1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4 */
5
6#define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
7
8#include <linux/atomic.h>
9#include <linux/cpu_pm.h>
10#include <linux/delay.h>
11#include <linux/interrupt.h>
12#include <linux/io.h>
13#include <linux/iopoll.h>
14#include <linux/kernel.h>
15#include <linux/list.h>
16#include <linux/of.h>
17#include <linux/of_irq.h>
18#include <linux/of_platform.h>
19#include <linux/platform_device.h>
20#include <linux/slab.h>
21#include <linux/spinlock.h>
22#include <linux/wait.h>
23
24#include <soc/qcom/cmd-db.h>
25#include <soc/qcom/tcs.h>
26#include <dt-bindings/soc/qcom,rpmh-rsc.h>
27
28#include "rpmh-internal.h"
29
30#define CREATE_TRACE_POINTS
31#include "trace-rpmh.h"
32
33#define RSC_DRV_TCS_OFFSET		672
34#define RSC_DRV_CMD_OFFSET		20
35
36/* DRV HW Solver Configuration Information Register */
37#define DRV_SOLVER_CONFIG		0x04
38#define DRV_HW_SOLVER_MASK		1
39#define DRV_HW_SOLVER_SHIFT		24
40
41/* DRV TCS Configuration Information Register */
42#define DRV_PRNT_CHLD_CONFIG		0x0C
43#define DRV_NUM_TCS_MASK		0x3F
44#define DRV_NUM_TCS_SHIFT		6
45#define DRV_NCPT_MASK			0x1F
46#define DRV_NCPT_SHIFT			27
47
48/* Offsets for common TCS Registers, one bit per TCS */
49#define RSC_DRV_IRQ_ENABLE		0x00
50#define RSC_DRV_IRQ_STATUS		0x04
51#define RSC_DRV_IRQ_CLEAR		0x08	/* w/o; write 1 to clear */
52
53/*
54 * Offsets for per TCS Registers.
55 *
56 * TCSes start at 0x10 from tcs_base and are stored one after another.
57 * Multiply tcs_id by RSC_DRV_TCS_OFFSET to find a given TCS and add one
58 * of the below to find a register.
59 */
60#define RSC_DRV_CMD_WAIT_FOR_CMPL	0x10	/* 1 bit per command */
61#define RSC_DRV_CONTROL			0x14
62#define RSC_DRV_STATUS			0x18	/* zero if tcs is busy */
63#define RSC_DRV_CMD_ENABLE		0x1C	/* 1 bit per command */
64
65/*
66 * Offsets for per command in a TCS.
67 *
68 * Commands (up to 16) start at 0x30 in a TCS; multiply command index
69 * by RSC_DRV_CMD_OFFSET and add one of the below to find a register.
70 */
71#define RSC_DRV_CMD_MSGID		0x30
72#define RSC_DRV_CMD_ADDR		0x34
73#define RSC_DRV_CMD_DATA		0x38
74#define RSC_DRV_CMD_STATUS		0x3C
75#define RSC_DRV_CMD_RESP_DATA		0x40
76
77#define TCS_AMC_MODE_ENABLE		BIT(16)
78#define TCS_AMC_MODE_TRIGGER		BIT(24)
79
80/* TCS CMD register bit mask */
81#define CMD_MSGID_LEN			8
82#define CMD_MSGID_RESP_REQ		BIT(8)
83#define CMD_MSGID_WRITE			BIT(16)
84#define CMD_STATUS_ISSUED		BIT(8)
85#define CMD_STATUS_COMPL		BIT(16)
86
87/*
88 * Here's a high level overview of how all the registers in RPMH work
89 * together:
90 *
91 * - The main rpmh-rsc address is the base of a register space that can
92 *   be used to find overall configuration of the hardware
93 *   (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
94 *   space are all the TCS blocks. The offset of the TCS blocks is
95 *   specified in the device tree by "qcom,tcs-offset" and used to
96 *   compute tcs_base.
97 * - TCS blocks come one after another. Type, count, and order are
98 *   specified by the device tree as "qcom,tcs-config".
99 * - Each TCS block has some registers, then space for up to 16 commands.
100 *   Note that though address space is reserved for 16 commands, fewer
101 *   might be present. See ncpt (num cmds per TCS).
102 *
103 * Here's a picture:
104 *
105 *  +---------------------------------------------------+
106 *  |RSC                                                |
107 *  | ctrl                                              |
108 *  |                                                   |
109 *  | Drvs:                                             |
110 *  | +-----------------------------------------------+ |
111 *  | |DRV0                                           | |
112 *  | | ctrl/config                                   | |
113 *  | | IRQ                                           | |
114 *  | |                                               | |
115 *  | | TCSes:                                        | |
116 *  | | +------------------------------------------+  | |
117 *  | | |TCS0  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
118 *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
119 *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
120 *  | | +------------------------------------------+  | |
121 *  | | +------------------------------------------+  | |
122 *  | | |TCS1  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
123 *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
124 *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
125 *  | | +------------------------------------------+  | |
126 *  | | +------------------------------------------+  | |
127 *  | | |TCS2  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
128 *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
129 *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
130 *  | | +------------------------------------------+  | |
131 *  | |                    ......                     | |
132 *  | +-----------------------------------------------+ |
133 *  | +-----------------------------------------------+ |
134 *  | |DRV1                                           | |
135 *  | | (same as DRV0)                                | |
136 *  | +-----------------------------------------------+ |
137 *  |                      ......                       |
138 *  +---------------------------------------------------+
139 */
140
141static inline void __iomem *
142tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
143{
144	return drv->tcs_base + RSC_DRV_TCS_OFFSET * tcs_id + reg;
145}
146
147static inline void __iomem *
148tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
149{
150	return tcs_reg_addr(drv, reg, tcs_id) + RSC_DRV_CMD_OFFSET * cmd_id;
151}
152
153static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
154			int cmd_id)
155{
156	return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
157}
158
159static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
160{
161	return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
162}
163
164static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
165			  int cmd_id, u32 data)
166{
167	writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
168}
169
170static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
171			  u32 data)
172{
173	writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
174}
175
176static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
177			       u32 data)
178{
179	int i;
180
181	writel(data, tcs_reg_addr(drv, reg, tcs_id));
182
183	/*
184	 * Wait until we read back the same value.  Use a counter rather than
185	 * ktime for timeout since this may be called after timekeeping stops.
186	 */
187	for (i = 0; i < USEC_PER_SEC; i++) {
188		if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
189			return;
190		udelay(1);
191	}
192	pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
193	       data, tcs_id, reg);
194}
195
196/**
197 * tcs_is_free() - Return if a TCS is totally free.
198 * @drv:    The RSC controller.
199 * @tcs_id: The global ID of this TCS.
200 *
201 * Returns true if nobody has claimed this TCS (by setting tcs_in_use).
202 *
203 * Context: Must be called with the drv->lock held.
204 *
205 * Return: true if the given TCS is free.
206 */
207static bool tcs_is_free(struct rsc_drv *drv, int tcs_id)
208{
209	return !test_bit(tcs_id, drv->tcs_in_use);
210}
211
212/**
213 * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
214 * @drv:  The RSC controller.
215 * @type: SLEEP_TCS or WAKE_TCS
216 *
217 * This will clear the "slots" variable of the given tcs_group and also
218 * tell the hardware to forget about all entries.
219 *
220 * The caller must ensure that no other RPMH actions are happening when this
221 * function is called, since otherwise the device may immediately become
222 * used again even before this function exits.
223 */
224static void tcs_invalidate(struct rsc_drv *drv, int type)
225{
226	int m;
227	struct tcs_group *tcs = &drv->tcs[type];
228
229	/* Caller ensures nobody else is running so no lock */
230	if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
231		return;
232
233	for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
234		write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, m, 0);
235		write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, m, 0);
236	}
237	bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
238}
239
240/**
241 * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
242 * @drv: The RSC controller.
243 *
244 * The caller must ensure that no other RPMH actions are happening when this
245 * function is called, since otherwise the device may immediately become
246 * used again even before this function exits.
247 */
248void rpmh_rsc_invalidate(struct rsc_drv *drv)
249{
250	tcs_invalidate(drv, SLEEP_TCS);
251	tcs_invalidate(drv, WAKE_TCS);
252}
253
254/**
255 * get_tcs_for_msg() - Get the tcs_group used to send the given message.
256 * @drv: The RSC controller.
257 * @msg: The message we want to send.
258 *
259 * This is normally pretty straightforward except if we are trying to send
260 * an ACTIVE_ONLY message but don't have any active_only TCSes.
261 *
262 * Return: A pointer to a tcs_group or an ERR_PTR.
263 */
264static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
265					 const struct tcs_request *msg)
266{
267	int type;
268	struct tcs_group *tcs;
269
270	switch (msg->state) {
271	case RPMH_ACTIVE_ONLY_STATE:
272		type = ACTIVE_TCS;
273		break;
274	case RPMH_WAKE_ONLY_STATE:
275		type = WAKE_TCS;
276		break;
277	case RPMH_SLEEP_STATE:
278		type = SLEEP_TCS;
279		break;
280	default:
281		return ERR_PTR(-EINVAL);
282	}
283
284	/*
285	 * If we are making an active request on a RSC that does not have a
286	 * dedicated TCS for active state use, then re-purpose a wake TCS to
287	 * send active votes. This is safe because we ensure any active-only
288	 * transfers have finished before we use it (maybe by running from
289	 * the last CPU in PM code).
290	 */
291	tcs = &drv->tcs[type];
292	if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
293		tcs = &drv->tcs[WAKE_TCS];
294
295	return tcs;
296}
297
298/**
299 * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
300 * @drv:    The RSC controller.
301 * @tcs_id: The global ID of this TCS.
302 *
303 * For ACTIVE_ONLY transfers we want to call back into the client when the
304 * transfer finishes. To do this we need the "request" that the client
305 * originally provided us. This function grabs the request that we stashed
306 * when we started the transfer.
307 *
308 * This only makes sense for ACTIVE_ONLY transfers since those are the only
309 * ones we track sending (the only ones we enable interrupts for and the only
310 * ones we call back to the client for).
311 *
312 * Return: The stashed request.
313 */
314static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
315						  int tcs_id)
316{
317	struct tcs_group *tcs;
318	int i;
319
320	for (i = 0; i < TCS_TYPE_NR; i++) {
321		tcs = &drv->tcs[i];
322		if (tcs->mask & BIT(tcs_id))
323			return tcs->req[tcs_id - tcs->offset];
324	}
325
326	return NULL;
327}
328
329/**
330 * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
331 * @drv:     The controller.
332 * @tcs_id:  The global ID of this TCS.
333 * @trigger: If true then untrigger/retrigger. If false then just untrigger.
334 *
335 * In the normal case we only ever call with "trigger=true" to start a
336 * transfer. That will un-trigger/disable the TCS from the last transfer
337 * then trigger/enable for this transfer.
338 *
339 * If we borrowed a wake TCS for an active-only transfer we'll also call
340 * this function with "trigger=false" to just do the un-trigger/disable
341 * before using the TCS for wake purposes again.
342 *
343 * Note that the AP is only in charge of triggering active-only transfers.
344 * The AP never triggers sleep/wake values using this function.
345 */
346static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
347{
348	u32 enable;
349
350	/*
351	 * HW req: Clear the DRV_CONTROL and enable TCS again
352	 * While clearing ensure that the AMC mode trigger is cleared
353	 * and then the mode enable is cleared.
354	 */
355	enable = read_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id);
356	enable &= ~TCS_AMC_MODE_TRIGGER;
357	write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
358	enable &= ~TCS_AMC_MODE_ENABLE;
359	write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
360
361	if (trigger) {
362		/* Enable the AMC mode on the TCS and then trigger the TCS */
363		enable = TCS_AMC_MODE_ENABLE;
364		write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
365		enable |= TCS_AMC_MODE_TRIGGER;
366		write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
367	}
368}
369
370/**
371 * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
372 * @drv:     The controller.
373 * @tcs_id:  The global ID of this TCS.
374 * @enable:  If true then enable; if false then disable
375 *
376 * We only ever call this when we borrow a wake TCS for an active-only
377 * transfer. For active-only TCSes interrupts are always left enabled.
378 */
379static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
380{
381	u32 data;
382
383	data = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_ENABLE);
384	if (enable)
385		data |= BIT(tcs_id);
386	else
387		data &= ~BIT(tcs_id);
388	writel_relaxed(data, drv->tcs_base + RSC_DRV_IRQ_ENABLE);
389}
390
391/**
392 * tcs_tx_done() - TX Done interrupt handler.
393 * @irq: The IRQ number (ignored).
394 * @p:   Pointer to "struct rsc_drv".
395 *
396 * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
397 * IRQ for) when a transfer is done.
398 *
399 * Return: IRQ_HANDLED
400 */
401static irqreturn_t tcs_tx_done(int irq, void *p)
402{
403	struct rsc_drv *drv = p;
404	int i, j, err = 0;
405	unsigned long irq_status;
406	const struct tcs_request *req;
407	struct tcs_cmd *cmd;
408
409	irq_status = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_STATUS);
410
411	for_each_set_bit(i, &irq_status, BITS_PER_LONG) {
412		req = get_req_from_tcs(drv, i);
413		if (!req) {
414			WARN_ON(1);
415			goto skip;
416		}
417
418		err = 0;
419		for (j = 0; j < req->num_cmds; j++) {
420			u32 sts;
421
422			cmd = &req->cmds[j];
423			sts = read_tcs_cmd(drv, RSC_DRV_CMD_STATUS, i, j);
424			if (!(sts & CMD_STATUS_ISSUED) ||
425			   ((req->wait_for_compl || cmd->wait) &&
426			   !(sts & CMD_STATUS_COMPL))) {
427				pr_err("Incomplete request: %s: addr=%#x data=%#x",
428				       drv->name, cmd->addr, cmd->data);
429				err = -EIO;
430			}
431		}
432
433		trace_rpmh_tx_done(drv, i, req, err);
434
435		/*
436		 * If wake tcs was re-purposed for sending active
437		 * votes, clear AMC trigger & enable modes and
438		 * disable interrupt for this TCS
439		 */
440		if (!drv->tcs[ACTIVE_TCS].num_tcs)
441			__tcs_set_trigger(drv, i, false);
442skip:
443		/* Reclaim the TCS */
444		write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i, 0);
445		write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, i, 0);
446		writel_relaxed(BIT(i), drv->tcs_base + RSC_DRV_IRQ_CLEAR);
447		spin_lock(&drv->lock);
448		clear_bit(i, drv->tcs_in_use);
449		/*
450		 * Disable interrupt for WAKE TCS to avoid being
451		 * spammed with interrupts coming when the solver
452		 * sends its wake votes.
453		 */
454		if (!drv->tcs[ACTIVE_TCS].num_tcs)
455			enable_tcs_irq(drv, i, false);
456		spin_unlock(&drv->lock);
457		wake_up(&drv->tcs_wait);
458		if (req)
459			rpmh_tx_done(req, err);
460	}
461
462	return IRQ_HANDLED;
463}
464
465/**
466 * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
467 * @drv:    The controller.
468 * @tcs_id: The global ID of this TCS.
469 * @cmd_id: The index within the TCS to start writing.
470 * @msg:    The message we want to send, which will contain several addr/data
471 *          pairs to program (but few enough that they all fit in one TCS).
472 *
473 * This is used for all types of transfers (active, sleep, and wake).
474 */
475static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
476			       const struct tcs_request *msg)
477{
478	u32 msgid, cmd_msgid;
479	u32 cmd_enable = 0;
480	u32 cmd_complete;
481	struct tcs_cmd *cmd;
482	int i, j;
483
484	cmd_msgid = CMD_MSGID_LEN;
485	cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
486	cmd_msgid |= CMD_MSGID_WRITE;
487
488	cmd_complete = read_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id);
489
490	for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
491		cmd = &msg->cmds[i];
492		cmd_enable |= BIT(j);
493		cmd_complete |= cmd->wait << j;
494		msgid = cmd_msgid;
495		msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
496
497		write_tcs_cmd(drv, RSC_DRV_CMD_MSGID, tcs_id, j, msgid);
498		write_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j, cmd->addr);
499		write_tcs_cmd(drv, RSC_DRV_CMD_DATA, tcs_id, j, cmd->data);
500		trace_rpmh_send_msg_rcuidle(drv, tcs_id, j, msgid, cmd);
501	}
502
503	write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, cmd_complete);
504	cmd_enable |= read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
505	write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id, cmd_enable);
506}
507
508/**
509 * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
510 * @drv: The controller.
511 * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
512 * @msg: The message we want to send, which will contain several addr/data
513 *       pairs to program (but few enough that they all fit in one TCS).
514 *
515 * This will walk through the TCSes in the group and check if any of them
516 * appear to be sending to addresses referenced in the message. If it finds
517 * one it'll return -EBUSY.
518 *
519 * Only for use for active-only transfers.
520 *
521 * Must be called with the drv->lock held since that protects tcs_in_use.
522 *
523 * Return: 0 if nothing in flight or -EBUSY if we should try again later.
524 *         The caller must re-enable interrupts between tries since that's
525 *         the only way tcs_is_free() will ever return true and the only way
526 *         RSC_DRV_CMD_ENABLE will ever be cleared.
527 */
528static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
529				  const struct tcs_request *msg)
530{
531	unsigned long curr_enabled;
532	u32 addr;
533	int i, j, k;
534	int tcs_id = tcs->offset;
535
536	for (i = 0; i < tcs->num_tcs; i++, tcs_id++) {
537		if (tcs_is_free(drv, tcs_id))
538			continue;
539
540		curr_enabled = read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
541
542		for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
543			addr = read_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j);
544			for (k = 0; k < msg->num_cmds; k++) {
545				if (addr == msg->cmds[k].addr)
546					return -EBUSY;
547			}
548		}
549	}
550
551	return 0;
552}
553
554/**
555 * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
556 * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
557 *       we borrowed it because there are zero active-only ones).
558 *
559 * Must be called with the drv->lock held since that protects tcs_in_use.
560 *
561 * Return: The first tcs that's free.
562 */
563static int find_free_tcs(struct tcs_group *tcs)
564{
565	int i;
566
567	for (i = 0; i < tcs->num_tcs; i++) {
568		if (tcs_is_free(tcs->drv, tcs->offset + i))
569			return tcs->offset + i;
570	}
571
572	return -EBUSY;
573}
574
575/**
576 * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
577 * @drv: The controller.
578 * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
579 * @msg: The data to be sent.
580 *
581 * Claims a tcs in the given tcs_group while making sure that no existing cmd
582 * is in flight that would conflict with the one in @msg.
583 *
584 * Context: Must be called with the drv->lock held since that protects
585 * tcs_in_use.
586 *
587 * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
588 * or the tcs_group is full.
589 */
590static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
591			     const struct tcs_request *msg)
592{
593	int ret;
594
595	/*
596	 * The h/w does not like if we send a request to the same address,
597	 * when one is already in-flight or being processed.
598	 */
599	ret = check_for_req_inflight(drv, tcs, msg);
600	if (ret)
601		return ret;
602
603	return find_free_tcs(tcs);
604}
605
606/**
607 * rpmh_rsc_send_data() - Write / trigger active-only message.
608 * @drv: The controller.
609 * @msg: The data to be sent.
610 *
611 * NOTES:
612 * - This is only used for "ACTIVE_ONLY" since the limitations of this
613 *   function don't make sense for sleep/wake cases.
614 * - To do the transfer, we will grab a whole TCS for ourselves--we don't
615 *   try to share. If there are none available we'll wait indefinitely
616 *   for a free one.
617 * - This function will not wait for the commands to be finished, only for
618 *   data to be programmed into the RPMh. See rpmh_tx_done() which will
619 *   be called when the transfer is fully complete.
620 * - This function must be called with interrupts enabled. If the hardware
621 *   is busy doing someone else's transfer we need that transfer to fully
622 *   finish so that we can have the hardware, and to fully finish it needs
623 *   the interrupt handler to run. If the interrupts is set to run on the
624 *   active CPU this can never happen if interrupts are disabled.
625 *
626 * Return: 0 on success, -EINVAL on error.
627 */
628int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
629{
630	struct tcs_group *tcs;
631	int tcs_id;
632	unsigned long flags;
633
634	tcs = get_tcs_for_msg(drv, msg);
635	if (IS_ERR(tcs))
636		return PTR_ERR(tcs);
637
638	spin_lock_irqsave(&drv->lock, flags);
639
640	/* Wait forever for a free tcs. It better be there eventually! */
641	wait_event_lock_irq(drv->tcs_wait,
642			    (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
643			    drv->lock);
644
645	tcs->req[tcs_id - tcs->offset] = msg;
646	set_bit(tcs_id, drv->tcs_in_use);
647	if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
648		/*
649		 * Clear previously programmed WAKE commands in selected
650		 * repurposed TCS to avoid triggering them. tcs->slots will be
651		 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
652		 */
653		write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, tcs_id, 0);
654		write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, 0);
655		enable_tcs_irq(drv, tcs_id, true);
656	}
657	spin_unlock_irqrestore(&drv->lock, flags);
658
659	/*
660	 * These two can be done after the lock is released because:
661	 * - We marked "tcs_in_use" under lock.
662	 * - Once "tcs_in_use" has been marked nobody else could be writing
663	 *   to these registers until the interrupt goes off.
664	 * - The interrupt can't go off until we trigger w/ the last line
665	 *   of __tcs_set_trigger() below.
666	 */
667	__tcs_buffer_write(drv, tcs_id, 0, msg);
668	__tcs_set_trigger(drv, tcs_id, true);
669
670	return 0;
671}
672
673/**
674 * find_slots() - Find a place to write the given message.
675 * @tcs:    The tcs group to search.
676 * @msg:    The message we want to find room for.
677 * @tcs_id: If we return 0 from the function, we return the global ID of the
678 *          TCS to write to here.
679 * @cmd_id: If we return 0 from the function, we return the index of
680 *          the command array of the returned TCS where the client should
681 *          start writing the message.
682 *
683 * Only for use on sleep/wake TCSes since those are the only ones we maintain
684 * tcs->slots for.
685 *
686 * Return: -ENOMEM if there was no room, else 0.
687 */
688static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
689		      int *tcs_id, int *cmd_id)
690{
691	int slot, offset;
692	int i = 0;
693
694	/* Do over, until we can fit the full payload in a single TCS */
695	do {
696		slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
697						  i, msg->num_cmds, 0);
698		if (slot >= tcs->num_tcs * tcs->ncpt)
699			return -ENOMEM;
700		i += tcs->ncpt;
701	} while (slot + msg->num_cmds - 1 >= i);
702
703	bitmap_set(tcs->slots, slot, msg->num_cmds);
704
705	offset = slot / tcs->ncpt;
706	*tcs_id = offset + tcs->offset;
707	*cmd_id = slot % tcs->ncpt;
708
709	return 0;
710}
711
712/**
713 * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
714 * @drv: The controller.
715 * @msg: The data to be written to the controller.
716 *
717 * This should only be called for for sleep/wake state, never active-only
718 * state.
719 *
720 * The caller must ensure that no other RPMH actions are happening and the
721 * controller is idle when this function is called since it runs lockless.
722 *
723 * Return: 0 if no error; else -error.
724 */
725int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
726{
727	struct tcs_group *tcs;
728	int tcs_id = 0, cmd_id = 0;
729	int ret;
730
731	tcs = get_tcs_for_msg(drv, msg);
732	if (IS_ERR(tcs))
733		return PTR_ERR(tcs);
734
735	/* find the TCS id and the command in the TCS to write to */
736	ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
737	if (!ret)
738		__tcs_buffer_write(drv, tcs_id, cmd_id, msg);
739
740	return ret;
741}
742
743/**
744 * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
745 * @drv: The controller
746 *
747 * Checks if any of the AMCs are busy in handling ACTIVE sets.
748 * This is called from the last cpu powering down before flushing
749 * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
750 * power collapse, so deny from the last cpu's pm notification.
751 *
752 * Context: Must be called with the drv->lock held.
753 *
754 * Return:
755 * * False		- AMCs are idle
756 * * True		- AMCs are busy
757 */
758static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
759{
760	int m;
761	struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
762
763	/*
764	 * If we made an active request on a RSC that does not have a
765	 * dedicated TCS for active state use, then re-purposed wake TCSes
766	 * should be checked for not busy, because we used wake TCSes for
767	 * active requests in this case.
768	 */
769	if (!tcs->num_tcs)
770		tcs = &drv->tcs[WAKE_TCS];
771
772	for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
773		if (!tcs_is_free(drv, m))
774			return true;
775	}
776
777	return false;
778}
779
780/**
781 * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
782 * @nfb:    Pointer to the notifier block in struct rsc_drv.
783 * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
784 * @v:      Unused
785 *
786 * This function is given to cpu_pm_register_notifier so we can be informed
787 * about when CPUs go down. When all CPUs go down we know no more active
788 * transfers will be started so we write sleep/wake sets. This function gets
789 * called from cpuidle code paths and also at system suspend time.
790 *
791 * If its last CPU going down and AMCs are not busy then writes cached sleep
792 * and wake messages to TCSes. The firmware then takes care of triggering
793 * them when entering deepest low power modes.
794 *
795 * Return: See cpu_pm_register_notifier()
796 */
797static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
798				    unsigned long action, void *v)
799{
800	struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
801	int ret = NOTIFY_OK;
802	int cpus_in_pm;
803
804	switch (action) {
805	case CPU_PM_ENTER:
806		cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
807		/*
808		 * NOTE: comments for num_online_cpus() point out that it's
809		 * only a snapshot so we need to be careful. It should be OK
810		 * for us to use, though.  It's important for us not to miss
811		 * if we're the last CPU going down so it would only be a
812		 * problem if a CPU went offline right after we did the check
813		 * AND that CPU was not idle AND that CPU was the last non-idle
814		 * CPU. That can't happen. CPUs would have to come out of idle
815		 * before the CPU could go offline.
816		 */
817		if (cpus_in_pm < num_online_cpus())
818			return NOTIFY_OK;
819		break;
820	case CPU_PM_ENTER_FAILED:
821	case CPU_PM_EXIT:
822		atomic_dec(&drv->cpus_in_pm);
823		return NOTIFY_OK;
824	default:
825		return NOTIFY_DONE;
826	}
827
828	/*
829	 * It's likely we're on the last CPU. Grab the drv->lock and write
830	 * out the sleep/wake commands to RPMH hardware. Grabbing the lock
831	 * means that if we race with another CPU coming up we are still
832	 * guaranteed to be safe. If another CPU came up just after we checked
833	 * and has grabbed the lock or started an active transfer then we'll
834	 * notice we're busy and abort. If another CPU comes up after we start
835	 * flushing it will be blocked from starting an active transfer until
836	 * we're done flushing. If another CPU starts an active transfer after
837	 * we release the lock we're still OK because we're no longer the last
838	 * CPU.
839	 */
840	if (spin_trylock(&drv->lock)) {
841		if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
842			ret = NOTIFY_BAD;
843		spin_unlock(&drv->lock);
844	} else {
845		/* Another CPU must be up */
846		return NOTIFY_OK;
847	}
848
849	if (ret == NOTIFY_BAD) {
850		/* Double-check if we're here because someone else is up */
851		if (cpus_in_pm < num_online_cpus())
852			ret = NOTIFY_OK;
853		else
854			/* We won't be called w/ CPU_PM_ENTER_FAILED */
855			atomic_dec(&drv->cpus_in_pm);
856	}
857
858	return ret;
859}
860
861static int rpmh_probe_tcs_config(struct platform_device *pdev,
862				 struct rsc_drv *drv, void __iomem *base)
863{
864	struct tcs_type_config {
865		u32 type;
866		u32 n;
867	} tcs_cfg[TCS_TYPE_NR] = { { 0 } };
868	struct device_node *dn = pdev->dev.of_node;
869	u32 config, max_tcs, ncpt, offset;
870	int i, ret, n, st = 0;
871	struct tcs_group *tcs;
872
873	ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
874	if (ret)
875		return ret;
876	drv->tcs_base = base + offset;
877
878	config = readl_relaxed(base + DRV_PRNT_CHLD_CONFIG);
879
880	max_tcs = config;
881	max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
882	max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
883
884	ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
885	ncpt = ncpt >> DRV_NCPT_SHIFT;
886
887	n = of_property_count_u32_elems(dn, "qcom,tcs-config");
888	if (n != 2 * TCS_TYPE_NR)
889		return -EINVAL;
890
891	for (i = 0; i < TCS_TYPE_NR; i++) {
892		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
893						 i * 2, &tcs_cfg[i].type);
894		if (ret)
895			return ret;
896		if (tcs_cfg[i].type >= TCS_TYPE_NR)
897			return -EINVAL;
898
899		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
900						 i * 2 + 1, &tcs_cfg[i].n);
901		if (ret)
902			return ret;
903		if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
904			return -EINVAL;
905	}
906
907	for (i = 0; i < TCS_TYPE_NR; i++) {
908		tcs = &drv->tcs[tcs_cfg[i].type];
909		if (tcs->drv)
910			return -EINVAL;
911		tcs->drv = drv;
912		tcs->type = tcs_cfg[i].type;
913		tcs->num_tcs = tcs_cfg[i].n;
914		tcs->ncpt = ncpt;
915
916		if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
917			continue;
918
919		if (st + tcs->num_tcs > max_tcs ||
920		    st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
921			return -EINVAL;
922
923		tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
924		tcs->offset = st;
925		st += tcs->num_tcs;
926	}
927
928	drv->num_tcs = st;
929
930	return 0;
931}
932
933static int rpmh_rsc_probe(struct platform_device *pdev)
934{
935	struct device_node *dn = pdev->dev.of_node;
936	struct rsc_drv *drv;
937	struct resource *res;
938	char drv_id[10] = {0};
939	int ret, irq;
940	u32 solver_config;
941	void __iomem *base;
942
943	/*
944	 * Even though RPMh doesn't directly use cmd-db, all of its children
945	 * do. To avoid adding this check to our children we'll do it now.
946	 */
947	ret = cmd_db_ready();
948	if (ret) {
949		if (ret != -EPROBE_DEFER)
950			dev_err(&pdev->dev, "Command DB not available (%d)\n",
951									ret);
952		return ret;
953	}
954
955	drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
956	if (!drv)
957		return -ENOMEM;
958
959	ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
960	if (ret)
961		return ret;
962
963	drv->name = of_get_property(dn, "label", NULL);
964	if (!drv->name)
965		drv->name = dev_name(&pdev->dev);
966
967	snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
968	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, drv_id);
969	base = devm_ioremap_resource(&pdev->dev, res);
970	if (IS_ERR(base))
971		return PTR_ERR(base);
972
973	ret = rpmh_probe_tcs_config(pdev, drv, base);
974	if (ret)
975		return ret;
976
977	spin_lock_init(&drv->lock);
978	init_waitqueue_head(&drv->tcs_wait);
979	bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
980
981	irq = platform_get_irq(pdev, drv->id);
982	if (irq < 0)
983		return irq;
984
985	ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
986			       IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
987			       drv->name, drv);
988	if (ret)
989		return ret;
990
991	/*
992	 * CPU PM notification are not required for controllers that support
993	 * 'HW solver' mode where they can be in autonomous mode executing low
994	 * power mode to power down.
995	 */
996	solver_config = readl_relaxed(base + DRV_SOLVER_CONFIG);
997	solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
998	solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
999	if (!solver_config) {
1000		drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1001		cpu_pm_register_notifier(&drv->rsc_pm);
1002	}
1003
1004	/* Enable the active TCS to send requests immediately */
1005	writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1006		       drv->tcs_base + RSC_DRV_IRQ_ENABLE);
1007
1008	spin_lock_init(&drv->client.cache_lock);
1009	INIT_LIST_HEAD(&drv->client.cache);
1010	INIT_LIST_HEAD(&drv->client.batch_cache);
1011
1012	dev_set_drvdata(&pdev->dev, drv);
1013
1014	return devm_of_platform_populate(&pdev->dev);
1015}
1016
1017static const struct of_device_id rpmh_drv_match[] = {
1018	{ .compatible = "qcom,rpmh-rsc", },
1019	{ }
1020};
1021
1022static struct platform_driver rpmh_driver = {
1023	.probe = rpmh_rsc_probe,
1024	.driver = {
1025		  .name = "rpmh",
1026		  .of_match_table = rpmh_drv_match,
1027		  .suppress_bind_attrs = true,
1028	},
1029};
1030
1031static int __init rpmh_driver_init(void)
1032{
1033	return platform_driver_register(&rpmh_driver);
1034}
1035arch_initcall(rpmh_driver_init);
1036