) {
600		phdr = __smem->global_partition;
601		cacheln = __smem->global_cacheline;
602		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
603	} else {
604		ptr = qcom_smem_get_global(__smem, item, size);
605	}
606
607	hwspin_unlock_irqrestore(__smem->hwlock, &flags);
608
609	return ptr;
610
611}
612EXPORT_SYMBOL(qcom_smem_get);
613
614/**
615 * qcom_smem_get_free_space() - retrieve amount of free space in a partition
616 * @host:	the remote processor identifying a partition, or -1
617 *
618 * To be used by smem clients as a quick way to determine if any new
619 * allocations has been made.
620 */
621int qcom_smem_get_free_space(unsigned host)
622{
623	struct smem_partition_header *phdr;
624	struct smem_header *header;
625	unsigned ret;
626
627	if (!__smem)
628		return -EPROBE_DEFER;
629
630	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
631		phdr = __smem->partitions[host];
632		ret = le32_to_cpu(phdr->offset_free_cached) -
633		      le32_to_cpu(phdr->offset_free_uncached);
634	} else if (__smem->global_partition) {
635		phdr = __smem->global_partition;
636		ret = le32_to_cpu(phdr->offset_free_cached) -
637		      le32_to_cpu(phdr->offset_free_uncached);
638	} else {
639		header = __smem->regions[0].virt_base;
640		ret = le32_to_cpu(header->available);
641	}
642
643	return ret;
644}
645EXPORT_SYMBOL(qcom_smem_get_free_space);
646
647/**
648 * qcom_smem_virt_to_phys() - return the physical address associated
649 * with an smem item pointer (previously returned by qcom_smem_get()
650 * @p:	the virtual address to convert
651 *
652 * Returns 0 if the pointer provided is not within any smem region.
653 */
654phys_addr_t qcom_smem_virt_to_phys(void *p)
655{
656	unsigned i;
657
658	for (i = 0; i < __smem->num_regions; i++) {
659		struct smem_region *region = &__smem->regions[i];
660
661		if (p < region->virt_base)
662			continue;
663		if (p < region->virt_base + region->size) {
664			u64 offset = p - region->virt_base;
665
666			return (phys_addr_t)region->aux_base + offset;
667		}
668	}
669
670	return 0;
671}
672EXPORT_SYMBOL(qcom_smem_virt_to_phys);
673
674static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
675{
676	struct smem_header *header;
677	__le32 *versions;
678
679	header = smem->regions[0].virt_base;
680	versions = header->version;
681
682	return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
683}
684
685static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
686{
687	struct smem_ptable *ptable;
688	u32 version;
689
690	ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
691	if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
692		return ERR_PTR(-ENOENT);
693
694	version = le32_to_cpu(ptable->version);
695	if (version != 1) {
696		dev_err(smem->dev,
697			"Unsupported partition header version %d\n", version);
698		return ERR_PTR(-EINVAL);
699	}
700	return ptable;
701}
702
703static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
704{
705	struct smem_ptable *ptable;
706	struct smem_info *info;
707
708	ptable = qcom_smem_get_ptable(smem);
709	if (IS_ERR_OR_NULL(ptable))
710		return SMEM_ITEM_COUNT;
711
712	info = (struct smem_info *)&ptable->entry[ptable->num_entries];
713	if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
714		return SMEM_ITEM_COUNT;
715
716	return le16_to_cpu(info->num_items);
717}
718
719/*
720 * Validate the partition header for a partition whose partition
721 * table entry is supplied.  Returns a pointer to its header if
722 * valid, or a null pointer otherwise.
723 */
724static struct smem_partition_header *
725qcom_smem_partition_header(struct qcom_smem *smem,
726		struct smem_ptable_entry *entry, u16 host0, u16 host1)
727{
728	struct smem_partition_header *header;
729	u32 size;
730
731	header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
732
733	if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
734		dev_err(smem->dev, "bad partition magic %02x %02x %02x %02x\n",
735			header->magic[0], header->magic[1],
736			header->magic[2], header->magic[3]);
737		return NULL;
738	}
739
740	if (host0 != le16_to_cpu(header->host0)) {
741		dev_err(smem->dev, "bad host0 (%hu != %hu)\n",
742				host0, le16_to_cpu(header->host0));
743		return NULL;
744	}
745	if (host1 != le16_to_cpu(header->host1)) {
746		dev_err(smem->dev, "bad host1 (%hu != %hu)\n",
747				host1, le16_to_cpu(header->host1));
748		return NULL;
749	}
750
751	size = le32_to_cpu(header->size);
752	if (size != le32_to_cpu(entry->size)) {
753		dev_err(smem->dev, "bad partition size (%u != %u)\n",
754			size, le32_to_cpu(entry->size));
755		return NULL;
756	}
757
758	if (le32_to_cpu(header->offset_free_uncached) > size) {
759		dev_err(smem->dev, "bad partition free uncached (%u > %u)\n",
760			le32_to_cpu(header->offset_free_uncached), size);
761		return NULL;
762	}
763
764	return header;
765}
766
767static int qcom_smem_set_global_partition(struct qcom_smem *smem)
768{
769	struct smem_partition_header *header;
770	struct smem_ptable_entry *entry;
771	struct smem_ptable *ptable;
772	bool found = false;
773	int i;
774
775	if (smem->global_partition) {
776		dev_err(smem->dev, "Already found the global partition\n");
777		return -EINVAL;
778	}
779
780	ptable = qcom_smem_get_ptable(smem);
781	if (IS_ERR(ptable))
782		return PTR_ERR(ptable);
783
784	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
785		entry = &ptable->entry[i];
786		if (!le32_to_cpu(entry->offset))
787			continue;
788		if (!le32_to_cpu(entry->size))
789			continue;
790
791		if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST)
792			continue;
793
794		if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) {
795			found = true;
796			break;
797		}
798	}
799
800	if (!found) {
801		dev_err(smem->dev, "Missing entry for global partition\n");
802		return -EINVAL;
803	}
804
805	header = qcom_smem_partition_header(smem, entry,
806				SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST);
807	if (!header)
808		return -EINVAL;
809
810	smem->global_partition = header;
811	smem->global_cacheline = le32_to_cpu(entry->cacheline);
812
813	return 0;
814}
815
816static int
817qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host)
818{
819	struct smem_partition_header *header;
820	struct smem_ptable_entry *entry;
821	struct smem_ptable *ptable;
822	unsigned int remote_host;
823	u16 host0, host1;
824	int i;
825
826	ptable = qcom_smem_get_ptable(smem);
827	if (IS_ERR(ptable))
828		return PTR_ERR(ptable);
829
830	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
831		entry = &ptable->entry[i];
832		if (!le32_to_cpu(entry->offset))
833			continue;
834		if (!le32_to_cpu(entry->size))
835			continue;
836
837		host0 = le16_to_cpu(entry->host0);
838		host1 = le16_to_cpu(entry->host1);
839		if (host0 == local_host)
840			remote_host = host1;
841		else if (host1 == local_host)
842			remote_host = host0;
843		else
844			continue;
845
846		if (remote_host >= SMEM_HOST_COUNT) {
847			dev_err(smem->dev, "bad host %hu\n", remote_host);
848			return -EINVAL;
849		}
850
851		if (smem->partitions[remote_host]) {
852			dev_err(smem->dev, "duplicate host %hu\n", remote_host);
853			return -EINVAL;
854		}
855
856		header = qcom_smem_partition_header(smem, entry, host0, host1);
857		if (!header)
858			return -EINVAL;
859
860		smem->partitions[remote_host] = header;
861		smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
862	}
863
864	return 0;
865}
866
867static int qcom_smem_map_memory(struct qcom_smem *smem, struct device *dev,
868				const char *name, int i)
869{
870	struct device_node *np;
871	struct resource r;
872	resource_size_t size;
873	int ret;
874
875	np = of_parse_phandle(dev->of_node, name, 0);
876	if (!np) {
877		dev_err(dev, "No %s specified\n", name);
878		return -EINVAL;
879	}
880
881	ret = of_address_to_resource(np, 0, &r);
882	of_node_put(np);
883	if (ret)
884		return ret;
885	size = resource_size(&r);
886
887	smem->regions[i].virt_base = devm_ioremap_wc(dev, r.start, size);
888	if (!smem->regions[i].virt_base)
889		return -ENOMEM;
890	smem->regions[i].aux_base = (u32)r.start;
891	smem->regions[i].size = size;
892
893	return 0;
894}
895
896static int qcom_smem_probe(struct platform_device *pdev)
897{
898	struct smem_header *header;
899	struct qcom_smem *smem;
900	size_t array_size;
901	int num_regions;
902	int hwlock_id;
903	u32 version;
904	int ret;
905
906	num_regions = 1;
907	if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL))
908		num_regions++;
909
910	array_size = num_regions * sizeof(struct smem_region);
911	smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL);
912	if (!smem)
913		return -ENOMEM;
914
915	smem->dev = &pdev->dev;
916	smem->num_regions = num_regions;
917
918	ret = qcom_smem_map_memory(smem, &pdev->dev, "memory-region", 0);
919	if (ret)
920		return ret;
921
922	if (num_regions > 1 && (ret = qcom_smem_map_memory(smem, &pdev->dev,
923					"qcom,rpm-msg-ram", 1)))
924		return ret;
925
926	header = smem->regions[0].virt_base;
927	if (le32_to_cpu(header->initialized) != 1 ||
928	    le32_to_cpu(header->reserved)) {
929		dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
930		return -EINVAL;
931	}
932
933	version = qcom_smem_get_sbl_version(smem);
934	switch (version >> 16) {
935	case SMEM_GLOBAL_PART_VERSION:
936		ret = qcom_smem_set_global_partition(smem);
937		if (ret < 0)
938			return ret;
939		smem->item_count = qcom_smem_get_item_count(smem);
940		break;
941	case SMEM_GLOBAL_HEAP_VERSION:
942		smem->item_count = SMEM_ITEM_COUNT;
943		break;
944	default:
945		dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version);
946		return -EINVAL;
947	}
948
949	BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT);
950	ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
951	if (ret < 0 && ret != -ENOENT)
952		return ret;
953
954	hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0);
955	if (hwlock_id < 0) {
956		if (hwlock_id != -EPROBE_DEFER)
957			dev_err(&pdev->dev, "failed to retrieve hwlock\n");
958		return hwlock_id;
959	}
960
961	smem->hwlock = hwspin_lock_request_specific(hwlock_id);
962	if (!smem->hwlock)
963		return -ENXIO;
964
965	__smem = smem;
966
967	smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo",
968						      PLATFORM_DEVID_NONE, NULL,
969						      0);
970	if (IS_ERR(smem->socinfo))
971		dev_dbg(&pdev->dev, "failed to register socinfo device\n");
972
973	return 0;
974}
975
976static int qcom_smem_remove(struct platform_device *pdev)
977{
978	platform_device_unregister(__smem->socinfo);
979
980	hwspin_lock_free(__smem->hwlock);
981	__smem = NULL;
982
983	return 0;
984}
985
986static const struct of_device_id qcom_smem_of_match[] = {
987	{ .compatible = "qcom,smem" },
988	{}
989};
990MODULE_DEVICE_TABLE(of, qcom_smem_of_match);
991
992static struct platform_driver qcom_smem_driver = {
993	.probe = qcom_smem_probe,
994	.remove = qcom_smem_remove,
995	.driver  = {
996		.name = "qcom-smem",
997		.of_match_table = qcom_smem_of_match,
998		.suppress_bind_attrs = true,
999	},
1000};
1001
1002static int __init qcom_smem_init(void)
1003{
1004	return platform_driver_register(&qcom_smem_driver);
1005}
1006arch_initcall(qcom_smem_init);
1007
1008static void __exit qcom_smem_exit(void)
1009{
1010	platform_driver_unregister(&qcom_smem_driver);
1011}
1012module_exit(qcom_smem_exit)
1013
1014MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>");
1015MODULE_DESCRIPTION("Qualcomm Shared Memory Manager");
1016MODULE_LICENSE("GPL v2");
1017